

BK_SekI+II_Python_spez.docx (c,p) 2015 - 2026 lern-soft-projekt: drews

Informatik
für die Sekundarstufe I + II

- Programmieren mit Python –

Teil 3: für Experten

Autor: L. Drews

Grüner Baum-Python

(s) Morelia viridis
Q: de.wikipedia.org (Mwx)

>>>
while eval(input("?:")) != 0:

 print("Stoppen",end='')

teilredigierte Version 0.11c (2026)

BK_SekI+II_Python_spez.docx - 2 - (c,p) 2015 - 2026 lsp: dre

Nutzungsbestimmungen / Bemerkungen zur Verwendung durch Dritte:
(1) Dieses Skript (Werk) ist zur freien Nutzung in der angebotenen Form durch den

Anbieter (lern-soft-projekt) bereitgestellt. Es kann unter Angabe der Quelle und /
oder des Verfassers gedruckt, vervielfältigt oder in elektronischer Form veröf-
fentlicht werden.

(2) Das Weglassen von Abschnitten oder Teilen (z.B. Aufgaben und Lösungen) in
Teildrucken ist möglich und sinnvoll (Konzentration auf die eigenen Unterrichts-
ziele, -inhalte und -methoden). Bei angemessen großen Auszügen gehört das
vollständige Inhaltsverzeichnis und die Angabe einer Bezugsquelle für das Ori-
ginalwerk zum Pflichtteil.

(3) Ein Verkauf in jedweder Form ist ausgeschlossen. Der Aufwand für Kopierleistungen, Datenträger
oder den (einfachen) Download usw. ist davon unberührt.

(4) Änderungswünsche werden gerne entgegen genommen. Ergänzungen, Arbeitsblätter, Aufgaben
und Lösungen mit eigener Autorenschaft sind möglich und werden bei konzeptioneller Passung
eingearbeitet. Die Teile sind entsprechend der Autorenschaft zu kennzeichnen. Jedes Teil behält
die Urheberrechte seiner Autorenschaft bei.

(5) Zusammenstellungen, die von diesem Skript - über Zitate hinausgehende - Bestandteile enthalten,
müssen verpflichtend wieder gleichwertigen Nutzungsbestimmungen unterliegen.

(6) Diese Nutzungsbestimmungen gehören zu diesem Werk.
(7) Der Autor behält sich das Recht vor, diese Bestimmungen zu ändern.
(8) Andere Urheberrechte bleiben von diesen Bestimmungen unberührt.

Rechte Anderer:
Viele der verwendeten Bilder unterliegen verschiedensten freien Lizenzen. Nach meinen Recherchen
sollten alle genutzten Bilder zu einer der nachfolgenden freien Lizenzen gehören. Unabhängig von
den Vorgaben der einzelnen Lizenzen sind zu jedem extern entstandenen Objekt die Quelle, und
wenn bekannt, der Autor / Rechteinhaber angegeben.

public domain (pd) Zum Gemeingut erklärte Graphiken oder Fotos (u.a.). Viele der verwen-
deten Bilder entstammen Webseiten / Quellen US-amerikanischer Ein-
richtungen, die im Regierungsauftrag mit öffentlichen Mitteln finanziert
wurden und darüber rechtlich (USA) zum Gemeingut wurden. Andere
kreative Leistungen wurden ohne Einschränkungen von den Urhebern
freigegeben.

gnu free document li-
cence (GFDL; gnu fdl)

creative commens (cc)

 od. neu … Namensnennung

 … nichtkommerziell

 … in der gleichen Form

 … unter gleichen Bedingungen

Die meisten verwendeten Lizenzen schließen eine kommerzielle (Weiter-)Nutzung aus!

Bemerkungen zur Rechtschreibung:
Dieses Skript folgt nicht zwangsläufig der neuen ODER alten deutschen Recht-
schreibung. Vielmehr wird vom Recht auf künstlerische Freiheit, der Freiheit der
Sprache und von der Autokorrektur des Textverarbeitungsprogramms microsoft ®
WORD ® Gebrauch gemacht.
Für Hinweise auf echte Fehler ist der Autor immer dankbar.

Legende:
mit diesem Symbol werden zusätz-
liche Hinweise, Tips und weiterfüh-
rende Ideen gekennzeichnet

BK_SekI+II_Python_spez.docx - 3 - (c,p) 2015 - 2026 lsp: dre

Inhaltsverzeichnis:
Seite

10. Python für spezielle Fälle.. 6

10.1. Python in Zusammenarbeit mit anderen Anwender-Programmen 6

10.2. Steuerung externer Hardware (RaspberryPi, Arduino) ... 7
10.2.1. Raspberry Pi und Verwandte .. 7

10.2.1.0. Kurzbeschreibung und allgemeine Einführung zu Raspberry Pi 7
10.2.1.1. die GPIO-Schnittstelle ... 7
10.2.1.2. Steuerung über die GPIO-Schnittstelle .. 9
10.2.1.3. direkte Steuerung der IO-Port .. 9
10.2.1.4. Objekt-orientiertes Programmieren .. 10
10.2.1.5. GUI mit Tkinter .. 10
10.2.1.6. programmiertes Spielen mit microsoft Minecraft .. 12

10.2.2. Aduino und Verwandte ... 24
10.2.2.0. Kurzbeschreibung und allgemeine Einführung zu Arduino 24
10.2.2.1. Einrichtung einer Umgebung für Programmierung eines Arduino mit

Python .. 24
10.2.2.x. Spezialfall UDOO ... 27

10.2.3. FRANZIS – Experimentierplatine mit FT232R .. 27
10.2.4. TI-Innovator .. 28

10.2.4.y. externe Hardware .. 28
RGB-Array ... 28

10.2.5. Steuerung des Calliope mini ... 30

10.3. Datenbank-Zugriff mit Python .. 31
10.3.1. SQLite 3 ... 31

10.3.1.0. Verbindung herstellen .. 31
10.3.1.1. Erstellen einer Tabelle ... 31
10.3.1.2. Hinzufügen von Datensätzen zu einer Tabelle ... 32
10.3.1.3. Aktualisieren eines Datensatzes in einer Tabelle 32
10.3.1.4. Löschen eines Datensatzes aus einer Tabelle ... 32
10.3.1.5. Löschen einer Tabelle ... 32
10.3.1.z. Beenden der Verbindung ... 32
weitere Beispiele: ... 33

10.4. Web-Server-Anwendungen mit dem (Micro-)Framework Flask 34
10.4.0. Erzeugung einer Web-Seite mit Python (Wiederholung) 34
10.4.1. das Framework Flask ... 34
10.4.2. die Flask-Erweiterung bootstrap ... 37
10.4.3. Programmierung der Web-Oberfläche und Darstellung von Meßwerten 37

10.5. Web-Applikationen mit Django... 41

10.6. MicroPython für Microcontroller .. 42
10.6.x. MicroPython für micro::bit ... 45

weitere Editoren für microPython: ... 45
Text-basierte Systeme .. 45
Block-basierte Systeme .. 45

10.6.x. MicroPython für ESP-32-Microcontroller ... 46
10.6.x.0. Vorbereiten des ESP für MicroPython .. 46

10.6.x.0.1. das Tool uPyCraft ... 49
Installation und Beschreibung des Hilfs-Programms uPyCraft ... 50
10.6.x.0.2. Nutzung eines ESP mit microPython unter Linux ... 56
10.6.x.0.3. Esp-Tool .. 58

10.6.x.1. Arbeiten mit MicroPython ... 61
10.6.x.y.1. interaktiver Modus - REPL .. 62
10.6.x.y.2. interaktiver und Internet-fähiger Modus - WebREPL 63
10.6.x.y.3. "Autostart"-Modus ... 64
10.6.x.4. elementare Programmierung mit MicroPython ... 67

BK_SekI+II_Python_spez.docx - 4 - (c,p) 2015 - 2026 lsp: dre

10.6.x.4.1. Ausgaben ... 67
10.6.x.4.2. Variablen, Zuweisungen und Berechnungen ... 70
10.6.x.4.3. Eingaben .. 71
10.6.x.4.4. Alternativen, Verzweigungen.. 72
10.6.x.4.5. Wiederholungen, Schleifen .. 72
10.6.x.4.6. eingebaute und mitgelieferte Funktionen ... 72

10.6.x.5. klassische Programmierung mit MicroPython ... 72
10.6.x.5.1. Listen und Listen-Verarbeitung .. 72
10.6.x.5.2. Wörterbücher, Dictonary's .. 72
10.6.x.5.3. Lesen und Schreiben von Dateien, Datei-Verarbeitung 72
10.6.x.5.4. ... 73

10.6.x.6. spezielle Programmierung mit MicroPython ... 73
10.6.x.4. weitere spezielle Programm-Beispiele und -Schnipsel 73
10.6.x.5. spezielle Module für ESP-32-Microcontroller .. 85
10.6.x.5.1. Modul "machine" ... 85

Deep-sleep-Modus () .. 85
RTC (realtime clock) ... 85
Zähler / Timer ... 86
Pin's / GPIO .. 86
PWM (pulse width modulation) .. 87
ADC (analog to digital conversion) ... 87
SPI-Bus (serial peripheral interface) .. 88
I2C-Bus... 89
OneWire-Treiber () ... 89
LED-Leisten bzw. -Ringe (NeoPixel) .. 90
Touch-Eingabe (capacitive touch) .. 90
DHT (Umweltsensoren, Temperatur-Luftfeuchte-Sensor) ... 91

10.6.x.5.2. Modul "esp" ... 91
10.6.x.5.3. Modul "esp32" ... 92
10.6.x.5.4. Modul "network" .. 92
10.6.x.5.5. Modul "time" .. 93
10.6.x.y. Sprach-Elemente vom MicroPython (Kurz-Übersicht / Spicker) 94

(formatierte) Ausgabe: .. 94
Verzweigung: .. 94
Schleifen: .. 94

10.7. Python auf und mit Taschenrechnern / spezieller Hardware 95
10.7.x. Casio-Rechner .. 95

FX-CG50 95
10.7.x. Texas Instruments-Rechner .. 97

TI-Nspire CXII-T CAS ... 97
Formeln programmieren ... 98

Nutzung des TI-Innovator ... 99
Steuern des TI-Rover ... 99
TI-84 Plus ... 99
Nutzung des mirco::bit .. 100

Vorbereitung des Taschenrechner's .. 100
10.7.x. Miniroboter Edison (Microbric) .. 101

10.8. Python und Data Science ... 103
der Titanic-Daten-Bestand .. 104

10.9. Python und Künstliche Intelligenz ... 109
10.9.x. Entscheidungs-Bäume .. 109
10.9.x. Korrelation und Regression .. 109
10.9.x. maschinelles Lernen ... 110

10.10. Python kommuniziert in Discord .. 111
10.10.0. Allgemeines und Vorbereitung .. 111
10.10.2. erste Kommunikations-Versuche .. 112
10.10.3. Programmierung eines Bot's ... 117

11. Üben, üben und nochmals üben .. 121

BK_SekI+II_Python_spez.docx - 5 - (c,p) 2015 - 2026 lsp: dre

11.x. Aufgaben aus der Abiturprüfung Informatik MV ... 122
11.x.y. Abitur 2010 ... 122

11.x. Aufgaben der Landesolympiade Informatik MV .. 122
11.x.y. 2014/2015... 122

11.x.y.z. Sekundarstufe II ... 122

Literatur und Quellen: ... 123

BK_SekI+II_Python_spez.docx - 6 - (c,p) 2015 - 2026 lsp: dre

10. Python für spezielle Fälle

10.1. Python in Zusammenarbeit mit anderen Anwender-

Programmen

interessante Links:
https://automatetheboringstuff.com/ (online-Version des Buches: AL SWEIGART: Automate the Boring
Stuff with Python – Practical Programming for Total Beginners)

https://automatetheboringstuff.com/

BK_SekI+II_Python_spez.docx - 7 - (c,p) 2015 - 2026 lsp: dre

10.2. Steuerung externer Hardware (RaspberryPi, Arduino)

10.2.1. Raspberry Pi und Verwandte

10.2.1.0. Kurzbeschreibung und allgemeine Einführung zu Raspberry Pi

10.2.1.1. die GPIO-Schnittstelle

GPIO ist eine 40-polige Anschluß-
Leiste mit verschiedenen Ein- und Aus-
gängen zum Board. Dient dem An-
schluß von Zusatz-Platinen (Shield's)
oder von elektrischen / elektronischen
Schaltungen.

BK_SekI+II_Python_spez.docx - 8 - (c,p) 2015 - 2026 lsp: dre

Achtung:
Die Benutzung der Pin's muss exakt eingehalten werden. Ein Wechsel auf
andere Pin's ist nur mit genauer Vorüberlegung möglich.
Ein Verwechslung von Pin's oder Polungen kann zur Zerstörung von Bauele-
menten und / oder der Raspberry-Platine führen.
Schaltungen sollten vor der Benutzung immer noch einmal kontrolliert werden
(4-Augen-Prinzip empfohlen!). Erst wenn alles übereinstimmt, dann als Letz-
tes Masse oder Spannung-Pin einstecken!

 innen außen

 1 3,3V 5V 2

 3 2 5V 4

 5 3 Gnd 6

 7 4 14 8

 9 Gnd 15 10

 11 17 18 12

 13 27 Gnd 14

 15 22 23 16

 17 3,3V 24 18

 19 10 Gnd 20

 21 9 25 22

 23 11 8 24

 25 Gnd 7 26

 27 ID_SD ID_SC 28

 29 5 Gnd 30

 31 6 12 32

 33 13 Gnd 34

 35 19 16 36

 37 26 20 38

 39 Gnd 21 40

 P
in

N
a

m
e

 Q: Fritzing; bearb.: dre

BK_SekI+II_Python_spez.docx - 9 - (c,p) 2015 - 2026 lsp: dre

10.2.1.2. Steuerung über die GPIO-Schnittstelle

LED an GPIO23 blinken

import RPi.GPIO as GPIO # Bibliothek für GPIO-Steuerung

import time # Bibliothek für Zeitsteuerung

GPIO.setmode(GPIO.BCM) # GPIO-Namen verwenden

pin=23 # GPIO-Pin

GPIO.setup(pin, GPIO.OUT) # GPIO-Pin auf Ausgabe

zeit=0.5 # Hell-Dunkel-Wartezeit

while True: # Endlos-Schleife

 GPIO.output(pin, GPIO.HIGH) # Pin ein

 time.sleep(zeit)

 GPIO.output(pin, GPIO.LOW) # Pin aus

 time.sleep(zeit)

LED per Taster EIN und AUS

import RPi.GPIO as GPIO # Bibliothek für GPIO-Steuerung

import time # Bibliothek für Zeitsteuerung

GPIO.setmode(GPIO.BCM) # GPIO-Namen verwenden

pinAus=23 # GPIO-Pin

pinEin=24 # GPIO-Pin

GPIO.setup(pinAus, GPIO.OUT) # GPIO-Pin auf Ausgabe

GPIO.setup(pinEin, GPIO.IN) # GPIO-Pin auf Eingabe

zeit=0.5 # Hell-Dunkel-Wartezeit

for i in range(3): # 3x wiederholen (blinken)

 GPIO.output(pinAus, GPIO.HIGH) # LED an

 time.sleep(zeit) # warten

 GPIO.output(pinAus, GPIO.LOW) # LED aus

 time.sleep(zeit) # warten

while True: # Endlosschleife

 if GPIO.input(pinEin) == 0: # Abfrage Eingabe-Pin = geschlossen

 GPIO.output(pinAus, GPIO.LOW) # Ausschalten

 else:

 GPIO.output(pinAus, GPIO.HIGH) # Einschalten

die Endlos-Schleifen lassen sich mit [Strg] + [c] abbrechen

10.2.1.3. direkte Steuerung der IO-Port

BK_SekI+II_Python_spez.docx - 10 - (c,p) 2015 - 2026 lsp: dre

10.2.1.4. Objekt-orientiertes Programmieren

eine Sensor-Klasse
→ http://www.forum-raspberrypi.de/Thread-tutorial-einfuehrung-in-objektorientierte-programmierung-mit-python

10.2.1.5. GUI mit Tkinter

Q: http://www.elektronik.nmp24.de/?Python-Programmierung:GUI_mit_tkinter

#GUI für das Ein- und Ausschalten einer LED an GPIO14

from tkinter import * #Grafikbibliothek

root = Tk() # Fenster erstellen

root.wm_title("Raspberry Pi GUI") # Fenster Titel

root.config(background = "#FFFFFF") # Hintergrundfarbe des Fensters

#GPIO- und time-Bibliothek:

import RPi.GPIO as GPIO

import time

#festlegen, dass GPIO-Nummern verwendet werden:

GPIO.setmode(GPIO.BCM)

#GPIO14 als Ausgang:

GPIO.setup(14, GPIO.OUT)

Hier werden zwei Frames erzeugt:

leftFrame = Frame(root, width=200, height = 400) # Frame initialisieren

leftFrame.grid(row=0, column=0, padx=10, pady=3) # Relative Position und Seiten-

abstand (padding) angeben

Hier kommen die Elemente des linken Frames rein

leftLabel1 = Label(leftFrame, text="Steuerung von GPIO14")

leftLabel1.grid(row=0, column=0, padx=10, pady=3)

leftLabel2 = Label(leftFrame, text="Bitte Buttons\nbetätigen!")

leftLabel2.grid(row=1, column=0, padx=10, pady=3)

rightFrame = Frame(root, width=400, height = 400)

rightFrame.grid(row=0, column=1, padx=10, pady=3)

Hier kommen die Elemente des rechten Frames rein

callback1 ist der Handler von Button B1

def callback1():

 varLEDStatus = GPIO.input(14)

 if varLEDStatus == 0:

 GPIO.output(14, GPIO.HIGH)

http://www.forum-raspberrypi.de/Thread-tutorial-einfuehrung-in-objektorientierte-programmierung-mit-python

BK_SekI+II_Python_spez.docx - 11 - (c,p) 2015 - 2026 lsp: dre

 E1.delete(0, END)

 E1.insert(0, "LED ist eingeschaltet")

 else:

 GPIO.output(14, GPIO.LOW)

 E1.delete(0, END)

 E1.insert(0, "LED ist ausgeschaltet")

def callback2():

 for i in range(5):

 GPIO.output(14, GPIO.HIGH)

 time.sleep(0.5)

 GPIO.output(14, GPIO.LOW)

 time.sleep(0.5)

def callback3():

 print (Slider.get())

 E1.delete(0, END)

 E1.insert(0, "Slider = ")

 E1.insert(12, Slider.get())

buttonFrame = Frame(rightFrame)

buttonFrame.grid(row=1, column=0, padx=10, pady=3)

E1 = Entry(rightFrame, width=20)

E1.grid(row=0, column=0, padx=10, pady=3)

B1 = Button(buttonFrame, text="LED schalten", bg="#42ebf4", width=15, com-

mand=callback1)

B1.grid(row=1, column=0, padx=10, pady=3)

B2 = Button(buttonFrame, text="LED soll blinken", bg="#42ebf4", width=15, com-

mand=callback2)

B2.grid(row=2, column=0, padx=10, pady=3)

B3 = Button(buttonFrame, text="Sliderwert anzeigen", bg="#42ebf4", width=15,

command=callback3)

B3.grid(row=3, column=0, padx=10, pady=3)

Slider = Scale(rightFrame, from_=0, to=100, resolution=0.1, orient=HORIZONTAL,

length=400)

Slider.grid(row=3, column=0, padx=10, pady=3)

root.mainloop() # GUI wird upgedated. Danach keine Elemente setzen

Q: http://www.elektronik.nmp24.de/?Python-Programmierung:GUI_mit_tkinter

Links:
https://tutorials-raspberrypi.de

BK_SekI+II_Python_spez.docx - 12 - (c,p) 2015 - 2026 lsp: dre

10.2.1.6. programmiertes Spielen mit microsoft Minecraft
Programm-Beispiele (gelbbräunlich (hell oliv)) stammen aus dem conrad / Franzis Adventskalender Programmie-
ren mit Minecraft 2018

Python und Minecraft stellen auf dem Raspberry Pi eine besonders Preis-günstige Kombina-
tion dar. Praktisch hat man nur die Hardware-Kosten für den Pi und die notwendigen Zube-
hör-Teile. Weder Python noch Minecraft kostet auf dem Pi Geld. Microsoft hat für den Pi eine
kostenlose Variante von Minecraft spendiert. Für erste Erfahrungen ist das schon mehr als
genug. Wir können alle wesentlichen Funktionen von Mindecraft programmieren und damit
unser eigenes Spiel erstellen.
Für Python-Anfänger ist das Objekt-orientierte sicher eine sehr große Herausforderung. Aber
die schon fortgeschrittenen Programmierer mit Grundkenntnissen in OOP werden sicher
sehr schnell zurecht kommen.

Position des Spieler auswerten

Die GPIO verfügt über 16 (???) Digital-Ausgänge. Das heißt diese können durch Programme
AN oder AUS geschaltet werden. Für die meisten Schaltungen bedeutet das für AN liegt eine
Spannung von 5 V an und bei AUS ist es 0 V. An den digitalen Ausgängen sind nur diese
beiden Zustände zugelassen. Zwischen-Größen sind nicht möglich. Dies ist nur an analogen
Port's möglich (→).
In diesem Projekt soll die Position des Spieler in der Würfel-Welt erfasst und ausgewertet
werden. Wenn der Spieler einen bestimmten Bereich in der Minecraft-Welt erreicht hat, dann
soll eine zweite LED (rot) leuchten.
an Pin 23 und Pin 25 muss jeweils eine LED
entweder mit integriertem Vorwiderstand
oder ein solcher in Reihe mit einer normalen
LED geschaltet werden (das lange Beinchen
der LED's steht für den Plus-Pol und kommt
an den Pin
das andere (kürzere) Beinchen ist auf Minus
bzw. Masse zu schalten

unbedingt die richtige Polung und auch die
Pin-Auswahl beachten, ansonsten köönten
die Bauelemente oder gar der Pi beschädigt
werden

am Besten Aufbau auf einem SteckBrett

#!/usr/bin/python

import mcpi.minecraft as minecraft

import RPi.GPIO as GPIO

mc = minecraft.Minecraft.create()

GPIO.setmode(GPIO.BCM)

GPIO.setup(23, GPIO.OUT)

GPIO.setup(25, GPIO.OUT)

while True:

 p = mc.player.getTilePos()

 if (p.x==8 and p.z>=3 and p.z <=4):

notw. Zeile für Kommandozeilenstart von
Python-Programmen
Bibliothek für die Verbindung mit Minecraft
Bibliothek für die Ansteuerung der GPIO-
Schnittstelle
Erstellen eines Minecraft-Objektes mit dem
Namen mc
Setzen der Pin-Namen lt. BCM
Initialisierung des Port 23 für Ausgabe
Initialisierung des Port 25 für Ausgabe

Endlos-Schleife (wird durch Spiel unterbro-
chen)
Holen der akt. Spieler-Position und Speichern
in p
Prüfen ob Spieler in einem bestimmten Be-

BK_SekI+II_Python_spez.docx - 13 - (c,p) 2015 - 2026 lsp: dre

 GPIO.output(23, True)

 GPIO.output(25, False)

 else:

 GPIO.output(25, True)

 GPIO.output(23, False)

reich ist (hier x=8 und z zwischen 3 und 4)
Wenn ja, dann Ausgabe 1 (Spannung) auf
Pin 23 und 0 (keine Spannung) auf Pin 25
Sonst
Ausgabe 1 (Spannung) auf Pin 25 und 0 (kei-
ne Spannung) auf Pin 23

an Pin 23 und Pin 25 muss jeweils eine LED entweder mit integriertem Vorwiderstand oder
ein solcher in Reihe mit einer normalen LED geschaltet werden (das lange Beinchen der
LED's steht für den Plus-Pol und kommt an den Pin
das andere (kürzere) Beinchen ist auf Minus bzw. Masse zu schalten

unbedingt die richtige Polung und auch die Pin-Auswahl beachten, ansonsten köönten die
Bauelemente oder gar der Pi beschädigt werden

am Besten Aufbau auf einem SteckBrett

Spiel muss vor dem Starten des Python-Programmes laufen
ev. Warn-Hinweise wegen des Zugriffs auf die GPIO können ignoriert werden, Programm
läuft schon im Hintergrund

BK_SekI+II_Python_spez.docx - 14 - (c,p) 2015 - 2026 lsp: dre

Material eines Block's auswerten

#!/usr/bin/python

import mcpi.minecraft as minecraft

import RPi.GPIO as GPIO

import time

mc = minecraft.Minecraft.create()

rot = 0

gelb = 1

gruen = 2

Ampel = [18,23,25

GPIO.setmode(GPIO.BCM)

GPIO.setup(Ampel[rot], GPIO.OUT, 

initial = True)

GPIO.setup(Ampel[gelb], GPIO.OUT, 

initial = False)

GPIO.setup(Ampel[gruen], GPIO.OUT, 

initial = False)

try:

 while True:

 p = mc.player.getTilePos()

 mat = mc.getBlock(p.x,p.y-1,p.z)

 if mat == 98:

 GPIO.output(Ampel[gelb], True)

 time.sleep(0.6)

 GPIO.output(Ampel[rot], False)

 GPIO.output(Ampel[gelb], False)

 GPIO.output(Ampel[gruen], True)

 time.sleep(2)

 GPIO.output(Ampel[gruen], False)

 GPIO.output(Ampel[gelb], True)

 time.sleep(0.6)

 GPIO.output(Ampel[gelb], False)

 GPIO.output(Ampel[rot], True)

 time.sleep(2)

except KeyboardInterrupt:

 GPIO.clearup()

notw. Zeile für Kommandozeilenstart von
Python-Programmen
Bibliothek für die Verbindung mit Minecraft
Bibliothek für die Ansteuerung der GPIO-
Schnittstelle
Bibliothek mit Zeit- Funktionen einbinden
Erstellen eines Minecraft-Objektes mit dem
Namen mc

Definition von Variablen (quasi als Konstan-
ten)

Liste der für die Ampel (angeschlossene
LED's benutzte Port's
Setzen der Pin-Namen lt. BCM
Initialisierung des Port lt. Ampel-Liste für
Ausgabe
 … für Gelb

 … für Grün

nachfolgender Block wird ausprobiert (Ab-
bruch folgt später!)
Endlos-Schleife (wird durch Spiel unterbro-
chen)
Holen der akt. Spieler-Position und Speichern
in p
Material des Block's unter dem Spieler ausle-
sen
Prüfen ob Material den Code 98 hat
Wenn ja, dann übliche Lichtschaltung einer
Ampel
kurze Pause 0,6 s

lange Pause 2 s

Abbruch des probierten Block's durch eine
Tatstatur-Unterbrechung (praktisch Tasten-
druck)
GPIO-Port-Belegung / -Benutzung löschen

 Zeilenumbruch nur für die Darstellung des Quelltextes (Layout), bedeutet, dass in der Zeile weitergeschrie-

ben wird

BK_SekI+II_Python_spez.docx - 15 - (c,p) 2015 - 2026 lsp: dre

Schlag mit dem Schwert auswerten

#!/usr/bin/python

import mcpi.minecraft as minecraft

import RPi.GPIO as GPIO

mc = minecraft.Minecraft.create()

LED = [18,23,25]

GPIO.setmode(GPIO.BCM)

for i in LED:

 GPIO.setup(i,GPIO.OUT,initial=

 False)

try:

 while True:

 for hit in mc.events. 

 pollBlockHits():

 bl = mc.getBlockWithData(

 hit.pos.x, hit.pos.y, hit.pos.y)

 if bl.id == block. 

 GLOWSTONE_BLOCK.id:

 for i in LED:

 GPIO.output(i.True)

 time.sleep(0.05)

 GPIO.output(i.False)

except KeyboardInterrupt:

 GPIO.cleanup()

notw. Zeile für Kommandozeilenstart von
Python-Programmen
Bibliothek für die Verbindung mit Minecraft
Bibliothek für die Ansteuerung der GPIO-
Schnittstelle
Erstellen eines Minecraft-Objektes mit dem
Namen mc

Setup der GPIO-Schnittstelle im BCM-Modus
und auf Ausgaben; Benutzung der Port's ais
der LED-Liste

nachfolgender Block wird ausprobiert (Ab-
bruch folgt später!)
Endlos-Schleife (wird durch Spiel unterbro-
chen)
für alle Ereignisse (hits) aus der aktuellen
Event-Liste dieses Block's
Erfassen der aktuellen Block-Daten

Wenn der akt. Block von dem angegebenen
Material ist, dann …
lasse die die LED's hintereinander

kurz
aufblitzem

Abbruch durch eine Tastatur-Betätigung
dann noch GPIO nullen

BK_SekI+II_Python_spez.docx - 16 - (c,p) 2015 - 2026 lsp: dre

auf externes Ereignis (z.B. Tasten-Druck) reagieren (und Blöcke erstellen)

#!/usr/bin/python

import mcpi.minecraft as minecraft

import mcpi.block as block

import RPi.GPIO as GPIO

import time

mc = minecraft.Minecraft.create()

t1 = 8

GPIO.setmode(GPIO.BCM)

GPIO.setup(t1,GPIO.IN, GPIO.PUD_DOWN)

try:

 while True:

 if GPIO.input(t1)==True:

 p = mc.player.getTilePos()

 mc.setBlocks(p.x-1, p.y,

 p.z-1, p.x+1, p.y, p.z+1,block.SAND)

 mc.player.setPos(p.x,p.y+1,p.z)

 time.sleep(0.2)

except KeyboardInterrupt:

 GPIO.cleanup()

notw. Zeile für Kommandozeilenstart von
Python-Programmen
Bibliothek für die Verbindung mit Minecraft

Bibliothek für die Ansteuerung der GPIO-
Schnittstelle

Erstellen eines Minecraft-Objektes mit dem
Namen mc
Festlegen des Port's für die Eingabe (Taste)
…
Einschalten des Pull-down-Widerstandes auf
dem Rasp Pi
…

Wenn die Taste gedrückt ist, dann …

Erstellen von neuen Blöcken als 3x3-Fläche
unter dem Spieler (Material ist Sand)
Korrektur der Spieler-Position auf der Sand-
Fläche
…

ein Taster wird zwischen "3,3V" (innen Pin 1) und
Port 8 (außen 12. Pin (Nr. 24)) geschaltet
s.a. Bau-Plan rechts

an einem weiteren Pin läßt sich ein weiterer Taster
betreiben (siehe Aufbau-Plan unten)
diesem können wir unabhängig vom ersten Taster
eigene Befehle zuordnen

Es werden die Port's 16 und 8 benutzt, die liegen auf
den GPIO-Pin's 36 und 24. Die roten Draht-Brücken
sind für den Masse-Kontakt beider Taster zuständig.

BK_SekI+II_Python_spez.docx - 17 - (c,p) 2015 - 2026 lsp: dre

Im folgenden Programm soll 3 Blöcke vor der Spieler-Position ein Baum gebaut und mit der
anderen Taste soll der Baum wieder entfernt werden. Dazu ändert man den Typ eines
Block's einfach auf Luft (Code: 0).

#!/usr/bin/python

import mcpi.minecraft as minecraft

import mcpi.block as block

import RPi.GPIO as GPIO

import time

mc = minecraft.Minecraft.create()

t1 = 8

t2 = 16

GPIO.setmode(GPIO.BCM)

GPIO.setup(t1,GPIO.IN, GPIO.PUD_DOWN)

GPIO.setup(t2,GPIO.IN, GPIO.PUD_DOWN)

try:

 while True:

 if GPIO.input(t1)==True:

 p = mc.player.getTilePos()

 mc.setBlock(p.x+3, p.y, p.z,

 block.WOOD)

 mc.setBlocks(p.x+2, p.y+1,

 p.z-1, p.x+4,p.y+2, p.z+1,

 block.LEAVES)

 if GPIO.input(t2)==True:

 p = mc.player.getTilePos()

 mc.setBlock(p.x+3, p.y, p.z,

 block.AIR)

 mc.setBlocks(p.x+2, p.y+1,

 p.z-1, p.x+4,p.y+2, p.z+1, block.AIR)

 time.sleep(0.2)

except KeyboardInterrupt:

 GPIO.cleanup()

…

Festlegen des Port's für die Eingabe (Taste1)
und für Taste 2
…
Einschalten der Pull-down-Widerstände auf
dem Rasp Pi

…

Wenn die Taste1 gedrückt ist, dann …

Erstellen von neuen Blöcken als 3x3-Fläche
unter dem Spieler (Material ist Sand)
Korrektur der Spieler-Position auf der Sand-
Fläche
…

BK_SekI+II_Python_spez.docx - 18 - (c,p) 2015 - 2026 lsp: dre

Material-Code dt. Bezeich-
nung

ID Material-Code dt. Bezeich-
nung

ID

AIR Luft 0 STONE_SLAB 44

STONE Stein 1 BRICK_BLOCK 45

GRASS Gras 2 TNT Sprengstoff 46

DIRT 3 BOOKSHELF 47

COBBLESTONE 4 MOSS_STONE 48

WOOD_PLANKS 5 OBSIDIAN Obsidian 49

SAPLING 6 TORCH 50

BEDROCK 7 FIRE Feuer 51

WATER_FLOWING 8 STAIRS_WOOD 53

WATER 8 CHEST 54

WATER_STATIONARY 9 DIAMAND_ORE Diamand-Erz 56

LAVA_FLOWING 10 DIAMAND_BLOCK 57

LAVA 10 CRAFTING_TABLE 58

LAVA_STATIONARY 11 FARMLAND Ackerland 60

SAND Sand 12 FURNACE_INACTIVE 61

GRAVEL 13 FURNACE_ACTIVE 62

GOLD_ORE Gold-Erz 14 DOOR_WOOD Holztür 64

IRON_ORE Eisen-Erz 15 LADDER 65

COAL_ORE 16 STAIRS_COBBLESTONE 67

WOOD Holz 17 DOOR_IRON Eisentür 71

LEAVES 18 REDSTONE_ORE 73

GLASS 20 SNOW Schnee 78

LAPIS_LAZULI_ORE 21 ICE Eis 79

LAPIS_LAZULI_BLOCK 22 SNOW_BLOCK Schnee-Block 80

SANDSTONE Sandstein 24 CACTUS Kaktus 81

BED 26 CLAY 82

COBWEB 30 SUGAR_CANE 83

GRASS_TALL 31 FENCE 85

WOLL Wolle 35 GLOWSTONE_BLOCK 89

FLOWER_YELLOW 37 REDROCK_INVISIBLE 95

FLOWER_CYAN 38 STONE_BRICK 98

MUSHROOM_BROWN 39 GLASS_PANE 102

MUSHROOM_RED 40 MELON Melone 103

GOLD_BLOCK 41 FENCE_GATE 107

IRON_BLOCK 42 GLOWING_OBSIDIAN 246

STONE_SLAB_DOUBLE 43 NETHER_REACTOR_CORE 247
Q: Begleitheft zu: conrad / Franzis Adventskalender Programmieren mit Minecraft 2018; erw. drews

eine LED dimmen (frequentes Signal ausgeben)

Problem: LED's lassen sich nicht wie Glühlampen dimmen. Bei diesen kann man durch eine
größere oder kleiner Betriebs-Spannung die Leuchtstärke verändern. LED's brauchen einen
minimale Spannung – quasi zum Zünden – und die Betriebsspannung kann auch nicht so
einfach variiert werden, da es schnell zur Überlastung (Zerstörung) kommen kann.
Die analogen Port's des Rasp Pi (GPIO) sind nicht so auch nicht für eine Steuerung von
LED's geeignet.
Der technische Ausweg ist ein Verändern von Leucht- und Dunkel-Phasen. Damit das stän-
dige AN und AUS nicht als Blinken erkannt wird, benutzt man eine Arbeits-Frequenz von hier
50 Hz.

BK_SekI+II_Python_spez.docx - 19 - (c,p) 2015 - 2026 lsp: dre

#!/usr/bin/python

import mcpi.minecraft as minecraft

import RPi.GPIO as GPIO

mc = minecraft.Minecraft.create()

LED = 25

GPIO.setmode(GPIO.BCM)

GPIO.setup(LED,GPIO.OUT,initial=False)

pwm = 0

l = GPIO.PWM(LED,50)

l.start(pwm)

try:

 while True:

 p = mc.player.getTilePos()

 if p.z>=5 and p.z<=15:

 pwm = 10*(15-p.z)

 l.CangeDutyCycle(pwm)

 time.sleep(0.1)

except KeyboardInterrupt:

 l.stop()

 GPIO.cleanup()

notw. Zeile für Kommandozeilenstart von
Python-Programmen
Bibliothek für die Verbindung mit Minecraft
Bibliothek für die Ansteuerung der GPIO-
Schnittstelle
Erstellen eines Minecraft-Objektes mit dem
Namen mc
LED an Port 25
Initialiserung der GPIO

Tast-Verhältnis auf Null setzen ()
Erzeugen eines PWM-Objektes als l
Starten der Ausgabe

Wenn bestimmte Z-Position benutzt wird,
dann wird Tast-Verhältnis schrittweise (in
Abhängigkeit von der Z-Position) erhöht
Setzen des neuen Ausgabe-Signals
System-Wartezeit

…
Ausgabe am Port wird beendet

Ein Tast-Verhältnis von 0 bedeutet bei ei-
nem Rechteck-Signal einen minimalen AN-
Teil. Praktisch ist der Pegel ständig auf 0 V
gelegt.
Sind die AN-Phasen nur kurz (s.a. oberes
Diagramm), dann blitzt die LED nur kurz auf.
Da dies mit einer Freuenz von 50 Hz (so
initialisiert im Programm) passiert, sehen wir
das als sehr schwaches Leuchten (Licht-
Summe).
Bei einem Tastverhältnis von 50 sind AN-
und AUS-Teil jeweils 50% - also gleichlang
(s.a. mittlere Abb.).
Physikalisch entspricht das der halben Licht-
tärke. Da unser optischer Sinn aber nicht
linear funktioniert, erkennen wir das immer
noch als relativ dunkel.
Je länger der AN-Teil wird, umso heller wird
uns die LED erscheinen.
Setzt man den PWM-Wert auf 100, dann ist
ein Dauer-AN – also ständig 5 V – am be-
treffenden Port anliegend. Damit ist die
Leuchtstärke ausgeschöpft (zumindestens im

regulären Bereich).

BK_SekI+II_Python_spez.docx - 20 - (c,p) 2015 - 2026 lsp: dre

einen digitalen Pegel (/ Sensor-Kontakt) auswerten

#!/usr/bin/python

import mcpi.minecraft as minecraft

import RPi.GPIO as GPIO

mc = minecraft.Minecraft.create()

LED = 18

K1 = 20

GPIO.setmode(GPIO.BCM)

GPIO.setup(LED,GPIO.OUT,initial=False)

GPIO.setup(K1, GPIO.IN)

try:

 while True:

 if GPIO.input(K1) == False:

 GPIO.output(LED, True)

 mc.setBlocks(3,2,4,3,2,5,

 block.GOLD_ORE)

 else:

 GPIO.output(LED, False)

 mc.setBlocks(3,2,4,3,2,5,

 block.COAL_ORE)

 time.sleep(0.05)

except KeyboardInterrupt:

 GPIO-cleanup()

notw. Zeile für Kommandozeilenstart von
Python-Programmen
Bibliothek für die Verbindung mit Minecraft
Bibliothek für die Ansteuerung der GPIO-
Schnittstelle
Erstellen eines Minecraft-Objektes mit dem
Namen mc

Die digitalen Eingänge an Schaltkreisen sind nicht eindeutig
auf Null oder Eins gesetzt. Die interne Schaltung ermöglicht
häufig stark schwankende Werte, die nicht eindeut auswertbar
sind. Deshalb sorgt man mit einer einfachen Widerstands-
Schaltung dafür, dass immer eindeutige Signale anliegen. Bei
Schaltkreisen spricht man beim Null-Signal vom sogenannten
LOW-Pegel, der üblicherweise einer Spannung von 0 Volt ent-
spricht. Am Eingang (IN) kommt in der nebenstehenden Schal-
tung keine Spannung an. Der Widerstand sorgt dafür, dass
irgendwelche anderen Spannungen in die Masse (GND, Er-
dung) abfließen können. Da der Widerstand das Signal auf
LOW bzw. DOWN runterzieht, spricht man von einem Pull-
down-Widerstand.
Wird nun der Schalter geschlossen, dann liegt die volle Span-
nung (hier +3,3 V) am eingang (IN) an. Diese Spannung wird
eindeutig als HIGH bzw. Eins interpretiert und die nachfolgen-
den (internen) Schaltungen reagieren entsprechend.

Das Schatungs-Prinzip lässt sich auch umdrehen.
Hier nutzt man zum Erzeugen eines HIGH-Signals einen so-
genannten Pull-up-Widerstand. Dieser reduziert zwar die Be-
triebsspannung (hier: +3,3 V) auf einen deutlich niedrigeren
Wert, aber dieser ist immer größer als Null. Er zieht in quasi
über 0 V hoch. Somit interpretiert der Schaltkreis ein HIGH-
Signal. Interpretieren heißt hier, dass die internen logischen
Schaltkreise umschalten.
Drückt man nun den Taster, dann schließt man den Eingang
(IN) mit der Masse (GND) kurz. Es liegt keine Spannung mehr
am Eingang an und dieses bedeutet in der Schaltungs-technik
eben ein LOW-Signal.

BK_SekI+II_Python_spez.docx - 21 - (c,p) 2015 - 2026 lsp: dre

Die Widerstands-Werte können relativ weit gefächert sein. Je
nach gewünschter Empfindlichkeit und Schaltsicherheit kön-
nen Widerstände von mehr als 1 kW bis hoch zu einigen MW
verwendet werden. Für praktische Schaltungen kann man die
optimalen Werte mit Drehwiderständen ermitteln und dann
gegen einen passenden einfachen Widerstand ersetzen.

Für eine konkrete "Sensor"-Schaltung nutzen wir die folgende Pull-up-Schaltung. Dabei wird
kein Taster oder Schalter genutzt, sondern unser normaler Haut- und Körper-Widerstand.
Wir werden somit zum elektrischen Leiter und der minimale Strom, der nun durch uns fließt,
kann eine elektronische Schaltung beeinflussungen.
Der etwas größer gewählte Widerstand wird zwischen Strom-
Versorgung (hier: +3,3 V) und dem Eingang (IN) des Schalt-
kreises eingebaut. Es fließt ein kleiner Strom, der für einen
HIGH-Pegel am Eingang sorgt.
Durch die Berührung des IN-Kontaktes kommt es quasi zu
einem "Kurzschluß" über den menschlichen Körper und seiner
Haut. Der Pegel wird gegen 0 V gezogen, wass der Schalt-
kreis als LOW-Pegel interpretiert.
Natürlich ist es kein echter Kurzschluß. Unsere Haut und un-
ser Körper haben einen deutlich messbaren elektrischen Wi-
derstand. Feuchte Finger verringern den Widerstand weiter.
Weil dementsprechend sehr trockene Haut einen sehr großen
Widerstand hat, kann es sein, dass die Schaltung nicht aus-
löst. Dann hilft z.B. das Anfeuchten der Hand oder der Finger.

eine RGB-LED ansteuern (beliebige Farbe ausgeben)

Bei LED's haben wir schon verschiedene Farben gesehen. Die Farbauswahl ist aber durch
die verfügbaren Halbleiter beschränkt.
Aber auch hier können wir wieder unser Auge austricksen. Bringt man jeweils eine LED der
drei Grundfarben in einem Gehäuse unter, dann kann man durch die unterschiedliche An-
steuerung der Einzelfarben eine optische Farb-Mischung erreichen. Statt der Farben Rot-
Gelb-Blau wird aus historischen Gründen das Farbsystem RGB benutzt. Hier sind die drei
Grund-Farben Rot-Grün-Blau. Auch aus diesen drei Farben lassen sich alle Farben – ein-
schließlich weiß – mischen.

BK_SekI+II_Python_spez.docx - 22 - (c,p) 2015 - 2026 lsp: dre

Ältere RGB-LED's hatten keine integrierten Vorwiderstände. In den modernen RGB-LED's
sind passende Vorwiderstände eingebaut, so dass eine optimale Farbmischung möglich ist.
Für "weiß" müssen ja alle drei Grundfarben gleichstark leuchten. Wir gehen hier vereinfacht

von drei gleich großen Widerständen aus. Sie betragen 220 . Bei älteren RGB-LED's schal-
ten wir einfach die Vorwiderstände auf dem Steckbrett zwischen Plus-Pol (digitaler Ausgang)
und der RGB-LED.

Böse Frage zwischendurch:

von Max Neugierig: "Kann man nicht nur einen einzelnen Vorwiderstand auf

die Masse-Seite verwenden? Das würde doch immer zwei Widerstände einspa-

ren, oder?"

Zuerst wollen wir nur die drei Grund-Farben nutzen – also die Einzel-LED's an- und aus-
schalten. Dadurch sehen wir die Elementar-Farben Rot-Grün-Blau.

#!/usr/bin/python

import mcpi.minecraft as minecraft

import RPi.GPIO as GPIO

mc = minecraft.Minecraft.create()

notw. Zeile für Kommandozeilenstart von
Python-Programmen
Bibliothek für die Verbindung mit Minecraft
Bibliothek für die Ansteuerung der GPIO-
Schnittstelle
Erstellen eines Minecraft-Objektes mit dem
Namen mc

Im nächsten Schritt sollen entweder zwei oder alle drei Einzel-LED's gemeinsam angesteuert
werden. Dadurch erreichen wir erste Farbmischungen. Die RBG-LED leutet dann z.B. violett,
wenn die rote und die blau Elementar-LED angesteuert wird. Wenn man genau hinsieht, er-
kennt man noch die Einzel-Komponenten. Aus einiger Entfernung ist nur noch die Mischfar-
be zu erkennen.

Richt vielseitig wird unsere RGB-LED, wenn wir die einzelnen Farben "dimmen". Wir können
dadurch jede beliebige Farbe mischen.
Nun wollen wir einen schleichenden Farbverlauf programmieren.

eine LED dimmen (frequentes Signal ausgeben)

#!/usr/bin/python

import mcpi.minecraft as minecraft

import RPi.GPIO as GPIO

mc = minecraft.Minecraft.create()

notw. Zeile für Kommandozeilenstart von
Python-Programmen
Bibliothek für die Verbindung mit Minecraft
Bibliothek für die Ansteuerung der GPIO-
Schnittstelle
Erstellen eines Minecraft-Objektes mit dem
Namen mc

eine LED dimmen (frequentes Signal ausgeben)

BK_SekI+II_Python_spez.docx - 23 - (c,p) 2015 - 2026 lsp: dre

#!/usr/bin/python

import mcpi.minecraft as minecraft

import RPi.GPIO as GPIO

mc = minecraft.Minecraft.create()

notw. Zeile für Kommandozeilenstart von
Python-Programmen
Bibliothek für die Verbindung mit Minecraft
Bibliothek für die Ansteuerung der GPIO-
Schnittstelle
Erstellen eines Minecraft-Objektes mit dem
Namen mc

BK_SekI+II_Python_spez.docx - 24 - (c,p) 2015 - 2026 lsp: dre

10.2.2. Aduino und Verwandte

Die Grund-Konzeption der Arduino's ist eine andere, als die bei den Raspberry Pi's. Die
Arduino's sind kleine Board's, die sich als Physical-Computing-Plattform verstehen. Dabei
sollen sie bestimmte Steuerungs-Aufgaben übernehmen.
Die Programmierung erfolgt ursprünglich über eine C-ähnliche Sprache. Die Programme
nennen sich Sketche und können die Arduino's zu beeindruckenden Leistungen bringen.
Seit ein paar Jahren ist auch eine Programmierung mit Python möglich. Dazu müssen aber
diverse Vorarbeiten erledigt werden, die wir später vorstellen.

10.2.2.0. Kurzbeschreibung und allgemeine Einführung zu Arduino

sind programmierbare Kleinst-Rechner
Programme werden auf PC erstellt und dann auf den Arduino übertragen
dort laufen sie dann eigenständig (unabhängig vom Programmier-PC)

derzeit sind "Arduino Uno"-Clone für deutlich unter 10 Euro zu haben
ähnlich ist es bei dem kleineren Arduino Micro, diese werden in speziellen Versionen – oft
als IoT-Board's – mit WLAN- oder Bluetooth-Schnittstelle angeboten, da liegt der Preis dann
aber auch zwischen 20 und 30 Euro
einige – nicht ganz 100%ig kompartible – Uno-Platinen sind sogar unter 5 Euro aus China
beziehbar, sie benötigen einen extra Treiber und sind dann kompartibel.
Interssant sind Boxen, die neben der Platine meist Unmengen von elektronischen Bauele-
menten und Kabeln enthalten. Auch hier sind die Preise sehr interessant und man bekommt
ein Bastel-Set zwischen 8 und 50 Euro. Bei den größten Set's erschlagen einen die Möglich-
keiten. Da besteht eher die Sorge, dass man da garnicht alles probieren kann. Vielfach feh-
len auch Dokumentationen, die den gesammten Bauteile-Bestand erfassen.

10.2.2.1. Einrichtung einer Umgebung für Programmierung eines Arduino mit Py-

thon

es gibt verschiedene Herangehensweisen
Bei der Ersten müssen Programmier-Rechner und Arduino immer verbunden sein und die
Arduino's können auch nicht selbstständig (weiter-)arbeiten. Das Zauberwort heißt hier
pyFirmata (→ Variante mit pyFirmata:).
Nach einem ähnlichen Prinzip funktioniert pySerial (→). Diese Variante wird dann nachfol-
gend erläutert (→ Variante mit pySerial:). Man kann sich frei zwischen pySerial und pyFirma-
ta entscheiden. Beide Varianten müssen nicht parallel auf dem Rechner installiert werden.
Die zweite Herangehensweise setzt auf eine interne Umsetzung des Python-Programm's in
einen C-Code, welcher dann compiliert auf dem Arduino (auch selbstständig) laufen kann.
Das Arbeits-Prinzip nennt man Cross-Compiling. Der Arduino kann dann auch im stand-
alone-Betrieb – also ohne den Programmier-Rechner - arbeiten. Dazu weiter hinten Genaue-
res (→ Variante mit Shed Skin:).

BK_SekI+II_Python_spez.docx - 25 - (c,p) 2015 - 2026 lsp: dre

Variante mit pyFirmata:

direkte Interpretation eines Python-Programm's auf dem Arduino ist nicht möglich, da auf
dem Arduino solch komplexe Software, wie ein Interpreter, nicht laufen kann.
Man kann aber einen Arduino über die USB-Verbingung steuern.

Notwendig ist die sogenannte pyFirmata-Stelle für Python, also eine Erweiterung (ein Mo-
dul). Die holen wir uns von github.com (→).

Auf dem Computer, mit dem programmiert werden soll, muss zuerst die Arduino-IDE istalliert
werden. Die gibt es auf arduino.cc zum Downloaden.

Nun muss auch das Python-System für die Zusammenarbeit mit dem Arduino konfiguriert
werden. Das geht z.B. mit:

pip install pyfirmata

in der Arduino-Programmier-Umgebung den passenden Arduino am richtigen Port einstellen

"File" "Examples" "Firmata" ("Datei" "Beispiele" "Firmata") den Sketch "StandardFirmata"
herunterladen und auf den Arduino hochladen

Die Python-Programm müssen dann immer das pyFirmata-Modul importieren:

from pyfirmata import Arduino, util
import time

Als nächstes setzen wir die Kommunikation auf die zugewiesene USB-Schnittstelle:

board = Arduino("COM3")

und schon kann das übliche Programmieren beginnen.

Das klassische Start-Programm ist bei den Arduino's ein LED-Blink-Programm. Im einfachs-
ten Fall nutzen wir die Board-interne LED am Pin 13.
Natürlich kann auch eine externe LED mit beliebiger Farbe angesteuert werden. Dazu muss
dann eine LED mit einem Vorwiederstand () zwischen Pin X und Gnd (Pin) gesteckt werden.
Am Besten sind Aufbauten mit sogenannten Bread-Board's geeignet. Die lassen sich schnell
und sicher zusammenstecken.
Den Bauplan sehen wir nebenan.
Im Python-Editor erstellen wir nun den eigentlichen Arbeits-Teil unseres Programm's:

BK_SekI+II_Python_spez.docx - 26 - (c,p) 2015 - 2026 lsp: dre

while True:
 board.digital[13].write(1)
 time sleep(0.3)
 board.digital[13].write(0)
 time sleep(0.3)

Aufgaben:

1. Ändern Sie die Blink-Frequenz der LED! (Hell- und Dunkel-Phasen sollen

aber unbedingt gleichlang sein!)

2. Nun soll die LED am Pin 14 angeschlossen werden! Welche Veränderun-

gen müssen am Board und im programm vorgenommen werden?

3. Schreiben Sie ein Programm, dass unaufhörlich SOS blinkt!

4. Konzipieren und erstellen Sie nun ein Programm, dass einen beliebigen ein-

zugebenen Text per LED als MORSE-Zeichen sendet!

Variante mit pySerial:

installieren mit:

pip install pyserial

Programmieren:

import serial # ist pySerial

board = serial.Serial('/dev/cu.usbmodem143311', 9600,timeout=2) # bzw. Port unter Win

while True:
 board.write('Testtext')
 antwort = board.readline()
 print("Antwort des Board's: ", antwort)

print("Verbindung zum Board mit beliebiger Taste unterbrechen!")
…
try:
 while True:
 …
 board.digital[13].write(1)
 …
 board.digital[13].write(0)
except KeyboardInterrupt:
 board.exit()
 print("Verbindung zum Board ist unterbrochen."
...

BK_SekI+II_Python_spez.docx - 27 - (c,p) 2015 - 2026 lsp: dre

import serial

verbindung = serial.Serial('/dev/tty.usbserial', 9600)

while True:
 print verbindung.readline()

Variante mit Shed Skin:

Cross-Compiler
übersetzt Python-Programm in ein C/C++-Programm
derzeit wird nur ein begrenter Sprach-Umfang von Python unterstützt

→ http://shedskin.github.io/ (Download, …)
→ https://en.wikipedia.org/wiki/Shed_Skin (engl. Wikipedia-Artikel)
→ https://shedskin.readthedocs.io/en/latest/ (Dokumentation)

10.2.2.x. Spezialfall UDOO

Kombination aus Raspberry-Pi-ähnlichem Grundsystem mit Arduino-Hardware

sehr Leistungs-fähig, aber weniger bekannt

Kleinserien-Produktion über Projekt (Finanzierung über ??? Founding (Kickstarter.com))

10.2.3. FRANZIS – Experimentierplatine mit FT232R

USB/Seriell-Wandler
praktisch Schnittstelle zwischen Betriebssystem / Anwender-Programmen und Experimen-
tier-Hardware

leider nur unter Linux verwendbar und somit auch noch ein Rechner notwendig
(Nutzung über virtuelle Maschine noch nicht geprüft)

BK_SekI+II_Python_spez.docx - 28 - (c,p) 2015 - 2026 lsp: dre

Kombination mit graphischer Oberfläche Gtk
Fenster-Manager Gnome
Gtk selbst ist auch für Windows verfügbar

erhältlich bei FRANZIS
Preis 99 Euro (etwas teuer)
im Schnäppchen-Angebot für 49 Euro auch immer noch recht teuer
dafür bekommt man schon einen vollwertigen Raspberry Pi mit Zubehör (mSD-Karte, Bau-
elemente, …)

10.2.4. TI-Innovator

ab Oktober 2020
Programmierung über TI-Nspire

Befehle sind über die den Werkzeug-Button eingefügt. Dort sind Menü's mit den verfügbaren
Python-Befehlen zusammengestellt.
Die Befehle können dann nach Art der Block-Programmierung zusammengestellt werden.

gute Hilfe sind die notwendigen Bibliotheks-Aufrufe (Importe), die als Befehl gleich immer
oben in den betreffenden Menü's aufgezählt sind

education.ti.com/de

auf der /fr gibt es die TI-83
ev. auch amerikanische TI-Seite nutzen

https://education.ti.com/de/activities/ti-codes

ti-unterrichtsmaterialien.net

10.2.4.y. externe Hardware

RGB-Array

anzuschließen über 4 Drähte

from ti_hub import *
rgb=rgb_array()
rgb.set(position,rot,gruen,blau)
sleep(zeit)
rgb.all_off()

https://education.ti.com/de/activities/ti-codes

BK_SekI+II_Python_spez.docx - 29 - (c,p) 2015 - 2026 lsp: dre

rgb.set_all(rot,gruen,blau)

from ti_hub import *
from random import *

while get_key()!="esc":
 position=randint
 rot=randint(0,255)
 gruen=randint(0,255)
 blau=randint(0,255)
 rgb.set(position,rot,gruen,blau)
 sleep(1)
rgb.all_off()

mit Liste:

liste=[]
liste=[0 for i in range(16)] #Null-befüllte Liste

for pos in range(0,16):
 print(liste[i])
 rgb.set(pos,

gibt wert als Binär-Zahl auf dem RGB-Array aus
rgb.pattern(wert)

misst den (Gesamt-)Strom:
wert=rgb.measurement()

Aufgaben:

1.

2. Lassen Sie die einzelnen LED's nach und nach in der gleichen Farbe leuch-

ten! Dabei soll sich die Intensität immer leicht erhöhen.

3. Jede LED soll zufällig ausgewählt mit einer zufälligen Farbe belegt werden.

Das Programm soll solange laufen, bis die ESC-Taste gedrückt wird.

4. Erstellen Sie ein Programm, dass immer eine einzelne LED für 1 Sekunde

in einer frei gewählten Farbe leuchten lässt und dann durch die nächste ab-

gelöst wird!

5. Lassen Sie einen wieder einen "Leuchtpunkt" wandern! Dieses Mal soll die

zuletzt benutzte LED mit halber Stärke nachleuchten!

6. Realisieren Sie ein Programm, dass immer eine zufällig ausgewählte LED

das gesamte Farbspektrum durchläuft!

7. Realisieren Sie ein kleines Spiel bei dem der menschliche Spieler und Ihr

Programm jeweils eine Zahl zwischen 1 und 8 setzen! Die gewählten Zahlen

BK_SekI+II_Python_spez.docx - 30 - (c,p) 2015 - 2026 lsp: dre

werden als gegenläufige Leuchtpunkte in den beiden Reihen des RGB-Array

dargestellt. Der menschliche Spieler hat eine blaue Reihe, Ihr Programm ei-

ne gelbe. Wenn sich die Punktreihen überschneiden erhält der Spieler mit

der größten Zahl einen Minus-Punkt, ansonsten bekommt derjenige einen

Punkt, der die längste Reihe hatte. Bei Gleichstand erhält jeder einen Punkt /

Minus-Punkt! Die Plus-Punkte werden als grüne Punkte und die Minus-

Punkte als rote Leucht-Punkte angezeigt. Gewonnen hat derjenige, der zu-

erst 8 Gewinn-Punkte hat. Ihr Programm darf die aktuelle Eingabe des

menschlichen Spielers nicht für die aktuelle Entscheidung benutzen, darf

sich aber alle alten Eingaben merken und für eine Strategie auswerten.

(Realisieren Sie das Programm ev. in zwei groben Schritten: Zuerst nur die

Anzeige der Spiel-Züge. Die Ergebnisse können dann auf der Shell ausge-

geben werden. Im zweiten Schritt kann dann die Spielstand-Anzeige erfol-

gen.)

Zusatz: Lassen Sie sich eine passende Gewinn-Anzeige einfallen (Leucht-

Show)!

10.2.5. Steuerung des Calliope mini

MakeCode lässt neben der typischen Block-basierten Programmierung auch eine Überset-
zung in Python zu. Änderungen im Python-Quell-Text werden dann wieder in die Block-Code
zurückgespiegelt.

MakeCode-Editor → makecode.calliope.cc

Multi-Editor
makecode.calliope.cc/--multi

lässt z.B. die Programmierung und Simulation von einem Sender und einem Empfänger in
einem Browser zu
z.B. zum Testen

MakeCode-Programmierung ist Event-orientiert

OpenRoberta ist dagegen prozedural angelegt
man muss die Endlos-Schleife selbst realisieren

BK_SekI+II_Python_spez.docx - 31 - (c,p) 2015 - 2026 lsp: dre

10.3. Datenbank-Zugriff mit Python

→ https://www.hdm-stuttgart.de/~maucher/Python/html/SQLite.html#connection-und-cursorobjekt-erzeugen

10.3.1. SQLite 3

from sqlite import dbapi2 as sqlt

10.3.1.0. Verbindung herstellen

außer der Verbindung brauchen wir noch ein Cursor-Objekt
es stellt quasi die imaginäre Shell (Konsole, Benutzeroberfläche) dar, es ist im Programm so,
als würden wir auf die Shell Anweisungen etc. in SQL schreiben

verb = sqlt.connect(Datenbankname) # Datewnbankname ist Unterverzeichnis + Daten-
bank

eine temporäre, lokale (nicht-persistierende) Datenbank lässt sich mit:

verb = sqlt.connect(:memory:)
curs = verb.cursor()

erzeugen. Die zweite Anweisung erzeugt einen SQL-Cursor.

10.3.1.1. Erstellen einer Tabelle

curs.execute('''create table if not exists schueler (name text, vorname text, gebdatum date,
masse real, groesse integer)''')

 Datentyp
in Python

Datentyp in
SQLite

 None NULL

 int INTEGER

 float REAL

 str (UTF8) TEXT

 unicode TEXT

 buffer BLOB

https://www.hdm-stuttgart.de/~maucher/Python/html/SQLite.html%23connection-und-cursorobjekt-erzeugen

BK_SekI+II_Python_spez.docx - 32 - (c,p) 2015 - 2026 lsp: dre

10.3.1.2. Hinzufügen von Datensätzen zu einer Tabelle

curs.execute('''insert into schueler values ('Mustermann','Klaus','01.01.2000',63.7,177)''')
…
verb.commit() # eigentliche Speicherung der vorher angegebenen Datensätze

10.3.1.3. Aktualisieren eines Datensatzes in einer Tabelle

geschlechterListe = ["m","w", …] # soviele Listen-Einträge, wie Datensätze in Tabelle
curs.execute('''alter table schueler add column geschlecht text''')
for geschl in enumerate(geschlechterListe):
 curs.execute("update schueler set geschlecht=(?) where owid=(?)",
 [geschlechterListe[geschl],geschl+1])
verb.commit() # eigentliche Aktualisierung der vorher spezifizierten Werte in der
 erweiterten Tabelle

10.3.1.4. Löschen eines Datensatzes aus einer Tabelle

curs.execute('''delete from schueler where vorname="Klaus" ''')
…
verb.commit() # eigentliche Löschung der vorher spezifizierten Datensätze

10.3.1.5. Löschen einer Tabelle

curs.execute('''drop table if exists schueler''')

10.3.1.z. Beenden der Verbindung

BK_SekI+II_Python_spez.docx - 33 - (c,p) 2015 - 2026 lsp: dre

weitere Beispiele:

import sqlite3

conn = sqlite3.connect('daten/Kontakte.dat')

curs = conn.cursor()

curs.execute("CREATE TABLE personen(PID, Vorname, Name, eMail)")

DatenListe=[(1,"Monika","Musterfrau","musterfrau@webb.de"),

 (2,"Klaus","Mustermann","muma@tee-online.de"),

 (3,"Prof. Lisa","Klug","Prof.L.Klug@uni-mustern.de)]

for Elem in DatenListe:

 curs.execute("Insert INTO personen VALUES (?,?,?,?)", Eleme)

…

curs.close()

conn.close()

curs.fetchone() liefert eine Ergebnis-Zeile zur Anfrage als Tupel
curs.fetchmany(n) liefert n Ergebniszeilen zur Anfrage als n-Tupel von Tupeln
curs.fetchall() liefert alle Ergebniszeilen zur Anfrage als Tupel von Tupeln

BK_SekI+II_Python_spez.docx - 34 - (c,p) 2015 - 2026 lsp: dre

10.4. Web-Server-Anwendungen mit dem (Micro-)Frame-

work Flask

unterstützt Generierung von Seiten auf einem Web-Server

allgemeines Handling:
auf einem Intranet- oder Internet-Server läuft ein Webserver (Dienst der die Bereitstellung
von http-Seiten realisiert)
auf einem Client läuft ein Browser (Betrachter-Programm für http-Seiten)
nach Aufruf der Server-Adresse z.B.: www.lern-soft-projekt.de oder 127.0.0.1 (localhost;
Webserver läuft auf dem eigenen Rechner) wird eine Seite (normal index.htm od.ä.) ange-
fordert (get-Methode) (ev. wird mit Fehler-Meldung geantwortet
Webserver schickt HTML-Code der angeforderten http-Seite an den Browser
Browser setzt den HTML-Code in eine anzeigbare Seite um oder gibt Fehler-Meldungen aus
Client / Browser können nach Interaktionen neue Inhalte (nach-)laden / liefern / anzeigen

10.4.0. Erzeugung einer Web-Seite mit Python (Wiederholung)

10.4.1. das Framework Flask

dient hauptsächlich der Trennung von Daten und Darstellung
der Programmierer soll sich nicht mehr vorrangig um die Darstellung seiner Daten kümmern,
das übernimmt im Wesentlichen das Framework
der Programmierer stellt seine Daten bereit und nutzt vorgefertigte Methoden / Funktionen
usw. um die Darstellung fast von alleine dem Framework zu überlassen

bringt u.a. das Kachel-Design mit
sehr gut für Anzeigen etc. von IoT-Daten oder Info-Daten geeignet

ev. muss vorher ein Web-Server installiert und / oder eingerichtet werden

minimales Hello-Welt-Programm mit Flask

from flask import Flask

app = Flask(__name__)

@app.route('/')

def index():

 return "Hallo Welt!"

BK_SekI+II_Python_spez.docx - 35 - (c,p) 2015 - 2026 lsp: dre

der große Vorteil von Flask (wie auch von anderen Frameworks), dass diese mit Templeates
(Schablonen) a´rbeiten können. Die Templates enthalten bestimmte Stellen, an denen dann
durch einfache Funktionen / Methoden die Inhalte eingefügt werden.
So ist z.B. in einem Template festgelegt, dass eine Überschrift mit einem Rahmen versehen
sein soll, größer, unterstrichen und fett dargestellt werden soll. Auch Farben usw. lassen sich
definieren.
Der Programmierer ruft jetzt nur eine Funktion auf, wie z.B. generiereÜberschrift() und über-
gibt dieser nur den Text. Die ganze Einstell-Arbeit übernimmt das Framework auf der Basis
der bereitgestellten Schablone. Ist für eine – quasi parallel laufende – "andere" Webseite ein
anderes Template festgelegt, dann sieht die gleiche Überschrift dort eben anders aus. Da-
rum braucht sich der Programmierer nicht zu kümmern. Das Layout gestaltet ein Designer.
Dieses Prinzip kennt man von vielen Webseiten / Social-Media-Seiten, wo man seine indivi-
duellen Farb-Einstellungen etc. vornehmen kann.

from flask import Flask

app = Flask(__name__)

@app.route('/')

@app.route('/reserve')

def index()

 return render_template("template.html,

 var1="Hallo", var2="Welt")

Import des Flask-Frameworks
Flask-Applikation def.
Funktionsdekorator
alternativer Dekorator

beliebiger Funktionsname
Darstellungs-Aufruf unter Nut-
zung eines Templates und zu-
sätzlichen Daten

Dieser Python-Code und Flask benötigen aber dazu das passende Template:

<!doctype html>

<html>

 <head>

 <title>

 Seite: Hallo-Welt

 </title>

 </head>

 <body>

 <h1>Überschrift der Hello-Welt-Seite</h1>

 übergebene Daten sind: {{var1}} und {{var2}}

 zusammen: {{var1}} {{var2}}!

 </body>

</html>

Achtung! Im Gegensatz zu Python sind bei HTML die Einrückungen nur Mittel zur übersicht-
licheren Darstellung. Sie können vollständig weggelassen werden und sogar alles fortlaufend
in eine Zeile geschreiben werden.

Mit weiteren Web-Techniken können weitere Verbesserungen / Funktions-Erweiterungen etc.
erreicht werden. So kann man mit CSS (Cascade Style Sheets) Format-Vorlagen und andere
Layout-Parameter (z.B. für ein Corpurate Design) definieren. Diese werden dann im HTML-
Code zugewiesen.

…

 <head>

 <link rel="stylesheet" href=stylsheet.css">

 </head>

…

BK_SekI+II_Python_spez.docx - 36 - (c,p) 2015 - 2026 lsp: dre

JavaScript eigente sich z.B. um Anpassungen der Seite vornehmen zu lassen oder Berech-
nungen durchzuführen.
Die Java-Scripte werden üblicherweise am Ende des Body-Bereiches angegeben.

…

 <body>

 …

 <script scr="funktion.js">

 </body>

…

Das folgende Python-Programm ist ein schönes – aber auch schon recht komplexes - Bei-
spiel für eine Flask-Anwendung. Für die Nutzung der oben erwähnten Adafruit-
Experimentier-Platine oder eines ähnlichen IoT-Systems soll eine Kachel-Oberfläche dienen.
Die einzelnen Kacheln diesen entweder der Anzeige von Meßwerten, dem Ein- bzw. Aus-
schalten oder dem Wechsel zu Unterseiten usw.
Die Datei ist auf github.com gehostet und kann über:

git clone https://github.com/openHPI/Embedded-Smart-Home-2017.git

in das aktuelle Verzeichnis kopiert werden. Dort ist die nachfolgend angezeigte smartho-
me.py enthalten. Sie dient als Steuerzentrale des gesamten Projektes.

from flask import Flask, render_template, request

from flask_bootstrap import Bootstrap

from tiles import SimpleTile, TileManager

from helper import PageContext

app = Flask(__name__)

Bootstrap(app)

@app.route('/')

def main():

 tiles = [

 SimpleTile("Licht", "#EEEE00", "light/"),

 SimpleTile("Heizung", "#FF0000", "heaters/"),

 SimpleTile("Sicherheit", "#30FF00", "security/"),

 SimpleTile("Wasser", "#0000FF", "water/"),

 SimpleTile("Extrapunkt 1", "#00FFFF", "/"),

 SimpleTile("Extrapunkt 2", "#FF00FF", "/"),

 SimpleTile("Extrapunkt 3", "#A0FFA0", "/"),

 SimpleTile("Extrapunkt 4", "#00A0FF", "/"),

]

 manager = TileManager(tiles)

 context = PageContext("Smarthome Projekt", "Home")

 return render_template("main.html", tilerows=manager,

context=context)

@app.route('/light/')

def light():

 living_room = True

 sleeping_room = False

 if("living_room" in request.args):

 living_room = True if request.args["living_room"] 

 == "on" else False

 if("sleeping_room" in request.args):

BK_SekI+II_Python_spez.docx - 37 - (c,p) 2015 - 2026 lsp: dre

 sleeping_room = True if request.args["sleeping_room"]

 == "on" else False

 tiles=[]

 tile = SimpleTile("Wohnzimmer: ", "", "?living_room=")

 tile.items[0].text += "an" if living_room else "aus"

 tile.link += "off" if living_room else "on"

 tile.bg = "#AAFF00" if living_room else "#338800"

 tiles.append(tile)

 tile = SimpleTile("Schlafzimmer: ", "", "?sleeping_room=")

 tile.items[0].text += "an" if sleeping_room else "aus"

 tile.link += "off" if sleeping_room else "on"

 tile.bg = "#6666BB" if sleeping_room else "#333388"

 tiles.append(tile)

 manager = TileManager(tiles)

 context = PageContext("Smarthome Projekt", "Licht",

 [["/", "Home"]])

 return render_template("main.html", tilerows=manager,

 context=context)

if __name__ == "__main__":

 app.run(debug=True)

10.4.2. die Flask-Erweiterung bootstrap

10.4.3. Programmierung der Web-Oberfläche und Darstellung von Meß-
werten

from flask import Flask, render_template, request

from flask_bootstrap import Bootstrap

from tiles import SimpleTile, TileManager

from helper import PageContext

import sqlite3

from flask import g

import requests, json

app = Flask(__name__)

Bootstrap(app)

app.config['BOOTSTRAP_SERVE_LOCAL'] = True

BK_SekI+II_Python_spez.docx - 38 - (c,p) 2015 - 2026 lsp: dre

DATABASE='database.sqlite'

def get_db():

 db = getattr(g,'_database', None)

 if db is None:

 db=g._datbase=sqlite3.connect(DATABASE)

 return db

def query_db(query, args=(), one=False):

 cur = get_db().execute(query, args)

 rv = cur.fetchall()

 cur.close()

 return (tv[0] if rv else None) if one else rv

@app.teardown_appcontext

def close_connecting(exception):

 db = getattr(g, '_database', None)

 if db is not None:

 db.close()

@app.route('/')

def main():

 temp = query_db("SELECT wer, einheit FROM sensoren 

 ORDER BY zeit DESC", one=True

 print(temp) #Kontrollanzeige auf Konsole

 tiles = [

 SimpleTile("Licht", "#EEEE00", "light/"),

 SimpleTile("Heizung", "#FF0000", "heaters/"),

 SimpleTile("Sicherheit", "#30FF00", "security/"),

 SimpleTile("Wasser", "#0000FF", "water/"),

 SimpleTile("Innentemperatur: " + temp[0] + " " +

 temp[1], "#FF0000", "/"),

 SimpleTile("Außentemperatur", "#00FF00", "/"),

 SimpleTile("Luftfeuchtigkeit", "#0000FF", "/"),

 SimpleTile("Helligkeit", "#FFFF00", "/"),

]

 manager = TileManager(tiles)

 context = PageContext("Smarthome Projekt", "Home")

 return render_template("main.html", tilerows=manager,

 context=context)

@app.route('/light/')

def light():

 living_room = True

 sleeping_room = False

 if("living_room" in request.args):

 living_room = True if request.args["living_room"]

 == "on" else False

 if("sleeping_room" in request.args):

 sleeping_room = True if request.args["sleeping_room"]

 == "on" else False

 tiles=[]

 tile = SimpleTile("Wohnzimmer: ", "", "?living_room=")

 tile.items[0].text += "an" if living_room else "aus"

 tile.link += "off" if living_room else "on"

gibt Verbin-
dung zur Da-
tenbank zu-
rück

Datenbank-
Abfrage
one bestimmt,
ob nur 1 Wert
zurückgeliefert
werden soll

BK_SekI+II_Python_spez.docx - 39 - (c,p) 2015 - 2026 lsp: dre

 tile.bg = "#AAFF00" if living_room else "#338800"

 tiles.append(tile)

 tile = SimpleTile("Schlafzimmer: ", "", "?sleeping_room=")

 tile.items[0].text += "an" if sleeping_room else "aus"

 tile.link += "off" if sleeping_room else "on"

 tile.bg = "#6666BB" if sleeping_room else "#333388"

 tiles.append(tile)

 manager = TileManager(tiles)

 context = PageContext("Smarthome Projekt", "Licht",

 [["/", "Home"]])

 return render_template("main.html", tilerows=manager, 

 context=context)

if __name__ == "__main__":

 app.run(debug=True)

fehlt requests bzw. gibt es dahingehend Fehler-Meldungunegn, dann mus die Bibliothek
nachinstalliert werden:

pip3 install requests

Um z.B. externe Wetter-Daten mit anzuzeigen braucht man eine Daten-Quelle für solche
Informationen. Dazu ist es bei openweathermap.org sich einen Account-Schlüssel zu besor-
gen und damit dann rund 60 Wetter-Info-Pakete pro Stunde runterzuladen. Die Daten kom-
men als JSON-Datei und müssen mittels json-Bibliothek in ein JSON-Objekt umgewandelt
werden. Dazu brauchen wir die importierte json-Bibliothek. Natürlich könnte man den Text
auch per Hand selbst zerlegen (parsen). Das ist aber recht aufwendig in der Programmie-
rung. Da nutzen wir lieber die vorgeferigten und geprüften Methoden / Funktionen von json.

def main():

 temp = query_db(…

 r = requests.get('http://api.openweathermap.org/data/

 2.5/weather?g=Rostock,de&appid= eigene ID')

 weatherdata = json.loads(r.text)

 temp_out = round/weatherdate['main']['temp'] – 273.15,1)

 weathersymbol = '<img src="http://openweathermap.org/img

 /w' + weatherdata['weather'][0]['icon'] + ".png">'

 …

 SimpleTile("Außentemperatur: " + str(tempout + " C
"

 + weathersymbol, "#FF00FF", "/"),

 SimpleTiel(…

Den API-Key muss man sich bei openWeatherMap.org besorgen.
Es gibt auf openWeatheMap.org auch API's, die eine Abfrage von Wetter-Vorhersagen er-
lauben.

BK_SekI+II_Python_spez.docx - 40 - (c,p) 2015 - 2026 lsp: dre

BK_SekI+II_Python_spez.docx - 41 - (c,p) 2015 - 2026 lsp: dre

10.5. Web-Applikationen mit Django

recht freies, kompakter und beherrschbares Framework
legt Wert auf effektives Programmieren (alles möglichst nur einmal programmieren (Don't
Repeat Yourself → DRY))
mit eigenem Web-Server zum schnellen Testen / Ausprobieren

Nachteile / Probleme:
Struktur nicht selbsterklärend

Links:
http://www.django-workshop.de/ (gutes aufgebautes Tutorial (dt.)) → Beispiel: Rezept-Sammlung
[scheinbar ist die Version des Tutorials veraltet (0.4), einschließlich der verwendeten Programm-
Versionen (Python 2?!, 3.3, Django 1.4); ab und zu ist nicht klar, was auf welcher Ebene gemacht
werden muss; keine Fehler-Hinweise; es fehlt das Hintergrundwissen, um die Zusammenhänge zu
verstehen; einige Texte wirken sehr abstrakt]

http://www.django-workshop.de/

BK_SekI+II_Python_spez.docx - 42 - (c,p) 2015 - 2026 lsp: dre

10.6. MicroPython für Microcontroller
u.a. Q:
/µP_Q1/ … Thomas WALDMANN (Vortrag: "Einführung in ESP32 Microcontroller + MicroPython"; EASTERHEGG 2018;

https://media.ccc.de/v/V8W9DL)

Es muss nicht immer ein großer Rechner sein, um mit Python zu arbeiten. Wir haben ja
schon gesehen, dass die kleinen Raspberry Pi's ebenfalls mit Python daherkommen und
nicht wirklich Leistungs-schwächer sind. Natürlich muss man hier die allgemeine Leistungs-
fähigkeit des Grundsystem's beachten.
Es geht aber noch kleiner. Microcontroller sind minimalste Datenverarbeitungs-Systeme und
zielen stark auf den IoT-Bereich ab.
Microcontroller – oft auch als Experimentier-Board's
oder IoT-Bausteine bezeichnet - verfügen auf kleins-
ten Raum über alle EVAS-Teile eines Informatiksys-
tems.
Besonders effektive Microprozessoren steuern un-
zählige Ein- und Ausgabe-Möglichkeiten.

Klassiker sind sicher die Arduino's. Sie waren und sind noch zu langsam und zu Speicher-
arm für Python.
Neuere Hardware ist da um Längen besser. Zu den neuen Sternen am Himmel zählen z.B.
die ESP-Bausteine.
Fast allen Microcontrollern ist eine sehr offene Hard- und Software gemeinsam. Zwar ist
nicht alles OpenSource oder völlig frei zugänglich, aber die offene Arbeitskultur von Hard-
und Software-Herstellern erzeugt eine schnelle und breite Nutzung in allen Bereichen.

Vorteile:

• relativ einfache Programmierung (im Vergleich zum sonst üblichen C/C++)

• unendliches Laufen eines Programms auf minimalster Technik

• praktisch fast unbegrenztes direktes und indirektes Ansprechen von Sensoren und
Aktoren

• langfristiger und relativ unabhängiger Betrieb über PowerBank-Stromversorgung
möglich

• Unterstützung vieler Protokolle und der üblichen Hardware / Peripherie

Nachteile:

• etwas eingeschränkter Befehls-Umfang

• neue Bibliotheken / Module notwendig

• etwas umständliche Handhabung zwischen Entwicklung und Programm-Lauf

• Größe der Programme meist durch relativ kleine Speicher begrenzt

• auf MicroPython umgestellte Systeme müssen wieder speziell auf den üblichen
Microcontroller-Betrieb (übliche C/C++-Programmierung od.ä.) umgestellt werden

•

fehlende Funktionen / Features (im Vergleich zum Standard-Python):

• keine Unterstützung von Unicode

• Leerzeichen zwischen Literalen (Zahlen) und Schlüsselwörtern notwendig

• geänderte Methoden-Auflösung bei geschachtelten Klassen

• nur eine Oberklasse festlegbar

• unterschiedliche Ausgabe-Formate für float-Zahlen

• für von int abgeleitete Typen ist kein Typ-Umwandlung möglich

BK_SekI+II_Python_spez.docx - 43 - (c,p) 2015 - 2026 lsp: dre

• Slicing in Listen eingeschränkt

• eval() hat keinen Zugriff auf lokale Variablen

• in Generator-Funktionen wird __exit__() nicht aufgerufen

• Byte-Array's werden nicht unterstützt

• String-Methode .endwith(), .ljust() und .rjust() nicht implementiert
• __del__ als spezielle Methode nicht implementiert

• self wird als ein Argument gezählt

• begrenzte Unterstützung von Namespace's

• Zeichenketten-Verarbeitung mit Schlüsselwörtern (z.B. encoding) nicht möglich

• lokale Variablen werden bei locals() nicht einbezogen

• Nutzer-definierte Attribute in Funktionen werde nicht unterstützt

• spezieller Umgang mit property-Getter

• die __path__-Eigenschaft von Modulen wird als relativer Pfad ausgegeben

• Verkettung von Exception's nicht implementiert

• die Methode Exception.__init__ gibt es nicht

• keine Nutzer-definierten Attribute in Builtin-Exception's

• bei Fehler-Anzeigen in while-Schleifen werden Zeilennummern anders gezählt

• für Bytes-Objekte ist eine .format()-Methode verfügbar

• die Nutzung von step != 1 in Byte-Objektensowie in Tuple und Listen nicht möglich

• Instanzen von str-Unterklassen können nicht mit str-Instanzen verglichen werden

•

fehlende / geänderte Funktionen / Features in Modulen:

• im array-Module
o keine Suche nach Integer möglich
o Löschen (del()) von Elementen nicht möglich
o Nutzung von step !=1 nicht möglich

• builtin's

• kein zweites Argument bei next() möglich

• im collections-Modul
o deque nicht implementiert

• im json-Modul
o nicht-serialisierte Einträge erzeugen keine Exception's

• im struct-Modul
o zuviele Argumente in der .pack()-Methode werden nicht beachtet

• im sys-Modul
o die Attribute .stdin, .stdout und .stderr lassen sich nicht überschreiben

•

Bedeutung des MicroPython in der Microcontroller-Welt:

• leichter zu programmieren als C/C++

• weite und immer weiter steigende Verbreitung von Microcontrollern

•

bekannte Forks zum MicroPython

• CircuitPython

• PyCom

Warum funktioniert das Arbeiten mit Python auf einem Microcontroller, wenn sonst immer auf
einem extra (Host-)Rechner editiert und kompiliert werden muss?

BK_SekI+II_Python_spez.docx - 44 - (c,p) 2015 - 2026 lsp: dre

Normalerweise sind die Interpreter und Compiler moderner Programmiersprachen sehr gro-
ße Programme. Der Speicher und meist auch die Leistung der CPU der Microcontroller reicht
nicht für sie aus. Auch bei Python ist das so.
Bei MicroPython wird ein extra kleiner Interpreter mit eingeschränkter Leistung verwendet.
Wir haben das oben schon thematisiert.
Zum anderen bedient man sich eines Trick's. Normalerweise werden ja immer die kompilier-
ten Programme – also Binär-Dateien – auf den Microcontroller übertragen. Dies nennen wir
flashen. Das (fest integrierte und unveränderliche) Boot-System und die variable Firmware des
Microcontroiller's isind so ausgelegt, dass sie die gefundene Binär-Datei vom letzten Flashen
startet und unermüdlich abarbeitet.
Beim Python wird der Mini-Interpreter geflasht und dazu ein klassisches Datei-System er-
zeugt. Das Boot-System des Microcontroller's startet also den aufgeflashten MicroPython-
Interpreter und dieser kommuniziert zum Einen über die serielle Schnittstelle oder arbeitet
ein gefundenes py-Programm ab.

BK_SekI+II_Python_spez.docx - 45 - (c,p) 2015 - 2026 lsp: dre

10.6.x. MicroPython für micro::bit

lässt sich auch mit dem pyCraft-Tool (→) bedienen

auf dem micro::bit muss die micropython-Firmware geladen werden
Download unter
dannach einfach auf das micro::bit-Laufwerk kopieren

ab jetzt versteht der micro::bit die Programmiersprache Python
zumindestens eine abgespeckte Version (enthaält aber alle elementaren Befehle!)
die Programmierung und Kommunikation kann mit mehren Editoren usw. erfolgen

soll wieder mit anderen Sprachen / Systemen programmiert werden, dann muss wieder die
ursprüngliche Firmware aufgespielt werden (→ https://microbit.org/get-started/user-
guide/firmware/)

praktischer ist die Verwendung von 2 Geräten mit jeweils anderer Firmware, dann spart man
sich Probleme, wenn man nicht mehr weiss, welche Firmware gerade läuft

weitere Editoren für microPython:

Text-basierte Systeme

Block-basierte Systeme

EduBlocks
https://app.edublocks.org/#MicroBit

https://microbit.org/get-started/user-guide/firmware/
https://microbit.org/get-started/user-guide/firmware/
https://app.edublocks.org/#MicroBit

BK_SekI+II_Python_spez.docx - 46 - (c,p) 2015 - 2026 lsp: dre

10.6.x. MicroPython für ESP-32-Microcontroller

ESP-8266 und das Nachfolge-Modell ESP-32
sind deutlich leistungsfähiger als die sonst
üblichen Arduino's
verschiedene Ausführungen und Hersteller

sie unterscheiden sich vorrangig in der Anzahl
der herausgeführten – und damit nutzbaren –
Pin's

auffallend ist die extrem funktionell breite Auslegung des Microcontroller
man kann fast schon sagen, alles was das IoT- und Bastler-Herz liebt und braucht ist sehr
effektiv im ESP umgesetzt
praktisch billige Massen-Ware, je nach Ausstattung zwischen 6 und 30 Euro
bei den teureren Varianten sind dann oft schon Display's mit dabei
(i.A. insgesamt günstiger als Aduino-System (einschließlich der verschiedenen Billig-Clone)
besonders herausregend in dieser Preisklasse die breite Unterstützung von WLAN und Blue-
tooth

10.6.x.0. Vorbereiten des ESP für MicroPython

Download des Image von der MicroPython-Webseite (→ http://micropython.org/download)
weiterhin ein Fork unter (→) verfügbar (teilweise Leistungs-fähiger, aber eben Spezial-
Lösung!)
nicht immer unbedingt das neueste Daily-Build verwenden, da hier schnell Bug's drin sein
können, dafür sind aber alte Bug's im Allgemeinen bereinigt

zuerst die alte Firmware auf dem ESP löschen
esptool.py –chip esp32 –port /dev/ttyUSB0 erase_flash

neue Firmware (Minimal-OS + MicroPython) hochladen
esptool.py –chip esp32 –port /dev/ttyUSB0 write_flash –z 0x1000 esp32_firmware.bin

Verbindung zum ESP-32-MicroPython
über ein Konsolen-Programm
hier PuTTY

wir brauchen eine serielle Kommunika-
tion (also: Serial) mit den Parametern:
Serial line: COM14 (USB-Port)
Speed: 115200 (übliche Baud-Rate
für die Kommunikation mit dem ESP-32

ich habe mir die Parameter gleich unter
einem passenden Namen abgespei-
chert

BK_SekI+II_Python_spez.docx - 47 - (c,p) 2015 - 2026 lsp: dre

kommuniziert über die USB-serielle Schnittstelle mit dem MicroPython

zuerst bekommt man
eine Status-Information
zum MicroPython und
einigen Ressourcen an-
gezeigt

den seriellen Monitor
kann man jetzt auch wei-
ter auflassen und mit den
MicroPython komminizie-
ren

im Prinzip sind wir jetzt
im interaktiven Modus, so
wie wir ihn ja schon vom
großen Python mit IDLE
kennen

hier zwei kurze
und einfache Bei-
spiele

dieser Modus
nennt sich REPL
(Read-Evalute-
Print-Loop)

BK_SekI+II_Python_spez.docx - 48 - (c,p) 2015 - 2026 lsp: dre

mit help() kann
man sich die
elementaren Hil-
fetexte für das
MicroPython an-
sehen

BK_SekI+II_Python_spez.docx - 49 - (c,p) 2015 - 2026 lsp: dre

10.6.x.0.1. das Tool uPyCraft

Alternativ – und insgesamt deutlich komfor-
tabler – lässt sich die MicroPython-Firmware
auch mit dem nachfolgend besprochenem
Programm (uPyCraft) erledigen.
Falls das Programm noch nicht installiert ist
bzw. noch unbekannt ist, dann bitte zuerst
weiter hinten lesen (→ Installation und Be-
schreibung des Hilfs-Programms uPyCraft).
Dies bringt auch ein eigenes Image mit. Ich
bleibe hier bei dem offiziellen von der micro-
python.org-Webseite.
Die Lade-Adresse (burn_addr) ist offiziell die
0x1000. In einigen Anleitungen zu uPyCraft
wird dagegen empfohlen, dem Programm
die Entscheidung zu überlassen.

(Dann kann es sein, dass als Adresse die 0x0 angegeben ist. Bei mir klappte es mit beiden Adress-Angaben.)
Nach der Bestätigung beginnt das Löschen des Flash-Speichers auf dem ESP. Vorhandene
Dateien gehen verloren.
Auf das Löschen folgt das Schrei-
ben (Burn, Brennen) des MicroPy-
thon in den Speicher.
Diese Alternative zum oben be-
schrieben Flashen ist vor allem
dann interessant, wenn das uP-
yCraft dann zur Verfügung steht und
man mal wieder ein neues MicroPy-
thon aufsetzen muss.

notwendige Treiber
https://github.com/Tasm-Devil/Micropython-Tutorial-for-esp32/archive/master.zip
downloaden und entpacken
so in das Dateisystem kopieren, dass der workspace-Ordner als Unterordner im Programm-
Ordner der uPyCraft.EXE liegt
alternativ den workspace-Ordner anders einstellen

Zum ersten Ausprobieren reicht die serielle Konsole. Irgendwann müssen wir Dateien auf
den ESP tranferieren. Dazu benötigt man ebenfalls ein spezielles Programm.
Das Programm uPyCraft ist ein sehr flexibles Werkzeug zum Arbeiten mit MicroPython auf
einem Microcontroller.

https://github.com/Tasm-Devil/Micropython-Tutorial-for-esp32/archive/master.zip

BK_SekI+II_Python_spez.docx - 50 - (c,p) 2015 - 2026 lsp: dre

Installation und Beschreibung des Hilfs-Programms uPyCraft

Das u im Namen des Programms steht dabei für µ - also micro. Im Internet hat sich diese
Ersetzung bei vielen Projekten manifestiert.
Der Download erfolgt von der Seite https://randomnerdtutorials.com/uPyCraftWindows. Man
erhält eine funktionsfähige EXE. Diese kann an eine beliebige Stelle kopiert werden – u.a.
auch auf einen USB-Stick mit einem portableApps-System.

Nach dem Start der EXE kommt eine Bitte, eine spezielle
Schrift-Art zu installieren.
Das kann man tun. Gleich dannach öffnet sich das Pro-
gramm-Fester

U.U. bietet uPyCraft jetzt an, eine ak-
tuellere Version herunterzuladen.
Bei mir brach das Upgrade immer mit
einer Fehler-Meldung ab.
Auf der Projekt-Webseite war aber
auch keine neuere Version aufgelistet.

neue Datei

Datei öffnen …

Datei speichern

Hochladen und Starten

Stoppen / Anhalten

Verbinden

Rückgängig

Wiederholen

Syntax-Check / Überprüfen

Löschen (Konsolen-Bildschrim)

Editor-Bereich

serieller Monitor
µPython-Konsole
REPL-Monitor

Verzeichnis-
Baum

Hauptmenü

https://randomnerdtutorials.com/uPyCraftWindows

BK_SekI+II_Python_spez.docx - 51 - (c,p) 2015 - 2026 lsp: dre

ev. kommt auch noch eine Nachfrage, ob
man Beispiel-Dateien aktualisieren will. Auch
die sollte man tun.

Die grundlegenden Werkzeuge aus der rechten Symbol-Leiste und die wichtigsten Elemente
des Programms sind in der obigen Abbildung aufgezeigt.

Zum Testen der IDE muss zuerst einmal der
richtige COM-Port unter "Tools" "Serial"
ausgewählt werden. Üblicherweise ist es
einer mit einer höheren Nummer.
Ist nur COM1 verfügbar, dann sollte man
den USB-Treiber aktualisieren.

Als nächstes wählt man bei "Tools" "board"
das zu benutzende Board.
Wer ein microbit mit Python programmieren will, wird
hir auch fündig.

"Tools" "Preferences"

eigentlich nur der Reiter "Serial" interessant,
da hier ev. die Übertragungs-Parameter für
die USB-seriell-Schnittstelle eingestellt wer-
den.

BK_SekI+II_Python_spez.docx - 52 - (c,p) 2015 - 2026 lsp: dre

Klick auf "workSpace" führt zur Ordner-Auswahl. Hier bestimmt
man einen Odner, indem sich der "WorkSpace" – also der "Arbeits-
Ordner" befindet.
Nicht den "workSpace"-Ordner selbst auswählen, sondern das
übergeordnete Verzeichnis, in dem sich eben "workSpace" befin-
det.

In workSpace müssen sich die Ordner und Dateien befinden, die wir uns von github
(https://github.com/Tasm-Devil/Micropython-Tutorial-for-esp32/archive/master.zip) runtergeladen und dann
entpackt haben.

Mit "Connect" stellt man die Verbindung
zur MicroPython-Konsole dar. Hier ar-
beitet man dann im REPL-Modus.
Praktisch entspricht dies dem inetrakti-
ven Modus des "großen" Python.
Über "Disconnect" (Verbindung been-
den") wird die Kommunikation zum ESP
beendet. Dies ist z.B. notwendig, wenn
wir andere Aufgaben – wie das Hochla-
den von Dateien – durchführen wollen.
Ees ist immer nur eine Verbindung über
den USB-Anschluß möglich.

??? Übertragen einer neuen Firmware

Im "Burn Firmware"-Dialog beim board
"esp32" einstellen und erase_flash auf "yes"
setzen, dann bestätigen

Ein frisch geflash-
tes MicroPython
bringt schon eine
boot.py mit. Diese
können wir für un-
sere Zwecke an-
passen.

Die meisten Treiber-Dateien aus dem workSpace-Ordner müssen auf den ESP kopiert wer-
den.
Einen neuen Ordner legt man durch Rechts-Klick auf das übergeordnete Verzeichnis an. Es
gibt im Kontext-Menü nur den einen Eintrag "New dir".

Verbindung beenden

https://github.com/Tasm-Devil/Micropython-Tutorial-for-esp32/archive/master.zip

BK_SekI+II_Python_spez.docx - 53 - (c,p) 2015 - 2026 lsp: dre

Sollte sich der Verzeichnis- und Datei-Baum nach Aktionen nicht ändern, dann frischt ein
"File" "Reflush Directory" die Ansicht wieder auf.

BK_SekI+II_Python_spez.docx - 54 - (c,p) 2015 - 2026 lsp: dre

Löschen einer Datei
auf dem ESP

Der Ordner "device"
im Verzeichnis-Baum
links zeigt uns die
vorhandenen Dateien
auf dem Microcontrol-
ler.

bei mir gab es Feh-
lermeldung und kein
Löschen

Bearbeiten von Dateien im oberen mittleren
Bereich (Editor) möglich.
Das "Speichern unter …" (Save as) erfolgt
standardmäßig im Workspace.
Da die Start-Programme immer main.py hei-
ßen müssen, bietet sich im Workspace ein
Abspeichern in einem Projekt-Ordner an.

Deutsche Umlaute usw. werden bei einem erneuten Laden (Open = Öffnen) in chinesische
Schriftzeichen umgesetzt. Man sollte also durchgehend – auch bei den Kommentaren – auf
spezielle Zeichen verzichten.

Das eigentliche Laden der Programm-
Dateien usw. erfolgt über "Hochladen und
Starten" (DownloadAndRun).
Vorher sollte man nochmal die "Verbindung"
(Tools → Serial und → board) überprüfen.
Bestimmte fehlende Angaben führen auch
schnell mal zu undefinierten Zuständen, in
denen dann nur noch ein vollständiger Neu-
start des Systems (oder gar ein Neuflashen des

MicroPython) hilft.
Die Bezeichnung "Download" ist sicher et-
was ungewöhnlich, wir spechen eher von
Upload (Hochladen). Vielleicht ist es aus der
Sicht des ESP-Systems bzw. des MicroPy-
thon gedacht.

nach dem erfolgreichen Hochladen (Download) erhält man im seriellen Monitor die Anzeige:

exec("main.py",,results())

meine Programme führten – auch nach einem Reset am ESP zu keiner Reaktion

BK_SekI+II_Python_spez.docx - 55 - (c,p) 2015 - 2026 lsp: dre

ganz im Gegenteil, es kam zum dauerhaften Abbruch / Verklemmen der USB-Verbindung
es half nur noch Neuflashen des ESP mit MicroPython's (funktionierte aber mit uPyCraft)

Wenn uPyCraft anstandslos läuft und alle Aufgaben machbar sind, dann kann jetzt direkt bei
→ 10.6.x.1. Arbeiten mit MicroPython weitergelesen werden.

Will oder kann man uPyCraft nicht benutzen, dann bleiben einige Komandozeilen-
Programme übrig, die zum Hochladen von Dateien auf den ESP gedacht sind.

Hochladen von Dateien z.B. möglich mit ampy (Adafruit MicroPython Tool)

Installation über:
pip install adafruit-ampy

Hilfe aufrufen:
ampy --help

in Windows einstellen des AMPY_PORT über:
set AMPY_PORT=COM1

so ähnlich können auch AMPY_BAUD und AMPY_DELAY gesetzt werden
set AMPY_BAUD=115200
set AMPY_DELAY=0.5

die Hilfe zu ampy:

 $ ampy --help

Usage: ampy [OPTIONS] COMMAND [ARGS]...

 ampy - Adafruit MicroPython Tool

 Ampy is a tool to control MicroPython boards over a serial

 connection. Using ampy you can manipulate files on the board's

 internal filesystem and even run scripts.

Options:

 -p, --port PORT Name of serial port for connected board. Can

 optionally specify with AMPY_PORT environemnt

 variable. [required]

 -b, --baud BAUD Baud rate for the serial connection (default

 115200). Can optionally specify with AMPY_BAUD

 environment variable.

 --version Show the version and exit.

 --help Show this message and exit.

Commands:

 get Retrieve a file from the board.

 ls List contents of a directory on the board.

 mkdir Create a directory on the board.

 put Put a file or folder and its contents on the...

 reset Perform soft reset/reboot of the board.

 rm Remove a file from the board.

 rmdir Forcefully remove a folder and all its...

 run Run a script and print its output.

BK_SekI+II_Python_spez.docx - 56 - (c,p) 2015 - 2026 lsp: dre

10.6.x.0.2. Nutzung eines ESP mit microPython unter Linux

Arbeiten im REPL-Modus

 $ cu –l /dev/ttyUSB0 –s 115200

 >>> import machine

>>> pin = machine.Pin(5, machine.Pin.OUT)

>>> pin.value(True)

Äquivalent zu Blinky

 >>> import machine

>>> import time

>>> pin = machine.Pin(5, machine.Pin.OUT)

>>> while True:

... pin.value(True)

... time.sleep(1)

... pin.value(False)

... time.sleep(1)

Nutzung des Filesystems

 >>> import os

>>> os.listdir()

['boot.py']

>>> datei = open('hallo.txt', "w")

>>> datei.write("Hallo Welt!")

11

>>> datei.close

>>> os.listdir()

['boot.py', 'hallo.txt']

 >>>

weiterhin Arbeiten mit WebREPL, den mpy-utils oder upip (micropython package manager)
möglich

notwendige Dateien und Verzeichnisse der ESP32 Repo-Files
/
drivers/
extmod/
lib/
mpy-cross/
py/
tools/

BK_SekI+II_Python_spez.docx - 57 - (c,p) 2015 - 2026 lsp: dre

sowie Ordner für die konkrete Plattform, z.B.
esp32/
-- Makefile
-- modesp.c
-- modmachine.c
-- modnetwork.c
-- modsocket.c
-- moduos.c
-- modutime.c

 >>> import esp

>>> dir(esp)

['__name__', 'flash_read', 'flash_write', 'flash_erase',

'flash_size', 'flash_user_start']

>>> esp.flash_size()

4126345

esp-idf/components/spi_flash/include/esp_spi_flash.h
Beispiel für die c-
Funktions-
Deklarationen in den
Header-Dateien

 size_t spi_flash_get_chip_dir();

esp32/modesp.c
c-Code

 #include "esp_spi_flash.h

STATIC mb_obj_t esp_flash_size(void){

 return mp_obj_new_int_from_uint(spi_flash_get_chip_size());

}

STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_flash_size_obj,

esp_flash_size);

STATIC const mp_rom_map_elem_t esp_module_globals_table[] = {

 { MP_ROM_QSTR___name__), MP_ROM_QSTR(MP_QSTR_esp) }.

 { MP_ROM_QSTR_flash_size), MP_ROM(&esp_flash_size_obj) },

};

STATIC MP_DEFINE_CONST_DICT(esp_module_globals,

esp_module_globals_table);

const mp_obj_module_t esp_module = {

 .base = {},

 .globals = (mp_obj_dict_t*)&esp_module_globals,

};

esp/mpconfigport.h

 extern const struct _mp_obj_module_t esp_module;

#define MICROPY_PORT_BUILTIN_MODULES \

 { MP_OBJ_NEW_QSTR_esp), (mp_obj_t)&esp_module }, \

esp32/Makefile

 SRC_C = \ modesp.c \

BK_SekI+II_Python_spez.docx - 58 - (c,p) 2015 - 2026 lsp: dre

 >>> import esp

>>> dir(esp)

['__name__', 'flash_read', 'flash_write', 'flash_erase',

'flash_size', 'flash_user_start']

>>> esp.flash_size()

4126345

10.6.x.0.3. Esp-Tool

Download als GitHub-ZIP von https://github.com/espressif/esptool

Installation mit

pip install esptool

wenn das nicht funktioniert kann man auch:

python –m pip install esptool

oder:

pip2 install esptool

probieren. (ev. auch vorher pip aktualisieren())

Ganz neue Versionen des ESP-Tool's müssen manuell installiert werden. Das sollte aber
den Profi's vorbehalten sein. Es handelt sich dann meist um frische Entwicklungs-Version,
deren Stabilität nicht sicher ist. Die stabilen Version sind immer über pip installierbar.
Für eine manuelle Installation gibt man:

python setup.py install

Gleiches kann man mit pySerial machen:

pip install pyserial oder easy_install pyserial oder apt-get install python-serial

Letzteres funktioniert natürlich nur unter Linux.

Die ESPtool's stellen die folgenden Kommando's zur Verfügung

ESPtool-Kommando's

• verify_flash

• dump_mem

• load_ram

• read_mem

• write_mem

• read_flash_status

BK_SekI+II_Python_spez.docx - 59 - (c,p) 2015 - 2026 lsp: dre

• write_flash_status

• chip_id

• make_image

• run

Achtung! Die ESP's nutzen 3,3V-TTL-
Spannung, während die üblichen Geräte-
Schnittstellen 5V (Standard RS-232) benut-
zen. Hier muss also ein passender Adapter
verwendet werden!

 ESP-Pin serieller Pin
(Host-Schnittstelle)

 TX (GPIO1) RX (empfangen)

 RX (GPIO3 TX (senden)

 Ground (GND) Ground / Masse

(Zwischen dem Standard-Pin (5V) und dem ESP-Pin (3V3) kommt ein Widerstand von 1k und auf der ESP-

Seite zwischen dem ESP-Pin und Ground ein 2,2 k Widerstand. In der anderen Richtung – also bei der Daten-
Übertragung vom ESP zur Standard-Schnittstelle benötigt man praktisch keine Anpassung, da die gelieferten 3,3
V als gültiges Signal akzeptiert wird.)

Wem die Kommandozeilen-Version (reines ESPtool) nicht so liegt, kann auch das Programm
ESP8266-Flasher (→http://www.dietrich-kindermann.de/Downloads/ESP8266-Flasher-x32-
Installer.zip) benutzen. Im Vorfeld muss allerdings die graphische Oberfläche wxPython in-
stalliert werden, da diese vom Flasher benutzt wird.

python –m pip install wxpython

Um das den ESP8266-Flasher unabhängig von einer Python-Installation (- also z.B. auf ei-
nem Fremd-Rechner -) benutzen zu können, kann man sich mit dem PyInstaller ein selbst-
ständiges Installations-Paket erstellen.
Dazu wird zuert PyInstaller installiert:

python –m pip install pyinstaller

Der PyInstaller benötigt noch den UPX-Packer (→https://upx.github.io/). Dies ist ein klasi-
sches Pack- und Entpack-Programm, dass sich auf ausführbare Packete spezialisiert hat.

Alternativ kann des NSIS-Installer benutzt werden.

Backup und Restore (Sichern und Wiederherstellen) der offiziellen Firmware von ei-
nem ESP-Mircocontroller

Wenn noch nicht geschehen, ESPtool installieren. Dazu in der Konsole in den Ordner mit
dem entpsckten ESPtool wechseln (oder im Windows-Explorer / Arbeitsplatz / Computer) bei
gedrückter []-Taste das Kontext-Menü zum Ordner öffnen und dann "Eingabeaufforderung
hier öffnen" auswählen.

python setup.py install
pip install pyserial

angenommen es handelt sich um einen 4MB-Flash-Speicher auf dem ESP und der ESP
hängt am USB-Port COM8, dann lauten die Befehle

python esptool.py –b 115200 –port COM8 read_flash 0x000000 0x400000 

flash4M.bin

BK_SekI+II_Python_spez.docx - 60 - (c,p) 2015 - 2026 lsp: dre

python esptool.py erase_flash

python esptool –b 115200 –port COM8 write_flash –flash_freq 80m 0x000000

flash4M.bin

Die variablen Teile sind farblich hervorgehoben. Die Datei-Namen (bin-Dateien) sind hier
natürlich nur Beispiele.

BK_SekI+II_Python_spez.docx - 61 - (c,p) 2015 - 2026 lsp: dre

10.6.x.1. Arbeiten mit MicroPython

optimale ESP32-Hardware sind die WROVER-Versionen, da sie zusätzlichen Speicher on-
board haben
dieser spRAM ist für größere Python-Programme dann auch notwendig
umgesetzt wurde Python 3 in einer abgespeckten – aber prinzipiell funktionsfähigen – Versi-
on
bei anderen Microcontrollern muss immer genau geprüft werden, was geht und was nicht

MicroPython-System muss einmalig auf den Microcontroller gespielt werden
dann gibt es zwei Betriebs-Möglichkeiten

Nutzungs-Möglichkeiten von MicroPython auf einem Microcontroller

• interaktiver Interpreter REPL-Console (Read-Evaluate-Print-Loop)

• lokale Version (→ 10.6.x.y.1. interaktiver Modus -
REPL)

• Internet-fähige / Netzwerk-Version (→ 10.6.x.y.2.
interaktiver und Internet-fähiger Modus -
WebREPL)

•
AutoRun-Modus
"AutoStart"-Modus

führt nach dem Reboot / Reset automatisch die boot.py
und die main.py aus
ansonsten können beliebige Dateien im Board-eigenen
Dateisystem bearbeitet / genutzt werden
(→ 10.6.x.y.3. "Autostart"-Modus)

in der boot.py lassen sich z.B. bestimmte Hilfs-Funktionen / -Makro's / WLAN initieren usw.
ablegen, die beim Starten des ESP abgearbeitet werden

BK_SekI+II_Python_spez.docx - 62 - (c,p) 2015 - 2026 lsp: dre

10.6.x.y.1. interaktiver Modus - REPL

praktisch identisch mit dem interaktiven Modus des normalen Python-Interpreter's
REPL steht für Read-Evaluate-Print-Loop
der MicroPython-Interpreter ließt die Kommandozeile (Read), überprüft und übersetzt dann
das Kommando (Evaluate), was letztendlich zu einer Reaktion (üblich wohl eine Ausgabe mit
print())
Das ganze läuft – wie üblich für Microcontroller – in einer Endlos-Schleife (Loop).

Die Menü-Befehle fehlen im REPL-Modus, so dass hier keine Erstellung oder Nutzung von
Quellcode-Dateien erfolgen kann. Das muss man extern auf einem echten Rechner mit Edi-
tor oder Python-System erledigen.

nach der Verbin-
dung über eine
serielle Konsole,
können die übli-
chen interaktiven
Befehle oder Pro-
gramm-Strukturen
erledigt werden

hier zwei kurze
und einfache Bei-
spiele

viele Tools zum Arbeiten mit dem MicroPython nutzen genau diesen Modus und vereinfa-
chen nur die Nutzung
man braucht dann i.A. nur noch ein Programm (eben dieses Tool), um sinnvoll mit dem
Microcontroller zu arbeiten
Beispiele sind uMyCraft, …

Im REPL-Modus sind vor allem die internen Sensoren sowie die anschließbaren Sensoren
und Aktoren interessant. Man kann die verschiedensten Busse und Port frei nutzen. Ein iso-
liertes Arbeiten des Microprocessors mit den Sensoren und Aktoren ist so nicht wirklich mög-
lich. Dafür muss man dann den "Autostart"-Modus (→ 10.6.x.y.3. "Autostart"-Modus) ver-
wenden.

BK_SekI+II_Python_spez.docx - 63 - (c,p) 2015 - 2026 lsp: dre

10.6.x.y.2. interaktiver und Internet-fähiger Modus - WebREPL

benötigt wird ein Web-Client, den man unter https://github.com/micropython/webrepl down-
loaden bzw. gehostet unter http://micropython.org/webrepl nutzen kann

import webrepl_setup
Konfigurieren des Web-Clients

import webrepl
webrepl.start()

webrepl.start(password='meinPaswort')

https://github.com/micropython/webrepl
http://micropython.org/webrepl

BK_SekI+II_Python_spez.docx - 64 - (c,p) 2015 - 2026 lsp: dre

10.6.x.y.3. "Autostart"-Modus

der Modus heißt nicht wirklich so, der Name beschreibt aber schon, was hier passiert
ein Python-Programm – abgespeichert als main.py – wird automatisch nach einem Reboot
gestartet und ausgeführt
zum Boot-System gehört auch eine weitere mögliche Python-Datei, die boot.py . In dieser
können noch vor dem Aufruf der main.py bestimmte Einstellungen gemacht und Vorberei-
tungen getroffen werden.

MicroPython-Tools

• esptool.py notwendig, um das MicroPython-Image (minimales Be-
triebssystem (Miniatur-RealTime-OS vom Board-Hersteller) und
MicroPython-Interpreter) auf das Board zu flashen
Löschen des Flash-Speichers

• mpy-utils

o mpy-fuse mounten des ESP als beschreibbares Datesystem

o mpy-upload hochladen einer Datei auf den ESP

• Terminal klassisches Terminal (serieller Monitor)
(Start mit: screen /dev/ttyUSB0 115200
Beenden mit: [Strg] [a] , [k]

esptool gibt es unter https://github.com/espressif/esptool zum Downloaden
Installation über pip
pip install esptool

bei Problemen, alternativ:
python –m pip install esptool oder pip2 install esptool

weiterhin manuelle Installation möglich:
python setup.py install

oder wiederum alternativ:
pip install pyserial oder easy_install pyserial oder apt-get install python-serial

mounten des Dateisystem ist etwas langsam

anders benannte Programme lassen sich aber auch von dern MicroPython-Konsole mit:

import DateiName (ohne .py (also quasi als Modul))

starten

unter Windows USB-Port-Angabe mit: -p COM1

https://github.com/espressif/esptool

BK_SekI+II_Python_spez.docx - 65 - (c,p) 2015 - 2026 lsp: dre

scheinbar werden mit uPyCraft gedownloadete (hochgeladene) Python-Programme gleich
gestartet
auf der Konsole steht dann

exec(….)

ein Umbenennen nach main.py scheint für den normalen Start nicht notwendig zu sein

BK_SekI+II_Python_spez.docx - 66 - (c,p) 2015 - 2026 lsp: dre

ESP mit neuem Programm starten (unter Windows)

1. main.py erstellen z.B. mit IDLE oder einfachem Editor; "Start"-Datei
mus als main.py gespeichert werden

2. ESP-Dateisystem mounten

3. main.py hochkopieren

4. ESP-Dateisystem unmounten

5. ESP resetten

Ergebnisse können auf seriellem Monitor angezeigt werden (quasi Ausgabe-Bildschirm)
geeignet ist z.B. PuTTY. Dieses Programm startet auch ohne Installation aus beliebigem
Verzeichnis.
Für portableApps gibt es eine eingebaute Version, die über das portableApps-System auch
automatisch geupdatet wird.
Aber es sind natürlich auch andere seriellen Konsolen geeignet.

ESP mit neuem Programm starten (unter Linux (auch Raspberry Pi möglich))

1. main.py erstellen z.B. mit IDLE oder einfachem Editor; "Start"-Datei
mus als main.py gespeichert werden

2. ESP-Dateisystem mounten
mpy-fuse mnt

esp32-mount

3. main.py hochkopieren
mpy-upload Datei

4. ESP-Dateisystem unmounten
fusermount –u mnt

5. ESP resetten

mit esp32-terminal auf seriellen Monitor zum ESP zugreifen

Abfrage von freiem Speicher etc.

import gc
gc.mem_free()

verfügbare Funktionen über gc. abfragbar (Code-Ergänzungs-System)

Garbage-Collection anstoßen
gc.collect()

BK_SekI+II_Python_spez.docx - 67 - (c,p) 2015 - 2026 lsp: dre

10.6.x.4. elementare Programmierung mit MicroPython

In den folgenden Kapiteln besprechen wir die Programmierung mit Python auf einem
Microcontroller (hier vorrangig der ESP32). Das ist eine Wiederholung vieler Abschnitte und
Themen von weiter vorne in diesem Skript. Ich möchte hier aber eine auskoppelbare Einheit
für Nutzer erstellen, die sich nur mit Microcontrollern und MicroPython auseinandersetzen
wollen oder müssen.
Wer die Grundlagen nicht mehr braucht und sich gleich mit den Spezialitäten der Microcon-
troller beschäftigen möchte kann jetzt zu → springen.
Unter elementarer Programmierung verstehe ich nur einfachste Elemente einer Program-
miersprache, die zu den absoluten Grundlagen zählen. Sie folgt gleich im nächsten Abschnitt
(→ 10.6.x.4. elementare Programmierung mit MicroPython). Dazu gehören vorrangig Ein-
und Ausgaben (auf Konsolen-Niveau) sowie einfache Verzweigungen und Schleifen. Python
ist hier nur das spezielle Mittel.
Die klassische Programmierung (→ 10.6.x.5. klassische Programmierung mit MicroPy-
thon)beschäftigt sich aus meiner Sicht mit Listen, Wörterbücher (Dictonary's) Funktionen,
Objekten usw. Sie gehören zu einem Niveau, bei dem die modernen Aspekte der Program-
mierung sowie die speziellen Möglichkeiten von Python eine Rolle spielen. Der Python-
grundgebildete Leser wird hier hin und wieder die Einschränkungen des MicroPython spüren.
Für alle anderen ist es die Besprechung einer Leistungs-fähigen Programmiersprache.
Im Anschluß daran folgt die Geräte-nahe Programmierung. Hier kommen nun die Merkmale
und Fähigkeiten der Microcontroller deutlich zum Vorschein. Deshalb nennen ich das auch
spezielle Programmierung (→ 10.6.x.6. spezielle Programmierung mit MicroPython). Es ist
nicht auszuschließen, dass sich dieser Teil nicht – so wie dargestellt – auf jeden anderen
Microcontroller übertragen läßt.

10.6.x.4.1. Ausgaben

Abweichend vom EVA-Prinzip beginnen wir mit
den Ausgaben. Dies sollten wir können, damit an-
dere Leistungen eines Programm's von uns zu-
mindestens kontrolliert werden können.

Ein Programm ohne Ausgaben ist praktisch nutzlos. Dabei müssen Ausgaben nicht immer
auf dem Bildshirm erfolgen. Oft werden Daten auch ausgedruckt, in eine Datei gespeichert
oder einem Aktor (z.B. Ein- und Auschalten einer LED) zugewiesen.
In der Programmierung hat sich die Block-Darstellung in sogenann-
ten Struktogrammen durchgesetzt. Sie dienen der Veranschauli-
chung von Algorithmen (Programm-Abläufen) unanhängig von einer
konkreten Programmiersprache. Gute Struktogramme lassen sich in
sehr viele Programmiersprachen übertragen.
Struktogramme sind immer große Blöcke (Rechtecke), die intern in
kleinere unterteilt werden (können).

Man ließt ein Struktogramm immer von oben nach unten. D.h. im Beispiel beginnt das Pro-
gramm mit der Eingabe. Es folgt eine Verarbeitung (der Daten) und schließt mit einer Aus-
gabe ab.
Der klassische Ausgabe-Befehl in Python ist print(). In die Klammern können Komma-
getrennt mehrere verschiedenartige Ausdruck-Elemente notiert werden.
Schauen wir uns zuerst den Ausdruck jeweils eines einzelnen Elementes an, um dann die
Zusammenstellung zu längeren Ausdrucken zu besprechen.

BK_SekI+II_Python_spez.docx - 68 - (c,p) 2015 - 2026 lsp: dre

Ausdruck-Element Beispiel Erläuterung / Bemerkungen / Hin-
weise

Text / Zeichenkette

Verkettungen

print("Hallo Welt!")

print("Hallo "+"Welt!)

beide print-Befehle erzeugen ein:
Hallo Welt!

auf dem Bildschirm
bei einer Verkettung werden Zeichenketten
mit einem Plus verbunden

Zahl

Berechnung

print(24)

print(2.713)

print(24+7)

druckt 24 auf dem Bildschirm

druckt die Kommazahl 2.713 aus
(die Zahlen-Darstellung entspricht dem
englischen Stil / Format! Der Punkt ist der
Dezimal-Trenner)

druckt den berechneten Betrag von
24+7, also 31, aus

Variablen-Wert print(PI)

print(x)

print(Hallotext)

druckt die Kreiszahl  aus: 3.1412

haben die Variablen x und Hallotext
vorher einen Wert bekommen, dann
wird dieser ausgedruckt, egal ob das
eine Zahl oder ein Text ist
ansonsten erscheint eine Fehler-
Meldung

Der Unterschied zwischen Texten und Variablen ist die Notierung mit bzw. ohne Anfüh-
rungsstriche. Statt den doppelten Anführungsstrichen sind auch einfache erlaubt. Sie müs-
sen aber immer paarweise – also am Beginn und am Ende des Textes benutzt werden.
Jeder Befehl wird einzeln in die MicroPython-Konsole eingegeben. Nach einem [Enter] er-
scheint sofort die Ausgabe in der Zeile darunter.Dieses Wechselspiel von eingegebenen
Befehlen und die sofortigen Ausgaben des Python-System's nennt man den interaktiven
Modus.
Der Python-Kenner wird nun sagen, dass geht aber alles auch einfacher. Das stimmt! Prak-
tisch hätten wir die print-Befehle und die zugehörigen Klammern weglassen können. Im in-
teraktiven Modus sind sie nicht notwendig. Da wir aber später echte und vor allem größere
Programme schreiben wollen, gewöhnen wir uns schon mal an die Schreibweise mit Befehl.

BK_SekI+II_Python_spez.docx - 69 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Prüfe zuerst anhand der oben angegebenen Informationen, ob die folgenden

Befehle ordnungsgemäße Ausgaben (im interaktiven Modus) erzeugen!

(Die Befehle der letzten Zeile werden hintereinander mit jeweils einem Enter

eingegeben!)

a) print("Python") b) print "Hallo" c) print(24 + "*")
d) write("Jetzt aber!" e) print("Test Nr. 5) f) print(3*"+++")
g) x = 56

print(x)
h) print(3*x)

a = "4"
print(x+a)

i) c = 4
print("x+c")

2. Prüfen Sie nun die Befehle im MicroPython-System! Welche Überra-

schung(en) gibt es?

3. Berichtigen Sie die fehlerhaften Befehle und prüfen Sie diese im MicroPy-

thon!

4. Erzeugen Sie die folgenden Ausgaben!

a) Drucken Sie den folgenden Satz als ganzes aus!
Python ist schon eine tolle Programmiersprache.

b) Drucken Sie den Satz nun als Zusammensetzung von einzelnen Wörtern!
c) Erzeugen Sie die Ausgabe Ihres Namens aus einzelnen Buchstaben!
d) Lassen Sie Python das Ergebnis der folgenden Berechnung ausdrucken! Rech-

nen Sie zuerst im Kopf!
5 * 3 + (21 – 7) * -2 / 2

Oben wurde schon erwähnt, dass sich mehrere Ausgabe-Elemente Komma-getrennt hinter-
einander in einem print-Befehl unterbringen lassen. Das kann man z.B. nutzen, um ordentli-
che Ergebnis-Sätze auszugeben. Die Ausgabe-Elemente können frei kombiniert werden.
Auch deren Anzahl ist nicht begrenzt. Insgesamt sollte eine normale Ausgabe aber eine Zei-
le nicht überschreiten.

 print("das Volumen des 5x5x5 Würfels beträgt: ", 5*5*5)

Zur allgemeinen Beschreibung von Befehlen benutzen wir gerne die folgende Syntyx-
Darstellung:

print()

print(ausgabeelement)

print(ausgabeelement, ausgabeelement)

print(ausgabeelement { , ausgabe})

Die oberste Zeile beschreibt eine leere Ausgabe. Das entspricht einer Leerzeile. Die blau
angezeigten Elemente / Zeichen sind notwendige Details (für die Info-Profi's: Terminale).
In der zweiten Zeile ist der Syntax einer einfachen Ausgabe dargestellt. Das kursiv geschrie-
bene ausgabeelement ist ein Platzhalter für eine korrekte Ausgabe. Der Name könnte durch
einen anderen ersetzt werden – z.B. druckobjekt od.ä. Hier sprechen wir dann von einem Nicht-

Termininal.
Sollen zwei Ausgabeelemente ausgegeben werden, dann müssen sie durch ein Komma (,)
voneinander getrennt in der Klammer aufgezählt werden. Das Komma ist also vorgeschrie-
ben (also ein Terminal).
In der 4. Zeile wird mit den rot geschriebenen geschweiften Klammern ({ }) gekennzeichnet,
was sich beliebig oft hintereinander wiederholen darf: immer ein Komma und dann ein neues

BK_SekI+II_Python_spez.docx - 70 - (c,p) 2015 - 2026 lsp: dre

Ausgabeelement. Die geschweiften Klammern dienen hier nur zum Kennzeichnen der Wie-
derholung. Sie werden nicht mitgeschrieben. Sie sind sogenannte Meta-Symbole im Syntax.
Die nächste Zeile ist die gemeinsame Syntax aller obigen Zeilen:

print([ausgabeelement] | ausgabeelement { , ausgabeelement })

Die eckigen Klammern ([]) stehen für eine Option. Das Elemenet kann sein, muss es aber
nicht. Der senkrechet Strich (|) kennzeichnet die Alternative – also entweder das links oder
das rechts vom Strich. Das Lesen von Syntax-Darstellungen ist zuerst immer etwas gewöh-
nungsbedürftig. Später wird es zum effektiven Mittel, um die Möglichkeiten von Befehlen
effektiv darzustellen.

Aufgaben:

1. Realisieren Sie die nachfolgenden Ausgaben!

a) Stellen Sie in einem print-Befehl den Text "Die Summe beträgt: " und die berech-
nete Zahl aus 34+41+26 in einer Zeile zusammen!

c) Geben Sie nachfolgende Berechnung so aus, dass die Zahlen separat im print-
Befehl auftauchen (die sollen später durch Variablen ersetzt werden)! Die Berech-
nung des Ergebnisses darf direkt im print-Befehl erfolgen.
12,5 + 24 – 48 / 4 = …

b) Die obige Rechnung soll mit in den Text eingebunden werden. Dabei dürfen die
Zahlen nicht in der Zeichenkette vorkommen, sondern müssen separat eingeabei-
tet werden!

d)

2.

Ausgaben auf Aktoren usw. besprechen wir erst später (→ 10.6.x.6. spezielle Programmie-
rung mit MicroPython), da diese vom verwendeten Microcontroller abhängig sind.

???formatierte Ausgaben

10.6.x.4.2. Variablen, Zuweisungen und Berechnungen

Be den Ausgaben haben wir schon nebenbei mit Variablen gearbeitet. Die am meisten ver-
wendete ist sicher x. In Python-Programmen können wir alle Zeichenketten, die mit einem
Buchstaben beginnen und dann von Buchstaben, Ziffern und dem Unterstrich gefolgt wer-
den. Gute Programmierer verwenden sprechende Variablen, d.h. solche deren Namen ihren
Verwendungszweck beschreibt. Zum Einen verbessert das die Lesbarbeit von Programmen
und zum anderen werden Verwechslungen oder versehentliche Doppelbenutzungen vermie-
den. Oft werden durch die sinnvolle Benennung von Variablen ihre Rollen in Algorithmen
deutlicher. Dadurch lassen sich Programmierfehler schneller finden.
Das Volumen in einer Formel kann also z.B. mit x, v, V, volumen oder Volumen als Variab-
le benutzt werden. Es wird gleich klar, dass die beiden letzteren am besten zu verstehen
sind. In Python-Programmen wird die Groß- und Kleinschreibung unterschieden. D.h., dass
volumen und Volumen zwei unterschiedliche Variablen sind. Man sollte sich auf eine Art der
Schreibung in seinen Programmen festlegen. Üblich sind klein-geschriebene Variablenna-
men. Mit Unterstrichen oder Groß-Buchstaben kann man längere Variablennamen wieder
besser lesbar machen, z.B.:

seitenSumme oder seiten_summe

BK_SekI+II_Python_spez.docx - 71 - (c,p) 2015 - 2026 lsp: dre

Beim ersten Benutzen muss einer Variable ein Wert zugewiesen werden. Das passiert ganz
einfach mit einem Gleichheitszeichen (=). Der Variablenname muss links stehen, der Wert
rechts. Als Werte kommen Zahlen und Berechnungen, Texte und Verkettungen oder andere
Variablen infrage. Eine weitere Möglichkeit stellen Funktionen dar, wobei die Eingabe-
Funktion (→ 10.6.x.4.3. Eingaben) sicher die verständlichste ist.
Gültige Variablen-Deklarationen sind:

x = 4

y = x

HalloText = "Good morning!"

seite = 12

wuerfelVolumen = seite * seite * seite

Dagegen ist es z.B. falsch, die folgenden Ausdrücke zu benutzen:

4 = x
Hallo

Beim Versuch, solche Ausdrücke zu übersetzen (zu interpretieren) erzeugt der Python-
Interpreter eine Fehlermeldung.

Einige spezielle Zuweisungen (Listen, Objekte, …) besprechen wir, wenn wir dort angekom-
men sind. Das Zuweisungs-Prinzip ist immer gleich.
Hat eine Variable erst einmal einen Wert, dann kann sie für Berechnungen und Funktionen
benutzt werden. Die klassischen Rechen-Operationen haben wir ja schon so nebenbei mit
vorgestellt.
Besonders muss vielleicht noch einmal auf die Multiplikation mit dem Sternchen (*) und die
Division mit dem Schrägstrich (/) hingewiesen werden.
Besondere Operatoren sind zwei aufeinanderfolgende Sternchen (**) als Potenz-Operator
und das Prozent-Zeichen (%) als Modulo-Operator. Die Modulo-Operation ist die Berech-
nung des Restes einer ganzzahligen Division. Man verwendet die Modulo-Operation z.B.
zum Bestimmen von Teilbarkeiten (s.a. → 10.6.x.4.4. Alternativen, Verzweigungen) oder in
der Kryptographie.
Elementare Funktionen sind z.B. sin(), cos() oder tan(). Die Wurzel-Funktion wird mit sqrt()
aufgerufen. Mit abs() erhält man den Absolut-Wert des Wertes in der Klammer. Die Werte in
der Klammer einer Funktion sind die Argumente. Sie werden zur Berechnung des Funkti-
onswertes benutzt. (Dazu gleich noch etwas mehr →). Dort stellen wir auch noch weitere
Funktionen vor.

10.6.x.4.3. Eingaben

Eingaben von Sensoren usw. besprechen wir erst später (→ 10.6.x.6. spezielle Programmie-
rung mit MicroPython), da diese vom verwendeten Microcontroller abhängig sind.

BK_SekI+II_Python_spez.docx - 72 - (c,p) 2015 - 2026 lsp: dre

10.6.x.4.4. Alternativen, Verzweigungen

10.6.x.4.5. Wiederholungen, Schleifen

10.6.x.4.6. eingebaute und mitgelieferte Funktionen

10.6.x.5. klassische Programmierung mit MicroPython

10.6.x.5.1. Listen und Listen-Verarbeitung

10.6.x.5.2. Wörterbücher, Dictonary's

10.6.x.5.3. Lesen und Schreiben von Dateien, Datei-Verarbeitung

BK_SekI+II_Python_spez.docx - 73 - (c,p) 2015 - 2026 lsp: dre

10.6.x.5.4.

10.6.x.6. spezielle Programmierung mit MicroPython

10.6.x.4. weitere spezielle Programm-Beispiele und -Schnipsel

Besonders wichtige Bibliotheken / Module sind machine und network. Sie stellen Objekte
und Funktionen / Methoden für die spezielle Hardware – den speziellen Microcontroller – zur
Verfügung.
Weiterhin werden oft Bibliotheken bzw. Module zu den benutzten Sensoren und Aktoren be-
nötigt. Diese ersparen uns viel Programmier-Aufwand.
Um den RAM-Verbrauch möglichst gering zu halten, sollte man es sich angewöhnen nur die
unbedingt notwendigen Bestandteile aus den Modulen zu laden.

klassisches Einstiges-Programm "Blink"
läßt die onboard-LED blinken

 from time import sleep

from machine import Pin

led=Pin(12,Pin.OUT)

while True:

 led.value(True)

 sleep(0.2)

 led.value(False)

 sleep(0.2)

einen Pin Pulsweiten-moduliert ansteuern
mögliche Werte von 0 bis 1023

klassische Anwendun-
gen für diese Ansteue-
rungs-Art sind zu "dim-
mende" LED's und Ser-
vo-Motoren

 from time import sleep

from machine import Pin

from machine import PWM

led=Pin(12,Pin.OUT)

puls = PWM(led)

while True:

BK_SekI+II_Python_spez.docx - 74 - (c,p) 2015 - 2026 lsp: dre

 puls.freq(200)

 sleep(1)

 puls.freq(500)

 sleep(2)

 puls.freq(1000)

 sleep(3)

einen Touch-Port abfragen
insgesamt 10 Touch-Eingabe möglich (0 .. 9)

 from machine import TouchPad

touchpin = Pin(2)

touchpad = TouchPad(touchpin)

while True:

 print("Touch-Wert = ",touchpad.read())

 sleep(1)

LED-Ring (NeoPixel) ansteuern

LED-Streifen oder –Ringe usw. gehören heute zu den peppigen Accessoire's
zumeist sind hier die LED's einzeln ansteuerbar, bei einfarbigen LED's funktionoiert dann
zumindestens das Ein- und Aus-Schalten
sind RGB-LED's verbaut, dann kann man eigentlich fast immer jede einzelne LED in einer
speziellen Farbe leuchten lassen
wichtig ist hier immer, dass nach dem Setzen / verändern von Werten, diese auf den NeoPi-
xel-Ring rausgeschrieben werden müssen

 import machine, neopixel

import time

import random

def test(np):

 n = mp.n

 b = 5 # Helligkeit

 sl = 10 # Kurzschlafzeit

 time.sleep_ms(1000)

 np.fill((0,0,0))

 time.sleep_ms(1000)

 for i in range(n):

 np[i] = (b,0,0)

 np.write()

 time.sleep_ms(sl)

 time.sleep_ms(1000)

 np.fill((0,0,0))

 time.sleep_ms(1000)

 for i in range(n):

 np[i] = (0,b,0)

 np.write()

 time.sleep_ms(sl)

BK_SekI+II_Python_spez.docx - 75 - (c,p) 2015 - 2026 lsp: dre

 time.sleep_ms(1000)

 np.fill((0,0,0))

 time.sleep_ms(1000)

 for i in range(n):

 np[i] = (0,0,b)

 np.write()

 time.sleep_ms(sl)

 time.sleep_ms(1000)

 np.fill((0,0,0))

 time.sleep_ms(1000)

 for i in range(n):

 np[i] = (b,b,b)

 np.write()

 time.sleep_ms(sl)

def demo1(np):

 n = np.n

def demo2(np):

 n = np.n

 # Kreis

 for i in range(4*n):

 for j in range(n):

 np[j]=(0,0,0)

 np[i%n]=(255,255,255)

 np.write()

 time.sleep_ms(25)

 # Band

 for i in in range(4*n):

 for j in range(n):

 np[j] = (0,0,128)

 if (i//n)%2 == 0:

 np[i%n] = (0,0,0)

 else:

 np[n-1-(i%n)] = (0,0,0)

 np.write()

 # Säubern

 for i in range(n):

 np[i] = (0,0,0)

 np.write()

def demo3(np):

 n = np.n

 b = 5 # Helligkeit

 sl = 1 # Kurzschlafzeit

 for i in range(10000):

 np.fill((0,0,0))

 i = random.randint(0,23)

 r = random.randint(0,100)

 b = random.randint(0,100)

 g = random.randint(0,100)

 np[i] = (r,g,b)

 np.write()

 time.sleep_ms(sl)

np = neopixel.NeoPixel(machine.Pin(15),24,timing=0)

test(np)

demo1(np)

BK_SekI+II_Python_spez.docx - 76 - (c,p) 2015 - 2026 lsp: dre

demo2(np)

demo3(np)

Q: /µP_Q1/ (leicht geändert: dre)

BK_SekI+II_Python_spez.docx - 77 - (c,p) 2015 - 2026 lsp: dre

kleine OLED-Display's sind bei einigen ESP-Bausteinen gleich mit aufgelötet. Sie ermöglich
die Anzeige einiger Text-Zeilen oder kleiner Grafiken
in den meisten Fällen sind die OLED's allerdings Monochrom, was aber für die einfachen
Möglichkeiten unserer Microcontroller schon super ausreicht.

ansprechen des OLED-Display's (wenn vorhanden)

screen.py

 from machine import I2C, Pin

import time

from ssd1306 import SSD1306_I2C

_i2c = I2C(sda=Pin(5), scl=Pin(4))

_display = SSD1306_I2C(128,64,_i2c)

def text(t):

 _display.fill(0) # OLED löschen

 lines = t.splitlines()

 y = 0

 for line in lines:

 _display.text(line,0,y)

 y += 10

 _display.show()

da OLED über den i2c-Bus an die Pin's 4 (Clock) und 5 (Data) angeschlossen ist, benötigt
man den obigen "Treiber" für eine Text-Ausgabe
Hinweise: 128,64 stehen für Breite und Höhe des Display's in Pixel; Display wird als ganzes
angesteuert, es erfolgt kein Scrollen

main.py

ein Sternchen im Ping-Pong-Modus über eine integrierte OLED-Anzeige wandern lassen

 from time import sleep

from screen import text

def pingpong(i):

 txt('\n\n' + ' ' * i + '*' + ' ' * (15 – i) + '\n\n\n')

 sleep(0.1)

while True:

 for i in range(0,15,1):

 pingpong(i)

 for in in range(15,0,-1):

 pingpong(i)

Q: /µP_Q1/

BK_SekI+II_Python_spez.docx - 78 - (c,p) 2015 - 2026 lsp: dre

Abfrage eines Licht-Sensors

 from machine import Pin, I2C

from bh1750 import BH1750

from screen import text

from time import slep

i2c=I2C(scl=Pin(14), sda=Pin(13))

sensor BH1750(i2c)

while True:

 lum = sensor.liminance(BH1750.ONCE_HIRES_1)

 print("Lumineszenz =", lum)

 balken = "#" * int(lum/100)

 text("Lumineszenz-Sensor:\n\n%s\n % balken)

 sleep(0.5)

Q: /µP_Q1/ (leicht geändert: dre)

das Programm zeigt den aktuellen Meßwert auf dem seriellen Monitor an. Das OLED-Display
wird zusätzlich zur Visualisierung der Lichtstärke aus Balken-Diagramm verwendet.

Wenn der ESP eins kann, dann ist das WLAN. Bei vielen Bausteinen ist gleich von der Her-
stellung schon ein kleines WLAN-Scan-Programm aufgespielt. Häufig werden die verschie-
denen einfachen WLAN-Scanner auch als "Hallo Welt"-Programm der ESP-Welt verstanden.

WLAN-Scan

 from network import WLAN, STA_IF

from time import sleep

wlan = WLAN(STA_IF)

wlan.active(True)

while True:

 nets = wlan.scan()

 print("Scan-Ergebnis: ================")

 for net in sorted(nets):

 print(net)

 print()

 sleep(2)

Q: /µP_Q1/ (leicht geändert: dre)

STA_IF … steht für den Stations-Modus des WLAN (praktisch als Client eingerichtet)

funktionierende Funktion zum Verbinden des ESP mit einem AccessPoint
ESP fungiert als einfache WLAN-Station

 def verbinden():

 import network

 ssid = "????"

 passwort = "????"

BK_SekI+II_Python_spez.docx - 79 - (c,p) 2015 - 2026 lsp: dre

 meinwlan = networ.WLAN(network.STA_IF)

 meinwlan.active(True)

 if not meinwlan.isconnected():

 print("Verbindung zum WLAN herstellen …")

 meinwlan.conncet(ssid,passwort)

 while not meinwlan.connected():

 pass

 print("aktuelle Netzwerk-Konfiguration:",meinwlan.ifconfig())

als Funktion mit Argumenten könnte ver-
binden() auch so aussehen

 def verbinden(ssid,passwort):

 import network

 meinwlan = …

Empfang und Zurücksenden von UDP-Nachrichten / -Paketen (Echo-Funktion)

 #include <ESP8266WiFi.h>

#include <WiFiUDP.h>

// The ESP-12 has a blue LED on GPIO2

#define LED 2

// Name and password of the access point

#define SSID "Pussycat"

#define PASSWORD "supersecret"

// The server accepts connections on this port

#define PORT 5444

WiFiUDP udpServer;

// Buffer for incoming UDP messages

char udp_buffer[WIFICLIENT_MAX_PACKET_SIZE+1];

/** Receive UDP messages and send an echo back */

void process_incoming_udp()

{

 if (udpServer.parsePacket())

 {

 // Fetch received message

 int len=udpServer.read(udp_buffer,sizeof(udp_buffer)-1);

 udp_buffer[len] = 0;

 // Display the message

 Serial.print(F("Received from "));

 Serial.print(udpServer.remoteIP());

 Serial.print(":");

 Serial.print(udpServer.remotePort());

 Serial.print(": ");

 Serial.println(udp_buffer);

 // Send echo back

 udpServer.beginPacket(udpServer.remoteIP(), udpSer-

ver.remotePort());

 udpServer.print(F("Echo: "));

BK_SekI+II_Python_spez.docx - 80 - (c,p) 2015 - 2026 lsp: dre

 udpServer.print(udp_buffer);

 udpServer.endPacket();

 // Execute some commands

 if (strstr(udp_buffer, "on"))

 {

 digitalWrite(LED, LOW);

 udpServer.println(F("LED is on"));

 }

 else if (strstr(udp_buffer, "off"))

 {

 digitalWrite(LED, HIGH);

 udpServer.println(F("LED is off"));

 }

 }

}

/** Optional: Notify about AP connection status changes */

void check_ap_connection()

{

 static wl_status_t preStatus = WL_DISCONNECTED;

 wl_status_t newStatus = WiFi.status();

 if (newStatus != preStatus)

 {

 if (newStatus == WL_CONNECTED)

 {

 digitalWrite(LED, LOW);

 // Display the own IP address and port

 Serial.print(F("AP connection established, listening on

"));

 Serial.print(WiFi.localIP());

 Serial.print(":");

 Serial.println(PORT);

 }

 else

 {

 digitalWrite(LED, HIGH);

 Serial.println(F("AP conection lost"));

 }

 preStatus = newStatus;

 }

}

/** Runs once at startup */

void setup()

{

 // LED off

 pinMode(LED, OUTPUT);

 digitalWrite(LED, HIGH);

 // Initialize the serial port

 Serial.begin(115200);

 // Give the serial monitor of the Arduino IDE time to start

 delay(500);

 // Use an external AP

 WiFi.mode(WIFI_STA);

 WiFi.begin(SSID, PASSWORD);

BK_SekI+II_Python_spez.docx - 81 - (c,p) 2015 - 2026 lsp: dre

 // Start the UDP server

 udpServer.begin(PORT);

}

/** Main loop, executed repeatedly */

void loop()

{

 process_incoming_udp();

 check_ap_connection();

}

Q: http://stefanfrings.de/esp8266/

TCP-Server

 #include <ESP8266WiFi.h>

// The ESP-12 has a blue LED on GPIO2

#define LED 2

// Name and password of the access point

#define SSID "Pussycat"

#define PASSWORD "supersecret"

// The server accepts connections on this port

#define PORT 5333

WiFiServer tcpServer(PORT);

// Objects for connections

#define MAX_TCP_CONNECTIONS 5

WiFiClient clients[MAX_TCP_CONNECTIONS];

// Buffer for incoming text

char tcp_buffer[MAX_TCP_CONNECTIONS][30];

/**

 * Collect lines of text.

 * Call this function repeatedly until it returns true, which indi-

cates

 * that you have now a line of text in the buffer. If the line does

not fit

 * (buffer to small), it will be truncated.

 *

 * @param source The source stream.

 * @param buffer Target buffer, must contain '\0' initiallly before

calling this function.

 * @param bufSize Size of the target buffer.

 * @param terminator The last character that shall be read, usually

'\n'.

 * @return True if the terminating character was received.

 */

bool append_until(Stream& source, char* buffer, int bufSize, char

terminator)

{

 int data=source.read();

 if (data>=0)

 {

BK_SekI+II_Python_spez.docx - 82 - (c,p) 2015 - 2026 lsp: dre

 int len=static_cast<int>(strlen(buffer));

 do

 {

 if (len<bufSize-1)

 {

 buffer[len++]=static_cast<char>(data);

 }

 if (data==terminator)

 {

 buffer[len]='\0';

 return true;

 }

 data=source.read();

 }

 while (data>=0);

 buffer[len]='\0';

 }

 return false;

}

/** Optional: Notify about AP connection status changes */

void check_ap_connection()

{

 static wl_status_t preStatus = WL_DISCONNECTED;

 wl_status_t newStatus = WiFi.status();

 if (newStatus != preStatus)

 {

 if (newStatus == WL_CONNECTED)

 {

 digitalWrite(LED, LOW);

 // Display the own IP address and port

 Serial.print(F("AP connection established, listening on

"));

 Serial.print(WiFi.localIP());

 Serial.print(":");

 Serial.println(PORT);

 }

 else

 {

 digitalWrite(LED, HIGH);

 Serial.println(F("AP conection lost"));

 }

 preStatus = newStatus;

 }

}

/**

 * Put new connections into the array and

 * send a welcome message.

 */

void handle_new_connections()

{

 WiFiClient client = tcpServer.available();

 if (client)

 {

 Serial.print(F("New connection from "));

 Serial.println(client.remoteIP().toString());

 // Find a freee space in the array

 for (int i = 0; i < MAX_TCP_CONNECTIONS; i++)

BK_SekI+II_Python_spez.docx - 83 - (c,p) 2015 - 2026 lsp: dre

 {

 if (!clients[i].connected())

 {

 // Found free space

 clients[i] = client;

 tcp_buffer[i][0]='\0';

 Serial.print(F("Kanal="));

 Serial.println(i);

 // Send a welcome message

 client.println(F("Hello World!"));

 return;

 }

 }

 Serial.println(F("To many connections"));

 client.stop();

 }

}

/** Receive TCP messages and send echo back */

void process_incoming_tcp()

{

 static int i=0;

 // Only one connection is checked in each call

 if (clients[i].available())

 {

 // Collect characters until line break

 if (ap-

pend_until(clients[i],tcp_buffer[i],sizeof(tcp_buffer[i]),'\n'))

 {

 // Display the received line

 Serial.print(F("Empfangen von "));

 Serial.print(i);

 Serial.print(": ");

 Serial.print(tcp_buffer[i]);

 // Send an echo back

 clients[i].print(F("Echo: "));

 clients[i].print(tcp_buffer[i]);

 // Execute some commands

 if (strstr(tcp_buffer[i], "on"))

 {

 digitalWrite(LED, LOW);

 clients[i].println(F("LED is on"));

 }

 else if (strstr(tcp_buffer[i], "on"))

 {

 digitalWrite(LED, HIGH);

 clients[i].println(F("LED is off"));

 }

 // Prepare the buffer to receive the next line

 tcp_buffer[i][0]='\0';

 }

 }

 // Switch to the next connection for the next call

 if (++i >= MAX_TCP_CONNECTIONS)

 {

 i=0;

 }

BK_SekI+II_Python_spez.docx - 84 - (c,p) 2015 - 2026 lsp: dre

}

/** Executes once during start*/

void setup()

{

 // LED off

 pinMode(LED, OUTPUT);

 digitalWrite(LED, HIGH);

 // Initialize the serial port

 Serial.begin(115200);

 // Give the serial monitor of the Arduino IDE time to start

 delay(500);

 // Use an external AP

 WiFi.mode(WIFI_STA);

 WiFi.begin(SSID, PASSWORD);

 // Start the TCP server

 tcpServer.begin();

}

/** Main loop, executed repeatedly */

void loop()

{

 handle_new_connections();

 process_incoming_tcp();

 check_ap_connection();

}

Q: http://stefanfrings.de/esp8266/

Links:
http://docs/mircopython.org/en/latest/esp8266/ (Dokumentation in Entwicklung, muss für ESP-32

interpretiert werden)
https://randomnerdtutorials.com/getting-started-micropython-esp32-esp8266/ (online Arbeitsanleitung)

http://docs/mircopython.org/en/latest/esp8266/
https://randomnerdtutorials.com/getting-started-micropython-esp32-esp8266/

BK_SekI+II_Python_spez.docx - 85 - (c,p) 2015 - 2026 lsp: dre

10.6.x.5. spezielle Module für ESP-32-Microcontroller
Info- und Quellcode-Q: docs.micropython.org/en/latest/library/index.html (Quellcode's leicht geändert)

Einige der Module sind auch für andere Microcontroller verfügbar. Meist sind diese Board-
spezifisch, d.h. sie müssen auf der micropython-Website als Download-Paket genauestens
ausgewählt werden.
In der jeweiligen Nutzung kann zu veränderten Notierungen und Varianten – im Vergleich zu
den folgenden Darstellungen – kommen.

10.6.x.5.1. Modul "machine"

import machine

machine.freq()
liefert die aktuelle Prozessor-Frequenz zurück (in Hz)

machine.freq(240000000)
setzt die Prozessor-Frequenz auf 240 MHz

Deep-sleep-Modus ()

machine.deepsleep(100000))
Versetzt den Microcontroller für 100 s in den Tiefschlaf-Modus (Stromspar-Modus)
ohne Parameter wird der Microcontroller dauerhaft in den Tiefschlaf-Modus versetzt
ein weiteres Stromsparen ist durch Setzen / Einschalten von internen Pull-up-Widerständen
möglich
p1 = Pin(4, Pin.IN, Pin.PULL_HOLD)

if machine.reset_cause() == machine.DEEPSLEEP_RESET:
 print("Microcontroler ist aufgeweckt!")

RTC (realtime clock)

from machine import RTC

rtc = RTC()
rtc.datetime((Jahr, Monat, Tag, Stunde, Minuten, Sekunden, MilliSekunden))
über die Abfrage eines NTC-Servers ist eine recht genaue Zeitsynchronisierung möglich

rtc.datetime()
gibt das aktuelle Datum und die Zeit zurück

BK_SekI+II_Python_spez.docx - 86 - (c,p) 2015 - 2026 lsp: dre

Zähler / Timer

from machine import Timer

Zaehler = Timer(-1)
Zaehler.init(period=1000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
Zähl-Einheit sind MilliSekunden

Zaehler.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))

Pin's / GPIO

from machine import Pin

verfügbar sind die Pin's 0 .. 19, 21 .. 23, 25 .. 27 und 32 .. 39
abhängig von den Pin's, die auf dem Board nach außen geführt wurden (je nach Hersteller
und Board-Art unterschiedlich)
weiterhin gilt:

• Pin 1 ist für TX und Pin 3 für RX der seriellen Verbindung über UART in Gebrauch

• die Pin's 6 .. 8, 11, 16 und 17 sind für die Verbindung mit dem eingebauten Flash-
Speicher in Gebrauch und können nicht anderweitig verwendet werden

• Pin's 34 .. 39 sind nur als Input-Pin's nutzbar (und haben auch keinen internen Pull-
up-Widerstand)

• der Pull-Wert kann mittels Pin.PULL_HOLD auf einen anderen Wert gesetzt werden,
z.B., um sie Strom-sparend im DeepSleep-Modus zu nutzen

meinpin = Pin(4, Pin.OUT)
setzt Pin 4 bei der Initialisierung als Ausgabe-Port

meinpin = Pin(5, Pin.OUT, value=1)
setzt Pin 3 bei der Initialisierung als Ausgabe-Port sofort auf HIGH

meinpin.on()
schaltet den Pin auf HIGH

meinpin.value(0 | 1)
schaltet den Pin auf LOW bzw. HIGH

meinpin.off()
schaltet den Pin auf LOW

meinpin = Pin(6, Pin.IN)

meinpin.value()
gibt 0 oder 1 (für LOW bzw HIGH) zurück

meinpin = Pin(7, Pin.IN, Pin.PULL_UP)

BK_SekI+II_Python_spez.docx - 87 - (c,p) 2015 - 2026 lsp: dre

aktiviert den internen Pull-up-Widerstand

meinpin = Pin(8, Pin.OUT, value=1)

PWM (pulse width modulation)

from machine import Pin, PWM

pulsweitmod = PWM(Pin(0))

pulsweitmod.freq()

pulsweitmod.freq(500)

pulsweitmod.duty()

pulsweitmod.duty(100)

pulsweitmod.deinit()

pulsweitmod2 = PWM(Pin(9), freq=10000, duty=1000)
Pulsweiten-Ausgabe in einer Funktion initialisieren

es sind Frequenzen von 1 Hz bis 40 MHz möglich

ADC (analog to digital conversion)

from machine import ADC

analdigwand = ADC(Pin(32))
Eingangs-Spannungs-Pegel: 0 .. 1,0 V; Auflösung auf 12 bit → Ergebniswerte: 0 .. 4'095

analdigwand.read()

analdigwand.atten(ADC.ATTN_11DB)
Einschalten einer Dämpfung → Eingangs-Spannungs-Pegel: 0 .. 3,6 V
weitere zugelassene Dämpfungswerte: ATTN_0DB (bis 1,0 V), ATTN_2_5_DB (bis 1,34 V),
ATTN_6DB (bis 2,0 V)

analdigwand.width(ADC.WIDTH_9BIT))
Ändern der Auflösung auf 9 bit → Ergebniswerte: 0 .. 511

BK_SekI+II_Python_spez.docx - 88 - (c,p) 2015 - 2026 lsp: dre

weitere Auflösungen: WIDTH_10BIT (0 .. 1023), WIDTH_11BIT (0 .. 2047), WIDTH_12BIT (0
.. 4095)

Eingangs-Spannungen über 3,6 V können den Microcontroller zerstören!

SPI-Bus (serial peripheral interface)

Bus-System von Motorola
synchron, seriell, Master-Slave-System

from machine import Pin, SPI

spi=SPI(baudrate=100000, polarity=1, phase=0, sck= Pin(0), mosi=Pin(2), miso=Pin(4))
Initialisierung des SPI-Busses mit einen Signal-Übertragungs-Rate von 100'000 Bd
sck .. serial clock (Bus-Takt)
MOSI (seltener auch SIMO oder SDO (serial data out)) .. Master Output + Slave Input
MISO (seltener auch SOMI oder SDI (serial data input)) .. Master Input + Slave Output
SDO und SDI werden i.A. aus der Sicht des Device's benannt, d.h. die Leitungen müssen
sich kreuzen
die Polarität und die Phase können die Werte 0 oder 1 annehmen und steuern Datenabnah-
me; Phase bestimmt welcher Flankenwechsel ausgewertet wird; die Polarität, ob die stei-
gende (0) oder fallende Flanke (1) das Signal ist

spi.init(baudrate=200000)

spi.read(AnzahlBytes)

spi.read(AnzahlBytes, Adresse)
Adresse (von MOSI) z.B. 0xff

puffer = bytearray(100)
spi.readinto(puffer)

spi.readinto(puffer, Adresse)

spi.wirte(b'abcdef')
Schreiben von 6 Bytes an MOSI

puffer = bytearray(5)
spi.write_readinto(b'12345', puffer)
Schreiben der Bytes an MOSI und Lesen von MISO in den Puffer

spi.write_readinto(puffer, puffer)
Schreiben des Puffers an MOSI und Lesen von MISO in den Puffer

SPI-Hardware-Bus
beim ESP-32 sind zwei Hardware-Kanäle steuerbar
Pin's sind festgelegt

BK_SekI+II_Python_spez.docx - 89 - (c,p) 2015 - 2026 lsp: dre

HSPI (id=1) → sck = 14, mosi = 13, miso = 12
HSPI (id=2) → sck = 18, mosi = 23, miso = 19

from machine import Pin, SPI

hspi =SPI(1, 100000, sck= Pin(14), mosi=Pin(13), miso=Pin(12))
vspi = SPI(2, baudrate = 100000, polarity=0, phase=0, bits=8, firstbit=0, sck=Pin(18),

mosi=Pin(23), miso=Pin(19))

I2C-Bus

eigentlich I2C für inter-integrated circuit
serieller Daten-Bus von Philips
technisch identisch mit Two-Wire-Interface (von Amtel)
beides sind Zwei-Draht-Schnittstellen
praktisch 3 Leistungen: Betriebs-Spannung VDD sowie zwei – über Pull-up-Widerständen
angeschlossene Arbeits-Leitungen (Takt (SDL) und Daten (SDA))
gearbeitet wird mit positiver Logik (LOW = 0 (max. 0,3 VDD) und HIGH = 1 (min. 0,7 VDD)
bei Daten-Übertragungen ist das 1. Byte die Slave-Adresse (die 7 niedrigen Bits bilden die
eigentliche Adresse, das 8. Bit bestimmt, ob Slave Daten empfangen (0 / LOW) bzw. senden
(1 / HIGH) soll
bestimmte Adressen sind für Sonderzwecke reserviert (insgesamt 112 Slave's ansprechbar)

from machine import Pin, I2C

i2c = I2C(scl = Pin(5), sla = Pin(4), freq = 100000)
i2c.readfrom(Adresse, AnzahlBytes)
Adresse z.B. 0x3a

i2c.writeto(Adresse, Wert)

puffer = bytearray(10)
i2c.writeto(Adresse, puffer)

OneWire-Treiber ()

from machine import Pin
import onewire

eindraht = onewire.OneWire(Pin(12))
aktiviert eine OneWire-Bus an der GPIO12

eindraht.scan()
Gibt eine Liste der gescannten Device's zurück

eindraht.reset()
Setzt den Bus zurück

eindraht.readbyte()
Ließt ein Byte vom Bus

BK_SekI+II_Python_spez.docx - 90 - (c,p) 2015 - 2026 lsp: dre

eindraht.writebyte(Adresse)
Adresse könnte z.B. 0x12 sein

eindraht.write(Wert)
Wert wird als Bytes verstanden

eindraht.select_rom(b'12345678')

speziell für Temperatur-Sensoren DS18S20 und DS18B20
import time, ds18x20
ds = ds18x20.DS18x20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(1000)
für rom in roms:
 print("gemessene Temperatur: ",ds.read_temp(rom))

LED-Leisten bzw. -Ringe (NeoPixel)

from machine import Pin
from neopixel import NeoPixel

pin = Pin(0, Pin.OUT)
neopix = NeoPixel(pin, AnzahlLEDs))
erstellt eine NeoPixel-LED-Reihe an der GPIO0

neopix[0] = (255,255,255)
neopix.write()
Setzt die erste LED auf weiß
die wirkliche Anzeige / Ausgabe erfolgt erst mit .write()

r,g,b = neopix[0]
liefert die Farbwerte der ersten LED zurück

für ESP ist eine weitere Low-Level-Ansteuerung möglich:
import esp
esp.neopixel_write(pin, rgb_buf, is800khz)
800 kHz ist die Default-Einstellung, praktisch sind auch 400 kHz möglich (timing=0)

Touch-Eingabe (capacitive touch)

from machine import TouchPad, Pin

touch = TouchPad(Pin(14))
Aktivieren des Touch-Modus für GPIO14 (Touch6)

touch.read()

BK_SekI+II_Python_spez.docx - 91 - (c,p) 2015 - 2026 lsp: dre

Auslesen des Touch-Pin's (gelesener Wert wird bei Berührung (deutlich) kleiner)

Benutzen der Touch-Eingänge für das Aufwecken aus dem Tiefschlaf-Modus
import machine
from machine import TouchPad, Pin
import esp32

touch = TouchPad(Pin(14)
touch.config(500)
esp32.wake_on_touch(True)
machine.lightsleep()
ESP wird in den Tiefschlaf-Modus versetzt, solange der Touch-Sensor an GPIO14 (Touch6)
gedrückt ist

DHT (Umweltsensoren, Temperatur-Luftfeuchte-Sensor)

häufig genutzter Kombinations-Sensor DHT11 für Luftfeuchtigkeit (Humidity) und Temperatur
Sensor arbeit an allen Pin's

import dht
import machine

humtemp = dht.DHT11(machine.Pin(4))
Aktivieren des Sensors für GPIO4

humtemp.measure()
eine Messung abfragen

humtemp.temperature()
Gibt Temperatur in °C zurück

humtemp.humidity()
Gibt die relative Luftfeuchtigkeit in Prozent zurück

10.6.x.5.2. Modul "esp"

import esp

esp.osdebug(None)
Ausschalten der Debugging-Mitteilungen

esp.osdebug(0)
Umleiten der Debugging-Mitteilungen auf UART(0)

esp.flash_size()

BK_SekI+II_Python_spez.docx - 92 - (c,p) 2015 - 2026 lsp: dre

esp.flash_user_start()

esp.flash_erase(SektorNummer)

esp.flash_write(ByteOffset, Puffer)

esp.flash_read(ByteOffset, Puffer)

10.6.x.5.3. Modul "esp32"

import esp32

esp32.hall_sensor()
Auslesen des (internen) Hall-Sensors

esp32.raw_temperature()
Auslesen des (CPU-internen) Temperatur-Sensors (Angabe in °F)

esp32.ULP()
Zugriff auf den ULP-Coprozessor (ultra low power; Stromspar-Coprozessor)

10.6.x.5.4. Modul "network"

import network

MeinWLAN = network.WLAN(network.STA_IF)
konfigurieren des (eigenen) WLAN-Moduls im Stations-Modus

MeinWLAN.active(True | False)
Ein- bzw. Aus-Schalten des WLAN-Moduls

MeinWLAN.scan()
Scannen des WLAN's nach AccessPoint's

MeinWLAN.isconnected()
Prüfen, ob Station mit dem AccessPoint verbunden ist

MeinWLAN.connect(SSID, Passwort)
Verbindung zum AccessPoint herstellen

BK_SekI+II_Python_spez.docx - 93 - (c,p) 2015 - 2026 lsp: dre

MeinWLAN.config('mac')
gibt die MAC-Adresse zurück

MeinWLAN.ifconfig()
gibt die IP-Adresse, die Netzwerk-Maske, den Gateway und die DNS-Adresse zurück

MeinAccessPoint = network.WLAN(network.AP_IF)
konfigurieren des (eigenen) WLAN-Moduls als AccessPoint

MeinAccessPoint.config(essid=WLANName)
Festlegen des Namens für das WLAN

MeinAccessPoint. active(True | False)
Ein- bzw. Aus-Schalten des WLAN-Moduls

10.6.x.5.5. Modul "time"

import time

time.sleep(Sekunden)

time.sleep_ms(MilliSekunden)

time.sleep_us(MikroSekunden)

StartZeit = time.ticks_ms()
Laufzeit = time.ticks_diff(time.ticks_ms(), StartZeit)
Laufzeit ermitteln

time.sleep(Sekunden)

BK_SekI+II_Python_spez.docx - 94 - (c,p) 2015 - 2026 lsp: dre

10.6.x.y. Sprach-Elemente vom MicroPython (Kurz-Übersicht / Spicker)

(formatierte) Ausgabe:

ausgabe:=wert | berechnung | “Text“ | ’Text’
print()

print(ausgabe)

Verzweigung:

if bedingung: # Einleitung und Test/Bedingung

 befehle # Then-/Dann-/Wahr-Zweig (eingerückt!!! mehrzeilig

möglich)

{elif bedingung: # zusätzliche(r) untergeordnete(r) Test/Bedingung

befehle} # untergeord. Then-/Dann-/Wahr-Zweig
[else: # optionaler Else-/Sonst-/Falsch/Rest-Zweig

Befehle]

Schleifen:

while bedingung: # while True: # Endlosschleife

 # (meist break notwendig)

 befehle
 {continue} # Sprung zum nächsten Schleifendurchlauf /-anfang

 {befehle
 break} # Sprung hinter Schleife (noch hinter ELSE)

{else:

befehle}

for laufvariable in liste | tupel: # _ als laufvariable, wenn kein Gebrauch in

 befehle Schleife geplant

 [verzweigung : break] # vorzeitiger Abbruch der Schleife

for laufvariable in range([untere_grenze,]obere_grenze[, schrittweite]):

 befehle

erweiterter Spicker für das "normale" Python (→ Python-Spicker)

BK_SekI+II_Python_spez.docx - 95 - (c,p) 2015 - 2026 lsp: dre

10.7. Python auf und mit Taschenrechnern / spezieller

Hardware

Zuersteinmal scheint der Einsatz einer Programmiersprache auf einem Taschenrechner nicht
wirklich sinnvoll. Das Display ist sehr klein, die Tastatur sehr gewöhnungsbedürftig und die
Leistungsfähigkeit ist auch beschränkt. Aber trotzdem gibt es Einsatz-Szenarien, die für ei-
nen programmierbaren Taschenrechner sprechen. Möglich Szenarien sind z.B.:

• Lösung komplexerer (sich mehr fach wiederholender) Aufgaben

• Darstellung mathematischer Funktionen und Zusammenhänge auf einem Gerät im
Taschen-Format

• Erfassung und Auswertung von Mess-Werten

•

Die meisten programmierbaren Taschenrechner brachten lange Jahre eine BASIC-Variante
mit. BASIC erfüllt aber nicht die Anforderungen an eine moderne strukturierte Programmier-
sprache. Python dagegen ist hier bestens geeignet. Erfahrungen, die man beim Programmie-
ren auf dem Taschenrechner macht, kann man leicht auf die Programmierung größerer
Computer usw. übertragen.

10.7.x. Casio-Rechner

FX-CG50

MicroPython 1.9.4, basiert auf Python ?.?.0
verfügbar auf Rechnern mit einer Betriebssystem-Version ab 03.40.0202

Auch in Bezug auf das offizielle MicroPython ist Python auf den Casio-Rechnern nochmals
eingeschränkt. Für normale Programmier-Übungen und einer effektive(re)n Nutzung des
Taschenrechner's spielt das aber kaum eine Rolle. Echte Programmierung sollte dann schon
auf einem ordentlichen PC od.ä. erfolgen.

Eingabe-Möglichkeiten

• Text-Eingabe nach Einstellen von ALPHA am Rechner

• Listen-basiert nach Drücken von [F4] (CHAR) kann aus einer Liste der
verfügbaren Zeichen und Symbole mit [F3] (SYMBOL)
ausgewählt werden

• Katalog-orientiert Auswahl der Python-Befehle aus einem Katalog mittels
[F6] (SHIFT 4 CAT)

Syntax-Highlightning für die verschiedenen Element-Gruppen (Kommentare, Python-Befehle,
Texte, Zahlen, …)

BK_SekI+II_Python_spez.docx - 96 - (c,p) 2015 - 2026 lsp: dre

Abspeichern mit FILE [F1] SAVE

Starten mit [F2] (RUN)
es wird dann automatisch in die Shell gewechselt und die Kommunikation erfolgt an dieser
Stelle

Beispiel1:
Berechnung des n-ten Gliedes der FIBONACCHI-Folge nach der Näherungs-Formel von
MOIVRE-BINET:

 𝑎𝑛 =
1

√5
 ∙ ((

1+√5

2
)

𝑛

− (
1−√5

2
)

𝑛

)

1

2

3

4

5

n=int(inpit("n="))

z=1/5**0.5*(((1\

 +5**0.5)/2)**n-\

 ((1-5**0.5)/2)**n)

print('%d'%(z))

Q: LUDWICKI, Wolfgang: Programmieren mit Python mit dem dem FX-CG50.-IN: CASIO forum 2/2020, S. 9

der gespiegelte Schrägstrich ("\"; Backslash) kennzeichnet nur den Umbruch der Eingabezei-
le. In anderen Systemen kann der Text ohne diese Zeichen hintereinanderweg eingegeben
werden.

Beispiel2:
interatives Berechnen des n-ten Gliedes

1

2

3

4

5

n=int(inpit("n="))

def fibi(n):

 a,b=1,1

 for i in range(n-2):

 a,b=b,a+b

 return b

print('%d'%(fibi(n)))

Q: LUDWICKI, Wolfgang: Programmieren mit Python mit dem dem FX-CG50.-IN: CASIO forum 2/2020, S. 9

Beispiel3:
rekursives Berechnen des n-ten Gliedes

1

2

3

4

5

n=int(inpit("n="))

def fibr(n):

 if n==1 or n==2:

 return 1

 else:

 return fibr(n-2)\

 +fibr(n-1)

print('%d'%(fibr(n)))

Q: LUDWICKI, Wolfgang: Programmieren mit Python mit dem dem FX-CG50.-IN: CASIO forum 2/2020, S. 9

es stehen auch erweiternde Bibliotheken in der Material-Datenbank bereit (→ www.casio-
schulrechner.de)
z.B. turtle.py und matplotl.py

http://www.casio-schulrechner.de/
http://www.casio-schulrechner.de/

BK_SekI+II_Python_spez.docx - 97 - (c,p) 2015 - 2026 lsp: dre

10.7.x. Texas Instruments-Rechner

verfügbar z.B. auf:

• TI84 Plus CE-T Python Edition

• TI-Nspire CX II-T CAS

Eingabe-Möglichkeiten

•

•

•

TI-Nspire CXII-T CAS

MicroPython 1.11.0, basiert auf Python 3.4.0

Objekt-Orientierung

bei der Eingabe werden Operanden rot angezeigt
syntaktische Schlüsselwörter werden blau angezeigt

Kombination der Eingabe von Tastatur, aus dem Nspire-Menü ("Werkzeug"-
Schaltfläche/Menü) und von der Taschenrechner-Simulation in N-spire möglich

Module:
math
time
random
ti_plotlib
ti_hub
ti_rover
ti-draw
cx_turtle2
cmath

starten eines Programm's mit [crtl] [R]

Schleifen mit Abbruch durch die ESC-Taste

BK_SekI+II_Python_spez.docx - 98 - (c,p) 2015 - 2026 lsp: dre

while get_key!="esc":

lassen sich immer über die erste Zeile im Menü-System in der Nspire-Software beim Hinzu-
fügen von Funktion einbauen

Löschen des aktuellen Anzeige-Fensters über "Extra's"

sorted(Liste)

localtime()
liefert Datum, Zeit, Wochentag, Tag im Jahr, Sommerzeit

Formeln programmieren

Im Hauptmenü "A" auswählen
Shell zum einfachen Arbeiten und Ablaufen lassen der Programme
Taschenrechner-Funktionen (für TR natürlich nicht wirklich sinnvoll)

Menü-System für alle Funktionen
niemand muss Befehle lernen, nur noch raussuchen
ev. die Menü-Punkte durchgehen

Shell

Alt-Ctrl-

while get_key()!="esc":
gut als umgebende Schleife für komplexe Programme, um eine Abbruch-Möglichkeit zu ha-
ben

store_list(speichername,datenliste)

in der Tabellenkalkulation nutzbar
im Spalten-Kopf kann dann die Verknüpfung mit dem speichername herstellen
dann stehen die Daten in der Tabellenkalkulation bereit

BK_SekI+II_Python_spez.docx - 99 - (c,p) 2015 - 2026 lsp: dre

bei Neu-Erstellen von Dateienen gibt es Vorlagen mit vordefinierten Bibliotheken

import ti_rover as rv

rv.motors("ccw",255,"cw",150)
sleep(2)
rv.stop()

cw … mit Uhrzeitsinn
ccw … entgegen Uhrzeigersinn

Motoren funktionieren entgegengesetzt!
Rover-Zentrum ist der Stifthalter
für Motor-Befehle wird normale Programm-Abarbeitung NICHT unterbrochen
für Manöver müssen die Manöverzeiten als Schlafzeit für Hauptprogramm eingeplant werden
mit geladenem Stift wird die programmierte Figur aufgeezichnet

Nutzung des TI-Innovator

Steuern des TI-Rover

TI-84 Plus

Version "CE-T Python Edition"
ist graphischer Taschenrechner (GTR)

BK_SekI+II_Python_spez.docx - 100 - (c,p) 2015 - 2026 lsp: dre

Nutzung des mirco::bit

spezielle Bibliothek zur Nutzung der micro-bit-Ressourcen

mittlerweile gibt es diverse Python-Editoren / -Systeme für den micro::bit
da macht die Programmierung mit dem Taschenrechner als Editor nicht so viel Sinn, es sei
denn, mann will Daten austauschen oder spezielle Funktionen des Taschenrechner's aus-
nutzen
ein anderes Szenario ist die Verwendung von micro::bit's, ohne dass PC's oder ähnliches zu
Verfügung stehen
praktisch ein Minimal-System (vorausgesetzt entsprechende Taschenrechner stehen stan-
dardmäßig zur Verfügung)

Programm-Übertragung mittels mini-zu-micro-USB-Kabel (mini-A auf mirco-B)

sehr viele Funktionen (in kleinen Extra-Modulen)

micro-bit muss vor dem ersten Benutzen mit den ti-Taschenrechnern geflasht (ti-runtime)
werden
dazu einfach die ti-runtime auf den micro:bit (als Laufwerk im Explorer abgezeigt) ziehen

notwendige Dateien unter:
https://education.ti.com/de/alles-fuer-die-schule/microbit

from microbit import *

Vorbereitung des Taschenrechner's

mit Hilfe der "TI Connect"-Software muss zuerst die MICROBIT.8xv-Datei auf dem TI-84 Plus
geladen werden

Für einzelne zusätzli-
che Hardware-
Komponenten müssen
noch weitere Module
geladen werden. Sie
enthalten jeweils die
Ansteuerung für die
Zusatz-Geräte.

 Zusatz-Hardware TI-Modul Bemerkungen

 interne Sensoren MB_SENSR.8xv

 interne 5x5-LED-Matrix MB_DISP.8xv

 interne Button A+ B MB_BUTNS.8xv

 interner Funk MB_RADIO.8xv

 interne Pin's MB_PINS.8xv

 Grove-Sensoren MB_GROVE.8xv

 Neopixel MB_NEOPX.8xv

 Sound MB_MUSIC.8xv

Als nächstes muss der micro::bit mit einer neuen Software ausgestattet werden. Die Datei
heißt ti_ce_runtime.hex und wird nach dem Download direkt auf das – vom micro::bit erzeug-
te – Laufwerk kopiert

https://education.ti.com/de/alles-fuer-die-schule/microbit

BK_SekI+II_Python_spez.docx - 101 - (c,p) 2015 - 2026 lsp: dre

Nach der Installation der neuen Firmware (für Python) ist der micro::bit auf diese Aufgabe
eingeschränkt. Soll wieder die "normale" Firmware verwendet werden, dann muss diese auf
den micro::bit übertragen werden (wie oben die ti_ce_runtime.hex). Die notwendige hex-
Datei wird von microbit.org/code/ bereitgestellt.

Nun kann der micro::bit mit einem Mini-zu-Micro-USB-Kabel verbunden werden.
Mit Hilfe der Datei NPTEST.8xv kann und sollte nun ein Test der Funktionsfähigkeit erfolgen.

Links:
https://education.ti.com/de/alles-fuer-die-schule/microbit
https://python.microbit.org/v/2.0 (online-Python-Editor)
https://python.microbit.org/v/2 (online-Python-Editor (neueste Version))
https://archive.microbit.org/de/ (weitere Materialien)

Downloads:

https://ti-unterrichtsmaterialien.net/materialien?country=1&langauge=2&q=micro%3Abit (→ MICRO-

BIT.8xv; MB_SENSR.8xv; …)
https://ti-unterrichtsmaterialien.net/fileadmin/DE-Materialien/Materialien/TI_Runtime_2.6.hex

(→ ti_ce_runtime.hex)
 (→)

10.7.x. Miniroboter Edison (Microbric)

Set besteht aus 1x Edison und 1x Verbindungs-Kabel
mit zusatz-Set und / oder LEGO® erweiterbar / ausbaufähig

extrem robust
etwas filigrane Abdeckung des Batterie-Fach's

vorgesehen für AAA-Batterien

Verbindungs-Kabel

→ startedison.com

https://microbit.org/code/
https://education.ti.com/de/alles-fuer-die-schule/microbit
https://python.microbit.org/v/2.0
https://python.microbit.org/v/2
https://archive.microbit.org/de/
https://ti-unterrichtsmaterialien.net/materialien?country=1&langauge=2&q=micro%3Abit
https://ti-unterrichtsmaterialien.net/fileadmin/DE-Materialien/Materialien/TI_Runtime_2.6.hex

BK_SekI+II_Python_spez.docx - 102 - (c,p) 2015 - 2026 lsp: dre

verschiedene Programmier-Möglichkeiten

• Barcodes durch das Scannen (Überfahren) von Barcode's auf der Fahrbahn
werden voreingestellte aktiviert
kein Computer etc. zum Lernen notwendig
gedacht ab Alter von 4 Jahren

• EdBlocks graphische Programmierung mit Blöcken
Blöcke sind durch Symbol-Bilder charakterisiert (nur noch Eingabe
von Parametern notwendig)
gedacht ab Alter von 7 Jahren (Grundschule 2. Klasse)
→ http://stemgoals.co.uk/

• EdScratch Scratch-basierte Block-Programmierung
gedacht ab Alter von 10 Jahren (Grundschule 4. Klasse / Orientie-
rungstufe)

• EdPy Text-basierte Programmierung mit Python
online-Nutzung: www.edpyapp.com
gedacht ab Alter von 13 Jahren (Sekundarstufe I)

Links:
www.meetedison.com
startedison.com
https://meetedison.com/robot-programming-software/edpy/ (u.a. Video-Tutorial's)

http://stemgoals.co.uk/
http://www.edpyapp.com/
http://www.meetedison.com/
https://meetedison.com/robot-programming-software/edpy/

BK_SekI+II_Python_spez.docx - 103 - (c,p) 2015 - 2026 lsp: dre

10.8. Python und Data Science

Datenbank-Begriffe im Data science
Datensätze sind Fälle
Attribute / Felder sind Merkmale bzw. Variablen

Öffnen einer Datenbank in den Speicher
with open(dateiname, ‘rb’) as datenbestand:

 print(dateiname + “ hat den Inhalt: “+ datenbestand.read()

Öffnen einer Datenbank als Stream
with open(dateiname, ‘rb’) as datenstrom:

 for auswahl in datenstrom:

 print(“gelesene Daten: “ + auswahl)

Streamen mit Auswahl einzelner Datensätze (Fälle)
bedingung=???

with open(dateiname, ‘rb’) as datenstrom:

 for j, auswahl in enumerate(datenstrom):

 if j == bedingung:

 print(“gefundene Daten: “+str(j)+” ---> ”+auswahl)

zufällige Auswahl aus einem Stream
from random import random

beispielwert=0.3333

with open(dateiname, ‘rb’) as datenstrom:

 for j, auswahl in enumerate(datenstrom):

 if random()<=beispielwert:

 print(“gefundene Daten: “+str(j)+” ---> ”+auswahl)

Flatfile ist Textdatei (übliche Seperator-getrennte Daten-Elemente in einem Datensatz)
Klassische Struktur einer CSV-Datei
In der ersten Zeile sind die Felder definiert
Datensätze (Fälle) sind durch Zeilenumbruch getrennt / beendet
Attribute (Felder, Merkmale, Variablen) sind durch Kommata getrennt
Zeichenketten werden durch Anführungszeichen umschlossen
Integer-Zahlen ohne Anführungszeichen
Reele Zahlen ebenfalls ohne Anführungszeichen und ein Punkt als Dezimal-Trenner

CSV-Datei über Pandas einlesen:
import pandas as pds

inhalt=pds.io.parsers.read_csv(dateiname)

wert = inhalt[[attribut]]

print(wert)

BK_SekI+II_Python_spez.docx - 104 - (c,p) 2015 - 2026 lsp: dre

EXCEL-Datei mit Pandas einlesen:
import pandas as pds

kalk=pds.ExcelFile(dateiname)

ausgeleseneWerte = kalk.parse(“Tabelle1”, indexZeile=None, na:values=[NA])

print(ausgeleseneWerte)

Laden / Öffnen von Dateien mit unstrukturierten Daten
from skimage.io.import imread

from skimage.transform import resize

from matplotlib import pyplot als plt

import matplotlib.cm as cm

unstrukDaten =

(“http://upload.wikimedia.org/”+”wikimedia/commons/7/7d/Dog_face.png”)

image = imread(unstrukDaten, as_grey=True)

plt.imshow(image, cmap=cm.grey)

plt.show()

Resizen u.ä. möglich (→ Data Science mit Python für DUMMIES, S.116ff)

der Titanic-Daten-Bestand

Daten zu den Passagieren der Titanic

zu installierende Bibliotheken
pip install statsmodels
pip install xlrd
pip install openpyxl

eigentlichen Programm bzw. interaktives Arbeiten mit den Daten
(nach Q: https://deepnote.com/@leonard-puttmann-a8ef/Titanic-Dataset-544c6818-f79a-4068-bbc1-d6fdf42d2998)

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm

from statsmodels.formula.api import ols
from scipy.stats import t
from sklearn.linear_model import LogisticRegression
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier

BK_SekI+II_Python_spez.docx - 105 - (c,p) 2015 - 2026 lsp: dre

Laden des Daten-Bestands
titanic = pd.read_excel('3_Titanic.xlsx')

Analyse der Tabelle über die obersten 10 Zeilen
titanic.head(10)

Anzeige der Datentypen
titanic.info()

Analyse mit deskriptiver Statistik
titanic.describe()

#Visualisierung einzelner Attribute
EDA_cols = ['Age', 'Pclass']
EDA_data = titanic[EDA_cols]

plt.figure(figsize = (10,10))
plt.style.ise('ggplot)'
sns.boxplot(x = 'Pclass', y = 'Age', data = EDA_data, palette = 'YlGnBu')
plt.ylabel('Alter')
plt.xlabel('Klasse')
plt.show()

#Visualisierung Überlebende pro Klasse
EDA_cols2 = ['Survived', 'Pclass']
EDA_data2 = titanic[EDA_cols2]

plt.figure(figsize = (10,10))
plt.style.ise('ggplot)'
sns.boxplot(x = 'Pclass', y = 'Survived', data = EDA_data2, palette = 'YlGnBu')
plt.ylabel('Anteil Überlebende')
plt.xlabel('Klasse')
plt.show()

Analyse nach Geschlecht – Verteilung Passagiere
plt.figure(figsize = (10,10))
plt.style.ise('ggplot)'
sns.boxplot(x = 'Sex', y = titanic.idex, data = titanic, palette = 'tab10', alpha =0.8)
plt.ylabel('Anzahl Passagiere')
plt.xlabel('Geschlecht')
plt.show()

Analyse nach Geschlecht – Verteilung Überlebende
plt.figure(figsize = (10,10))
plt.style.ise('ggplot)'
sns.boxplot(x = 'Sex', y = 'Survived', data = titanic, palette = 'tab10', alpha =0.8)
plt.ylabel('Überlebende')
plt.xlabel('Geschlecht')
plt.show()

kategorische Daten für die weitere Bearbeitung encoden und Voranzeige
titanic['Sex'] = pd.get_dummies(titanic['Sex'])
titanic['Embarked'] = pd.get_dummies(titanic['Embarked'])

print(titanic.head(10))

Anzeige der Überlebenden (Survived=1)

BK_SekI+II_Python_spez.docx - 106 - (c,p) 2015 - 2026 lsp: dre

titanic[''].value_counts()

Testen von Hypothesen
print("Überlebens-Wahrscheinlichkeit abhängig von mitgereisten Familien-Angehörigen")
titanic['Parch'].value_counts()
parch_survivors = titanic.query('Survived >= 1 & Parch >= 1')
parch_survivors['Survived'].value_counts()

print("Überlebens-Wahrscheinlichkeit abhängig vom Geschlecht")
fem_parch_survivors = titanic.query('Survived >= 1 & Parch >= 1 & Sex == 1')
fem_parch_survivors['Survived'].value_counts()

print("Hypothesen-Test: Überlebens-Chance abhängig von mitgereisten Familien-
Angehörigen und Geschlecht")
hypothese = pd.DataFrame(colums = ['überlebt', 'mit Familie', 'Familie überlebt', 'Fam. über-
lebt + weibl.'], dtype = float)
werte = {'überlebt':342, 'mit Familie':213, 'Familie überlebt':109, 'Fam. überlebt + weibl.':80}
hypothese = hypothese.append(werte, ignore_index=True)

plt.figure(figsize(10, 10))
plt.style.use('ggplot')
sns.barplot(data = hypothese, palette='YlGnBu')
plt.xticks(rotation=10)
plt.show()

ANOVA-Analyse
anova_model = ols('Survived ~ Parch', data = titanic).fit()
anova_ergebnisse = sm.stats.anova_lm(anova_model, typ = 2)
print(anova_ergebnisse['PR(>F)'])

Analyse Korrelationen zwischen Attributen
plt.figure(figsize(10, 10))
plt.style.use('ggplot')
corr_matrix = titanic.corr()
sns.heatmap(corr_matrix, annot = True, linewidths = 1)
plt.show()

print("Durchschnitt Alter: ", titanic.Age.mean())
print("Median Alter: ", titanic.Age.median())

Anpassung der Daten fürs MachineLearning
X = titanic.loc[:, feauture_cols]
print(X.shape)

y = titanic.Survived
print(y.shape)

logistische Regression
logistic_reg = LogisticRegression()

#Training
logistic_reg.fit(X, y)
prd_lr = logistic_reg.predict(X)
print("Genauigkeit: ",accuracy_score(y, prd_lr))

Teilen Trainings- und Test-Daten-Teil
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)

BK_SekI+II_Python_spez.docx - 107 - (c,p) 2015 - 2026 lsp: dre

Pipeline initialisieren
logreg = LogisticRegeression()
pipe = Pipeline(steps = [('logistic_Reg', logreg)])

werte_raster = {'logistic_Reg__C' : np.logspace(-4, 4, 5), 'logistic_Reg__penalty' : ['l1', 'l2',
'none']}

Modell-Training
model_lr = GridSearchCV(pipe, param_grid = werte_raster, cv = 5, verbose = True)

Anzeige Leistung
model_lr.fit(X_train, y_train)
pred = model_lr(X_test)
print("Genauigkeit: ",accuracy_score(y_test, pred))

print("beste Ergebnisse: ", model_lr.best_params_)

Random Forest
schwarzwald = RandomForestClassifier(n_estimators = 100)

schwarzwald.fit(X_train, y_train)

y_pred = schwarzwald.predict(X_test)
acc_random_forest = schwarzwald.score(X_train, y_train)
print("Genauigkeit: ",acc_random_forest)

Nutzung des Modells für fiktive Daten
fikt_pers = pd.DataFrame(columns = ['Pclass', 'Age', 'Parch', 'Sex', 'SibSp', 'Embarked'],
dtype=float)
fikt_pers.head()

rose = {'Pclass' : 1, 'Age' : 17, 'Parch' : 0, 'Sex' : 1, 'SibSp' : 1, 'Embarked' : 0}
jack = {'Pclass' : 3, 'Age' : 20, 'Parch' : 0, 'Sex' : 0, 'SibSp' : 0, 'Embarked' : 0}

fikt_pers = fikt_per.append(rose, ignore_index = True)
fikt_pers = fikt_per.append(jack, ignore_index = True)

Vorhersagen für fiktive Personen
wahrscheinlichkeit_fiktpers = schwarzwald.predict_proba(fikt_pers)
println("Überlebens- und Vorhersage-Wahrscheinlichkeit")
println(wahrscheinlichkeit_fiktpers)

Wichtigkeit der einzelnen Attribute
importances = schwarzwald.feature_importances_
feature_names = ['Pclass', 'Age', 'Parch', 'Sex', 'SibSp', 'Embarked']
forest_importances = pd.Series(importances, index = feature_names)
std = np.std([tree.feature_importances_ for tree in schwarzwald.estimators_], axis = 0)

fig, ax = plt.subplots()
forest_importances.plot.bar(yerr = std, ax = ax)
ax.set_title("Wichtigkeit der Attribute")
ax.set_ylabel("%")
fig.tight_layout()

BK_SekI+II_Python_spez.docx - 108 - (c,p) 2015 - 2026 lsp: dre

plt.show

BK_SekI+II_Python_spez.docx - 109 - (c,p) 2015 - 2026 lsp: dre

10.9. Python und Künstliche Intelligenz

direkt machbar mit diversen zusätzlichen Bibliotheken, die meist extra zu installieren sind

pip install numpy
pip install pandas
pip install scikit-learn

besonders sinnvoll im Zusammenhang mit Jupyter-Notebook's, da so die einzelnen Schritte
interaktiv eingebbar und abarbeitbar gemacht werden

online-Jupyter
https://jupyter.org/try

offline Installation am Besten über eine aktuelle Anaconda-Installation

Integration in die klassische Python-Umgebung

pip install jupyter
pip install matplotlib
jupyter notebook

der letzte Befehl ist die übliche Start-Sequenz
als Anzeige wird der Standard-Browser genutzt (→ http://localhost:8888/tree)
Wechsel zwischen Eingabe-Bereich und einem Ausgabe-Bereich

10.9.x. Entscheidungs-Bäume

praktische Nutzung eines Entscheidungs-Baum's über (geschachtelte) Verzeigungs-
Strukturen

10.9.x. Korrelation und Regression

https://jupyter.org/try

BK_SekI+II_Python_spez.docx - 110 - (c,p) 2015 - 2026 lsp: dre

10.9.x. maschinelles Lernen

BK_SekI+II_Python_spez.docx - 111 - (c,p) 2015 - 2026 lsp: dre

10.10. Python kommuniziert in Discord

10.10.0. Allgemeines und Vorbereitung

Discord ist ein weit verbreitetes und besonders bei Gamern beliebtes Kommunikations- Pro-
gramm.
Spiele können diskutiert werden, es kann während des Spiel's gechattet werden

Steuerung und Programmierung von Discord ist über eine spezielle Schnittstelle möglich. Für
diese existiert auch ein Python-Modul: discord.py

Mit Python ist eine Programmierung diverser Funktionen von dsicord möglich.

Installation der Libary in der Konsole:

python3 –m pip install –U discord.py[voice] --user

(ev. auch nur: pip install –U discord.py)

Registrierung der eigenen App auf der Webseite von discord → discordapp.com notwendig
unter "Application" -- "New Application" vergibt man der eigenen App einen Namen, z.B.
meineApp
im Menü Bot erstellt man dann einen Bot-User über "Add Bot"
der Bot sollte üblicherweise mit "Public Bot" aktiviert werden, sonst können andere Nutzer
den Bot nicht einladen
Option "Requires OAuth2 Code Grant" sollt nicht gesetzt werden
Die Einladung des Bot's (meineApp) erfolgt im Hauptmenü des eigenen Server's unter O-
Auth2
hier wird die Option "Scopes > Bot" gesetzt
es wird ein Link generiert, der dann im Browser eingegeben werden kann
damit wird der Bot angemeldet

eine Spieler-Gilde wird auch benötigt

in Dicord oder auf der Webseite von discord kann dann eine Instanz erstellt werden
dazu auf das Plus-Symbol klicken

weiterführende Links:
https://praxistipps.chip.de/discord-bot-erstellen-eine-anleitung_118538 (allg Hinweise; Einrichtung)

https://praxistipps.chip.de/discord-bot-erstellen-eine-anleitung_118538

BK_SekI+II_Python_spez.docx - 112 - (c,p) 2015 - 2026 lsp: dre

10.10.2. erste Kommunikations-Versuche

Besonderheiten der asynchronen Kommunikation

bot.py

import os

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

client = discord.Client()

@client.event

async def on_ready():

 print(f'{client.user} has connected to Discord!')

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

client ist eine Instanz / ein Objekt der Klasse Client
on_ready() ist der Event-Handler für die bestehenden Kommunktions- und Bedienungs-
Möglichkeiten

Sollen bestimmte Informationen z.B. der eigene Token nicht im Programm-Text ersche, kön-
nen solche Informationen in einer .envim-Datei gespeichert werden. Diese muss sich im glei-
chen Ordner, wie der Quell-Text befinden

.env

DISCORD_TOKEN={your-bot-token}

ev. muss zusätzlich noch die Bibliothek dotenv installiert werden

pip install –U python-dotenv

die Methode client.run() führt dann das Programm aus

für weitere Versuche muss dann auch der Gilde-Token mit angegeben werden
z.B. in der envim-Datei:

.env

DISCORD_TOKEN={your-bot-token}

DISCORD_GUILD={your-guild-name}

ansonsten geht auch direkt im Quell-Text:

bot.py

import os

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

GUILD = os.getenv('DISCORD_GUILD')

https://realpython.com/how-to-make-a-discord-bot-python/

BK_SekI+II_Python_spez.docx - 113 - (c,p) 2015 - 2026 lsp: dre

client = discord.Client()

@client.event

async def on_ready():

 for guild in client.guilds:

 if guild.name == GUILD:

 break

 print(

 f'{client.user} is connected to the following guild:\n'

 f'{guild.name}(id: {guild.id})'

)

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py

import os

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

GUILD = os.getenv('DISCORD_GUILD')

client = discord.Client()

@client.event

async def on_ready():

 for guild in client.guilds:

 if guild.name == GUILD:

 break

 print(

 f'{client.user} is connected to the following guild:\n'

 f'{guild.name}(id: {guild.id})\n'

)

 members = '\n - '.join([member.name for member in guild.members])

 print(f'Guild Members:\n - {members}')

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py

import os

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

GUILD = os.getenv('DISCORD_GUILD')

client = discord.Client()

@client.event

async def on_ready():

 for guild in client.guilds:

 if guild.name == GUILD:

 break

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

BK_SekI+II_Python_spez.docx - 114 - (c,p) 2015 - 2026 lsp: dre

 print(

 f'{client.user} is connected to the following guild:\n'

 f'{guild.name}(id: {guild.id})'

)

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py

import os

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

GUILD = os.getenv('DISCORD_GUILD')

client = discord.Client()

@client.event

async def on_ready():

 guild = discord.utils.find(lambda g: g.name == GUILD, client.guilds)

 print(

 f'{client.user} is connected to the following guild:\n'

 f'{guild.name}(id: {guild.id})'

)

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py

import os

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

GUILD = os.getenv('DISCORD_GUILD')

client = discord.Client()

@client.event

async def on_ready():

 guild = discord.utils.get(client.guilds, name=GUILD)

 print(

 f'{client.user} is connected to the following guild:\n'

 f'{guild.name}(id: {guild.id})'

)

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py

import os

import discord

from dotenv import load_dotenv

load_dotenv()

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

BK_SekI+II_Python_spez.docx - 115 - (c,p) 2015 - 2026 lsp: dre

TOKEN = os.getenv('DISCORD_TOKEN')

class CustomClient(discord.Client):

 async def on_ready(self):

 print(f'{self.user} has connected to Discord!')

client = CustomClient()

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

Begrüßung neuer Mitglieder

bot.py

import os

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

client = discord.Client()

@client.event

async def on_ready():

 print(f'{client.user.name} has connected to Discord!')

@client.event

async def on_member_join(member):

 await member.create_dm()

 await member.dm_channel.send(

 f'Hi {member.name}, welcome to my Discord server!'

)

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

auf Nachrichten antworten

@client.event

async def on_message(message):

 if message.author == client.user:

 return

 brooklyn_99_quotes = [

 'I\'m the human form of the 💯 emoji.',

 'Bingpot!',

 (

 'Cool. Cool cool cool cool cool cool cool, '

 'no doubt no doubt no doubt no doubt.'

),

]

 if message.content == '99!':

 response = random.choice(brooklyn_99_quotes)

 await message.channel.send(response)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

Geburtstags-Glückwünsche

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

BK_SekI+II_Python_spez.docx - 116 - (c,p) 2015 - 2026 lsp: dre

@client.event

async def on_message(message):

 if 'happy birthday' in message.content.lower():

 await message.channel.send('Happy Birthday! 🎈🎉')

Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py

import os

import random

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

client = discord.Client()

@client.event

async def on_ready():

 print(f'{client.user.name} has connected to Discord!')

@client.event

async def on_member_join(member):

 await member.create_dm()

 await member.dm_channel.send(

 f'Hi {member.name}, welcome to my Discord server!'

)

@client.event

async def on_message(message):

 if message.author == client.user:

 return

 brooklyn_99_quotes = [

 'I\'m the human form of the 💯 emoji.',

 'Bingpot!',

 (

 'Cool. Cool cool cool cool cool cool cool, '

 'no doubt no doubt no doubt no doubt.'

),

]

 if message.content == '99!':

 response = random.choice(brooklyn_99_quotes)

 await message.channel.send(response)

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

Ausnahme-Behandlung

bot.py

import os

import random

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

BK_SekI+II_Python_spez.docx - 117 - (c,p) 2015 - 2026 lsp: dre

client = discord.Client()

@client.event

async def on_ready():

 print(f'{client.user.name} has connected to Discord!')

@client.event

async def on_member_join(member):

 await member.create_dm()

 await member.dm_channel.send(

 f'Hi {member.name}, welcome to my Discord server!'

)

@client.event

async def on_message(message):

 if message.author == client.user:

 return

 brooklyn_99_quotes = [

 'I\'m the human form of the 💯 emoji.',

 'Bingpot!',

 (

 'Cool. Cool cool cool cool cool cool cool, '

 'no doubt no doubt no doubt no doubt.'

),

]

 if message.content == '99!':

 response = random.choice(brooklyn_99_quotes)

 await message.channel.send(response)

 elif message.content == 'raise-exception':

 raise discord.DiscordException

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

@client.event

async def on_error(event, *args, **kwargs):

 with open('err.log', 'a') as f:

 if event == 'on_message':

 f.write(f'Unhandled message: {args[0]}\n')

 else:

 raise

Q: https://realpython.com/how-to-make-a-discord-bot-python/

10.10.3. Programmierung eines Bot's

Bot's sind automatisierte Programme, die bestimmte Aufgaben erfüllen
in discord kann das z.B.:

• Begrüßung neuer Nutzer / Mitspieler im Team / in der Gilde

•

sein

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

BK_SekI+II_Python_spez.docx - 118 - (c,p) 2015 - 2026 lsp: dre

extra Ordner anlegen

über einen beliebigen Editor die Datei bot.py in diesem Ordner anlegen

der Quell-Text lautet:

import discord from discord.ext import commands TOKEN = 'Token hineinkopie-

ren' description = '''ninjaBot in Python''' bot = com-

mands.Bot(command_prefix='?', description=description) @bot.event async def

on_ready(): print('Logged in as') print(bot.user.name) print(bot.user.id)

print('------') @bot.command() async def hello(ctx): """Says world""" await

ctx.send("world") @bot.command() async def add(ctx, left : int, right :

int): """Adds two numbers together.""" await ctx.send(left + right)

bot.run(TOKEN)

Q: https://praxistipps.chip.de/discord-bot-erstellen-eine-anleitung_118538

der gespeicherte Quell-Text kann dann ausgeführt werden:

python3 bot.py

Ausgaben erscheinen im discord-Programm in der lokalen Konsole

in Fortsetzung des obigen Quell-Textes

Bot verbinden

bot.py

import os

import random

from dotenv import load_dotenv

1

from discord.ext import commands

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

2

bot = commands.Bot(command_prefix='!')

@bot.event

async def on_ready():

 print(f'{bot.user.name} has connected to Discord!')

bot.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py

import os

import random

import discord

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

client = discord.Client()

https://praxistipps.chip.de/discord-bot-erstellen-eine-anleitung_118538
https://realpython.com/how-to-make-a-discord-bot-python/

BK_SekI+II_Python_spez.docx - 119 - (c,p) 2015 - 2026 lsp: dre

@client.event

async def on_message(message):

 if message.author == client.user:

 return

 brooklyn_99_quotes = [

 'I\'m the human form of the 💯 emoji.',

 'Bingpot!',

 (

 'Cool. Cool cool cool cool cool cool cool, '

 'no doubt no doubt no doubt no doubt.'

),

]

 if message.content == '99!':

 response = random.choice(brooklyn_99_quotes)

 await message.channel.send(response)

client.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py

import os

import random

from discord.ext import commands

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

bot = commands.Bot(command_prefix='!')

@bot.command(name='99')

async def nine_nine(ctx):

 brooklyn_99_quotes = [

 'I\'m the human form of the 💯 emoji.',

 'Bingpot!',

 (

 'Cool. Cool cool cool cool cool cool cool, '

 'no doubt no doubt no doubt no doubt.'

),

]

 response = random.choice(brooklyn_99_quotes)

 await ctx.send(response)

bot.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py

import os

import random

from discord.ext import commands

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

bot = commands.Bot(command_prefix='!')

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

BK_SekI+II_Python_spez.docx - 120 - (c,p) 2015 - 2026 lsp: dre

@bot.command(name='99', help='Responds with a random quote from Brooklyn 99')

async def nine_nine(ctx):

 brooklyn_99_quotes = [

 'I\'m the human form of the 💯 emoji.',

 'Bingpot!',

 (

 'Cool. Cool cool cool cool cool cool cool, '

 'no doubt no doubt no doubt no doubt.'

),

]

 response = random.choice(brooklyn_99_quotes)

 await ctx.send(response)

bot.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

Parameter konvertieren

@bot.command(name='roll_dice', help='Simulates rolling dice.')

async def roll(ctx, number_of_dice, number_of_sides):

 dice = [

 str(random.choice(range(1, number_of_sides + 1)))

 for _ in range(number_of_dice)

]

 await ctx.send(', '.join(dice))

Q: https://realpython.com/how-to-make-a-discord-bot-python/

Befehls-Prädikate prüfen

if message.author == client.user:

 return

bot.py

import os

import discord

from discord.ext import commands

from dotenv import load_dotenv

load_dotenv()

TOKEN = os.getenv('DISCORD_TOKEN')

bot = commands.Bot(command_prefix='!')

@bot.command(name='create-channel')

@commands.has_role('admin')

async def create_channel(ctx, channel_name='real-python'):

 guild = ctx.guild

 existing_channel = discord.utils.get(guild.channels, name=channel_name)

 if not existing_channel:

 print(f'Creating a new channel: {channel_name}')

 await guild.create_text_channel(channel_name)

bot.run(TOKEN)

Q: https://realpython.com/how-to-make-a-discord-bot-python/

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

BK_SekI+II_Python_spez.docx - 121 - (c,p) 2015 - 2026 lsp: dre

11. Üben, üben und nochmals üben

hier folgen Aufgaben unterschiedlichster Schwierigkeitsgrade und Komplexitäten
keine Abfolge, wie im Skript
einfache Sammlung verschiedener – in diversen Quellen gefundener – Aufgabenstellungen
oder (informatischer) Probleme

nicht täuschen lassen, Aufgaben, die leicht oder einfach zu lösen scheinen, können sich als
echte Programmier-Diamanten herausstellen. Dagegen können Aufgaben mit seitenlangen
Aufgabenstellungen mit ein paar Zeilen Quelltext erschlagen werden. Man erinnere sich an
die Wundertüte Rekursion (→ 8.4.2. Rekursion)

im Allgemeinen hilft nur probieren
eine Lösung die ich oder ein anderer als leicht einschätze, kann für jemanden Anderes ein
unlösbares Problem sein, aber es geht natürlich auch anders herum. So manche Aufgabe,
für die ich viele Zeilen Quelltext brauche erledigt ein findiger Programmierer mit genial weni-
gen Zeilen. So ist die Welt, und das ist gut so!

nicht unendlich in eine Aufgabe reinsteigern; Grenzen setzen; auf das Wesentliche konzent-
rieren
gibt es scheinbar unlösbare Hindernisse / Probleme, dann Problem / Sachverhalt (z.B. im
Quelle-Text) kurz notieren; dann erst mal eine andere Aufgabe (zum Ablenken) erledigen

BK_SekI+II_Python_spez.docx - 122 - (c,p) 2015 - 2026 lsp: dre

11.x. Aufgaben aus der Abiturprüfung Informatik MV

aus rechtlichen Gründen wurden die Formulierungen der Aufgabenstellungen geändert
die eigentliche Aufgabenstellung bleibt aber erhalten

11.x.y. Abitur 2010

Rechner hat 177.122.66.99/16

GUI IPRechner

© GUI (…)

 Bt_IPdual_ActionPerformed(…)

 Bt_Adressklasse_ActionPerformed(…)

 Bt_Subnetzmaske_ActionPerformed(…)

 main(…)

  getDual(dezZahl: integer): String

 getDual8(dezZahl: integer): String

 get_Adressklasse(Oktett: integer): String

 get_IPdual(Oktett1, Oktett2, Oktett3, Oktett4: integer): String

 get_Subnetzmaske(Oktett: integer): String

Klasse IPRechner

11.x. Aufgaben der Landesolympiade Informatik MV

aus rechtlichen Gründen wurden die Formulierungen der Aufgabenstellungen geändert
die eigentliche Aufgabenstellung bleibt aber erhalten

11.x.y. 2014/2015

11.x.y.z. Sekundarstufe II

BK_SekI+II_Python_spez.docx - 123 - (c,p) 2015 - 2026 lsp: dre

Literatur und Quellen:

/1/ SANDE, Warren D.; SANDE, Carter:

Hello World! – Programmieren für Kids und Anfänger.-München: C. Hanser Verl..-2.,
akt. u. erw. Aufl.
ISBN 978-3-446-43906-4

/2/ LINGL, Gregor:

Python für Kids.-Heidelberg, München, Landsberg, Frechen, Hamburg: bhv Verl. /
mitp Verl.-4. Aufl.
ISBN 978-3-8266-8673-3

/3/ WEIGEND, Michael:

Python 3 – Lernen und professionell anwenden.- Heidelberg, München, Landsberg,
Frechen, Hamburg: mitp Verl.-5., akt. Aufl.
ISBN 978-3-8266-9456-1

/4/ ARNHOLD, Werner:

Lieben Sie PYTHON?-IN: LOG IN, 21(2001) Heft 2.-S. 18 ff.-Berlin: LOG IN Verl.
ISSN 0720-8642

/5/ MONK, Simon:

Raspberry Pi programmieren – Alle Befehle, und es klappt mit dem Raspberry.-Haar
bei München: Franzis Verl.; 2014
ISBN 978-3-645-60261-7

 auch sonst als reine Python-Einführung sehr empfehlenswert

/6/ VON LÖWIS, Martin; FISCHBECK, Nils:

Das Python-Buch – Referenz der objektorientierten Skriptsprache für GUIs und
Netzwerke.-Bonn: Addison-Wesley-Verl., 1997.- 1. Aufl.
ISBN 3-8273-1110-1

/7/ ERNESTI, Johannes; KAISER, Peter:

Python 3 – Das umfassende Handbuch.-: Rheinwerk Verl..- 4. Aufl. 2015
ISBN 978-3-8362-3633-1

/8/ :

.-: Verl..- Aufl.
ISBN 978-3-

/8/ :

.-: Verl..- Aufl.
ISBN 978-3-

/8/ :

.-: Verl..- Aufl.
ISBN 978-3-

BK_SekI+II_Python_spez.docx - 124 - (c,p) 2015 - 2026 lsp: dre

/A/ Wikipedia
 http://de.wikipedia.org

Die originalen sowie detailliertere bibliographische Angaben zu den meisten Literaturquellen
sind im Internet unter http://dnb.ddb.de zu finden.

http://de.wikipedia.org/
http://dnb.ddb.de/

BK_SekI+II_Python_spez.docx - 125 - (c,p) 2015 - 2026 lsp: dre

Abbildungen und Skizzen entstammen den folgende ClipArt-Sammlungen:

/A/

andere Quellen sind direkt angegeben.

Alle anderen Abbildungen sind geistiges Eigentum:

 lern-soft-projekt: drews (c,p) 1997 – 2026 lsp: dre
 für die Verwendung außerhalb dieses Skriptes gilt für sie die Lizenz:

 CC-BY-NC-SA
 Lizenz-Erklärungen und –Bedingungen: http://de.creativecommons.org/was-ist-cc/
 andere Verwendungen nur mit schriftlicher Vereinbarung!!!

verwendete freie Software:

• Inkscape von: inkscape.org (www.inkscape.org)

• CmapTools von: Institute for Human and Maschine Cognition (www.ihmc.us)

 - (c,p) 2015 - 2026 lern-soft-projekt: drews -
 - drews@lern-soft-projekt.de -
 - http://www.lern-soft-projekt.de -
 - 18069 Rostock; Luise-Otto-Peters-Ring 25 -
 - Tel/AB (0381) 760 12 18 FAX 760 12 11 -

http://de.creativecommons.org/was-ist-cc/
http://www.inkscape.org/
http://www.ihmc.us/
mailto:drews@lern-soft-projekt.de
http://www.lern-soft-projekt.de/

