Informalik

fitr die Sekundarstufe I + I

- Programmieren mil Pylthon —
Teil 3: fur Experten

Aulor: 1.. Drews

- o \' .

Gruner Baum-Python
(s) Morelia viridis

Q: de.wikipedia.org (Mwx)

Verarbeitung(sschritt)

eval (input("?:")) !'= 0:
print("Stoppen" ,end="")

Eingabe =T
Verarbeitung(sschriit) Hallo Welt!
Ausgabe |> Beenden |

teilredigierte Version 0.11c (2026)

BK_Sekl+II_Python_spez.docx (c,p) 2015 - 2026 lern-soft-projekt: drews

Legende:

mit diesem Symbol werden zusatz-
liche Hinweise, Tips und weiterfiih-
rende Ideen gekennzeichnet

/ Nutzungsbestimmungen / Bemerkungen zur Verwendung durch Dritte:

(1) Dieses Skript (Werk) ist zur freien Nutzung in der angebotenen Form durch den
Anbieter (lern-soft-projekt) bereitgestellt. Es kann unter Angabe der Quelle und /
oder des Verfassers gedruckt, vervielfaltigt oder in elektronischer Form verof-
fentlicht werden.

(2) Das Weglassen von Abschnitten oder Teilen (z.B. Aufgaben und Lésungen) in
Teildrucken ist moglich und sinnvoll (Konzentration auf die eigenen Unterrichts-
ziele, -inhalte und -methoden). Bei angemessen groen Ausziigen gehort das
vollstandige Inhaltsverzeichnis und die Angabe einer Bezugsquelle fiir das Ori-
ginalwerk zum Pflichtteil.

(3) Ein Verkauf in jedweder Form ist ausgeschlossen. Der Aufwand fiir Kopierleistungen, Datentrager
oder den (einfachen) Download usw. ist davon unbertihrt.

(4) Anderungswiinsche werden gerne entgegen genommen. Erganzungen, Arbeitsblatter, Aufgaben
und Lésungen mit eigener Autorenschaft sind mdglich und werden bei konzeptioneller Passung
eingearbeitet. Die Teile sind entsprechend der Autorenschaft zu kennzeichnen. Jedes Teil behalt
die Urheberrechte seiner Autorenschaft bei.

(5) Zusammenstellungen, die von diesem Skript - Gber Zitate hinausgehende - Bestandteile enthalten,
mussen verpflichtend wieder gleichwertigen Nutzungsbestimmungen unterliegen.

(6) Diese Nutzungsbestimmungen gehoéren zu diesem Werk.

(7) Der Autor behalt sich das Recht vor, diese Bestimmungen zu &ndern.

(8) Andere Urheberrechte bleiben von diesen Bestimmungen unberihrt.

Rechte Anderer:

Viele der verwendeten Bilder unterliegen verschiedensten freien Lizenzen. Nach meinen Recherchen
sollten alle genutzten Bilder zu einer der nachfolgenden freien Lizenzen gehdren. Unabhangig von
den Vorgaben der einzelnen Lizenzen sind zu jedem extern entstandenen Objekt die Quelle, und
wenn bekannt, der Autor / Rechteinhaber angegeben.

public domain (pd) Zum Gemeingut erklarte Graphiken oder Fotos (u.a.). Viele der verwen-
deten Bilder entstammen Webseiten / Quellen US-amerikanischer Ein-
richtungen, die im Regierungsauftrag mit offentlichen Mitteln finanziert
wurden und dariber rechtlich (USA) zum Gemeingut wurden. Andere
kreative Leistungen wurden ohne Einschrankungen von den Urhebern
freigegeben.

gnu free document li-
cence (GFDL; gnu fdl)

creative commens (cc)
@Cl‘eative od. neu ® ... Namensnennung
commons

... hichtkommerziell

... in der gleichen Form

... unter gleichen Bedingungen

Die meisten verwendeten Lizenzen schlielen eine kommerzielle (Weiter-)Nutzung aus!

Bemerkungen zur Rechtschreibung:

Dieses Skript folgt nicht zwangslaufig der neuen ODER alten deutschen Recht-
schreibung. Vielmehr wird vom Recht auf kinstlerische Freiheit, der Freiheit der
Sprache und von der Autokorrektur des Textverarbeitungsprogramms microsoft ®
WORD ® Gebrauch gemacht.

Fir Hinweise auf echte Fehler ist der Autor immer dankbar.

BK_Sekl+II_Python_spez.docx - 2 - (c,p) 2015 - 2026 Isp: dre

Inhaltsverzeichnis:

Seite
10. Python fiir spezielle Falle..............ooiiiiiiimiiccrrrrrre e 6
10.1. Python in Zusammenarbeit mit anderen Anwender-Programmencccceveeee 6
10.2. Steuerung externer Hardware (RaspberryPi, Arduino)........cccccevvrrrmmmmmmmnnnnnnnnnnnnnns 7
10.2.1. Raspberry Piund Verwandte..............coooviiiiiiiiiiiiiiiiiiiiiiiieieieeieeeeeeeeeeeeeeeeeeeeeee 7
10.2.1.0. Kurzbeschreibung und allgemeine Einfihrung zu Raspberry Pi................... 7
10.2.1.1. die GPIO-Schnittstelleoooiiiiii e 7
10.2.1.2. Steuerung Uber die GPIO-Schnittstelle ..., 9
10.2.1.3. direkte Steuerung der IO-POrt...........oooeiiiiiiii e 9
10.2.1.4. Objekt-orientiertes Programmieren............ccccoveeeeiiiiiiiiiiiee e 10
10.2.1.5. GUI Mt TKINTEE ...eeeiiiie e e e 10
10.2.1.6. programmiertes Spielen mit microsoft Minecraft................cccciiiien 12
10.2.2. Aduino und Verwanalecoooviiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeee et 24
10.2.2.0. Kurzbeschreibung und allgemeine Einfuhrung zu Arduino......................... 24
10.2.2.1. Einrichtung einer Umgebung fur Programmierung eines Arduino mit
PYINON ... e 24
10.2.2.x. Spezialfall UDOO..........coiiiiiiiiiiie e 27
10.2.3. FRANZIS — Experimentierplatine mit FT232Rcoovviiiiiiiiiiieeeeeee e, 27
10.2.4. TI-INNOVALOToiiiiiiiiieieeeee ettt e e e e e e eeeeees 28
10.2.4.y. externe HardWareouoi ittt e e 28
1= Y = PR RR 28
10.2.5. Steuerung des Calliope MINi.........ceiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 30
10.3. Datenbank-Zugriff mit Python ... 31
10.3.1. SQLILE B ..ot e e e et e e e e e e e e e e e e e e e e eaaeaas 31
10.3.1.0. Verbindung herstellen........ ..o 31
10.3.1.1. Erstellen einer Tabelle ... 31
10.3.1.2. Hinzufugen von Datenséatzen zu einer Tabelle................cc 32
10.3.1.3. Aktualisieren eines Datensatzes in einer Tabelle...................ccooe. 32
10.3.1.4. Loschen eines Datensatzes aus einer Tabelle...................cc 32
10.3.1.5. Loschen einer Tabelleoouvveiiiiiiiice e 32
10.3.1.z. Beenden der Verbindungccooooiioiiioiee 32
WEILEIE BEISPIBIE: ... i 33
10.4. Web-Server-Anwendungen mit dem (Micro-)Framework Flaskcccccvveeeeees 34
10.4.0. Erzeugung einer Web-Seite mit Python (Wiederholung)...........coovvvvvviiiiinennnnen. 34
10.4.1. das Framework FIaskcooi i 34
10.4.2. die Flask-Erweiterung bootstrapcooevvvviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 37
10.4.3. Programmierung der Web-Oberflache und Darstellung von Mel3werten............ 37
10.5. Web-Applikationen mit Django...........ccuuuiiiimiimmimiiinsinissssssssssssssssssssssssssssesssssssssene 41
10.6. MicroPython fiir Microcontroller ... 42
10.6.x. MicroPython flr micro:bit..........oooiiiiii e 45
weitere Editoren flr miCroPython:...........oooi e 45
Text-basierte SYStEMEcooo e 45
Block-basierte SYSIEMEcooi i e 45
10.6.x. MicroPython fur ESP-32-Microcontroller...............cuuevviiiiiiiiiiiiieiiiiiiiiiiiiiiieeeeeee 46
10.6.x.0. Vorbereiten des ESP fur MicroPython.............coooiiiiiiiiiieeeeee 46
10.6.X.0.1. das TOOl UPYCIaftcoiuiiieiie e e 49
Installation und Beschreibung des Hilfs-Programms uPyCraft............cccooiiiiiiiiiiinee 50
10.6.x.0.2. Nutzung eines ESP mit microPython unter LinuXccccceviieieiniiene e 56
T0.6.X.0.3. ESP-TOOI ... 58
10.6.x.1. Arbeiten mit MiCroPythoncoiiiiiiiii e 61
10.6.x.y.1. interaktiver Modus - REPL ... 62
10.6.x.y.2. interaktiver und Internet-fahiger Modus - WebREPLccccccceeeeens 63
10.6.X.y.3. "AUtOStart"-MOAUScoeiieeeie e 64
10.6.x.4. elementare Programmierung mit MicroPythoncccooooiiiiiiin e, 67

BK_Sekl+II_Python_spez.docx - 3 - (c,p) 2015 - 2026 Isp: dre

T0.6.X.4. 1. AUSGADENeeei s 67

10.6.x.4.2. Variablen, Zuweisungen und Berechnungenccccoooooiiiiiiiiiiiiiiseseeeeeeeeeenn 70
10.6.X.4.3. EINQADENeeeeie s 71
10.6.x.4.4. Alternativen, VerzZwWeigQUNGEN......... e e e 72
10.6.x.4.5. Wiederholungen, SChIIfeNccooiiiiiiiiii e 72
10.6.x.4.6. eingebaute und mitgelieferte Funktionenccccceeeiiiiiiiieee e, 72
10.6.x.5. klassische Programmierung mit MicroPython..............cccccovviiiii e, 72
10.6.x.5.1. Listen und Listen-Verarbeitung ... 72
10.6.x.5.2. Worterblcher, DiCtONary'scooo i 72
10.6.x.5.3. Lesen und Schreiben von Dateien, Datei-Verarbeitung............cccccccooeinvinennen.n. 72
F0.8.X. 5.4 et e e e e e bbb e e e e e e e e reeeaaaaeas 73
10.6.x.6. spezielle Programmierung mit MicroPythoncccccoiiiiii e, 73
10.6.x.4. weitere spezielle Programm-Beispiele und -Schnipsel...............cccevvvnnnnnnn. 73
10.6.x.5. spezielle Module flr ESP-32-Microcontroller............cccoovviiiiiiiieieeeiiinn. 85
10.6.X.5.1. Modul "Maching"ooiiiiiiiiiiieieeeeeeeeeeeeeeeeeee e 85
DEEP-SIEEP-MOAUS ()..vveeeeiuriiieeiiiieeeitiiee e ettt e e ettt e e e st eeeesstaeeeesssbeeeesssteeeesasseeeesaseeeeeaanseeaeanns 85
RTC (realtime ClOCK)......oci ittt et e e e st e e e st e e e snbae e e e esnreeaeanns 85
= 0] =Y o T =Y SR 86
e = 1 [S 86
PWM (pulse width modulation) ... e e 87
ADC (analog to digital CONVEISION)........cocuuiiiiiiiiii e 87
SPI-Bus (serial peripheral interface) ... 88
D24 O T SRR 89
L@ N T = =Y o T= T TSR 89
LED-Leisten bzw. -RiNg€ (NEOPIXEI)........ccuiiiiiiiiie e 90
Touch-Eingabe (capacitive fOUCH).........cuuiiiiiiiie e 90
DHT (Umweltsensoren, Temperatur-Luftfeuchte-Sensor)cccvcveeeiiiiiee i 91
10.6.X.5.2. MOAUI MBS ... e 91
10.6.X.5.3. MOAUI "ESP3B2" ... e 92
10.6.X.5.4. MOAUI "NELWOIK" ... e e e e s 92
10.6.X.5.5. ModUI "tIMeE" e 93
10.6.x.y. Sprach-Elemente vom MicroPython (Kurz-Ubersicht / Spicker).................. 94
(formatierte) AUSGAaDE:..........ooi e 94
V=T AT = o 18 g o SRR 94
RS Ted] (11 =Y o U PPPRPP 94
10.7. Python auf und mit Taschenrechnern / spezieller Hardwarecccveeeeenennnn. 95
10.7.X. CaSIO-RECNNET ... e e e et a e e e e e e enanne 95
FX-CG50 95
10.7.X. Texas Instruments-REChNEr......... oo 97
TI-NSPIrE CXII-T CAS ettt e e e e e e e e et a e e e e e e eeesaannns 97
FOrmeln programmMIEIrENooo ittt e e e e e e e e e e e e e e e nneneeeas 98
NUtzung des TI-INNOVATONuiiiiiiiiiiiii e 99
Steuern des TI-ROVET ... 99
LIS 7 o (0PSRN 99
NUtZUNG dES MIIrCO:IDIt.eiiiiiiiiiiiiie e 100
Vorbereitung des TaschenreChner'so 100
10.7.x. Miniroboter EdiSon (MICrobIiC)oiiuiiiiiiiiie e 101
10.8. Python und Data Science ..., 103
der Titanic-Daten-Bestand.............ooouiiiiiii i 104
10.9. Python und Kiinstliche Intelligenz.............ccoooiiiii e 109
10.9.x. EntscheidungS-BaAumee.........ccooiiiiiiiieee e 109
10.9.x. Korrelation und RegreSSioncoooooioiiiiiiiee 109
10.9.X. MASChINEIES LEMMEN.......ccoiiiiiii e eeeeeeeeees 110
10.10. Python kommuniziert in DiSCOrd..........cccciiiiiiiiiniii s 111
10.10.0. Allgemeines und VOrbereitung.........cooooeeeeeeiioeeeeeeeeeeeeee e 111
10.10.2. erste Kommunikations-Versuche ... 112
10.10.3. Programmierung €ines Bot'S...........cooiiiiiiiiiiii e 117
11. Uben, Uben und nochmals Uben..........oocciiii s 121

BK_Sekl+II_Python_spez.docx - 4 - (c,p) 2015 - 2026 Isp: dre

11.x. Aufgaben aus der Abiturpriifung Informatik MVccccoriiiiiiiiiiiiee 122

(I IO VA L o 1 (1 4 OSSR 122
11.x. Aufgaben der Landesolympiade Informatik MVcoocecciiiiiiieccecnneeees 122
(I O VA O b TSP 122
11.x.y.2. Sekundarstufe Il ... 122
Literatur und Quellen: e 123

BK_Sekl+II_Python_spez.docx - 5 - (c,p) 2015 - 2026 Isp: dre

10. Python fur spezielle Falle

10.1. Python in Zusammenarbeit mit anderen Anwender-
Programmen

interessante Links:
https://automatetheboringstuff.com/ (online-Version des Buches: AL SWEIGART: Automate the Boring
Stuff with Python — Practical Programming for Total Beginners)

BK_Sekl+II_Python_spez.docx - 6 - (c,p) 2015 - 2026 Isp: dre

https://automatetheboringstuff.com/

10.2. Steuerung externer Hardware (RaspberryPi, Arduino)

10.2.1. Raspberry Pi und Verwandte

10.2.1.0. Kurzbeschreibung und allgemeine Einfiihrung zu Raspberry Pi

10.2.1.1. die GPIO-Schnittstelle

GPIO ist eine 40-polige Anschluf3-
Leiste mit verschiedenen Ein- und Aus-
gangen zum Board. Dient dem An-
schluR von Zusatz-Platinen (Shield's)
oder von elektrischen / elektronischen
Schaltungen.

B Ak Raspberry Pi3 Model B v1.2
© Raspberry Pi 2015

DSI (DISPLAY)

|

I35
ETHERNET

(VY3IWVI)

fritzing

BK_Sekl+II_Python_spez.docx - 7 - (c,p) 2015 - 2026 Isp: dre

Achtung:

Die Benutzung der Pin's muss exakt eingehalten werden. Ein Wechsel auf
andere Pin's ist nur mit genauer Voruberlegung maoglich.

Ein Verwechslung von Pin's oder Polungen kann zur Zerstérung von Bauele-
menten und / oder der Raspberry-Platine flhren.

Schaltungen sollten vor der Benutzung immer noch einmal kontrolliert werden
(4-Augen-Prinzip empfohlen!). Erst wenn alles Ubereinstimmt, dann als Letz-
tes Masse oder Spannung-Pin einstecken!

innen aullen
3,3V 5V
2 5V
3 Gnd
4 14
Gnd 15
17 18
27 Gnd
- 22 23
63 3,3V 24
2E 10 | Gnd
T3 9 25
:é = 11 8
o B Gnd 7
S ID_SD | ID_SC
. 5 | Gnd
6 12
13 Gnd
19 16
26 20
Gnd 21

aweN

Q: Fritzing; bearb.: dre

BK_Sekl+II_Python_spez.docx - 8 - (c,p) 2015 - 2026 Isp: dre

10.2.1.2. Steuerung iiber die GPIO-Schnittstelle

LED an GPIO23 blinken
import RPi.GPIO as GPIO
import time

GPIO.setmode (GPIO.BCM)
pin=23
GPIO.setup (pin, GPIO.OUT)

zeit=0.5
while True:

GPIO.output (pin, GPIO.HIGH)

time.sleep (zeit)

GPIO.output (pin, GPIO.LOW)

time.sleep(zeit)

LED per Taster EIN und AUS
import RPi.GPIO as GPIO
import time

GPIO.setmode (GPIO.BCM)
pinAus=23

pinEin=24

GPIO.setup (pinAus, GPIO.OUT)
GPIO.setup (pinEin, GPIO.IN)

zeit=0.5

for i in range(3):
GPIO.output (pinAus, GPIO
time.sleep (zeit)
GPIO.output (pinAus, GPIO
time.sleep(zeit)

while True:
if GPIO.input (pinEin) ==
GPIO.output (pinAus,
else:
GPIO.output (pinAus,

.HIGH)

.LOW)

0

H= H= T HH= =

H= FH T

Bibliothek fiir GPIO-Steuerung
Bibliothek fiir Zeitsteuerung

GPIO-Namen verwenden
GPIO-Pin
GPIO-Pin auf Ausgabe

Hell-Dunkel-Wartezeit
Endlos-Schleife

Pin ein

Pin aus

Bibliothek fiir GPIO-Steuerung
Bibliothek fiir Zeitsteuerung

+= H=

GPIO-Namen verwenden
GPIO-Pin
GPIO-Pin
GPIO-Pin auf Ausgabe
GPIO-Pin auf Eingabe

H= FH FH

Hell-Dunkel-Wartezeit
3x wiederholen (blinken)
LED an
warten
LED aus
warten

HH= =+

Endlosschleife
Abfrage Eingabe-Pin = geschlossen

GPIO.LOW) # Ausschalten

GPIO.HIGH) # Einschalten

die Endlos-Schleifen lassen sich mit [Strg] + [c] abbrechen

10.2.1.3. direkte Steuerung der 10-Port

BK_Sekl+ll_Python_spez.docx

-9- (c,p) 2015 - 2026 Isp: dre

10.2.1.4. Objekt-orientiertes Programmieren

eine Sensor-Klasse
- http://www.forum-raspberrypi.de/Thread-tutorial-einfuehrung-in-objektorientierte-programmierung-mit-python

10.2.1.5. GUI mit Tkinter

Raspberry Pi GUI - O x
|

LED schalten |

Steuerung von GPI014

Bitte Buttons
betatigen!

i

LED soll blinken |

Sliderwert anzeigen |

0.0

L

Q: http://www.elektronik.nmp24.de/?Python-Programmierung:GUI_mit_tkinter

#GUI fir das Ein- und Ausschalten einer LED an GPIO1l4
from tkinter import * #Grafikbibliothek

root = Tk() # Fenster erstellen

root.wm title("Raspberry Pi GUI") # Fenster Titel
root.config(background = "#FFFFFF") # Hintergrundfarbe des Fensters
#GPIO- und time-Bibliothek:

import RPi.GPIO as GPIO

import time

#festlegen, dass GPIO-Nummern verwendet werden:
GPIO.setmode (GPIO.BCM)

#GPIO14 als Ausgang:

GPIO.setup (14, GPIO.OUT)

Hier werden zwel Frames erzeugt:

leftFrame = Frame (root, width=200, height = 400) # Frame initialisieren
leftFrame.grid(row=0, column=0, padx=10, pady=3) # Relative Position und Seiten-
abstand (padding) angeben

Hier kommen die Elemente des linken Frames rein

leftLabell = Label (leftFrame, text="Steuerung von GPIO1l4")
leftLabell.grid(row=0, column=0, padx=10, pady=3)

leftLabel2 = Label (leftFrame, text="Bitte Buttons\nbetdtigen!")
leftlLabel2.grid(row=1, column=0, padx=10, pady=3)

rightFrame = Frame (root, width=400, height = 400)
rightFrame.grid (row=0, column=1, padx=10, pady=3)

Hier kommen die Elemente des rechten Frames rein
callbackl ist der Handler von Button Bl

def callbackl () :
varLEDStatus = GPIO.input (14)
if varLEDStatus ==
GPIO.output (14, GPIO.HIGH)

BK_Sekl+II_Python_spez.docx - 1 0 - (c,p) 2015 - 2026 Isp: dre

http://www.forum-raspberrypi.de/Thread-tutorial-einfuehrung-in-objektorientierte-programmierung-mit-python

El.delete (0, END)

El.insert (0, "LED ist eingeschaltet")
else:

GPIO.output (14, GPIO.LOW)

El.delete (0, END)

El.insert (0, "LED ist ausgeschaltet")

def callback2() :
for i in range(5):
GPIO.output (14, GPIO.HIGH)
time.sleep(0.5)
GPIO.output (14, GPIO.LOW)
time.sleep(0.5)

def callback3():
print (Slider.get())
El.delete (0, END)
El.insert (0, "Slider = ")
El.insert (12, Slider.get())

buttonFrame = Frame (rightFrame)
buttonFrame.grid (row=1, column=0, padx=10, pady=3)

El = Entry(rightFrame, width=20)
El.grid(row=0, column=0, padx=10, pady=3)

Bl = Button (buttonFrame, text="LED schalten", bg="#42ebf4", width=15, com-
mand=callbackl)

Bl.grid(row=1, column=0, padx=10, pady=3)

B2 = Button (buttonFrame, text="LED soll blinken", bg="#42ebf4", width=15, com-
mand=callback?2)

B2.grid(row=2, column=0, padx=10, pady=3)

B3 = Button (buttonFrame, text="Sliderwert anzeigen", bg="#42ebf4d", width=15,
command=callback3)

B3.grid (row=3, column=0, padx=10, pady=3)

Slider = Scale(rightFrame, from =0, to=100, resolution=0.1, orient=HORIZONTAL,
length=400)
Slider.grid(row=3, column=0, padx=10, pady=3)

root.mainloop () # GUI wird upgedated. Danach keine Elemente setzen
Q: http://www.elektronik.nmp24.de/?Python-Programmierung:GUI_mit_tkinter

Links:
https://tutorials-raspberrypi.de

BK_Sekl+II_Python_spez.docx - 1 1 - (c,p) 2015 - 2026 Isp: dre

10.2.1.6. programmiertes Spielen mit microsoft Minecraft

Programm-Beispiele (gelbbraunlich (hell oliv)) stammen aus dem conrad / Franzis Adventskalender Programmie-
ren mit Minecraft 2018

Python und Minecraft stellen auf dem Raspberry Pi eine besonders Preis-glinstige Kombina-
tion dar. Praktisch hat man nur die Hardware-Kosten fir den Pi und die notwendigen Zube-
hor-Teile. Weder Python noch Minecraft kostet auf dem Pi Geld. Microsoft hat fir den Pi eine
kostenlose Variante von Minecraft spendiert. Fur erste Erfahrungen ist das schon mehr als
genug. Wir kénnen alle wesentlichen Funktionen von Mindecraft programmieren und damit
unser eigenes Spiel erstellen.

Fur Python-Anfanger ist das Objekt-orientierte sicher eine sehr grof3e Herausforderung. Aber
die schon fortgeschrittenen Programmierer mit Grundkenntnissen in OOP werden sicher
sehr schnell zurecht kommen.

Position des Spieler auswerten

Die GPIO verflgt tber 16 (??7?) Digital-Ausgange. Das heil3t diese konnen durch Programme
AN oder AUS geschaltet werden. Fur die meisten Schaltungen bedeutet das fir AN liegt eine
Spannung von 5 V an und bei AUS ist es 0 V. An den digitalen Ausgangen sind nur diese
beiden Zustande zugelassen. Zwischen-Grofen sind nicht moglich. Dies ist nur an analogen
Port's moglich (=).

In diesem Projekt soll die Position des Spieler in der Wurfel-Welt erfasst und ausgewertet
werden. Wenn der Spieler einen bestimmten Bereich in der Minecraft-Welt erreicht hat, dann
soll eine zweite LED (rot) leuchten.

an Pin 23 und Pin 25 muss jeweils eine LED

entweder mit integriertem Vorwiderstand

oder ein solcher in Reihe mit einer normalen

LED geschaltet werden (das lange Beinchen

der LED's steht fur den Plus-Pol und kommt

an den Pin

das andere (kiirzere) Beinchen ist auf Minus

bzw. Masse zu schalten

unbedingt die richtige Polung und auch die
Pin-Auswahl beachten, ansonsten kodonten
die Bauelemente oder gar der Pi beschadigt
werden

am Besten Aufbau auf einem SteckBrett

#!/usr/bin/python notw. Zeile fir Kommandozeilenstart von
Python-Programmen
import mcpi.minecraft as minecraft Bibliothek fur die Verbindung mit Minecraft
import RPi.GPIO as GPIO Bibliothek fur die Ansteuerung der GPIO-
Schnittstelle
mc = minecraft.Minecraft.create () Erstellen eines Minecraft-Objektes mit dem
Namen mc
GPIO.setmode (GPIO.BCM) Setzen der Pin-Namen It. BCM
GPIO.setup (23, GPIO.OUT) Initialisierung des Port 23 fiir Ausgabe
GPIO.setup (25, GPIO.OUT) Initialisierung des Port 25 fiir Ausgabe
while True: Endlos-Schleife (wird durch Spiel unterbro-
_ chen)
p = mc.player.getTilePos () Holen der akt. Spieler-Position und Speichern
. in p
if (p.x==8 and p.z>=3 and p.z <=4): Priifen ob Spieler in einem bestimmten Be-

BK_Sekl+II_Python_spez.docx - 12 - (c,p) 2015 - 2026 Isp: dre

reich ist (hier x=8 und z zwischen 3 und 4)

GPIO.output (23, True) Wenn ja, dann Ausgabe 1 (Spannung) auf

GPIO.output (25, False) Pin 23 und 0 (keine Spannung) auf Pin 25
else: Sonst

GPIO.output (25, True) Ausgabe 1 (Spannung) auf Pin 25 und 0 (kei-

GPIO.output (23, False) ne Spannung) auf Pin 23

an Pin 23 und Pin 25 muss jeweils eine LED entweder mit integriertem Vorwiderstand oder
ein solcher in Reihe mit einer normalen LED geschaltet werden (das lange Beinchen der
LED's steht fur den Plus-Pol und kommt an den Pin

das andere (kirzere) Beinchen ist auf Minus bzw. Masse zu schalten

unbedingt die richtige Polung und auch die Pin-Auswahl beachten, ansonsten kdénten die
Bauelemente oder gar der Pi beschadigt werden

am Besten Aufbau auf einem SteckBrett
Spiel muss vor dem Starten des Python-Programmes laufen

ev. Warn-Hinweise wegen des Zugriffs auf die GPIO kénnen ignoriert werden, Programm
l&uft schon im Hintergrund

BK_Sekl+II_Python_spez.docx - 13 - (c,p) 2015 - 2026 Isp: dre

Material eines Block's auswerten
#!/usr/bin/python

import mcpi.minecraft as minecraft
import RPi.GPIO as GPIO

import time
mc = minecraft.Minecraft.create ()

rot = 0

gelb =1

gruen = 2

Ampel = [18,23,25

GPIO.setmode (GPIO.BCM)

GPIO.setup (Ampel[rot], GPIO.OUT, +
initial = True)

GPIO.setup (Ampel[gelb], GPIO.OUT, ¢
initial = False)
GPIO.setup (Ampel [gruen], GPIO.OUT, +
initial = False)

try:
while True:
p = mc.player.getTilePos ()
mat = mc.getBlock(p.x,p.y-1,p.2)
if mat == 98:

GPIO.output (Ampel [gelb], True)
time.sleep (0.6)
GPIO.output (Ampel [rot], False)
GPIO.output (Ampel [gelb], False)
GPIO.output (Ampel [gruen], True)
time.sleep (2)
GPIO.output (Ampel [gruen], False)
GPIO.output (Ampel [gelb], True)
time.sleep (0.6)
GPIO.output (Ampel [gelb], False)
GPIO.output (Ampel [rot], True)
time.sleep(2)

except KeyboardInterrupt:

GPIO.clearup ()

notw. Zeile fir Kommandozeilenstart von
Python-Programmen

Bibliothek fiir die Verbindung mit Minecraft
Bibliothek fir die Ansteuerung der GPIO-
Schnittstelle

Bibliothek mit Zeit- Funktionen einbinden
Erstellen eines Minecraft-Objektes mit dem
Namen mc

Definition von Variablen (quasi als Konstan-
ten)

Liste der fur die Ampel (angeschlossene
LED's benutzte Port's

Setzen der Pin-Namen It. BCM

Initialisierung des Port It. Ampel-Liste fur
Ausgabe

... fir Gelb

... fur Griin

nachfolgender Block wird ausprobiert (Ab-
bruch folgt spater!)

Endlos-Schleife (wird durch Spiel unterbro-
chen)

Holen der akt. Spieler-Position und Speichern
inp

Material des Block's unter dem Spieler ausle-
sen

Prifen ob Material den Code 98 hat

Wenn ja, dann ubliche Lichtschaltung einer
Ampel

kurze Pause 0,6 s

lange Pause 2 s

Abbruch des probierten Block's durch eine
Tatstatur-Unterbrechung (praktisch Tasten-
druck)

GPIO-Port-Belegung / -Benutzung 16schen

+7 Zeilenumbruch nur fiir die Darstellung des Quelltextes (Layout), bedeutet, dass in der Zeile weitergeschrie-

ben wird

BK_Sekl+Il_Python_spez.docx

-14 -

(c,p) 2015 - 2026 Isp: dre

Schlag mit dem Schwert auswerten
#!/usr/bin/python

import mcpi.minecraft as minecraft
import RPi.GPIO as GPIO

minecraft.Minecraft.create ()
[18,23,25]

mc =
LED =

GPIO.setmode (GPIO.BCM)

for 1 in LED:
GPIO.setup (i, GPIO.OUT, initial=¢+
False)

try:

while True:

for hit in mc.events. ¢
pollBlockHits () :
bl = mc.getBlockWithData (+
hit.pos.x, hit.pos.y, hit.pos.y)
if bl.id == block. ¢

GLOWSTONE BLOCK. id:
for 1 in LED:
GPIO.output (1.True)
time.sleep (0.05)
GPIO.output (i.False)

except KeyboardInterrupt:
GPIO.cleanup ()

notw. Zeile fir Kommandozeilenstart von
Python-Programmen

Bibliothek fiir die Verbindung mit Minecraft
Bibliothek fir die Ansteuerung der GPIO-
Schnittstelle

Erstellen eines Minecraft-Objektes mit dem
Namen mc

Setup der GPIO-Schnittstelle im BCM-Modus
und auf Ausgaben; Benutzung der Port's ais
der LED-Liste

nachfolgender Block wird ausprobiert (Ab-
bruch folgt spater!)

Endlos-Schleife (wird durch Spiel unterbro-
chen)

fur alle Ereignisse (hits) aus der aktuellen
Event-Liste dieses Block's

Erfassen der aktuellen Block-Daten

Wenn der akt. Block von dem angegebenen
Material ist, dann ...
lasse die die LED's hintereinander

kurz
aufblitzem

Abbruch durch eine Tastatur-Betatigung
dann noch GPIO nullen

BK_Sekl+ll_Python_spez.docx

-15-

(c,p) 2015 - 2026 Isp: dre

auf externes Ereignis (z.B. Tasten-Druck) reagieren (und Blocke erstellen)

#!/usr/bin/python

import mcpi.minecraft as minecraft
import mcpi.block as block

import RPi.GPIO as GPIO

import time

mc = minecraft.Minecraft.create ()

tl = 8
GPIO.setmode (GPIO.BCM)
GPIO.setup(tl,GPIO.IN, GPIO.PUD DOWN)

try:
while True:
if GPIO.input (tl)==True:

p = mc.player.getTilePos ()
mc.setBlocks (p.x-1, p.y, ¥
p.z-1, p.x+1, p.y, p.z+l,block.SAND)

mc.player.setPos(p.x,p.y*t1l,p.2)

time.sleep(0.2)
except KeyboardInterrupt:
GPIO.cleanup ()

ein Taster wird zwischen "3,3V" (innen Pin 1) und

Port 8 (aufRen 12. Pin (Nr. 24)) geschaltet
s.a. Bau-Plan rechts

an einem weiteren Pin 1aRt sich ein weiterer Taster

betreiben (siehe Aufbau-Plan unten)

diesem kénnen wir unabhangig vom ersten Taster

eigene Befehle zuordnen

fritzing

notw. Zeile fir Kommandozeilenstart von
Python-Programmen
Bibliothek fiir die Verbindung mit Minecraft

Bibliothek fir die Ansteuerung der GPIO-
Schnittstelle

Erstellen eines Minecraft-Objektes mit dem
Namen mc
Festlegen des Port's flir die Eingabe (Taste)

iE.ilnschaIten des Pull-down-Widerstandes auf
dem Rasp Pi

Wenn die Taste gedrickt ist, dann ...

Erstellen von neuen Blécken als 3x3-Flache
unter dem Spieler (Material ist Sand)
Korrektur der Spieler-Position auf der Sand-
Flache

fritzing

Es werden die Port's 16 und 8 benutzt, die liegen auf
den GPIO-Pin's 36 und 24. Die roten Draht-Briicken
sind fur den Masse-Kontakt beider Taster zustandig.

BK_Sekl+Il_Python_spez.docx - 16 -

(c,p) 2015 - 2026 Isp: dre

Im folgenden Programm soll 3 Blécke vor der Spieler-Position ein Baum gebaut und mit der
anderen Taste soll der Baum wieder entfernt werden. Dazu andert man den Typ eines
Block's einfach auf Luft (Code: 0).

#!/usr/bin/python

import
import
import
import

mc =

tl =
t2 =

GPIO.
GPIO.

GPIO

try:

mcpi.minecraft as minecraft
mcpi.block as block
RPi.GPIO as GPIO

time

minecraft.Minecraft.create ()

8

16

setmode (GPIO.BCM)

setup (tl,GPIO.IN, GPIO.PUD_DOWN)

.setup (t2,GPIO.IN, GPIO.PUD DOWN)

while True:

if GPIO.input (tl)==True:

p = mc.player.getTilePos ()
mc.setBlock (p.x+3, p.y, p.z, <

block.WOOD)

19)0 A

mc.setBlocks (p.x+2, p.y+1l,+
1, p.x+4,p.y+2, p.z+1,+

block.LEAVES)

if GPIO.input (t2)==True:

p = mc.player.getTilePos ()
mc.setBlock (p.x+3, p.y, p.z,*

block.AIR)

p.z-1,

mc.setBlocks (p.x+2, p.y+l,+
p.xt4,p.y+2, p.z+1l, block.AIR)

time.sleep (0.2)

except KeyboardInterrupt:
GPIO.cleanup ()

Festlegen des Port's fiir die Eingabe (Taste1)
und fur Taste 2

iE.i.nschaIten der Pull-down-Widerstande auf
dem Rasp Pi

Wenn die Taste1 gedrickt ist, dann ...

Erstellen von neuen Blocken als 3x3-Flache
unter dem Spieler (Material ist Sand)
Korrektur der Spieler-Position auf der Sand-
Flache

BK_Sekl+ll_Python_spez.docx

-17 -

(c,p) 2015 - 2026 Isp: dre

Material-Code dt. Bezeich- | ID Material-Code dt. Bezeich- | ID
nung nung

AIR Luft 0 STONE_SLAB 44

STONE Stein 1 BRICK _BLOCK 45

GRASS Gras 2 TNT Sprengstoff 46

DIRT 3 BOOKSHELF 47

COBBLESTONE 4 MOSS_STONE 48

WOOD PLANKS 5 OBSIDIAN Obsidian 49

SAPLING 6 TORCH 50

BEDROCK 7 FIRE Feuer 51

WATER_FLOWING 8 STAIRS WOOD 53

WATER 8 CHEST 54

WATER_STATIONARY 9 DIAMAND ORE Diamand-Erz 56

LAVA FLOWING 10 DIAMAND BLOCK 57

LAVA 10 CRAFTING _TABLE 58

LAVA STATIONARY 1 FARMLAND Ackerland 60

SAND Sand 12 FURNACE_INACTIVE 61

GRAVEL 13 FURNACE_ACTIVE 62

GOLD ORE Gold-Erz 14 DOOR _WOOD Holztur 64

IRON_ORE Eisen-Erz 15 LADDER 65

COAL_ORE 16 STAIRS COBBLESTONE 67
WOOD Holz 17 DOOR _IRON Eisentir 71

LEAVES 18 REDSTONE_ORE 73
GLASS 20 SNOW Schnee 78
LAPIS _LAZULI_ORE 21 ICE Eis 79
LAPIS LAZULI BLOCK 22 SNOW_BLOCK Schnee-Block 80
SANDSTONE Sandstein 24 CACTUS Kaktus 81

BED 26 CLAY 82
COBWEB 30 SUGAR_CANE 83
GRASS TALL 31 FENCE 85
WOLL Wolle 35 GLOWSTONE BLOCK 89
FLOWER_YELLOW 37 REDROCK_INVISIBLE 95
FLOWER CYAN 38 STONE BRICK 98
MUSHROOM BROWN 39 GLASS PANE 102
MUSHROOM_RED 40 MELON Melone 103
GOLD BLOCK 41 FENCE_GATE 107
IRON_BLOCK 42 GLOWING _OBSIDIAN 246
STONE_SLAB DOUBLE 43 NETHER REACTOR CORE 247
Q: Begleitheft zu: conrad / Franzis Adventskalender Programmieren mit Minecraft 2018; erw. drews

eine LED dimmen (frequentes Signal ausgeben)

Problem: LED's lassen sich nicht wie Glihlampen dimmen. Bei diesen kann man durch eine
gréRRere oder kleiner Betriebs-Spannung die Leuchtstarke verandern. LED's brauchen einen
minimale Spannung — quasi zum Zinden — und die Betriebsspannung kann auch nicht so
einfach variiert werden, da es schnell zur Uberlastung (Zerstérung) kommen kann.

Die analogen Port's des Rasp Pi (GPIO) sind nicht so auch nicht fur eine Steuerung von

LED's geeignet.

Der technische Ausweg ist ein Verandern von Leucht- und Dunkel-Phasen. Damit das stan-
dige AN und AUS nicht als Blinken erkannt wird, benutzt man eine Arbeits-Frequenz von hier

50 Hz.

BK_Sekl+Il_Python_spez.docx

-18 -

(c,p) 2015 - 2026 Isp: dre

#!/usr/bin/python

import mcpi.minecraft as minecraft
import RPi.GPIO as GPIO

mc = minecraft.Minecraft.create ()

LED = 25
GPIO.setmode (GPIO.BCM)
GPIO.setup (LED,GPIO.OUT, initial=False)

pwm = 0
1l = GPIO.PWM(LED, 50)
l.start (pwm)

try:
while True:
p = mc.player.getTilePos ()
if p.z>=5 and p.z<=15:
pwm = 10* (15-p.z)

1.CangeDutyCycle (pwm)
time.sleep(0.1)

except KeyboardInterrupt:
1l.stop ()
GPIO.cleanup ()

Ein Tast-Verhaltnis von 0 bedeutet bei ei-
nem Rechteck-Signal einen minimalen AN-
Teil. Praktisch ist der Pegel standig auf 0 V
gelegt.

Sind die AN-Phasen nur kurz (s.a. oberes
Diagramm), dann blitzt die LED nur kurz auf.
Da dies mit einer Freuenz von 50 Hz (so
initialisiert im Programm) passiert, sehen wir
das als sehr schwaches Leuchten (Licht-
Summe).

Bei einem Tastverhaltnis von 50 sind AN-
und AUS-Teil jeweils 50% - also gleichlang
(s.a. mittlere Abb.).

Physikalisch entspricht das der halben Licht-
tarke. Da unser optischer Sinn aber nicht
linear funktioniert, erkennen wir das immer
noch als relativ dunkel.

Je langer der AN-Teil wird, umso heller wird
uns die LED erscheinen.

Setzt man den PWM-Wert auf 100, dann ist
ein Dauer-AN — also standig 5 V — am be-
treffenden Port anliegend. Damit ist die
Leuchtstarke ausgeschopft (zumindestens im
reguléren Bereich).

notw. Zeile fir Kommandozeilenstart von
Python-Programmen

Bibliothek fiir die Verbindung mit Minecraft
Bibliothek fir die Ansteuerung der GPIO-
Schnittstelle

Erstellen eines Minecraft-Objektes mit dem
Namen mc

LED an Port 25

Initialiserung der GPI1O

Tast-Verhaltnis auf Null setzen ()
Erzeugen eines PWM-Objektes als |
Starten der Ausgabe

Wenn bestimmte Z-Position benutzt wird,
dann wird Tast-Verhaltnis schrittweise (in
Abhangigkeit von der Z-Position) erhéht
Setzen des neuen Ausgabe-Signals
System-Wartezeit

Ausgabe am Port wird beendet

Spannung
UM A
50 |_| |_| |_| |_| l_
¢)) Zor
t[s]
Spannung
UM A
5ho— e |_| |_| l_
0)) Zet
t[s]
Spannung
UM A
0 Zeit‘;
t[s]

BK_Sekl+ll_Python_spez.docx

-19-

(c,p) 2015 - 2026 Isp: dre

einen digitalen Pegel (/ Sensor-Kontakt) auswerten

#!/usr/bin/python

import mcpi.minecraft as minecraft
import RPi.GPIO as GPIO

mc = minecraft.Minecraft.create()
LED = 18
Kl = 20

GPIO.setmode (GPIO.BCM)
GPIO.setup (LED,GPIO.OUT,initial=False)
GPIO.setup (K1, GPIO.IN)

try:
while True:
if GPIO.input (K1) == False:
GPIO.output (LED, True)
mc.setBlocks (3,2,4,3,2,5,+
block.GOLD ORE)
else:
GPIO.output (LED, False)
mc.setBlocks (3,2,4,3,2,5,¢
block.COAL ORE)
time.sleep (0.05)
except KeyboardInterrupt:
GPIO-cleanup ()

notw. Zeile fir Kommandozeilenstart von
Python-Programmen

Bibliothek fur die Verbindung mit Minecraft
Bibliothek fir die Ansteuerung der GPIO-
Schnittstelle

Erstellen eines Minecraft-Objektes mit dem
Namen mc

Die digitalen Eingange an Schaltkreisen sind nicht eindeutig

auf Null oder Eins gesetzt. Die interne Schaltung ermdglicht
haufig stark schwankende Werte, die nicht eindeut auswertbar
sind. Deshalb sorgt man mit einer einfachen Widerstands-
Schaltung dafur, dass immer eindeutige Signale anliegen. Bei
Schaltkreisen spricht man beim Null-Signal vom sogenannten L)

Prll-down
Widerstand

LOW-Pegel, der Ublicherweise einer Spannung von 0 Volt ent-
spricht. Am Eingang (IN) kommt in der nebenstehenden Schal-
tung keine Spannung an. Der Widerstand sorgt daflr, dass
irgendwelche anderen Spannungen in die Masse (GND, Er-

dung) abflieRen kénnen. Da der Widerstand das Signal auf o

LOW bzw. DOWN runterzieht, spricht man von einem Pull- a8V +rt4:
down-Widerstand. Pull-down M
Wird nun der Schalter geschlossen, dann liegt die volle Span- Widerstand | 110 ki2

nung (hier +3,3 V) am eingang (IN) an. Diese Spannung wird GND, GND

eindeutig als HIGH bzw. Eins interpretiert und die nachfolgen-
den (internen) Schaltungen reagieren entsprechend.

Das Schatungs-Prinzip lasst sich auch umdrehen.

Hier nutzt man zum Erzeugen eines HIGH-Signals einen so-

genannten Pull-up-Widerstand. Dieser reduziert zwar die Be-
triebsspannung (hier: +3,3 V) auf einen deutlich niedrigeren
Wert, aber dieser ist immer groer als Null. Er zieht in quasi
Uber 0 V hoch. Somit interpretiert der Schaltkreis ein HIGH-
Signal. Interpretieren heil3t hier, dass die internen logischen

Schaltkreise umschalten.

Drickt man nun den Taster, dann schliel3t man den Eingang
(IN) mit der Masse (GND) kurz. Es liegt keine Spannung mehr
am Eingang an und dieses bedeutet in der Schaltungs-technik

eben ein LOW-Signal.

BK_Sekl+Il_Python_spez.docx

-20 -

(c,p) 2015 - 2026 Isp: dre

Die Widerstands-Werte kdnnen relativ weit gefachert sein. Je

nach gewinschter Empfindlichkeit und Schaltsicherheit kén- +3'3T-u.-.- - 10kQ o
nen Widerstande von mehr als 1 kW bis hoch zu einigen MW Widerstand
verwendet werden. Fur praktische Schaltungen kann man die IN

optimalen Werte mit Drehwiderstdnden ermitteln und dann GND o GND

gegen einen passenden einfachen Widerstand ersetzen.

Fir eine konkrete "Sensor"-Schaltung nutzen wir die folgende Pull-up-Schaltung. Dabei wird
kein Taster oder Schalter genutzt, sondern unser normaler Haut- und Korper-Widerstand.
Wir werden somit zum elektrischen Leiter und der minimale Strom, der nun durch uns flief3t,
kann eine elektronische Schaltung beeinflussungen.

Der etwas groRer gewahlte Widerstand wird zwischen Strom-
Versorgung (hier: +3,3 V) und dem Eingang (IN) des Schalt-
kreises eingebaut. Es fliet ein kleiner Strom, der flr einen

Pullap

Widerstand

33V 100 kE2 - 10 M{X

HIGH-Pegel am Eingang sorgt. =¥
Durch die Beruhrung des IN-Kontaktes kommt es quasi zu N
einem "KurzschluR" iber den menschlichen Koérper und seiner GND

Haut. Der Pegel wird gegen 0 V gezogen, wass der Schalt- GND
kreis als LOW-Pegel interpretiert.

Naturlich ist es kein echter Kurzschluf3. Unsere Haut und un-
ser Korper haben einen deutlich messbaren elektrischen Wi-
derstand. Feuchte Finger verringern den Widerstand weiter.
Weil dementsprechend sehr trockene Haut einen sehr grof3en
Widerstand hat, kann es sein, dass die Schaltung nicht aus-
I6st. Dann hilft z.B. das Anfeuchten der Hand oder der Finger.

fritzing

eine RGB-LED ansteuern (beliebige Farbe ausgeben)

Bei LED's haben wir schon verschiedene Farben gesehen. Die Farbauswahl ist aber durch
die verfugbaren Halbleiter beschrankt.

Aber auch hier kdnnen wir wieder unser Auge austricksen. Bringt man jeweils eine LED der
drei Grundfarben in einem Geh&ause unter, dann kann man durch die unterschiedliche An-
steuerung der Einzelfarben eine optische Farb-Mischung erreichen. Statt der Farben Rot-
Gelb-Blau wird aus historischen Grinden das Farbsystem RGB benutzt. Hier sind die drei
Grund-Farben Rot-Griin-Blau. Auch aus diesen drei Farben lassen sich alle Farben — ein-
schliel3lich weily — mischen.

BK_Sekl+II_Python_spez.docx - 21 - (c,p) 2015 - 2026 Isp: dre

Altere RGB-LED's hatten keine integrierten Vorwiderstande. In den modernen RGB-LED's
sind passende Vorwiderstande eingebaut, so dass eine optimale Farbmischung mdglich ist.
Fur "weil®" mussen ja alle drei Grundfarben gleichstark leuchten. Wir gehen hier vereinfacht
von drei gleich grofien Widerstanden aus. Sie betragen 220 Q. Bei alteren RGB-LED's schal-
ten wir einfach die Vorwiderstande auf dem Steckbrett zwischen Plus-Pol (digitaler Ausgang)
und der RGB-LED.

Bose Frage zwischendurch:

von Max Neugierig: "Kann man nicht nur einen einzelnen Vorwiderstand auf
die Masse-Seile verwenden? Das wiirde doch immer zwei Widerstinde einspa-
ren, oder?”

Zuerst wollen wir nur die drei Grund-Farben nutzen — also die Einzel-LED's an- und aus-
schalten. Dadurch sehen wir die Elementar-Farben Rot-Griin-Blau.

#!/usr/bin/python notw. Zeile fir Kommandozeilenstart von
Python-Programmen

import mcpi.minecraft as minecraft Bibliothek fiir die Verbindung mit Minecraft

import RPi.GPIO as GPIO Bibliothek fir die Ansteuerung der GPIO-
Schnittstelle

mc = minecraft.Minecraft.create () Erstellen eines Minecraft-Objektes mit dem
Namen mc

Im nachsten Schritt sollen entweder zwei oder alle drei Einzel-LED's gemeinsam angesteuert
werden. Dadurch erreichen wir erste Farbmischungen. Die RBG-LED leutet dann z.B. violett,
wenn die rote und die blau Elementar-LED angesteuert wird. Wenn man genau hinsieht, er-
kennt man noch die Einzel-Komponenten. Aus einiger Entfernung ist nur noch die Mischfar-
be zu erkennen.

Richt vielseitig wird unsere RGB-LED, wenn wir die einzelnen Farben "dimmen". Wir kénnen
dadurch jede beliebige Farbe mischen.
Nun wollen wir einen schleichenden Farbverlauf programmieren.

eine LED dimmen (frequentes Signal ausgeben)

#!/usr/bin/python notw. Zeile fir Kommandozeilenstart von
Python-Programmen

import mcpi.minecraft as minecraft Bibliothek fiir die Verbindung mit Minecraft

import RPi.GPIO as GPIO Bibliothek fir die Ansteuerung der GPIO-
Schnittstelle

mc = minecraft.Minecraft.create () Erstellen eines Minecraft-Objektes mit dem
Namen mc

eine LED dimmen (frequentes Signal ausgeben)

BK_Sekl+II_Python_spez.docx - 22 - (c,p) 2015 - 2026 Isp: dre

#!/usr/bin/python notw. Zeile fir Kommandozeilenstart von
Python-Programmen

import mcpi.minecraft as minecraft Bibliothek fiir die Verbindung mit Minecraft

import RPi.GPIO as GPIO Bibliothek fir die Ansteuerung der GPIO-
Schnittstelle

mc = minecraft.Minecraft.create () Erstellen eines Minecraft-Objektes mit dem
Namen mc

BK_Sekl+II_Python_spez.docx - 23 - (c,p) 2015 - 2026 Isp: dre

10.2.2. Aduino und Verwandte

Die Grund-Konzeption der Arduino's ist eine andere, als die bei den Raspberry Pi's. Die
Arduino's sind kleine Board's, die sich als Physical-Computing-Plattform verstehen. Dabei
sollen sie bestimmte Steuerungs-Aufgaben Gbernehmen.

Die Programmierung erfolgt urspriinglich Uber eine C-ahnliche Sprache. Die Programme
nennen sich Sketche und kdnnen die Arduino's zu beeindruckenden Leistungen bringen.

Seit ein paar Jahren ist auch eine Programmierung mit Python méglich. Dazu missen aber
diverse Vorarbeiten erledigt werden, die wir spater vorstellen.

10.2.2.0. Kurzbeschreibung und alleemeine Einfiihrung zu Arduino

sind programmierbare Kleinst-Rechner
Programme werden auf PC erstellt und dann auf den Arduino Ubertragen
dort laufen sie dann eigenstandig (unabhangig vom Programmier-PC)

derzeit sind "Arduino Uno"-Clone fir deutlich unter 10 Euro zu haben

ahnlich ist es bei dem kleineren Arduino Micro, diese werden in speziellen Versionen — oft
als loT-Board's — mit WLAN- oder Bluetooth-Schnittstelle angeboten, da liegt der Preis dann
aber auch zwischen 20 und 30 Euro

einige — nicht ganz 100%ig kompartible — Uno-Platinen sind sogar unter 5 Euro aus China
beziehbar, sie bendtigen einen extra Treiber und sind dann kompartibel.

Interssant sind Boxen, die neben der Platine meist Unmengen von elektronischen Bauele-
menten und Kabeln enthalten. Auch hier sind die Preise sehr interessant und man bekommt
ein Bastel-Set zwischen 8 und 50 Euro. Bei den grofdten Set's erschlagen einen die Mdglich-
keiten. Da besteht eher die Sorge, dass man da garnicht alles probieren kann. Vielfach feh-
len auch Dokumentationen, die den gesammten Bauteile-Bestand erfassen.

10.2.2.1. Einrichtung einer Umgebung fiir Programmierung eines Arduino mit Py-
thon

es gibt verschiedene Herangehensweisen

Bei der Ersten missen Programmier-Rechner und Arduino immer verbunden sein und die
Arduino's kénnen auch nicht selbststandig (weiter-)arbeiten. Das Zauberwort heif3t hier
pyFirmata (= Variante mit pyFirmata:).

Nach einem ahnlichen Prinzip funktioniert pySerial (=). Diese Variante wird dann nachfol-
gend erlautert (= Variante mit pySerial:). Man kann sich frei zwischen pySerial und pyFirma-
ta entscheiden. Beide Varianten missen nicht parallel auf dem Rechner installiert werden.
Die zweite Herangehensweise setzt auf eine interne Umsetzung des Python-Programm's in
einen C-Code, welcher dann compiliert auf dem Arduino (auch selbststandig) laufen kann.
Das Arbeits-Prinzip nennt man Cross-Compiling. Der Arduino kann dann auch im stand-
alone-Betrieb — also ohne den Programmier-Rechner - arbeiten. Dazu weiter hinten Genaue-
res (= Variante mit Shed Skin:).

BK_Sekl+II_Python_spez.docx - 24 - (c,p) 2015 - 2026 Isp: dre

Variante mit pyFirmata:

direkte Interpretation eines Python-Programm's auf dem Arduino ist nicht moglich, da auf
dem Arduino solch komplexe Software, wie ein Interpreter, nicht laufen kann.
Man kann aber einen Arduino Uber die USB-Verbingung steuern.

Notwendig ist die sogenannte pyFirmata-Stelle fir Python, also eine Erweiterung (ein Mo-
dul). Die holen wir uns von github.com (=).

Auf dem Computer, mit dem programmiert werden soll, muss zuerst die Arduino-IDE istalliert
werden. Die gibt es auf arduino.cc zum Downloaden.

Nun muss auch das Python-System fir die Zusammenarbeit mit dem Arduino konfiguriert
werden. Das geht z.B. mit:

pip install pyfirmata

in der Arduino-Programmier-Umgebung den passenden Arduino am richtigen Port einstellen

"File" "Examples" "Firmata" ("Datei" "Beispiele" "Firmata") den Sketch "StandardFirmata"
herunterladen und auf den Arduino hochladen

Die Python-Programm mussen dann immer das pyFirmata-Modul importieren:

from pyfirmata import Arduino, util
import time

Als nachstes setzen wir die Kommunikation auf die zugewiesene USB-Schnittstelle:
board = Arduino("COM3")
und schon kann das ubliche Programmieren beginnen.

Das klassische Start-Programm ist bei den Arduino's ein LED-Blink-Programm. Im einfachs-
ten Fall nutzen wir die Board-interne LED am Pin 13.

Naturlich kann auch eine externe LED mit beliebiger Farbe angesteuert werden. Dazu muss
dann eine LED mit einem Vorwiederstand () zwischen Pin X und Gnd (Pin) gesteckt werden.
Am Besten sind Aufbauten mit sogenannten Bread-Board's geeignet. Die lassen sich schnell
und sicher zusammenstecken.

Den Bauplan sehen wir nebenan.

Im Python-Editor erstellen wir nun den eigentlichen Arbeits-Teil unseres Programm's:

BK_Sekl+II_Python_spez.docx - 25 - (c,p) 2015 - 2026 Isp: dre

while True:
board.digital[13].write(1)
time sleep(0.3)
board.digital[13].write(0)
time sleep(0.3)

Aufgaben:

1. Andern Sie die Blink-Frequenz der 1.ED! (Hell- und Dunkel-Phasen sollen
aber unbedingt gleichlang sein!)

2. Nun soll die LED am Pin 14 angeschlossen werden! Welche Verédnderun-
gen miissen am Board und im programm vorgenommen werden?

3. Schreiben Sie ein Programm, dass unaufhorlich SOS blinktl!

4. Konzipieren und erstellen Sie nun ein Programm, dass einen beliebigen cin-
zugebenen Text per LED als MORSE-Zeichen sendel!

Variante mit pySerial:
installieren mit:

pip install pyserial

Programmieren:
import serial # ist pySerial
board = serial.Serial(‘/dev/cu.usbmodem143311', 9600,timeout=2) # bzw. Port unter Win

while True:
board.write('Testtext')
antwort = board.readline()
print("Antwort des Board's: ", antwort)

print("Verbindung zum Board mit beliebiger Taste unterbrechen!")

try:
while True:

board.digital[13].write(1)

board.digital[13].write(0)
except Keyboardinterrupt:
board.exit()
print("Verbindung zum Board ist unterbrochen."

BK_Sekl+II_Python_spez.docx - 26 - (c,p) 2015 - 2026 Isp: dre

import serial
verbindung = serial.Serial('/dev/tty.usbserial', 9600)

while True:
print verbindung.readline()

Variante mit Shed Skin:

Cross-Compiler
Ubersetzt Python-Programm in ein C/C++-Programm
derzeit wird nur ein begrenter Sprach-Umfang von Python unterstitzt

- http://shedskin.github.io/ (Download, ...)
- https://en.wikipedia.org/wiki/Shed_Skin (engl. Wikipedia-Artikel)
- https://shedskin.readthedocs.io/en/latest/ (Dokumentation)

10.2.2.x. Spezialfall UDOO

Kombination aus Raspberry-Pi-ahnlichem Grundsystem mit Arduino-Hardware

sehr Leistungs-fahig, aber weniger bekannt

Kleinserien-Produktion Gber Projekt (Finanzierung Uber ??? Founding (Kickstarter.com))

10.2.3. FRANZIS — Experimentierplatine mit FT232R

USB/Seriell-Wandler
praktisch Schnittstelle zwischen Betriebssystem / Anwender-Programmen und Experimen-
tier-Hardware

leider nur unter Linux verwendbar und somit auch noch ein Rechner notwendig
(Nutzung dber virtuelle Maschine noch nicht gepriift)

BK_Sekl+II_Python_spez.docx - 27 - (c,p) 2015 - 2026 Isp: dre

Kombination mit graphischer Oberflache Gtk
Fenster-Manager Gnome
Gtk selbst ist auch fur Windows verfugbar

erhaltlich bei FRANZIS
Preis 99 Euro (etwas teuer)

im Schnappchen-Angebot flr 49 Euro auch immer noch recht teuer

daflir bekommt man schon einen vollwertigen Raspberry Pi mit Zubehér (mSD-Karte, Bau-

elemente, ...)

10.2.4. Tl-Innovator

ab Oktober 2020
Programmierung Uber TI-Nspire

Befehle sind Uber die den Werkzeug-Button eingefiigt. Dort sind Menu's mit den verfligbaren

Python-Befehlen zusammengestellt.

Die Befehle kdnnen dann nach Art der Block-Programmierung zusammengestellt werden.

gute Hilfe sind die notwendigen Bibliotheks-Aufrufe (Importe), die als Befehl gleich immer

oben in den betreffenden MenUl's aufgezahlt sind

education.ti.com/de

auf der /fr gibt es die TI-83
ev. auch amerikanische TI-Seite nutzen

https://education.ti.com/de/activities/ti-codes

ti-unterrichtsmaterialien.net

10.2.4.y. externe Hardware

RGB-Array
anzuschlief3en Uber 4 Drahte

from ti_hub import *
rgb=rgb_array()
rgb.set(position,rot,gruen,blau)
sleep(zeit)

rgb.all_off()

BK_Sekl+Il_Python_spez.docx - 28 -

(c,p) 2015 - 2026 Isp: dre

https://education.ti.com/de/activities/ti-codes

rgb.set_all(rot,gruen,blau)

from ti_hub import *
from random import *

while get_key()!="esc":
position=randint
rot=randint(0,255)
gruen=randint(0,255)
blau=randint(0,255)
rgb.set(position,rot,gruen,blau)
sleep(1)

rgb.all_off()

mit Liste:

liste=[]
liste=[0 for i in range(16)] #Null-befiillte Liste

for pos in range(0,16):
print(listel[i])
rgb.set(pos,

gibt wert als Binar-Zahl auf dem RGB-Array aus
rgb.pattern(wert)

misst den (Gesamt-)Strom:
wert=rgb.measurement()

Aufoaben:
1.

2. Lassen Sie die einzelnen 1LED's nach und nach in der gleichen Farbe leuch-
ten! Dabei soll sich die Intensilat immer leicht erhohen.

3. Jede LED soll zufallig ausgewahlt mit einer zufalligen Farbe belegt werden.
Das Programm soll solange laufen, bis diec ESC-Tasle gedriickl wird.

4. Erstellen Sie ein Programm, dass immer eine einzelne LED fiir 1 Sekunde
in einer frei gewahlfen Farbe leuchten lasst und dann durch die nachslte ab-
gelost wird!

5. Lassen Sie einen wieder einen "Leuchlpunkl” wandern! Dieses Mal soll die
zulelzl benulzte 1LED mit halber Starke nachleuchlen!

6. Realisieren Sie ein Programm, dass immer eine zufallig ausgewahlte 1.ED
das gesamie Farbspekltrum durchlauft!

7. Realisieren Sie ein kleines Spiel bei dem der menschliche Spieler und IThr
Programm jeweils eine Zahl zwischen 1 und 8 selzen! Die gewahlfen Zahlen

BK_Sekl+II_Python_spez.docx - 29 - (c,p) 2015 - 2026 Isp: dre

werden als gegenlaufige Leuchlpunkle in den beiden Reihen des RGB-Array
dargestelll. Der menschliche Spieler hal eine blaue Reihe, Ihr Programm ci-
ne gelbe. Wenn sich die Punklveihen diberschneiden erhilt derv Spieler mit
der groflen Zahl einen Minus-Punkl, ansonsten bekommt derjenige einen
Punkl, der dic langste Reihe hatfe. Bei Gleichsland ervhalt jeder einen Punkt /
Minus-Punkl! Die Plus-Punkle werden als griine Punkfe und die Minus-
Punkfte als rofe Leucht-Punklte angezeigl. Gewonnen hat dervjenige, der zu-
erst 8§ Gewinn-Punkle hal. Ihr Programm darf die akluelle Eingabe des
menschlichen Spielers nicht fiir die akluelle Enlscheidung benulzen, darf
sich aber alle alten Eingaben merken und fiir eine Shralegie auswerfen.
(Realisieren Sie das Programm ev. in zwei groben Schrillen: Zuerst nur die
Anzeige der Spiel-Ziige. Die Ergebnisse konnen dann auf der Shell ausge-
geben werden. Im zweiten Schrilt kann dann die Spiclstand-Anzeige erfol-
gen.)

Zusalz: Lassen Sie sich eine passende Gewinn-Anzeige einfallen (Leucht-
Show)!

10.2.5. Steuerung des Calliope mini

MakeCode lasst neben der typischen Block-basierten Programmierung auch eine Uberset-
zung in Python zu. Anderungen im Python-Quell-Text werden dann wieder in die Block-Code
zuruckgespiegelt.

MakeCode-Editor > makecode.calliope.cc

Multi-Editor

makecode.calliope.cc/--multi

lasst z.B. die Programmierung und Simulation von einem Sender und einem Empfanger in
einem Browser zu

z.B. zum Testen

MakeCode-Programmierung ist Event-orientiert

OpenRoberta ist dagegen prozedural angelegt
man muss die Endlos-Schleife selbst realisieren

BK_Sekl+II_Python_spez.docx - 30 - (c,p) 2015 - 2026 Isp: dre

10.3. Datenbank-Zugriff mit Python

- https://www.hdm-stuttgart.de/~maucher/Python/html/SQL.ite.html#connection-und-cursorobjekt-erzeugen

10.3.1. SQLite 3

from sqlite import dbapi2 as sqlt

10.3.1.0. Verbindung herstellen

aulder der Verbindung brauchen wir noch ein Cursor-Objekt

es stellt quasi die imaginare Shell (Konsole, Benutzeroberflache) dar, es ist im Programm so,
als wurden wir auf die Shell Anweisungen etc. in SQL schreiben

verb = sqlt.connect(Datenbankname) # Datewnbankname ist Unterverzeichnis + Daten-
bank

eine temporare, lokale (nicht-persistierende) Datenbank Iasst sich mit:

verb = sqlt.connect(:memory:)
curs = verb.cursor()

erzeugen. Die zweite Anweisung erzeugt einen SQL-Cursor.

10.3.1.1. Erstellen einer Tabelle

curs.execute("'create table if not exists schueler (name text, vorname text, gebdatum date,
masse real, groesse integer)")

Datentyp Datentyp in
in Python | SQLite

None NULL

int INTEGER
float REAL

str (UTF8) | TEXT
unicode TEXT

buffer BLOB

BK_Sekl+II_Python_spez.docx - 31 - (c,p) 2015 - 2026 Isp: dre

https://www.hdm-stuttgart.de/~maucher/Python/html/SQLite.html%23connection-und-cursorobjekt-erzeugen

10.3.1.2. Hinzufiigen von Datensiitzen zu einer Tabelle

curs.execute("insert into schueler values ('Mustermann','Klaus','01.01.2000',63.7,177)")

verb.commit() # eigentliche Speicherung der vorher angegebenen Datensatze

10.3.1.3. Aktualisieren eines Datensatzes in einer Tabelle

geschlechterListe = ["'m","w", ...] # soviele Listen-Eintrage, wie Datensatze in Tabelle
curs.execute(™alter table schueler add column geschlecht text™)
for geschl in enumerate(geschlechterListe):
curs.execute("update schueler set geschlecht=(?) where owid=(?)",
[geschlechterListe[geschl],geschl+1])
verb.commit() # eigentliche Aktualisierung der vorher spezifizierten Werte in der
erweiterten Tabelle

10.3.1.4. Loschen eines Datensatzes aus einer Tabelle

curs.execute("'delete from schueler where vorname="Klaus" ")

verb.commit() # eigentliche Loschung der vorher spezifizierten Datensatze

10.3.1.5. Loschen einer Tabelle

curs.execute("'drop table if exists schueler™)

10.3.1.7. Beenden der Verbindung

BK_Sekl+II_Python_spez.docx - 32 - (c,p) 2015 - 2026 Isp: dre

weitere Beispiele:

import sglite3

conn sglite3.connect ('daten/Kontakte.dat")
curs = conn.cursor ()
curs.execute ("CREATE TABLE personen (PID, Vorname, Name, eMail)")

DatenListe=[(1, "Monika", "Musterfrau", "musterfrau@webb.de"),
(2,"Klaus", "Mustermann", "muma@tee-online.de"),
(3,"Prof. Lisa","Klug","Prof.L.Klug@uni-mustern.de)]

for Elem in DatenListe:
curs.execute ("Insert INTO personen VALUES (?,7?,7?,?)", Eleme)

curs.close ()
conn.close ()

curs.fetchone() liefert eine Ergebnis-Zeile zur Anfrage als Tupel
curs.fetchmany(n) liefert n Ergebniszeilen zur Anfrage als n-Tupel von Tupeln
curs.fetchall() liefert alle Ergebniszeilen zur Anfrage als Tupel von Tupeln

BK_Sekl+II_Python_spez.docx - 33 - (c,p) 2015 - 2026 Isp: dre

10.4. Web-Server-Anwendungen mit dem (Micro-) Frame-
work Flask

unterstitzt Generierung von Seiten auf einem Web-Server

allgemeines Handling:

auf einem Intranet- oder Internet-Server lauft ein Webserver (Dienst der die Bereitstellung
von http-Seiten realisiert)

auf einem Client l1auft ein Browser (Betrachter-Programm fur http-Seiten)

nach Aufruf der Server-Adresse z.B.: www.lern-soft-projekt.de oder 127.0.0.1 (localhost;
Webserver lauft auf dem eigenen Rechner) wird eine Seite (normal index.htm od.a.) ange-
fordert (get-Methode) (ev. wird mit Fehler-Meldung geantwortet

Webserver schickt HTML-Code der angeforderten http-Seite an den Browser

Browser setzt den HTML-Code in eine anzeigbare Seite um oder gibt Fehler-Meldungen aus
Client / Browser kdnnen nach Interaktionen neue Inhalte (nach-)laden / liefern / anzeigen

10.4.0. Erzeugung einer Web-Seite mit Python (Wiederholunq)

10.4.1. das Framework Flask

dient hauptsachlich der Trennung von Daten und Darstellung

der Programmierer soll sich nicht mehr vorrangig um die Darstellung seiner Daten kimmern,
das ubernimmt im Wesentlichen das Framework

der Programmierer stellt seine Daten bereit und nutzt vorgefertigte Methoden / Funktionen
usw. um die Darstellung fast von alleine dem Framework zu Uberlassen

bringt u.a. das Kachel-Design mit
sehr gut fur Anzeigen etc. von loT-Daten oder Info-Daten geeignet

ev. muss vorher ein Web-Server installiert und / oder eingerichtet werden

minimales Hello-Welt-Programm mit Flask
from flask import Flask

app = Flask(name)
@app.route('/")

def index() :
return "Hallo Welt!"

BK_Sekl+II_Python_spez.docx - 34 - (c,p) 2015 - 2026 Isp: dre

der grofde Vorteil von Flask (wie auch von anderen Frameworks), dass diese mit Templeates
(Schablonen) a'rbeiten kdnnen. Die Templates enthalten bestimmte Stellen, an denen dann
durch einfache Funktionen / Methoden die Inhalte eingefugt werden.

So ist z.B. in einem Template festgelegt, dass eine Uberschrift mit einem Rahmen versehen
sein soll, grofRer, unterstrichen und fett dargestellt werden soll. Auch Farben usw. lassen sich
definieren.

Der Programmierer ruft jetzt nur eine Funktion auf, wie z.B. generiereUberschrift() und tber-
gibt dieser nur den Text. Die ganze Einstell-Arbeit ibernimmt das Framework auf der Basis
der bereitgestellten Schablone. Ist fir eine — quasi parallel laufende — "andere" Webseite ein
anderes Template festgelegt, dann sieht die gleiche Uberschrift dort eben anders aus. Da-
rum braucht sich der Programmierer nicht zu kimmern. Das Layout gestaltet ein Designer.
Dieses Prinzip kennt man von vielen Webseiten / Social-Media-Seiten, wo man seine indivi-
duellen Farb-Einstellungen etc. vornehmen kann.

from flask import Flask Import des Flask-Frameworks
app = Flask(_ name) Flask-Applikation def.
@app.route ('/") Funktionsdekorator
@app.route ('/reserve') alternativer Dekorator
def index() beliebiger Funktionsname
return render template ("template.html, Darstellungs-Aufruf unter Nut-
varl="Hallo", var2="Welt") zung eines Templates und zu-

satzlichen Daten

Dieser Python-Code und Flask benétigen aber dazu das passende Template:

<!doctype html>
<html>
<head>
<title>
Seite: Hallo-Welt
</title>
</head>
<body>
<hl>Uberschrift der Hello-Welt-Seite</hl>
iibergebene Daten sind: {{varl}} und {{var2}}
zusammen: {{varl}} {{var2}}!
</body>
</html>

Achtung! Im Gegensatz zu Python sind bei HTML die Einrickungen nur Mittel zur Gbersicht-
licheren Darstellung. Sie kénnen vollstandig weggelassen werden und sogar alles fortlaufend
in eine Zeile geschreiben werden.

Mit weiteren Web-Techniken kénnen weitere Verbesserungen / Funktions-Erweiterungen etc.
erreicht werden. So kann man mit CSS (Cascade Style Sheets) Format-Vorlagen und andere
Layout-Parameter (z.B. fir ein Corpurate Design) definieren. Diese werden dann im HTML-
Code zugewiesen.

<head>
<link rel="stylesheet" href=stylsheet.css">
</head>

BK_Sekl+II_Python_spez.docx - 35 - (c,p) 2015 - 2026 Isp: dre

JavaScript eigente sich z.B. um Anpassungen der Seite vornehmen zu lassen oder Berech-
nungen durchzuflihren.
Die Java-Scripte werden Ublicherweise am Ende des Body-Bereiches angegeben.

<body>

<script scr="funktion.js">
</body>

Das folgende Python-Programm ist ein schénes — aber auch schon recht komplexes - Bei-
spiel fur eine Flask-Anwendung. FuUr die Nutzung der oben erwahnten Adafruit-
Experimentier-Platine oder eines ahnlichen loT-Systems soll eine Kachel-Oberflache dienen.
Die einzelnen Kacheln diesen entweder der Anzeige von Meliwerten, dem Ein- bzw. Aus-
schalten oder dem Wechsel zu Unterseiten usw.

Die Datei ist auf github.com gehostet und kann Uber:

git clone https://github.com/openHPI/Embedded-Smart-Home-2017.git

in das aktuelle Verzeichnis kopiert werden. Dort ist die nachfolgend angezeigte smartho-
me.py enthalten. Sie dient als Steuerzentrale des gesamten Projektes.

from flask import Flask, render template, request
from flask bootstrap import Bootstrap

from tiles import SimpleTile, TileManager
from helper import PageContext

app = Flask(name)
Bootstrap (app)

@app.route('/")
def main () :
tiles = [

SimpleTile ("Licht", "¥EEEEQO", "light/"),
SimpleTile ("Heizung", "#FF0000", "heaters/"),
SimpleTile ("Sicherheit", "#30FFO00", "security/"),
SimpleTile ("Wasser", "#0000FF", "water/"),
SimpleTile ("Extrapunkt 1", "#00FFFE", "/"),
SimpleTile ("Extrapunkt 2", "#FFOOFF", "/"),
SimpleTile ("Extrapunkt 3", "#AQFFAQ", "/"),
SimpleTile ("Extrapunkt 4", "#00AOFF", "/")

4

manager = TileManager (tiles)

context = PageContext ("Smarthome Projekt", "Home")

return render template("main.html", tilerows=manager,
context=context)

@app.route ('/light/"')

def light () :
living room = True
sleeping room = False

if ("living room" in request.args):
living room = True if request.args["living room"] ¢«

== "on" else False

if ("sleeping room" in request.args):

BK_Sekl+II_Python_spez.docx - 36 - (c,p) 2015 - 2026 Isp: dre

sleeping room = True if request.args["sleeping room"]+«
== "on" else False

tiles=[]

tile = SimpleTile ("Wohnzimmer: ", "", "?living room=")
tile.items[0].text += "an" if living room else "aus"
tile.link += "off" if living room else "on"

tile.bg = "#AAFFO00" if living room else "#338800"
tiles.append(tile)

tile = SimpleTile ("Schlafzimmer: ", "", "?sleeping room=")
tile.items[0].text += "an" if sleeping room else "aus"
tile.link += "off" if sleeping room else "on"

tile.bg = "#6666BB" if sleeping room else "#333388"
tiles.append(tile)

manager = TileManager (tiles)
context PageContext ("Smarthome Projekt", "Licht",+
[[u/u, "Home"]])
return render template ("main.html", tilerows=manager,+
- context=context)

if name == " main
app.run (debug=True)

10.4.2. die Flask-Erweiterung bootstrap

10.4.3. Programmierung der Web-Oberflache und Darstellung von Mel3-
werten

from flask import Flask, render template, request
from flask bootstrap import Bootstrap

from tiles import SimpleTile, TileManager
from helper import PageContext

import sqglite3
from flask import g

import requests, json
app = Flask(name)

Bootstrap (app)
app.config['BOOTSTRAP SERVE LOCAL'] = True

BK_Sekl+II_Python_spez.docx - 37 - (c,p) 2015 - 2026 Isp: dre

DATABASE="'database.sglite'

def

def

get db():
db = getattr(g,' database', None)
if db is None:
db=g. datbase=sqglite3.connect (DATABASE)
return db

query db(query, args=(), one=False):

cur = get db() .execute (query, args)

rv = cur.fetchall ()

cur.close ()

return (tv[0] if rv else None) if one else rv

@app.teardown appcontext

def

close connecting (exception) :
db = getattr(g, ' database', None)
if db is not None:

db.close ()

@app.route('/")

def

main () :
temp = query db ("SELECT wer, einheit FROM sensoren ¢
ORDER BY zeit DESC", one=True
print (temp) #Kontrollanzeige auf Konsole
tiles = [
SimpleTile ("Licht", "#EEEEOO", "light/"),
SimpleTile ("Heizung", "#FF0000", "heaters/"),
SimpleTile ("Sicherheit", "#30FF00", "security/"),
SimpleTile ("Wasser", "#0000FF", "water/"),
SimpleTile ("Innentemperatur: " + temp[0] + " " +¢
temp([1l], "#FF0OOOO"™, "/"),
SimpleTile ("AubBentemperatur", "#00FFOO", "/"),
SimpleTile ("Luftfeuchtigkeit", "#0000FF", "/"),
SimpleTile ("Helligkeit", "#FFFFOO", "/"),

manager = TileManager (tiles)

context = PageContext ("Smarthome Projekt", "Home")

return render template ("main.html", tilerows=manager,+
context=context)

@app.route ('/light/")

def

light () :
living room = True
sleeping room = False

if ("living room" in request.args):
living room = True if request.args["living room"]+
== "on" else False

if ("sleeping room" in request.args) :
sleeping room = True if request.args["sleeping room"]+«’
== "on" else False

tiles=[]

tile = SimpleTile ("Wohnzimmer: ", "", "?living room=")
tile.items[0].text += "an" if living room else "aus"
tile.link += "off" if living room else "on"

gibt Verbin-
dung zur Da-
tenbank zu-
rick

Datenbank-
Abfrage

one bestimmt,
ob nur 1 Wert
zurlickgeliefert
werden soll

BK_Sekl+II_Python_spez.docx - 38 - (c,p) 2015 - 2026 Isp: dre

tile.bg = "#AAFFOO" if living room else "#338800"
tiles.append(tile)

tile = SimpleTile("Schlafzimmer: ", "", "?sleeping room=")
tile.items[0].text += "an" if sleeping room else "aus"
tile.link += "off" if sleeping room else "on"

tile.bg = "#6666BB" if sleeping room else "#333388"
tiles.append(tile)

manager = TileManager (tiles)
context = PageContext ("Smarthome Projekt", "Licht",+
(t"/", "Home"]])
return render template ("main.html", tilerows=manager, ¢+
B context=context)
if name == " main ":

app.run(debu&ZTrue)

fehlt requests bzw. gibt es dahingehend Fehler-Meldungunegn, dann mus die Bibliothek
nachinstalliert werden:

pip3 install requests

Um z.B. externe Wetter-Daten mit anzuzeigen braucht man eine Daten-Quelle fir solche
Informationen. Dazu ist es bei openweathermap.org sich einen Account-Schlissel zu besor-
gen und damit dann rund 60 Wetter-Info-Pakete pro Stunde runterzuladen. Die Daten kom-
men als JSON-Datei und missen mittels json-Bibliothek in ein JSON-Objekt umgewandelt
werden. Dazu brauchen wir die importierte json-Bibliothek. Natirlich kdnnte man den Text
auch per Hand selbst zerlegen (parsen). Das ist aber recht aufwendig in der Programmie-
rung. Da nutzen wir lieber die vorgeferigten und gepriften Methoden / Funktionen von json.

def main () :
temp = query db (..
r = requests.get ('http://api.openweathermap.org/data/+
2.5/weather?g=Rostock, de&appid= eigene ID')

weatherdata = json.loads (r.text)

temp out = round/weatherdate['main']['temp'] - 273.15,1)

weathersymbol = '<img src="http://openweathermap.org/img*+’
/w' + weatherdatal'weather'][0]['icon'] + ".png">'

SimpleTile ("AuRentemperatur: " + str(tempout + " C
"+«
+ weathersymbol, "#FFOOFE", "/"),

SimpleTiel (..

Den API-Key muss man sich bei openWeatherMap.org besorgen.
Es gibt auf openWeatheMap.org auch API's, die eine Abfrage von Wetter-Vorhersagen er-
lauben.

BK_Sekl+II_Python_spez.docx - 39 - (c,p) 2015 - 2026 Isp: dre

BK_Sekl+II_Python_spez.docx - 40 - (c,p) 2015 - 2026 Isp: dre

10.5. Web-Applikationen mit Django

recht freies, kompakter und beherrschbares Framework

legt Wert auf effektives Programmieren (alles moglichst nur einmal programmieren (Don't
Repeat Yourself > DRY))

mit eigenem Web-Server zum schnellen Testen / Ausprobieren

Nachteile / Probleme:
Struktur nicht selbsterklarend

Links:

http://www.django-workshop.de/ (gutes aufgebautes Tutorial (dt.)) > Beispiel: Rezept-Sammlung
[scheinbar ist die Version des Tutorials veraltet (0.4), einschlieBlich der verwendeten Programm-
Versionen (Python 27!, 3.3, Django 1.4); ab und zu ist nicht klar, was auf welcher Ebene gemacht
werden muss; keine Fehler-Hinweise; es fehlt das Hintergrundwissen, um die Zusammenhange zu
verstehen; einige Texte wirken sehr abstrakt]

BK_Sekl+II_Python_spez.docx - 41 - (c,p) 2015 - 2026 Isp: dre

http://www.django-workshop.de/

10.6. MicroPython fiir Microcontroller

ua. Q:
/uP_Q1/ ... Thomas WALDMANN (Vortrag: "Einfihrung in ESP32 Microcontroller + MicroPython"; EASTERHEGG 2018;
https://media.ccc.de/v/V8W9IDL)

Es muss nicht immer ein groRer Rechner sein, um mit Python zu arbeiten. Wir haben ja
schon gesehen, dass die kleinen Raspberry Pi's ebenfalls mit Python daherkommen und
nicht wirklich Leistungs-schwacher sind. Natlrlich muss man hier die allgemeine Leistungs-
fahigkeit des Grundsystem's beachten.

Es geht aber noch kleiner. Microcontroller sind minimalste Datenverarbeitungs-Systeme und
zielen stark auf den loT-Bereich ab.

Microcontroller — oft auch als Experimentier-Board's
oder loT-Bausteine bezeichnet - verfligen auf kleins- [Eingabe }—»lv.,mmg‘—h‘ Ausgabe
ten Raum Uber alle EVAS-Teile eines Informatiksys-]
tems.

Besonders effektive Microprozessoren steuern un-
zahlige Ein- und Ausgabe-Madglichkeiten.

(Rusgabe] (Eingabe]
Speicher

Klassiker sind sicher die Arduino's. Sie waren und sind noch zu langsam und zu Speicher-
arm fur Python.

Neuere Hardware ist da um Langen besser. Zu den neuen Sternen am Himmel zahlen z.B.
die ESP-Bausteine.

Fast allen Microcontrollern ist eine sehr offene Hard- und Software gemeinsam. Zwar ist
nicht alles OpenSource oder vollig frei zuganglich, aber die offene Arbeitskultur von Hard-
und Software-Herstellern erzeugt eine schnelle und breite Nutzung in allen Bereichen.

Vorteile:

¢ relativ einfache Programmierung (im Vergleich zum sonst Gblichen C/C++)

¢ unendliches Laufen eines Programms auf minimalster Technik

e praktisch fast unbegrenztes direktes und indirektes Ansprechen von Sensoren und
Aktoren

e langfristiger und relativ unabhangiger Betrieb Uber PowerBank-Stromversorgung
moglich

o Unterstitzung vieler Protokolle und der Ublichen Hardware / Peripherie

Nachteile:

etwas eingeschrankter Befehls-Umfang

neue Bibliotheken / Module notwendig

etwas umstandliche Handhabung zwischen Entwicklung und Programm-Lauf

Grol3e der Programme meist durch relativ kleine Speicher begrenzt

auf MicroPython umgestellte Systeme missen wieder speziell auf den Ublichen
Microcontroller-Betrieb (Ubliche C/C++-Programmierung od.a.) umgestellt werden

fehlende Funktionen / Features (im Vergleich zum Standard-Python):
e keine Unterstutzung von Unicode
Leerzeichen zwischen Literalen (Zahlen) und Schliusselwdrtern notwendig
geanderte Methoden-Auflésung bei geschachtelten Klassen
nur eine Oberklasse festlegbar
unterschiedliche Ausgabe-Formate fir float-Zahlen
fur von int abgeleitete Typen ist kein Typ-Umwandlung méglich

BK_Sekl+II_Python_spez.docx - 42 - (c,p) 2015 - 2026 Isp: dre

Slicing in Listen eingeschrankt

eval() hat keinen Zugriff auf lokale Variablen

in Generator-Funktionen wird __exit__ () nicht aufgerufen
Byte-Array's werden nicht unterstitzt

String-Methode .endwith(), .ljust() und .rjust() nicht implementiert
__del__ als spezielle Methode nicht implementiert

self wird als ein Argument gezahit

begrenzte Unterstitzung von Namespace's

Zeichenketten-Verarbeitung mit Schlisselwdrtern (z.B. encoding) nicht moglich
lokale Variablen werden bei locals() nicht einbezogen

Nutzer-definierte Attribute in Funktionen werde nicht unterstitzt

spezieller Umgang mit property-Getter

die __path__-Eigenschaft von Modulen wird als relativer Pfad ausgegeben
Verkettung von Exception's nicht implementiert

die Methode Exception.__init__ gibt es nicht

keine Nutzer-definierten Attribute in Builtin-Exception's

bei Fehler-Anzeigen in while-Schleifen werden Zeilennummern anders gezahlt
fur Bytes-Objekte ist eine .format()-Methode verfiigbar

die Nutzung von step !=1 in Byte-Objektensowie in Tuple und Listen nicht mdglich
Instanzen von str-Unterklassen kénnen nicht mit str-Instanzen verglichen werden

fehlende / gednderte Funktionen / Features in Modulen:
e im array-Module
o keine Suche nach Integer moglich

o Loschen (del()) von Elementen nicht mdglich
o Nutzung von step !=1 nicht mdglich

e builtin's
e kein zweites Argument bei next() moglich
e im collections-Modul
o deque nicht implementiert
e im json-Modul
o nicht-serialisierte Eintrage erzeugen keine Exception's
e im struct-Modul
o zuviele Argumente in der .pack()-Methode werden nicht beachtet
e im sys-Modul
o die Attribute .stdin, .stdout und .stderr lassen sich nicht Uberschreiben

Bedeutung des MicroPython in der Microcontroller-Welt:
e leichter zu programmieren als C/C++
o weite und immer weiter steigende Verbreitung von Microcontrollern

bekannte Forks zum MicroPython
e CircuitPython
e PyCom

Warum funktioniert das Arbeiten mit Python auf einem Microcontroller, wenn sonst immer auf
einem extra (Host-)Rechner editiert und kompiliert werden muss?

BK_Sekl+II_Python_spez.docx - 43 - (c,p) 2015 - 2026 Isp: dre

Normalerweise sind die Interpreter und Compiler moderner Programmiersprachen sehr gro-
Re Programme. Der Speicher und meist auch die Leistung der CPU der Microcontroller reicht
nicht fir sie aus. Auch bei Python ist das so.

Bei MicroPython wird ein extra kleiner Interpreter mit eingeschrankter Leistung verwendet.
Wir haben das oben schon thematisiert.

Zum anderen bedient man sich eines Trick's. Normalerweise werden ja immer die kompilier-
ten Programme — also Binar-Dateien — auf den Microcontroller GUbertragen. Dies nennen wir
flashen. Das (fest integrierte und unveranderliche) Boot-System und die variable Firmware des
Microcontroiller's isind so ausgelegt, dass sie die gefundene Binar-Datei vom letzten Flashen
startet und unermudlich abarbeitet.

Beim Python wird der Mini-Interpreter geflasht und dazu ein klassisches Datei-System er-
zeugt. Das Boot-System des Microcontroller's startet also den aufgeflashten MicroPython-
Interpreter und dieser kommuniziert zum Einen Uber die serielle Schnittstelle oder arbeitet
ein gefundenes py-Programm ab.

BK_Sekl+II_Python_spez.docx - 44 - (c,p) 2015 - 2026 Isp: dre

10.6.x. MicroPython fur micro::bit

lasst sich auch mit dem pyCraft-Tool (=) bedienen

auf dem micro::bit muss die micropython-Firmware geladen werden
Download unter
dannach einfach auf das micro::bit-Laufwerk kopieren

ab jetzt versteht der micro::bit die Programmiersprache Python
zumindestens eine abgespeckte Version (enthaalt aber alle elementaren Befehle!)
die Programmierung und Kommunikation kann mit mehren Editoren usw. erfolgen

soll wieder mit anderen Sprachen / Systemen programmiert werden, dann muss wieder die
urspringliche Firmware aufgespielt werden (= https://microbit.org/get-started/user-
quide/firmware/)

praktischer ist die Verwendung von 2 Geraten mit jeweils anderer Firmware, dann spart man
sich Probleme, wenn man nicht mehr weiss, welche Firmware gerade |auft

weitere Editoren fiir microPython:

Text-basierte Systeme

Block-basierte Systeme

EduBlocks
https://app.edublocks.org/#MicroBit

BK_Sekl+II_Python_spez.docx - 45 - (c,p) 2015 - 2026 Isp: dre

https://microbit.org/get-started/user-guide/firmware/
https://microbit.org/get-started/user-guide/firmware/
https://app.edublocks.org/#MicroBit

10.6.x. MicroPython fur ESP-32-Microcontroller

ESP-8266 und das Nachfolge-Modell ESP-32
sind deutlich leistungsfahiger als die sonst
Ublichen Arduino's

verschiedene Ausflhrungen und Hersteller

sie unterscheiden sich vorrangig in der Anzahl : |
der herausgefihrten — und damit nutzbaren — —. e 1) P~
Pin's : e R TS AT

auffallend ist die extrem funktionell breite Auslegung des Microcontroller

man kann fast schon sagen, alles was das |oT- und Bastler-Herz liebt und braucht ist sehr
effektivim ESP umgesetzt

praktisch billige Massen-Ware, je nach Ausstattung zwischen 6 und 30 Euro

bei den teureren Varianten sind dann oft schon Display's mit dabei

(i.A. insgesamt glnstiger als Aduino-System (einschlieflich der verschiedenen Billig-Clone)
besonders herausregend in dieser Preisklasse die breite Unterstitzung von WLAN und Blue-
tooth

10.6.x.0. Vorbereiten des ESP fiir MicroPython

Download des Image von der MicroPython-Webseite (= http://micropython.org/download)
weiterhin ein Fork unter (=) verfugbar (teilweise Leistungs-fahiger, aber eben Spezial-
Lésung!)

nicht immer unbedingt das neueste Daily-Build verwenden, da hier schnell Bug's drin sein
kénnen, daflr sind aber alte Bug's im Allgemeinen bereinigt

zuerst die alte Firmware auf dem ESP I6schen
esptool.py —chip esp32 —port /dev/ttyUSBO erase_flash

neue Firmware (Minimal-OS + MicroPython) hochladen
esptool.py —chip esp32 —port /dev/ttyUSBO write_flash —z 0x1000 esp32_firmware.bin

Verbindung zum ESP-32-MicroPython — >
Uber e|n KOHSO|en-PrOgramm |§|--S:e55ion | Basic options for your PuTTY session |
h|er PUTTY EITenﬂI-l:ilgmg - Specify the destination you want to connect to
Serial line Speed
E:;"’”“ Jcomi4 [115200
- Features ((:‘onned\on(t)‘fpe: - s o e
wir brauchen eine serielle Kommunika- o e row [derell Moon T S T e
tion (also: Serial) mit den Parametern: e e raecen sored sessn
Serial line: COM14 (USB-Port) - Selection ESP32NicroPython
Speed: 115200 (ubliche Baud-Rate L oot Defat Setngs
far die Kommunikation mit dem ESP-32 o
- Telnet
- Rlogin
- 55H
ich habe mir die Parameter gleich unter - Seral Close window on et
. . Mways Never % Onlyon clean exit
einem passenden Namen abgespei-
chert
About COpen Cancel

BK_Sekl+II_Python_spez.docx - 46 - (c,p) 2015 - 2026 Isp: dre

kommuniziert Gber die USB-serielle Schnittstelle mit dem MicroPython

zuerst bekommt man
eine Status-Information
zum MicroPython und
einigen Ressourcen an-
gezeigt

den seriellen Monitor
kann man jetzt auch wei-
ter auflassen und mit den
MicroPython komminizie-
ren

im Prinzip sind wir jetzt
im interaktiven Modus, so
wie wir ihn ja schon vom
grolien Python mit IDLE
kennen

hier zwei kurze
und einfache Bei-
spiele

dieser Modus
nennt sich REPL
(Read-Evalute-
Print-Loop)

BK_Sekl+ll_Python_spez.docx

_47 -

(c,p) 2015 - 2026 Isp: dre

mit help() kann
man sich die
elementaren Hil-
fetexte flr das
MicroPython an-
sehen

BK_Sekl+II_Python_spez.docx - 48 - (c,p) 2015 - 2026 Isp: dre

10.6.x.0.1. das Tool uPyCraft

Alternativ — und insgesamt deutlich komfor-

tabler — lasst sich die MicroPython-Firmware -
auch mit dem nachfolgend besprochenem board [espa2 |
Programm (uPyCraft) erledigen. burn_addr [ox1000 -]
Falls das Programm noch nicht installiert ist e Al yes ~

bzw. noch unbekannt ist, dann bitte zuerst [coma 3]
weiter hinten lesen (= Installation und Be- Firmuare Choose

schreibung des Hilfs-Programms uPyCraft).

Dies bringt auch ein eigenes Image mit. Ich
. . . _ . U - -wl. .bi h
bleibe hier bei dem offiziellen von der micro- sers Ps2/cops2-20190520-vi.11.bin

python.org-Webseite. —

Die Lade-Adresse (burn_addr) ist offiziell die
0x1000. In einigen Anleitungen zu uPyCraft
wird dagegen empfohlen, dem Programm
die Entscheidung zu Uberlassen.

(Dann kann es sein, dass als Adresse die 0x0 angegeben ist. Bei mir klappte es mit beiden Adress-Angaben.)
Nach der Bestatigung beginnt das Léschen des Flash-Speichers auf dem ESP. Vorhandene
Dateien gehen verloren.

Auf das Loschen folgt das Schrei-

" uPyCraft

ben (Burn, Brennen) des MicroPy- x|
thon in den Speicher.
Diese Alternative zum oben be- | ere=erte=n B 1003

schrieben Flashen ist vor allem
dann interessant, wenn das uP-
yCraft dann zur Verfiigung steht und
man mal wieder ein neues MicroPy-
thon aufsetzen muss.

Burn I 4%

notwendige Treiber
https://github.com/Tasm-Devil/Micropython-Tutorial-for-esp32/archive/master.zip
downloaden und entpacken

so in das Dateisystem kopieren, dass der workspace-Ordner als Unterordner im Programm-
Ordner der uPyCraft.EXE liegt

alternativ den workspace-Ordner anders einstellen

Zum ersten Ausprobieren reicht die serielle Konsole. Irgendwann mussen wir Dateien auf
den ESP tranferieren. Dazu bendtigt man ebenfalls ein spezielles Programm.

Das Programm uPyCraft ist ein sehr flexibles Werkzeug zum Arbeiten mit MicroPython auf
einem Microcontroller.

BK_Sekl+II_Python_spez.docx - 49 - (c,p) 2015 - 2026 Isp: dre

https://github.com/Tasm-Devil/Micropython-Tutorial-for-esp32/archive/master.zip

Installation und Beschreibung des Hilfs-Programms uPyCraft

Das u im Namen des Programms steht dabei fur p - also micro. Im Internet hat sich diese
Ersetzung bei vielen Projekten manifestiert.

Der Download erfolgt von der Seite https://randomnerdtutorials.com/uPyCraftWindows. Man
erhalt eine funktionsfahige EXE. Diese kann an eine beliebige Stelle kopiert werden — u.a.
auch auf einen USB-Stick mit einem portableApps-System.

Nach dem Start der EXE kommt eine Bitte, eine spezielle
Schrift-Art zu installieren. X

Das kann man tun. Gleich dannach o6ffnet sich das Pro- &) Flezse install SourceCodePro font

gramm-Fester
OK I Cancel |

e neue Datei

Datei o6ffnen ...

Hochladen und Starten

Verzeichnis-
Stoppen / Anhalten

‘ Verbinden

Editor-Bereich Ruckgangig

Wiederholen

Syntax-Check / Uberpriifen

serieller Monitor Léschen (Konsolen-Bildschrim)
pMPython-Konsole

REPL-Monitor

U.U. bietet uPyCraft jetzt an, eine ak-
tuellere Version herunterzuladen. 2

Bel mlr brach das Upgrade |mmer mlt There is a new version available for
e|ner Fehler'Meldung ab uPyCraft, would you like to upgrade mnow?

Auf der Projekt-Webseite war aber cancel |

auch keine neuere Version aufgelistet.

BK_Sekl+II_Python_spez.docx - 50 - (c,p) 2015 - 2026 Isp: dre

https://randomnerdtutorials.com/uPyCraftWindows

ev. kommt auch noch eine Nachfrage, ob
man Beispiel-Dateien aktualisieren will. Auch
die sollte man tun.

Die grundlegenden Werkzeuge aus der rechten Symbol-Leiste und die wichtigsten Elemente
des Programms sind in der obigen Abbildung aufgezeigt.

Zum Testen der IDE muss zuerst einmal der
richtige COM-Port unter "Tools" "Serial"
ausgewahlt werden. Ublicherweise ist es
einer mit einer héheren Nummer.

Ist nur COM1 verfigbar, dann sollte man
den USB-Treiber aktualisieren.

Als nachstes wahlt man bei "Tools" "board"

das zu benutzende Board.
Wer ein microbit mit Python programmieren will, wird
hir auch findig.

"Tools" "Preferences"

eigentlich nur der Reiter "Serial" interessant,
da hier ev. die Ubertragungs-Parameter fur
die USB-seriell-Schnittstelle eingestellt wer-
den.

uPyCraft V1.0
File Edit Teools Help
@ Serial
board
Download

DownloadAndRun F5

Stop

BurnFirmware
InitCeonfig

Preferences

File Edit Tools Help
Serial
board 2spB266

Download

DownloadAndRun F5

v esp32
pyboard
Stop microbit
BurnFirmware other

InitConfig

Preferences

x4
config | Languare Location Serial |
baud
bytesize B |
stopbits [1 =l
parity [nonE =

BK_Sekl+ll_Python_spez.docx

-51-

(c,p) 2015 - 2026 Isp: dre

uPyCraft V1.0

Klick auf "workSpace" fiihrt zur Ordner-Auswahl. Hier bestimmt Fi ET°°1‘S s

man einen Odner, indem sich der "WorkSpace" — also der "Arbeits- B -
Ordner" befindet.

Nicht den "workSpace"-Ordner selbst auswahlen, sondern das
Ubergeordnete Verzeichnis, in dem sich eben "workSpace" befin-
det.

In workSpace miussen sich die Ordner und Dateien befinden, die wir uns von github
(https://github.com/Tasm-Devil/Micropython-Tutorial-for-esp32/archive/master.zip) runtergeladen und dann
entpackt haben.

Mit "Connect" stellt man die Verbindung
zur MicroPython-Konsole dar. Hier ar-
beitet man dann im REPL-Modus.
Praktisch entspricht dies dem inetrakti-
ven Modus des "grofden" Python.

Uber "Disconnect” (Verbindung been-
den") wird die Kommunikation zum ESP
beendet. Dies ist z.B. notwendig, wenn
wir andere Aufgaben — wie das Hochla-
den von Dateien — durchfiihren wollen.
Ees ist immer nur eine Verbindung Uber
den USB-Anschluf® maéglich.

??? Ubertragen einer neuen Firmware

Im "Burn Firmware"-Dialog beim board
"esp32" einstellen und erase_flash auf "yes"
setzen, dann bestatigen

Ein frisch geflash- -
:
tes MicroPython "ric caie toots Hetp

bringt schon eine
boot.py mit. Diese
konnen wir fur un-
sere Zwecke an-
passen.

Die meisten Treiber-Dateien aus dem workSpace-Ordner missen auf den ESP kopiert wer-
den.

Einen neuen Ordner legt man durch Rechts-Klick auf das libergeordnete Verzeichnis an. Es
gibt im Kontext-Menu nur den einen Eintrag "New dir".

BK_Sekl+II_Python_spez.docx - 52 - (c,p) 2015 - 2026 Isp: dre

https://github.com/Tasm-Devil/Micropython-Tutorial-for-esp32/archive/master.zip

Sollte sich der Verzeichnis- und Datei-Baum nach Aktionen nicht andern, dann frischt ein
"File" "Reflush Directory" die Ansicht wieder auf.

BK_Sekl+II_Python_spez.docx - 53 - (c,p) 2015 - 2026 Isp: dre

Loschen einer Datei
auf dem ESP

Der Ordner "device"
im Verzeichnis-Baum
links zeigt uns die
vorhandenen Dateien
auf dem Microcontrol-
ler.

bei mir gab es Feh-
lermeldung und kein
Léschen

Bearbeiten von Dateien im oberen mittleren
Bereich (Editor) mdglich.

Das "Speichern unter ..." (Save as) erfolgt
standardmafig im Workspace.

Da die Start-Programme immer main.py hei-
Ben muissen, bietet sich im Workspace ein
Abspeichern in einem Projekt-Ordner an.

time
£ machine import Pin
led=Pin(2,Pin.0UT)

led.value(]
time.sleep(
led.value(2)
time.sleep(

DeleteFile x|
.

confirm delete ./blink.py?

o

Deutsche Umlaute usw. werden bei einem erneuten Laden (Open = Offnen) in chinesische
Schriftzeichen umgesetzt. Man sollte also durchgehend — auch bei den Kommentaren — auf

spezielle Zeichen verzichten.

Das eigentliche Laden der Programm-
Dateien usw. erfolgt Uber "Hochladen und
Starten" (DownloadAndRun).

Vorher sollte man nochmal die "Verbindung"
(Tools - Serial und -> board) Uberprufen.
Bestimmte fehlende Angaben fiihren auch
schnell mal zu undefinierten Zustanden, in
denen dann nur noch ein vollstandiger Neu-
start des Systems (oder gar ein Neuflashen des
MicroPython) hilft.

Die Bezeichnung "Download" ist sicher et-
was ungewolhnlich, wir spechen eher von
Upload (Hochladen). Vielleicht ist es aus der
Sicht des ESP-Systems bzw. des MicroPy-
thon gedacht.

nach dem erfolgreichen Hochladen (Download) erhalt man im seriellen Monitor die Anzeige:

exec("main.py", results())

meine Programme flihrten — auch nach einem Reset am ESP zu keiner Reaktion

BK_Sekl+Il_Python_spez.docx

_54 -

(c,p) 2015 - 2026 Isp: dre

ganz im Gegenteil, es kam zum dauerhaften Abbruch / Verklemmen der USB-Verbindung
es half nur noch Neuflashen des ESP mit MicroPython's (funktionierte aber mit uPyCraft)

Wenn uPyCraft anstandslos lauft und alle Aufgaben machbar sind, dann kann jetzt direkt bei
- 10.6.x.1. Arbeiten mit MicroPython weitergelesen werden.

Will oder kann man uPyCraft nicht benutzen, dann bleiben einige Komandozeilen-
Programme Ubrig, die zum Hochladen von Dateien auf den ESP gedacht sind.

Hochladen von Dateien z.B. mdglich mit ampy (Adafruit MicroPython Tool)

Installation Uber:
pip install adafruit-ampy

Hilfe aufrufen:
ampy --help

in Windows einstellen des AMPY_PORT Uber:
set AMPY_PORT=COMH1

so ahnlich kénnen auch AMPY_BAUD und AMPY_DELAY gesetzt werden
set AMPY_BAUD=115200
set AMPY_DELAY=0.5

die Hilfe zu ampy:

$ ampy --help

Usage: ampy [OPTIONS] COMMAND [ARGS]...
ampy - Adafruit MicroPython Tool
Ampy is a tool to control MicroPython boards over a serial
connection. Using ampy you can manipulate files on the board's
internal filesystem and even run scripts.

Options:

-p, —--port PORT Name of serial port for connected board. Can
optionally specify with AMPY PORT environemnt
variable. [required]

-b, --baud BAUD Baud rate for the serial connection (default
115200) . Can optionally specify with AMPY BAUD
environment variable.

--version Show the version and exit.

--help Show this message and exit.

Commands :

get Retrieve a file from the board.

1s List contents of a directory on the board.

mkdir Create a directory on the board.

put Put a file or folder and its contents on the...

reset Perform soft reset/reboot of the board.

rm Remove a file from the board.

rmdir Forcefully remove a folder and all its...

run Run a script and print its output.

BK_Sekl+II_Python_spez.docx - 55 - (c,p) 2015 - 2026 Isp: dre

10.6.x.0.2. Nutzung eines ESP mit microPython unter Linux

Arbeiten im REPL-Modus

S cu -1 /dev/ttyUSBO -s 115200

>>> import machine
>>> pin = machine.Pin (5, machine.Pin.OUT)
>>> pin.value (True)

Aquivalent zu Blinky

>>> import machine
>>> import time
>>> pin = machine.Pin (5, machine.Pin.OUT)
>>> while True:
pin.value (True)
time.sleep (1)
pin.value (False)
time.sleep (1)

Nutzung des Filesystems
>>> import os
>>> os.listdir ()
['boot.py']
>>> datei = open('hallo.txt', "w")
>>> datei.write ("Hallo Welt!")
11
>>> datei.close
>>> os.listdir ()
['boot.py', 'hallo.txt']

>>>

weiterhin Arbeiten mit WebREPL, den mpy-utils oder upip (micropython package manager)
madglich

notwendige Dateien und Verzeichnisse der ESP32 Repo-Files
/

drivers/

extmod/

lib/

mpy-cross/

py/
tools/

BK_Sekl+II_Python_spez.docx - 56 - (c,p) 2015 - 2026 Isp: dre

sowie Ordner flr die konkrete Plattform, z.B.
esp32/

-- Makefile

-- modesp.c

-- modmachine.c

-- modnetwork.c

-- modsocket.c

-- moduos.c

-- modutime.c

>>> import esp
>>> dir (esp)

[' name ', 'flash read', 'flash write', 'flash erase',
'flash size', 'flash user start']

>>> esp.flash size()

412)63814'5

esp-idf/components/spi_flash/include/esp_spi_flash.h

Beispiel fur die c- size t spi flash get chip dir();
Funktions- N N - B
Deklarationen in den

Header-Dateien

esp32/modesp.c
c-Code #include "esp spi flash.h

STATIC mb obj t esp flash size(void) {
return mp obj new int from uint (spi flash get chip size()):;
}
STATIC MP _DEFINE CONST FUN OBJ 0 (esp flash size obj,
esp flash size);

STATIC const mp rom map elem t esp module globals table[] = {
{ MP ROM QSTR _ name), MP ROM QSTR(MP QSTR esp) }.
{ MP_ROM QSTR flash size), MP ROM(&esp flash size obj) 1},
}i
STATIC MP DEFINE CONST DICT (esp module globals,
esp module globals table);

const mp obj module t esp module = ({
.base = {},
.globals = (mp_obj dict t*)&esp module globals,
bi
esp/mpconfigport.h

extern const struct mp obj module t esp module;

#define MICROPY PORT BUILTIN MODULES \
{ MP_OBJ NEW QSTR esp), (mp _obj t)&esp module }, \

esp32/Makefile
SRC_C = \ modesp.c \

BK_Sekl+II_Python_spez.docx - 57 - (c,p) 2015 - 2026 Isp: dre

>>> import esp
>>> dir (esp)

[' name ', 'flash read', 'flash write', 'flash erase',
'flash size', 'flash user start']

>>> esp.flash size()

4126345

10.6.x.0.3. Esp-Tool

Download als GitHub-ZIP von https://github.com/espressif/esptool

Installation mit

pip install esptool

wenn das nicht funktioniert kann man auch:

python —m pip install esptool

oder:

pip2 install esptool

probieren. (ev. auch vorher pip aktualisieren())

Ganz neue Versionen des ESP-Tool's mussen manuell installiert werden. Das sollte aber
den Profi's vorbehalten sein. Es handelt sich dann meist um frische Entwicklungs-Version,
deren Stabilitat nicht sicher ist. Die stabilen Version sind immer Gber pip installierbar.

FuUr eine manuelle Installation gibt man:

python setup.py install

Gleiches kann man mit pySerial machen:

pip install pyserial oder easy_install pyserial oder apt-get install python-serial

Letzteres funktioniert nattrlich nur unter Linux.

Die ESPtool's stellen die folgenden Kommando's zur Verfligung

ESPtool-Kommando's

verify_flash
dump_mem
load_ram
read_mem
write_mem
read_flash_status

BK_Sekl+II_Python_spez.docx - 58 - (c,p) 2015 - 2026 Isp: dre

write_flash_status
chip_id
make_image

run

ESP-Pin serieller Pin
(Host-Schnittstelle)

Achtung! Die ESP's nutzen 3,3V-TTL- TX (GPIO1) RX (empfangen)

Spannung, wahrend die Ublichen Gerate- RX (GPIO3 TX (senden)

Schnittstellen 5V (Standard RS-232) benut- Ground (GND) Ground / Masse

zen. Hier muss also ein passender Adapter

verwendet werden!

(Zwischen dem Standard-Pin (5V) und dem ESP-Pin (3V3) kommt ein Widerstand von 1kQ und auf der ESP-
Seite zwischen dem ESP-Pin und Ground ein 2,2 kQ Widerstand. In der anderen Richtung — also bei der Daten-
Ubertragung vom ESP zur Standard-Schnittstelle benétigt man praktisch keine Anpassung, da die gelieferten 3,3
V als gliltiges Signal akzeptiert wird.)

Wem die Kommandozeilen-Version (reines ESPtool) nicht so liegt, kann auch das Programm
ESP8266-Flasher (—>http://www.dietrich-kindermann.de/Downloads/ESP8266-Flasher-x32-
Installer.zip) benutzen. Im Vorfeld muss allerdings die graphische Oberflache wxPython in-
stalliert werden, da diese vom Flasher benutzt wird.

python —m pip install wxpython

Um das den ESP8266-Flasher unabhangig von einer Python-Installation (- also z.B. auf ei-
nem Fremd-Rechner -) benutzen zu kénnen, kann man sich mit dem Pylnstaller ein selbst-
standiges Installations-Paket erstellen.

Dazu wird zuert Pylnstaller installiert:

python —m pip install pyinstaller

Der Pylnstaller benétigt noch den UPX-Packer (> https://upx.github.io/). Dies ist ein klasi-
sches Pack- und Entpack-Programm, dass sich auf ausflihrbare Packete spezialisiert hat.

Alternativ kann des NSIS-Installer benutzt werden.

Backup und Restore (Sichern und Wiederherstellen) der offiziellen Firmware von ei-
nem ESP-Mircocontroller

Wenn noch nicht geschehen, ESPtool installieren. Dazu in der Konsole in den Ordner mit
dem entpsckten ESPtool wechseln (oder im Windows-Explorer / Arbeitsplatz / Computer) bei
gedrickter [©#]-Taste das Kontext-Meni zum Ordner 6ffnen und dann "Eingabeaufforderung
hier 6ffnen" auswahlen.

python setup.py install
pip install pyserial

angenommen es handelt sich um einen 4MB-Flash-Speicher auf dem ESP und der ESP
hangt am USB-Port COMS8, dann lauten die Befehle

python esptool.py -b 115200 -port COM8 read flash 0x000000 0x400000 &
flash4M.bin

BK_Sekl+II_Python_spez.docx - 59 - (c,p) 2015 - 2026 Isp: dre

python esptool.py erase flash

python esptool -b 115200 -port COM8 write flash —-flash freq 80m 0x000000
flash4M.bin

Die variablen Teile sind farblich hervorgehoben. Die Datei-Namen (bin-Dateien) sind hier
natlrlich nur Beispiele.

BK_Sekl+II_Python_spez.docx - 60 - (c,p) 2015 - 2026 Isp: dre

10.6.x.1. Arbeiten mit MicroPython

optimale ESP32-Hardware sind die WROVER-Versionen, da sie zusatzlichen Speicher on-
board haben

dieser spRAM ist fir grélRere Python-Programme dann auch notwendig
umgesetzt wurde Python 3 in einer abgespeckten — aber prinzipiell funktionsfahigen — Versi-
on

bei anderen Microcontrollern muss immer genau gepruft werden, was geht und was nicht

MicroPython-System muss einmalig auf den Microcontroller gespielt werden
dann gibt es zwei Betriebs-Mdglichkeiten

Nutzungs-Méglichkeiten von MicroPython auf einem Microcontroller

¢ interaktiver Interpreter REPL-Console (Read-Evaluate-Print-Loop)
o |okale Version (= 10.6.x.y.1. interaktiver Modus -
REPL)

e Internet-fahige / Netzwerk-Version (= 10.6.x.y.2.
interaktiver und Internet-fahiger Modus -

WebREPL)
. fuhrt nach dem Reboot / Reset automatisch die boot.py
AutoRun-Modus und die main.py aus
"AutoStart"-Modus ansonsten konnen beliebige Dateien im Board-eigenen

Dateisystem bearbeitet / genutzt werden
(= 10.6.x.y.3. "Autostart"-Modus)

in der boot.py lassen sich z.B. bestimmte Hilfs-Funktionen / -Makro's / WLAN initieren usw.
ablegen, die beim Starten des ESP abgearbeitet werden

BK_Sekl+II_Python_spez.docx - 61 - (c,p) 2015 - 2026 Isp: dre

10.6.x.y. 1. interaktiver Modus - REPL

praktisch identisch mit dem interaktiven Modus des normalen Python-Interpreter's

REPL steht fur Read-Evaluate-Print-Loop

der MicroPython-Interpreter liet die Kommandozeile (Read), Uberpruft und Ubersetzt dann
das Kommando (Evaluate), was letztendlich zu einer Reaktion (liblich wohl eine Ausgabe mit

print())
Das ganze lauft — wie ublich fur Microcontroller — in einer Endlos-Schleife (Loop).

Die Menu-Befehle fehlen im REPL-Modus, so dass hier keine Erstellung oder Nutzung von
Quellcode-Dateien erfolgen kann. Das muss man extern auf einem echten Rechner mit Edi-
tor oder Python-System erledigen.

nach der Verbin-
dung Uber eine -0l x|
serielle Konsole, P ()" For moxe n =
konnen die Uubli-
chen interaktiven
Befehle oder Pro-
gramm-Strukturen
erledigt werden

hier zwei Kkurze
und einfache Bei-
spiele

viele Tools zum Arbeiten mit dem MicroPython nutzen genau diesen Modus und vereinfa-
chen nur die Nutzung

man braucht dann i.A. nur noch ein Programm (eben dieses Tool), um sinnvoll mit dem
Microcontroller zu arbeiten

Beispiele sind uMyCraft, ...

Im REPL-Modus sind vor allem die internen Sensoren sowie die anschlieRbaren Sensoren
und Aktoren interessant. Man kann die verschiedensten Busse und Port frei nutzen. Ein iso-
liertes Arbeiten des Microprocessors mit den Sensoren und Aktoren ist so nicht wirklich mog-
lich. Dafir muss man dann den "Autostart"-Modus (= 10.6.x.y.3. "Autostart"-Modus) ver-
wenden.

BK_Sekl+II_Python_spez.docx - 62 - (c,p) 2015 - 2026 Isp: dre

10.6.x.y.2. interaktiver und Internet-fiahiger Modus - WebREPL

bendtigt wird ein Web-Client, den man unter htips://github.com/micropython/webrepl down-
loaden bzw. gehostet unter http://micropython.org/webrepl nutzen kann

import webrepl_setup
Konfigurieren des Web-Clients

import webrepl
webrepl.start()

webrepl.start(password="meinPaswort’)

BK_Sekl+II_Python_spez.docx - 63 - (c,p) 2015 - 2026 Isp: dre

https://github.com/micropython/webrepl
http://micropython.org/webrepl

10.6.x.y.3. ""Autostart"-Modus

der Modus heifdt nicht wirklich so, der Name beschreibt aber schon, was hier passiert

ein Python-Programm — abgespeichert als main.py — wird automatisch nach einem Reboot
gestartet und ausgefuhrt

zum Boot-System gehort auch eine weitere mdgliche Python-Datei, die boot.py . In dieser
kénnen noch vor dem Aufruf der main.py bestimmte Einstellungen gemacht und Vorberei-
tungen getroffen werden.

MicroPython-Tools

e esptool.py notwendig, um das MicroPython-Image (minimales Be-
triebssystem (Miniatur-RealTime-OS vom Board-Hersteller) und
MicroPython-Interpreter) auf das Board zu flashen
Ldschen des Flash-Speichers

o mpy-utils
o mpy-fuse mounten des ESP als beschreibbares Datesystem
o mpy-upload hochladen einer Datei auf den ESP

e Terminal klassisches Terminal (serieller Monitor)

(Start mit: screen /dev/ttyUSBO 115200
Beenden mit: [Strg][a], [k]

esptool gibt es unter https://github.com/espressif/esptool zum Downloaden
Installation Uber pip
pip install esptool

bei Problemen, alternativ:
python —m pip install esptool oder pip2 install esptool

weiterhin manuelle Installation mdglich:
python setup.py install

oder wiederum alternativ:
pip install pyserial oder easy_install pyserial oder apt-get install python-serial

mounten des Dateisystem ist etwas langsam
anders benannte Programme lassen sich aber auch von dern MicroPython-Konsole mit:
import DateiName (ohne .py (also quasi als Modul))

starten

unter Windows USB-Port-Angabe mit: -p COM1

BK_Sekl+II_Python_spez.docx - 64 - (c,p) 2015 - 2026 Isp: dre

https://github.com/espressif/esptool

scheinbar werden mit uPyCraft gedownloadete (hochgeladene) Python-Programme gleich
gestartet

auf der Konsole steht dann

exec(....)

ein Umbenennen nach main.py scheint fir den normalen Start nicht notwendig zu sein

BK_Sekl+II_Python_spez.docx - 65 - (c,p) 2015 - 2026 Isp: dre

ESP mit neuem Programm starten (unter Windows)

1. main.py erstellen z.B. mit IDLE oder einfachem Editor; "Start"-Datei
mus als main.py gespeichert werden

2. ESP-Dateisystem mounten

w

. main.py hochkopieren

4. ESP-Dateisystem unmounten

5. ESP resetten
Ergebnisse kdnnen auf seriellem Monitor angezeigt werden (quasi Ausgabe-Bildschirm)
geeignet ist z.B. PuTTY. Dieses Programm startet auch ohne Installation aus beliebigem
Verzeichnis.
Fir portableApps gibt es eine eingebaute Version, die Uber das portableApps-System auch

automatisch geupdatet wird.
Aber es sind natlrlich auch andere seriellen Konsolen geeignet.

ESP mit neuem Programm starten (unter Linux (auch Raspberry Pi méglich))

1. main.py erstellen z.B. mit IDLE oder einfachem Editor; "Start"-Datei
mus als main.py gespeichert werden

2. ESP-Dateisystem mounten
mpy-fuse mnt

esp32-mount

3. main.py hochkopieren
mpy-upload Datei

4. ESP-Dateisystem unmounten
fusermount -u mnt

5. ESP resetten

mit esp32-terminal auf seriellen Monitor zum ESP zugreifen

Abfrage von freiem Speicher etc.

import gc
gc.mem_free()

verfluigbare Funktionen Uber gc. abfragbar (Code-Erganzungs-System)

Garbage-Collection anstolien
gc.collect()

BK_Sekl+II_Python_spez.docx - 66 - (c,p) 2015 - 2026 Isp: dre

10.6.x.4. elementare Programmierung mit MicroPython

In den folgenden Kapiteln besprechen wir die Programmierung mit Python auf einem
Microcontroller (hier vorrangig der ESP32). Das ist eine Wiederholung vieler Abschnitte und
Themen von weiter vorne in diesem Skript. Ich méchte hier aber eine auskoppelbare Einheit
fur Nutzer erstellen, die sich nur mit Microcontrollern und MicroPython auseinandersetzen
wollen oder mussen.

Wer die Grundlagen nicht mehr braucht und sich gleich mit den Spezialitaten der Microcon-
troller beschaftigen mochte kann jetzt zu - springen.

Unter elementarer Programmierung verstehe ich nur einfachste Elemente einer Program-
miersprache, die zu den absoluten Grundlagen zahlen. Sie folgt gleich im nachsten Abschnitt
(= 10.6.x.4. elementare Programmierung mit MicroPython). Dazu gehdren vorrangig Ein-
und Ausgaben (auf Konsolen-Niveau) sowie einfache Verzweigungen und Schleifen. Python
ist hier nur das spezielle Mittel.

Die klassische Programmierung (= 10.6.x.5. klassische Programmierung mit MicroPy-
thon)beschaftigt sich aus meiner Sicht mit Listen, Worterblcher (Dictonary's) Funktionen,
Objekten usw. Sie gehoéren zu einem Niveau, bei dem die modernen Aspekte der Program-
mierung sowie die speziellen Moglichkeiten von Python eine Rolle spielen. Der Python-
grundgebildete Leser wird hier hin und wieder die Einschrankungen des MicroPython splren.
Fur alle anderen ist es die Besprechung einer Leistungs-fahigen Programmiersprache.

Im Anschlul® daran folgt die Gerate-nahe Programmierung. Hier kommen nun die Merkmale
und Fahigkeiten der Microcontroller deutlich zum Vorschein. Deshalb nennen ich das auch
spezielle Programmierung (= 10.6.x.6. spezielle Programmierung mit MicroPython). Es ist
nicht auszuschlielen, dass sich dieser Teil nicht — so wie dargestellt — auf jeden anderen
Microcontroller Ubertragen laft.

10.6.x.4.1. Ausgaben

Abweichend vom EVA-Prinzip beginnen wir mit
den Ausgaben. Dies sollten wir kdnnen, damit an- | Eingabe _>.{ v,,a,,,,nw]_. e |
dere Leistungen eines Programm's von uns zu-
mindestens kontrolliert werden kénnen.

Ein Programm ohne Ausgaben ist praktisch nutzlos. Dabei missen Ausgaben nicht immer
auf dem Bildshirm erfolgen. Oft werden Daten auch ausgedruckt, in eine Datei gespeichert
oder einem Aktor (z.B. Ein- und Auschalten einer LED) zugewiesen.
In der Programmierung hat sich die Block-Darstellung in sogenann-
ten Struktogrammen durchgesetzt. Sie dienen der Veranschauli- Eingabe
chung von Algorithmen (Programm-Ablaufen) unanhangig von einer Verarbeitung
konkreten Programmiersprache. Gute Struktogramme lassen sich in
sehr viele Programmiersprachen ubertragen.

Struktogramme sind immer groRRe Blocke (Rechtecke), die intern in
kleinere unterteilt werden (kdnnen).

Man lief3t ein Struktogramm immer von oben nach unten. D.h. im Beispiel beginnt das Pro-
gramm mit der Eingabe. Es folgt eine Verarbeitung (der Daten) und schlie®t mit einer Aus-
gabe ab.

Der klassische Ausgabe-Befehl in Python ist print(). In die Klammern kénnen Komma-
getrennt mehrere verschiedenartige Ausdruck-Elemente notiert werden.

Schauen wir uns zuerst den Ausdruck jeweils eines einzelnen Elementes an, um dann die
Zusammenstellung zu langeren Ausdrucken zu besprechen.

Ausgabe

BK_Sekl+II_Python_spez.docx - 67 - (c,p) 2015 - 2026 Isp: dre

Ausdruck-Element

Beispiel

Erldauterung / Bemerkungen / Hin-
weise

Text /| Zeichenkette

print ("Hallo Welt!"™)

print ("Hallo "+"Welt!)

beide print-Befehle erzeugen ein:
Hallo Welt!

Verkettungen auf dem Bildschirm
bei einer Verkettung werden Zeichenketten
mit einem Plus verbunden
Zahl print (24) druckt 24 auf dem Bildschirm
print (2.713) druckt die Kommazahl 2.713 aus
(die Zahlen-Darstellung entspricht dem
englischen Stil / Format! Der Punkt ist der
Dezimal-Trenner)
Berechnung print (24+7) druckt den berechneten Betrag von
24+7, also 31, aus
Variablen-Wert print (PI) druckt die Kreiszahl & aus: 3.1412
print (x) haben die Variablen x und Hallotext

print (Hallotext)

vorher einen Wert bekommen, dann
wird dieser ausgedruckt, egal ob das
eine Zahl oder ein Text ist

ansonsten erscheint eine Fehler-
Meldung

Der Unterschied zwischen Texten und Variablen ist die Notierung mit bzw. ohne Anflh-
rungsstriche. Statt den doppelten Anflhrungsstrichen sind auch einfache erlaubt. Sie mus-
sen aber immer paarweise — also am Beginn und am Ende des Textes benutzt werden.

Jeder Befehl wird einzeln in die MicroPython-Konsole eingegeben. Nach einem [Enter] er-
scheint sofort die Ausgabe in der Zeile darunter.Dieses Wechselspiel von eingegebenen
Befehlen und die sofortigen Ausgaben des Python-System's nennt man den interaktiven

Modus.

Der Python-Kenner wird nun sagen, dass geht aber alles auch einfacher. Das stimmt! Prak-
tisch hatten wir die print-Befehle und die zugehdrigen Klammern weglassen kénnen. Im in-
teraktiven Modus sind sie nicht notwendig. Da wir aber spater echte und vor allem gréere
Programme schreiben wollen, gewdhnen wir uns schon mal an die Schreibweise mit Befehl.

BK_Sekl+Il_Python_spez.docx

-68 -

(c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Priife zuerst anhand der oben angegebenen Informalionen, ob die folgenden
Befehle ordnungsgemafe Ausgaben (im interakliven Modus) erzeugen!
(Die Befehle der letzten Zeile werden hintereinander mil jeweils einem Enfer
eingegeben!)

a) print("Python") b) print "Hallo" c) print(24 + ™"
d) write("Jetzt aber!" e) print("Test Nr. 5) f) print(3*"+++")
g x=56 h) print(3*x) i) c=4
print(x) a="4" print("x+c")
print(x+a)

2. Priifen Sie nun die Befehle im MicroPython-System! Welche Uberra-
schungi(en) gibl es?

3. Berichligen Sie die fehlerhaffen Befehle und priifen Sie diese im MicroPy-
thon!

4. Erzeugen Sie die folgenden Ausgaben!

a) Drucken Sie den folgenden Satz als ganzes aus!
Python ist schon eine tolle Programmiersprache.

b) Drucken Sie den Satz nun als Zusammensetzung von einzelnen Wortern!

c) Erzeugen Sie die Ausgabe Ihres Namens aus einzelnen Buchstaben!

d) Lassen Sie Python das Ergebnis der folgenden Berechnung ausdrucken! Rech-
nen Sie zuerst im Kopf!
5*3+(21-7)*-2/2

Oben wurde schon erwahnt, dass sich mehrere Ausgabe-Elemente Komma-getrennt hinter-
einander in einem print-Befehl unterbringen lassen. Das kann man z.B. nutzen, um ordentli-
che Ergebnis-Satze auszugeben. Die Ausgabe-Elemente kdnnen frei kombiniert werden.
Auch deren Anzahl ist nicht begrenzt. Insgesamt sollte eine normale Ausgabe aber eine Zei-
le nicht Uberschreiten.

print ("das Volumen des 5x5x5 Wirfels betragt: ", 5*5%5)

Zur allgemeinen Beschreibung von Befehlen benutzen wir gerne die folgende Syntyx-
Darstellung:

print ()

print (ausgabeelement)

print (ausgabeelement, ausgabeelement)
print (ausgabeelement {, ausgabe})

Die oberste Zeile beschreibt eine leere Ausgabe. Das entspricht einer Leerzeile. Die blau
angezeigten Elemente / Zeichen sind notwendige Details (fiir die Info-Profi's: Terminale).

In der zweiten Zeile ist der Syntax einer einfachen Ausgabe dargestellt. Das kursiv geschrie-
bene ausgabeelement ist ein Platzhalter fur eine korrekte Ausgabe. Der Name kdnnte durch

einen anderen ersetzt werden — z.B. druckobjekt od.a. Hier sprechen wir dann von einem Nicht-
Termininal.

Sollen zwei Ausgabeelemente ausgegeben werden, dann mussen sie durch ein Komma (,)
voneinander getrennt in der Klammer aufgezahlt werden. Das Komma ist also vorgeschrie-
ben (also ein Terminal).

In der 4. Zeile wird mit den rot geschriebenen geschweiften Klammern ({ }) gekennzeichnet,
was sich beliebig oft hintereinander wiederholen darf: immer ein Komma und dann ein neues

BK_Sekl+II_Python_spez.docx - 69 - (c,p) 2015 - 2026 Isp: dre

Ausgabeelement. Die geschweiften Klammern dienen hier nur zum Kennzeichnen der Wie-
derholung. Sie werden nicht mitgeschrieben. Sie sind sogenannte Meta-Symbole im Syntax.
Die nachste Zeile ist die gemeinsame Syntax aller obigen Zeilen:

print ([ausgabeelement] | ausgabeelement { , ausgabeelement})

Die eckigen Klammern ([]) stehen fur eine Option. Das Elemenet kann sein, muss es aber
nicht. Der senkrechet Strich (|) kennzeichnet die Alternative — also entweder das links oder
das rechts vom Strich. Das Lesen von Syntax-Darstellungen ist zuerst immer etwas gewoh-
nungsbedurftig. Spater wird es zum effektiven Mittel, um die Mdoglichkeiten von Befehlen
effektiv darzustellen.

Aufoaben:

1. Realisieren Sie die nachfolgenden Ausgaben!

a) Stellen Sie in einem print-Befehl den Text "Die Summe betragt: " und die berech-
nete Zahl aus 34+41+26 in einer Zeile zusammen!

c) Geben Sie nachfolgende Berechnung so aus, dass die Zahlen separat im print-
Befehl auftauchen (die sollen spater durch Variablen ersetzt werden)! Die Berech-
nung des Ergebnisses darf direkt im print-Befehl erfolgen.
125+24-48/4 = ...

b) Die obige Rechnung soll mit in den Text eingebunden werden. Dabei dirfen die
Zahlen nicht in der Zeichenkette vorkommen, sondern missen separat eingeabei-
tet werden!

2.

Ausgaben auf Aktoren usw. besprechen wir erst spater (- 10.6.x.6. spezielle Programmie-
rung mit MicroPython), da diese vom verwendeten Microcontroller abhangig sind.

???formatierte Ausgaben

10.6.x.4.2. Variablen, Zuweisungen und Berechnungen

Be den Ausgaben haben wir schon nebenbei mit Variablen gearbeitet. Die am meisten ver-
wendete ist sicher x. In Python-Programmen konnen wir alle Zeichenketten, die mit einem
Buchstaben beginnen und dann von Buchstaben, Ziffern und dem Unterstrich gefolgt wer-
den. Gute Programmierer verwenden sprechende Variablen, d.h. solche deren Namen ihren
Verwendungszweck beschreibt. Zum Einen verbessert das die Lesbarbeit von Programmen
und zum anderen werden Verwechslungen oder versehentliche Doppelbenutzungen vermie-
den. Oft werden durch die sinnvolle Benennung von Variablen ihre Rollen in Algorithmen
deutlicher. Dadurch lassen sich Programmierfehler schneller finden.

Das Volumen in einer Formel kann also z.B. mit x, v, V, volumen oder Volumen als Variab-
le benutzt werden. Es wird gleich klar, dass die beiden letzteren am besten zu verstehen
sind. In Python-Programmen wird die Grof3- und Kleinschreibung unterschieden. D.h., dass
volumen und Volumen zwei unterschiedliche Variablen sind. Man sollte sich auf eine Art der
Schreibung in seinen Programmen festlegen. Ublich sind klein-geschriebene Variablenna-
men. Mit Unterstrichen oder Grof3-Buchstaben kann man langere Variablennamen wieder
besser lesbar machen, z.B.:

seitenSumme oder seiten_summe

BK_Sekl+II_Python_spez.docx - 70 - (c,p) 2015 - 2026 Isp: dre

Beim ersten Benutzen muss einer Variable ein Wert zugewiesen werden. Das passiert ganz
einfach mit einem Gleichheitszeichen (=). Der Variablenname muss links stehen, der Wert
rechts. Als Werte kommen Zahlen und Berechnungen, Texte und Verkettungen oder andere
Variablen infrage. Eine weitere Mdoglichkeit stellen Funktionen dar, wobei die Eingabe-
Funktion (= 10.6.x.4.3. Eingaben) sicher die verstandlichste ist.

Glltige Variablen-Deklarationen sind:

x = 4

y = X

HalloText = "Good morning!"

seite = 12

wuerfelVolumen = seite * seite * seite

Dagegen ist es z.B. falsch, die folgenden Ausdriicke zu benutzen:

4=x
Hallo

Beim Versuch, solche Ausdriicke zu Ubersetzen (zu interpretieren) erzeugt der Python-
Interpreter eine Fehlermeldung.

Einige spezielle Zuweisungen (Listen, Objekte, ...) besprechen wir, wenn wir dort angekom-
men sind. Das Zuweisungs-Prinzip ist immer gleich.

Hat eine Variable erst einmal einen Wert, dann kann sie fir Berechnungen und Funktionen
benutzt werden. Die klassischen Rechen-Operationen haben wir ja schon so nebenbei mit
vorgestellt.

Besonders muss vielleicht noch einmal auf die Multiplikation mit dem Sternchen (*) und die
Division mit dem Schragstrich (/) hingewiesen werden.

Besondere Operatoren sind zwei aufeinanderfolgende Sternchen (**) als Potenz-Operator
und das Prozent-Zeichen (%) als Modulo-Operator. Die Modulo-Operation ist die Berech-
nung des Restes einer ganzzahligen Division. Man verwendet die Modulo-Operation z.B.
zum Bestimmen von Teilbarkeiten (s.a. 2 10.6.x.4.4. Alternativen, Verzweigungen) oder in
der Kryptographie.

Elementare Funktionen sind z.B. sin(), cos() oder tan(). Die Wurzel-Funktion wird mit sqrt()
aufgerufen. Mit abs() erhalt man den Absolut-Wert des Wertes in der Klammer. Die Werte in
der Klammer einer Funktion sind die Argumente. Sie werden zur Berechnung des Funkti-
onswertes benutzt. (Dazu gleich noch etwas mehr -). Dort stellen wir auch noch weitere
Funktionen vor.

10.6.x.4.3. Eingaben

Eingaben von Sensoren usw. besprechen wir erst spater (= 10.6.x.6. spezielle Programmie-
rung mit MicroPython), da diese vom verwendeten Microcontroller abhangig sind.

BK_Sekl+II_Python_spez.docx - 71 - (c,p) 2015 - 2026 Isp: dre

10.6.x.4.4. Alternativen, Verzweigungen

10.6.x.4.5. Wiederholungen, Schleifen

10.6.x.4.6. eingebaute und mitgelieferte Funktionen

10.6.x.5. klassische Programmierung mit MicroPython

10.6.x.5.1. Listen und Listen-Verarbeitung

10.6.x.5.2. Worterbiicher, Dictonary's

10.6.x.5.3. Lesen und Schreiben von Dateien, Datei-Verarbeitung

BK_Sekl+Il_Python_spez.docx - 72 -

(c,p) 2015 - 2026 Isp: dre

10.6.x.5.4.

10.6.x.6. spezielle Programmierung mit MicroPython

10.6.x.4. weitere spezielle Programm-Beispiele und -Schnipsel

Besonders wichtige Bibliotheken / Module sind machine und network. Sie stellen Objekte
und Funktionen / Methoden flr die spezielle Hardware — den speziellen Microcontroller — zur

Verfligung.

Weiterhin werden oft Bibliotheken bzw. Module zu den benutzten Sensoren und Aktoren be-
noétigt. Diese ersparen uns viel Programmier-Aufwand.
Um den RAM-Verbrauch moglichst gering zu halten, sollte man es sich angewodhnen nur die

unbedingt notwendigen Bestandteile aus den Modulen zu laden.

klassisches Einstiges-Programm "Blink"

lalt die onboard-LED blinken

from time import sleep
from machine import Pin

led=Pin (12, Pin.OUT)

while True:
led.value (True)
sleep(0.2)
led.value (False)
sleep(0.2)

einen Pin Pulsweiten-moduliert ansteuern
mogliche Werte von 0 bis 1023

klassische Anwendun-
gen fir diese Ansteue-
rungs-Art sind zu "dim-
mende" LED's und Ser-
vo-Motoren

from time import sleep
from machine import Pin
from machine import PWM

led=Pin (12, Pin.OUT)

puls = PWM(led)
while True:

BK_Sekl+ll_Python_spez.docx

-73.

(c,p) 2015 - 2026 Isp: dre

einen Touch-Port abfragen
insgesamt 10 Touch-Einga

puls.freqg(200)
sleep (1)
puls.freqg(500)
sleep (2)
puls.freq(1000)
sleep (3)

be moglich (0 .. 9)

from machine import TouchPad

touchpin = Pin (2)

touchpad = TouchPad (touchpin)

while True:

print ("Touch-Wert = ", touchpad.read())

sleep (1)

LED-Ring (NeoPixel) ansteuern

LED-Streifen oder —Ringe usw. gehéren heute zu den peppigen Accessoire's

zumeist sind hier die LED's einzeln ansteuerbar, bei einfarbigen LED's funktionoiert dann
zumindestens das Ein- und Aus-Schalten
sind RGB-LED's verbaut, dann kann man eigentlich fast immer jede einzelne LED in einer

speziellen Farbe leuchten |

assen

wichtig ist hier immer, dass nach dem Setzen / verandern von Werten, diese auf den NeoPi-
xel-Ring rausgeschrieben werden mussen

import machine,

import time
import random

de

f test (np):
n = mp.n
b

time.sleep ms (1000)
np.£i11((0,0,0))
time.sleep ms (1000)

for i in range (n) :
np[i] = (b,0,0)
np.write()
time.sleep ms (sl)

time.sleep ms (1000)
np.£fi11((0,0,0))
time.sleep ms (1000)

for i in range (n) :
np[l] = (Orbr O)
np.write ()
time.sleep ms(sl)

neopixel

5 # Helligkeit
sl = 10 # Kurzschlafzeit

BK_Sekl+Il_Python_spez.docx

_74-

(c,p) 2015 - 2026 Isp: dre

de

de

de

np

te
de

time.sleep ms (1000)
np.fil1((0,0,0))
time.sleep ms (1000)

for i in range(n):
np[l] = (O/ Olb)
np.write ()
time.sleep ms (sl)

time.sleep ms (1000)
np.fi11((0,0,0))
time.sleep ms (1000)

for i in range(n):
np[i] = (b,b,b)
np.write ()
time.sleep ms (sl)

f demol (np) :
n = np.n

f demo2 (np) :
n = np.n
Kreis
for i in range(4*n):
for j in range(n):
np[j1=(0,0,0)

npl[i%n]=(255,255,255)

np.write ()
time.sleep ms (25)
Band

for i in in range(4*n

for j in range(n) :

) g

np[j] = (0,0,128)
if (i//n)%2 == 0:
pli%n] = (0,0,0)
else.
np[n-1-(i%n)] = (0,0,0)
np.write ()
Sdubern
for i in range(n):
np[i] = (0,0,0)
np.write ()
f demo3 (np) :
n = np.n
b =25 # Helligkeit

sl =1 # Kurzschlafzeit

for i in range (10000) :

np.fi11((0,0,0))

i = random.randint
r = random.randint
b = random.randint
g = random.randint
np[i] = (r,g,b)

np.write ()
time.sleep ms(sl)

= neopixel.NeoPixel (machine.Pin (15)

st (np)
mol (np)

0,23)
0,100)
0,100)

(
(
(
(0,100)

,24,timing=0)

BK_Sekl+ll_Python_spez.docx

-75-

(c,p) 2015 - 2026 Isp: dre

demo?2 (np)
demo3 (np)

Q: /uP_Q1/ (leicht geadndert: dre)

BK_Sekl+II_Python_spez.docx - 76 - (c,p) 2015 - 2026 Isp: dre

kleine OLED-Display's sind bei einigen ESP-Bausteinen gleich mit aufgelétet. Sie erméglich
die Anzeige einiger Text-Zeilen oder kleiner Grafiken
in den meisten Fallen sind die OLED's allerdings Monochrom, was aber fur die einfachen
Mdglichkeiten unserer Microcontroller schon super ausreicht.

ansprechen des OLED-Display's (wenn vorhanden)

screen.py

from machine import I2C, Pin
import time

from ssd1306 import SSD1306 I2C

_12c = I2C(sda=Pin(5), scl=Pin(4))
_display = SSD1306 I2C(128,64, iZ2c)

def text(t):

_display.fill (0) # OLED ldschen
lines = t.splitlines|()
y =0

for line in lines:
_display.text(line,0,y)
y += 10

_display.show ()

da OLED uber den i2c-Bus an die Pin's 4 (Clock) und 5 (Data) angeschlossen ist, benétigt
man den obigen "Treiber" fir eine Text-Ausgabe
Hinweise: 128,64 stehen fir Breite und Hohe des Display's in Pixel; Display wird als ganzes
angesteuert, es erfolgt kein Scrollen

main.py

ein Sternchen im Ping-Pong-Modus Uber eine integrierte OLED-Anzeige wandern lassen

from time import sleep

from screen import text

def pingpong (i) :
txt(l\n\nl <= \l | * l + T x 1 + \l | *
sleep(0.1)

while True:
for i in range(0,15,1):
pingpong (i)
for in in range(15,0,-1):
pingpong (i)

Q: /uP_Q1/

'"\n\n\n'")

BK_Sekl+ll_Python_spez.docx - 77 -

(c,p) 2015 - 2026 Isp: dre

Abfrage eines Licht-Sensors

from machine import Pin, I2C
from bhl1750 import BH1750
from screen import text

from time import slep

1i2c=I2C(scl=Pin(14), sda=Pin (13))
sensor BH1750 (i2c)

while True:
lum = sensor.liminance (BH1750.0NCE HIRES 1)
print ("Lumineszenz =", lum)
balken = "#" * int (lum/100)
text ("Lumineszenz-Sensor:\n\n%s\n % balken)
sleep(0.5)

Q: /uP_Q1/ (leicht geandert: dre)

das Programm zeigt den aktuellen MelRwert auf dem seriellen Monitor an. Das OLED-Display
wird zusatzlich zur Visualisierung der Lichtstarke aus Balken-Diagramm verwendet.

Wenn der ESP eins kann, dann ist das WLAN. Bei vielen Bausteinen ist gleich von der Her-
stellung schon ein kleines WLAN-Scan-Programm aufgespielt. Haufig werden die verschie-
denen einfachen WLAN-Scanner auch als "Hallo Welt"-Programm der ESP-Welt verstanden.

WLAN-Scan

from network import WLAN, STA IF
from time import sleep

wlan = WLAN(STA_IF)
wlan.active (True)

while True:
nets = wlan.scan ()
print ("Scan-Ergebnis: ")
for net in sorted(nets) :
print (net)
print ()
sleep (2)

Q: /uP_Q1/ (leicht gedndert: dre)

STA_IF ... steht fur den Stations-Modus des WLAN (praktisch als Client eingerichtet)

funktionierende Funktion zum Verbinden des ESP mit einem AccessPoint
ESP fungiert als einfache WLAN-Station

def verbinden () :
import network

ssid = "?2?22°?2"

passwort = "?2?2?2?2"

BK_Sekl+Il_Python_spez.docx

-78 - (c,p) 2015 - 2026 Isp: dre

meinwlan = networ.WLAN (network.STA IF)
meinwlan.active (True)
if not meinwlan.isconnected() :
print ("Verbindung zum WLAN herstellen ..")
meinwlan.conncet (ssid, passwort)
while not meinwlan.connected() :
pass
print ("aktuelle Netzwerk-Konfiguration:",meinwlan.ifconfig())

als Funktion mit Argumenten kdnnte ver- def verbinden (ssid,passwort) :
binden() auch so aussehen import network
meinwlan = ..

Empfang und Zuriicksenden von UDP-Nachrichten / -Paketen (Echo-Funktion)

#include <ESP8266WiFi.h>
#include <WiFiUDP.h>

// The ESP-12 has a blue LED on GPIO2
#define LED 2

// Name and password of the access point
#define SSID "Pussycat"
#define PASSWORD "supersecret"

// The server accepts connections on this port
#define PORT 5444
WiFiUDP udpServer;

// Buffer for incoming UDP messages
char udp buffer [WIFICLIENT MAX PACKET SIZE+1];

/** Receive UDP messages and send an echo back */
void process incoming udp ()
{
if (udpServer.parsePacket ())
{
// Fetch received message
int len=udpServer.read(udp buffer,sizeof (udp buffer)-1);
udp buffer[len] = 0;

// Display the message

Serial.print (F("Received from ")) ;
Serial.print (udpServer.remotelIP ())
Serial.print (":");

Serial.print (udpServer.remotePort ()) ;
Serial.print(": ");
Serial.println (udp buffer) ;

// Send echo back

udpServer.beginPacket (udpServer.remoteIP (), udpSer-—
ver.remotePort ());

udpServer.print (F("Echo: ")) ;

BK_Sekl+II_Python_spez.docx - 79 - (c,p) 2015 - 2026 Isp: dre

udpServer.print (udp buffer);
udpServer.endPacket () ;

// Execute some commands

if (strstr(udp buffer, "on"))

{
digitalWrite (LED, LOW) ;
udpServer.println (F("LED is on"));

}

else if (strstr(udp buffer, "off"))

{
digitalWrite (LED, HIGH) ;
udpServer.println (F("LED is off"));

/** Optional: Notify about AP connection status changes */
void check ap connection ()

{
static wl status t preStatus = WL DISCONNECTED;

wl status t newStatus = WiFi.status();
if (newStatus != preStatus)
{

if (newStatus == WL CONNECTED)

{
digitalWrite (LED, LOW) ;

// Display the own IP address and port
Serial.print (F("AP connection established, listening on

Serial.print (WiFi.localIP()):;
Serial.print (":");
Serial.println (PORT) ;

else
{
digitalWrite (LED, HIGH) ;
Serial.println (F ("AP conection lost"));
}

preStatus = newStatus;

/** Runs once at startup */
void setup ()
{
// LED off
pinMode (LED, OUTPUT) ;
digitalWrite (LED, HIGH) ;

// Initialize the serial port
Serial.begin (115200) ;

// Give the serial monitor of the Arduino IDE time to start
delay (500) ;

// Use an external AP
WiFi.mode (WIFI STA) ;
WiFi.begin (SSID, PASSWORD) ;

BK_Sekl+II_Python_spez.docx - 80 - (c,p) 2015 - 2026 Isp: dre

// Start the UDP server
udpServer.begin (PORT) ;

/** Main loop, executed repeatedly */
void loop ()
{

process_incoming udp () ;

check ap connection();

}

Q: http://stefanfrings.de/esp8266/

TCP-Server

#include <ESP8266WiFi.h>

// The ESP-12 has a blue LED on GPIO2
#define LED 2

// Name and password of the access point
#define SSID "Pussycat"
#define PASSWORD "supersecret"

// The server accepts connections on this port
#define PORT 5333
WiFiServer tcpServer (PORT) ;

// Objects for connections
#define MAX TCP CONNECTIONS 5
WiFiClient clients[MAX TCP CONNECTIONS];

// Buffer for incoming text
char tcp buffer [MAX TCP_CONNECTIONS] [30];

/**

* Collect lines of text.

* Call this function repeatedly until it returns true, which indi-
cates

* that you have now a line of text in the buffer. If the line does
not fit

* (buffer to small), it will be truncated.

@param source The source stream.
@param buffer Target buffer, must contain '\0' initiallly before
calling this function.

* @param bufSize Size of the target buffer.

* @param terminator The last character that shall be read, usually

L

'"\n'.

* @return True if the terminating character was received.

=
bool append until (Streamé& source, char* buffer, int bufSize, char
terminator)

{
int data=source.read();
if (data>=0)
{

BK_Sekl+II_Python_spez.docx - 81 - (c,p) 2015 - 2026 Isp: dre

int len=static_ cast<int>(strlen (buffer));
do
{
if (len<bufSize-1)
{
buffer[len++]=static cast<char>(data);
}
if (data==terminator)
{
buffer[len]='\0";
return true;
}
data=source.read() ;
}
while (data>=0):;
buffer([len]="\0"';
}

return false;

/** Optional: Notify about AP connection status changes */
void check ap connection ()
{

static wl status t preStatus = WL DISCONNECTED;

wl status t newStatus = WiFi.status();
if (newStatus != preStatus)
{

if (newStatus == WL_CONNECTED)

{
digitalWrite (LED, LOW) ;

// Display the own IP address and port
Serial.print (F("AP connection established, listening on

Serial.print (WiFi.localIP()) ;
Serial.print(":");
Serial.println (PORT) ;

else
{
digitalWrite (LED, HIGH) ;
Serial.println (F ("AP conection lost"));
}

preStatus = newStatus;

/**
* Put new connections into the array and
* send a welcome message.
=)
void handle new connections ()
{
WiFiClient client = tcpServer.available();
if (client)
{
Serial.print (F("New connection from ")) ;
Serial.println(client.remoteIP().toString()):;

// Find a freee space in the array
for (int 1 = 0; 1 < MAX TCP_CONNECTIONS; i++4)

BK_Sekl+II_Python_spez.docx - 82 - (c,p) 2015 - 2026 Isp: dre

if (!clients[i].connected())

{
// Found free space
clients[i] = client;
tcp buffer[i] [0]="\0"';
Serial.print (F("Kanal=")) ;
Serial.println (i) ;

// Send a welcome message
client.println(F("Hello World!"™));
return;
}
}
Serial.println (F("To many connections"));
client.stop () ;

/** Receive TCP messages and send echo back */
void process incoming tcp()
{

static int i=0;

// Only one connection is checked in each call

if (clients[i] .available())

{
// Collect characters until line break
if (ap-

pend until (clients[i],tcp buffer([i],sizeof (tcp buffer([i]), '\n'"))
{
// Display the received line

Serial.print (F ("Empfangen von ")) ;
Serial.print (i) ;
Serial.print(": ");

(

Serial.print (tcp buffer[i]);

// Send an echo back
clients[i] .print (F ("Echo: ")) ;
clients[i] .print (tcp buffer([i]);

// Execute some commands
if (strstr(tcp buffer[i], "on"))
{
digitalWrite (LED, LOW) ;
clients[i] .println (F("LED is on")):;
}
else if (strstr(tcp buffer[i], "on"))
{
digitalWrite (LED, HIGH) ;
clients[i] .println (F("LED is off"));
}

// Prepare the buffer to receive the next line
tcp buffer[i] [0]="\0";

}

// Switch to the next connection for the next call
if (++1 >= MAXiTCP7CONNECTIONS)
{

i=0;

}

BK_Sekl+II_Python_spez.docx - 83 - (c,p) 2015 - 2026 Isp: dre

/** Executes once during start*/
void setup ()
{
// LED off
pinMode (LED, OUTPUT) ;
digitalWrite (LED, HIGH) ;

// Initialize the serial port
Serial.begin (115200) ;

// Give the serial monitor of the Arduino IDE time to start
delay (500) ;

// Use an external AP
WiFi.mOde(WIFI_STA);
WiFi.begin (SSID, PASSWORD) ;

// Start the TCP server
tcpServer.begin () ;

/** Main loop, executed repeatedly */
void loop ()
{
handle new connections () ;
process_incoming tcp();
check ap connection();

}

Q: http://stefanfrings.de/esp8266/

Links:

http://docs/mircopython.org/en/latest/esp8266/ (Dokumentation in Entwicklung, muss fir ESP-32
interpretiert werden)

https://randomnerdtutorials.com/getting-started-micropython-esp32-esp8266/ (online Arbeitsanleitung)

BK_Sekl+II_Python_spez.docx - 84 - (c,p) 2015 - 2026 Isp: dre

http://docs/mircopython.org/en/latest/esp8266/
https://randomnerdtutorials.com/getting-started-micropython-esp32-esp8266/

10.6.x.5. spezielle Module fiir ESP-32-Microcontroller

Info- und Quellcode-Q: docs.micropython.org/en/latest/library/index.html (Quellcode's leicht geadndert)

Einige der Module sind auch flr andere Microcontroller verfigbar. Meist sind diese Board-
spezifisch, d.h. sie missen auf der micropython-Website als Download-Paket genauestens
ausgewahlt werden.

In der jeweiligen Nutzung kann zu veranderten Notierungen und Varianten — im Vergleich zu
den folgenden Darstellungen — kommen.

10.6.x.5.1. Modul "machine"

import machine

machine.freq()
liefert die aktuelle Prozessor-Frequenz zurlick (in Hz)

machine.freq(240000000)
setzt die Prozessor-Frequenz auf 240 MHz

Deep-sleep-Modus ()

machine.deepsleep(100000))

Versetzt den Microcontroller fur 100 s in den Tiefschlaf-Modus (Stromspar-Modus)

ohne Parameter wird der Microcontroller dauerhaft in den Tiefschlaf-Modus versetzt

ein weiteres Stromsparen ist durch Setzen / Einschalten von internen Pull-up-Widerstanden
maoglich

p1 = Pin(4, Pin.IN, Pin.PULL_HOLD)

if machine.reset_cause() == machine. DEEPSLEEP_RESET:
print("Microcontroler ist aufgeweckt!")

RTC (realtime clock)

from machine import RTC

rtc = RTC()
rtc.datetime((Jahr, Monat, Tag, Stunde, Minuten, Sekunden, MilliSekunden))
Uber die Abfrage eines NTC-Servers ist eine recht genaue Zeitsynchronisierung méglich

rtc.datetime()
gibt das aktuelle Datum und die Zeit zurtick

BK_Sekl+II_Python_spez.docx - 85 - (c,p) 2015 - 2026 Isp: dre

Zahler / Timer

from machine import Timer

Zaehler = Timer(-1)
Zaehler.init(period=1000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
Zahl-Einheit sind MilliSekunden

Zaehler.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))

Pin's /| GPIO

from machine import Pin

verfugbar sind die Pin's 0 .. 19, 21 .. 23, 25 .. 27 und 32 .. 39
abhangig von den Pin's, die auf dem Board nach auf3en geflihrt wurden (je nach Hersteller
und Board-Art unterschiedlich)
weiterhin qilt:
e Pin 1ist fir TX und Pin 3 fir RX der seriellen Verbindung tber UART in Gebrauch
e die Pin's 6 .. 8, 11, 16 und 17 sind fur die Verbindung mit dem eingebauten Flash-
Speicher in Gebrauch und kénnen nicht anderweitig verwendet werden
e Pin's 34 .. 39 sind nur als Input-Pin's nutzbar (und haben auch keinen internen Pull-
up-Widerstand)
e der Pull-Wert kann mittels Pin.PULL_HOLD auf einen anderen Wert gesetzt werden,
z.B., um sie Strom-sparend im DeepSleep-Modus zu nutzen

meinpin = Pin(4, Pin.OUT)
setzt Pin 4 bei der Initialisierung als Ausgabe-Port

meinpin = Pin(5, Pin.OUT, value=1)
setzt Pin 3 bei der Initialisierung als Ausgabe-Port sofort auf HIGH

meinpin.on()
schaltet den Pin auf HIGH

meinpin.value(0 | 1)
schaltet den Pin auf LOW bzw. HIGH

meinpin.off()
schaltet den Pin auf LOW

meinpin = Pin(6, Pin.IN)

meinpin.value()
gibt 0 oder 1 (fir LOW bzw HIGH) zurtick

meinpin = Pin(7, Pin.IN, Pin.PULL_UP)

BK_Sekl+II_Python_spez.docx - 86 - (c,p) 2015 - 2026 Isp: dre

aktiviert den internen Pull-up-Widerstand

meinpin = Pin(8, Pin.OUT, value=1)

PWM (pulse width modulation)

from machine import Pin, PWM

pulsweitmod = PWM(Pin(0))

pulsweitmod.freq()

pulsweitmod.freq(500)

pulsweitmod.duty()

pulsweitmod.duty(100)

pulsweitmod.deinit()

pulsweitmod2 = PWM(Pin(9), freq=10000, duty=1000)
Pulsweiten-Ausgabe in einer Funktion initialisieren

es sind Frequenzen von 1 Hz bis 40 MHz mdglich

ADC (analoq to digital conversion)

from machine import ADC

analdigwand = ADC(Pin(32))
Eingangs-Spannungs-Pegel: 0 .. 1,0 V; Auflésung auf 12 bit > Ergebniswerte: 0 .. 4'095

analdigwand.read()

analdigwand.atten(ADC.ATTN_11DB)

Einschalten einer Dampfung - Eingangs-Spannungs-Pegel: 0 .. 3,6 V

weitere zugelassene Dampfungswerte: ATTN_0DB (bis 1,0 V), ATTN_2 5 DB (bis 1,34 V),
ATTN_6DB (bis 2,0 V)

analdigwand.width(ADC.WIDTH_9BIT))
Andern der Auflésung auf 9 bit > Ergebniswerte: 0 .. 511

BK_Sekl+II_Python_spez.docx - 87 - (c,p) 2015 - 2026 Isp: dre

weitere Aufldsungen: WIDTH_10BIT (0 .. 1023), WIDTH_11BIT (0 .. 2047), WIDTH_12BIT (0
.. 4095)

Eingangs-Spannungen Uber 3,6 V kdnnen den Microcontroller zerstéren!

SPI-Bus (serial peripheral interface)

Bus-System von Motorola
synchron, seriell, Master-Slave-System

from machine import Pin, SPI

spi=SPIl(baudrate=100000, polarity=1, phase=0, sck= Pin(0), mosi=Pin(2), miso=Pin(4))
Initialisierung des SPI-Busses mit einen Signal-Ubertragungs-Rate von 100'000 Bd

sck .. serial clock (Bus-Takt)

MOSI (seltener auch SIMO oder SDO (serial data out)) .. Master Output + Slave Input

MISO (seltener auch SOMI oder SDI (serial data input)) .. Master Input + Slave Output

SDO und SDI werden i.A. aus der Sicht des Device's benannt, d.h. die Leitungen missen
sich kreuzen

die Polaritat und die Phase kénnen die Werte 0 oder 1 annehmen und steuern Datenabnah-
me; Phase bestimmt welcher Flankenwechsel ausgewertet wird; die Polaritat, ob die stei-
gende (0) oder fallende Flanke (1) das Signal ist

spi.init(baudrate=200000)
spi.read(AnzahiBytes)
spi.read(AnzahiBytes, Adresse)
Adresse (von MOSI) z.B. Oxff
puffer = bytearray(100)
spi.readinto(puffer)
spi.readinto(puffer, Adresse)
spi.wirte(b'abcdef’)

Schreiben von 6 Bytes an MOSI
puffer = bytearray(5)

spi.write_readinto(b’'12345', puffer)
Schreiben der Bytes an MOSI und Lesen von MISO in den Puffer

spi.write_readinto(puffer, puffer)
Schreiben des Puffers an MOSI und Lesen von MISO in den Puffer

SPI-Hardware-Bus
beim ESP-32 sind zwei Hardware-Kanale steuerbar
Pin's sind festgelegt

BK_Sekl+II_Python_spez.docx - 88 - (c,p) 2015 - 2026 Isp: dre

HSPI (id=1) - sck = 14, mosi = 13, miso = 12
HSPI (id=2) - sck = 18, mosi = 23, miso = 19

from machine import Pin, SPI

hspi =SPI(1, 100000, sck= Pin(14), mosi=Pin(13), miso=Pin(12))
vspi = SPI(2, baudrate = 100000, polarity=0, phase=0, bits=8, firstbit=0, sck=Pin(18),
mosi=Pin(23), miso=Pin(19))

12C-Bus

eigentlich 12C fur inter-integrated circuit

serieller Daten-Bus von Philips

technisch identisch mit Two-Wire-Interface (von Amtel)

beides sind Zwei-Draht-Schnittstellen

praktisch 3 Leistungen: Betriebs-Spannung Vpp sowie zwei — Uber Pull-up-Widerstanden
angeschlossene Arbeits-Leitungen (Takt (SDL) und Daten (SDA))

gearbeitet wird mit positiver Logik (LOW = 0 (max. 0,3 Vpp) und HIGH = 1 (min. 0,7 Vpp)

bei Daten-Ubertragungen ist das 1. Byte die Slave-Adresse (die 7 niedrigen Bits bilden die
eigentliche Adresse, das 8. Bit bestimmt, ob Slave Daten empfangen (0 / LOW) bzw. senden
(1/HIGH) soll

bestimmte Adressen sind fir Sonderzwecke reserviert (insgesamt 112 Slave's ansprechbar)

from machine import Pin, 12C

i2c = 12C(scl = Pin(5), sla = Pin(4), freq = 100000)
i2c.readfrom(Adresse, AnzahlBytes)

Adresse z.B. 0x3a

i2c.writeto(Adresse, Wert)

puffer = bytearray(10)
i2c.writeto(Adresse, puffer)

OneWire-Treiber ()

from machine import Pin
import onewire

eindraht = onewire.OneWire(Pin(12))
aktiviert eine OneWire-Bus an der GP1012

eindraht.scan()
Gibt eine Liste der gescannten Device's zurtick

eindraht.reset()
Setzt den Bus zuriick

eindraht.readbyte()
LieRt ein Byte vom Bus

BK_Sekl+II_Python_spez.docx - 89 - (c,p) 2015 - 2026 Isp: dre

eindraht.writebyte(Adresse)
Adresse kénnte z.B. 0x12 sein

eindraht.write(Wert)
Wert wird als Bytes verstanden

eindraht.select_rom(b'12345678")

speziell fir Temperatur-Sensoren DS18S20 und DS18B20
import time, ds18x20
ds = ds18x20.DS18x20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(1000)
flr rom in roms:
print("gemessene Temperatur: ",ds.read_temp(rom))

LED-Leisten bzw. -Ringe (NeoPixel)

from machine import Pin
from neopixel import NeoPixel

pin = Pin(0, Pin.OUT)
neopix = NeoPixel(pin, AnzahILEDs))
erstellt eine NeoPixel-LED-Reihe an der GPIO0

neopix[0] = (255,255,255)

neopix.write()

Setzt die erste LED auf weil®

die wirkliche Anzeige / Ausgabe erfolgt erst mit .write()

r,g,b = neopix[0]
liefert die Farbwerte der ersten LED zuriick

fir ESP ist eine weitere Low-Level-Ansteuerung maglich:

import esp

esp.neopixel_write(pin, rgb_buf, is800khz)

800 kHz ist die Default-Einstellung, praktisch sind auch 400 kHz méglich (timing=0)

Touch-Eingabe (capacitive touch)

from machine import TouchPad, Pin

touch = TouchPad(Pin(14))
Aktivieren des Touch-Modus fiir GPIO14 (Touch6)

touch.read()

BK_Sekl+II_Python_spez.docx - 90 - (c,p) 2015 - 2026 Isp: dre

Auslesen des Touch-Pin's (gelesener Wert wird bei Berlihrung (deutlich) kleiner)

Benutzen der Touch-Eingange fur das Aufwecken aus dem Tiefschlaf-Modus
import machine

from machine import TouchPad, Pin

import esp32

touch = TouchPad(Pin(14)

touch.config(500)

esp32.wake_on_touch(True)

machine.lightsleep()

ESP wird in den Tiefschlaf-Modus versetzt, solange der Touch-Sensor an GPIO14 (Touch6)
gedrickt ist

DHT (Umweltsensoren, Temperatur-Luftfeuchte-Sensor)

haufig genutzter Kombinations-Sensor DHT11 fiir Luftfeuchtigkeit (Humidity) und Temperatur
Sensor arbeit an allen Pin's

import dht
import machine

humtemp = dht.DHT11(machine.Pin(4))
Aktivieren des Sensors fur GP10O4

humtemp.measure()
eine Messung abfragen

humtemp.temperature()
Gibt Temperatur in °C zurlick

humtemp.humidity()
Gibt die relative Luftfeuchtigkeit in Prozent zurlick

10.6.x.5.2. Modul ""esp"’

import esp

esp.osdebug(None)
Ausschalten der Debugging-Mitteilungen

esp.osdebug(0)
Umleiten der Debugging-Mitteilungen auf UART(0)

esp.flash_size()

BK_Sekl+II_Python_spez.docx - 91 - (c,p) 2015 - 2026 Isp: dre

esp.flash_user_start()

esp.flash_erase(SektorNummer)

esp.flash_write(ByteOffset, Puffer)

esp.flash_read(ByteOffset, Puffer)

10.6.x.5.3. Modul "esp32"

import esp32

esp32.hall_sensor()
Auslesen des (internen) Hall-Sensors

esp32.raw_temperature()
Auslesen des (CPU-internen) Temperatur-Sensors (Angabe in °F)

esp32.ULP()
Zugriff auf den ULP-Coprozessor (ultra low power; Stromspar-Coprozessor)

10.6.x.5.4. Modul "network"

import network

MeinWLAN = network.WLAN(network.STA_IF)
konfigurieren des (eigenen) WLAN-Moduls im Stations-Modus

MeinWLAN.active(True | False)
Ein- bzw. Aus-Schalten des WLAN-Moduls

MeinWLAN.scan()
Scannen des WLAN's nach AccessPoint's

MeinWLAN.isconnected()
Prifen, ob Station mit dem AccessPoint verbunden ist

MeinWLAN.connect(SSID, Passwort)
Verbindung zum AccessPoint herstellen

BK_Sekl+II_Python_spez.docx - 92 - (c,p) 2015 - 2026 Isp: dre

MeinWLAN.config(‘mac’)
gibt die MAC-Adresse zurlick

MeinWLAN.ifconfig()

gibt die IP-Adresse, die Netzwerk-Maske, den Gateway und die DNS-Adresse zurlick

MeinAccessPoint = network. WLAN(network.AP_IF)
konfigurieren des (eigenen) WLAN-Moduls als AccessPoint

MeinAccessPoint.config(essid=WLANName)
Festlegen des Namens fir das WLAN

MeinAccessPoint. active(True | False)
Ein- bzw. Aus-Schalten des WLAN-Moduls

10.6.x.5.5. Modul "time""

import time

time.sleep(Sekunden)

time.sleep_ms(MilliSekunden)

time.sleep_us(MikroSekunden)

StartZeit = time.ticks_ms|()
Laufzeit = time.ticks_diff(time.ticks_ms(), StartZeit)
Laufzeit ermitteln

time.sleep(Sekunden)

BK_Sekl+ll_Python_spez.docx - 93 -

(c,p) 2015 - 2026 Isp: dre

10.6.x.y. Sprach-Elemente vom MicroPython (Kurz-Ubersicht / Spicker)

(formatierte) Ausgabe:

ausgabe:=wert | berechnung | “Text“| "Text’
print ()
print (ausgabe)

if bedingung: # Einleitung und Test/Bedingung
befehle # Then-/Dann-/Wahr-Zweig (eingeriickt!!! mehrzeilig
moéglich)
{elif bedingung: # zusdtzliche(r) untergeordnete(r) Test/Bedingung
befehle} # untergeord. Then-/Dann-/Wahr-Zweig
[else: # optionaler Else-/Sonst-/Falsch/Rest-Zweig
Befehle]
while bedingung: # while True: # Endlosschleife
(meist break notwendig)
befehle
{continue} # Sprung zum nidchsten Schleifendurchlauf /-anfang
{ befehle
break} # Sprung hinter Schleife (noch hinter ELSE)
{else:
befehle}
for laufvariable in liste | tupel: # _ als laufvariable, wenn kein Gebrauch in
befehle Schleife geplant
[verzweigung : break] # vorzeitiger Abbruch der Schleife

for laufvariable in range ([untere_grenze, 1 obere_grenze[, schrittweite]) :
befehle

erweiterter Spicker fir das "normale" Python (= Python-Spicker)

BK_Sekl+II_Python_spez.docx - 94 - (c,p) 2015 - 2026 Isp: dre

10.7. Python auf und mit Taschenrechnern / spezieller
Hardware

Zuersteinmal scheint der Einsatz einer Programmiersprache auf einem Taschenrechner nicht
wirklich sinnvoll. Das Display ist sehr klein, die Tastatur sehr gewéhnungsbediirftig und die
Leistungsfahigkeit ist auch beschrankt. Aber trotzdem gibt es Einsatz-Szenarien, die fir ei-
nen programmierbaren Taschenrechner sprechen. Méglich Szenarien sind z.B.:

o Lésung komplexerer (sich mehr fach wiederholender) Aufgaben

e Darstellung mathematischer Funktionen und Zusammenhange auf einem Gerat im
Taschen-Format

e Erfassung und Auswertung von Mess-Werten

Die meisten programmierbaren Taschenrechner brachten lange Jahre eine BASIC-Variante
mit. BASIC erfiillt aber nicht die Anforderungen an eine moderne strukturierte Programmier-
sprache. Python dagegen ist hier bestens geeignet. Erfahrungen, die man beim Programmie-
ren auf dem Taschenrechner macht, kann man leicht auf die Programmierung gréflerer
Computer usw. Ubertragen.

10.7.x. Casio-Rechner

FX-CG50

MicroPython 1.9.4, basiert auf Python ?.?7.0
verfugbar auf Rechnern mit einer Betriebssystem-Version ab 03.40.0202

Auch in Bezug auf das offizielle MicroPython ist Python auf den Casio-Rechnern nochmals
eingeschrankt. Fir normale Programmier-Ubungen und einer effektive(re)n Nutzung des
Taschenrechner's spielt das aber kaum eine Rolle. Echte Programmierung sollte dann schon
auf einem ordentlichen PC od.&. erfolgen.

Eingabe-Mdglichkeiten
o Text-Eingabe nach Einstellen von ALPHA am Rechner
o Listen-basiert nach Dricken von [F4] (CHAR) kann aus einer Liste der

verfugbaren Zeichen und Symbole mit [F3] (SYMBOL)
ausgewahlt werden

o Katalog-orientiert Auswahl der Python-Befehle aus einem Katalog mittels
[F6] (SHIFT 4 CAT)

Syntax-Highlightning flr die verschiedenen Element-Gruppen (Kommentare, Python-Befehle,
Texte, Zahlen, ...)

BK_Sekl+II_Python_spez.docx - 95 - (c,p) 2015 - 2026 Isp: dre

Abspeichern mit FILE [F1] SAVE

Starten mit [F2] (RUN)

es wird dann automatisch in die Shell gewechselt und die Kommunikation erfolgt an dieser
Stelle

Beispiel1:
Berechnung des n-ten Gliedes der FIBONACCHI-Folge nach der Naherungs-Formel von
MOIVRE-BINET:

(- (59)

1 n=int (inpit ("n="))

2 z=1/5**0.5*% (((1\

3 5w (0) o 5) /2) S ime

4 ((1-5**0.5) /2) **n)
5 print('d'(z))

L

Q: LUDWICKI, Wolfgang: Programmieren mit Python mit dem dem FX-CG50.-IN: CASIO forum 2/2020, S. 9

der gespiegelte Schragstrich ("\"; Backslash) kennzeichnet nur den Umbruch der Eingabezei-
le. In anderen Systemen kann der Text ohne diese Zeichen hintereinanderweg eingegeben
werden.

Beispiel2:
interatives Berechnen des n-ten Gliedes

n=int (inpit ("n="))
def fibi (n):
a,b=1,1
for i in range (n-2):
a,b=b,atb
return b
print ('d' (fibi (n)))
Q: LUDWICKI, Wolfgang: Programmieren mit Python mit dem dem FX-CG50.-IN: CASIO forum 2/2020, S. 9

g w N

Beispiel3:
rekursives Berechnen des n-ten Gliedes

n=int (inpit ("n="))
def fibr(n):
if n==1 or n==2:
return 1
else:
return fibr (n-2)\
-1)
)

W N

ol

+fibr (n-1
print ('$d'S$ (fibr (n))
Q: LUDWICKI, Wolfgang: Programmieren mit Python mit dem dem FX-CG50.-IN: CASIO forum 2/2020, S. 9

es stehen auch erweiternde Bibliotheken in der Material-Datenbank bereit (- www.casio-
schulrechner.de)

z.B. turtle.py und matplotl.py

BK_Sekl+II_Python_spez.docx - 96 - (c,p) 2015 - 2026 Isp: dre

http://www.casio-schulrechner.de/
http://www.casio-schulrechner.de/

10.7.x. Texas Instruments-Rechner

verfugbar z.B. auf:
e TI84 Plus CE-T Python Edition
o TI-Nspire CX II-T CAS

Eingabe-Méglichkeiten

TI-Nspire CXII-T CAS

MicroPython 1.11.0, basiert auf Python 3.4.0
Objekt-Orientierung

bei der Eingabe werden Operanden rot angezeigt
syntaktische Schllisselworter werden blau angezeigt

Kombination der Eingabe von Tastatur, aus dem Nspire-Menu ("Werkzeug"-
Schaltflache/Meni) und von der Taschenrechner-Simulation in N-spire méglich

Module:
math
time
random
ti_plotlib
ti_hub
ti_rover
ti-draw
cx_turtle2
cmath

starten eines Programm's mit [crtl] [R]

Schleifen mit Abbruch durch die ESC-Taste

BK_Sekl+II_Python_spez.docx - 97 - (c,p) 2015 - 2026 Isp: dre

while get_key!="esc":

lassen sich immer Uber die erste Zeile im Menl-System in der Nspire-Software beim Hinzu-
figen von Funktion einbauen

Ldschen des aktuellen Anzeige-Fensters Gber "Extra's"

sorted(Liste)

localtime()
liefert Datum, Zeit, Wochentag, Tag im Jahr, Sommerzeit

Formeln programmieren

Im Hauptmeni "A" auswahlen
Shell zum einfachen Arbeiten und Ablaufen lassen der Programme
Taschenrechner-Funktionen (fir TR naturlich nicht wirklich sinnvoll)

Menu-System fur alle Funktionen

niemand muss Befehle lernen, nur noch raussuchen
ev. die MenU-Punkte durchgehen

Shell

Alt-Ctrl-

while get_key()!="esc":
gut als umgebende Schleife fiir komplexe Programme, um eine Abbruch-Méglichkeit zu ha-
ben

store_list(speichername,datenliste)

in der Tabellenkalkulation nutzbar
im Spalten-Kopf kann dann die Verknipfung mit dem speichername herstellen
dann stehen die Daten in der Tabellenkalkulation bereit

BK_Sekl+II_Python_spez.docx - 98 - (c,p) 2015 - 2026 Isp: dre

bei Neu-Erstellen von Dateienen gibt es Vorlagen mit vordefinierten Bibliotheken

import ti_rover as rv

rv.motors("ccw",255,"cw",150)
sleep(2)
rv.stop()

cw ... mit Uhrzeitsinn
ccw ... entgegen Uhrzeigersinn

Motoren funktionieren entgegengesetzt!

Rover-Zentrum ist der Stifthalter

fur Motor-Befehle wird normale Programm-Abarbeitung NICHT unterbrochen

fur Mandver missen die Mandverzeiten als Schlafzeit fir Hauptprogramm eingeplant werden
mit geladenem Stift wird die programmierte Figur aufgeezichnet

Nutzung des TI-Innovator

Steuern des TI-Rover

TI-84 Plus

Version "CE-T Python Edition"
ist graphischer Taschenrechner (GTR)

BK_Sekl+II_Python_spez.docx - 99 - (c,p) 2015 - 2026 Isp: dre

Nutzung des mirco::bit

spezielle Bibliothek zur Nutzung der micro-bit-Ressourcen

mittlerweile gibt es diverse Python-Editoren / -Systeme fur den micro::bit

da macht die Programmierung mit dem Taschenrechner als Editor nicht so viel Sinn, es sei
denn, mann will Daten austauschen oder spezielle Funktionen des Taschenrechner's aus-
nutzen

ein anderes Szenario ist die Verwendung von micro::bit's, ohne dass PC's oder dhnliches zu
Verfliigung stehen

praktisch ein Minimal-System (vorausgesetzt entsprechende Taschenrechner stehen stan-
dardmalig zur Verfligung)

Programm-Ubertragung mittels mini-zu-micro-USB-Kabel (mini-A auf mirco-B)

sehr viele Funktionen (in kleinen Extra-Modulen)

micro-bit muss vor dem ersten Benutzen mit den ti-Taschenrechnern geflasht (ti-runtime)
werden

dazu einfach die ti-runtime auf den micro:bit (als Laufwerk im Explorer abgezeigt) ziehen

notwendige Dateien unter:
https://education.ti.com/de/alles-fuer-die-schule/microbit

from microbit import *

Vorbereitung des Taschenrechner's

mit Hilfe der "TI Connect"-Software muss zuerst die MICROBIT.8xv-Datei auf dem TI-84 Plus
geladen werden

FUr einzelne zusatzli-

che Hardware- Zusatz-Hardware TI-Modul Bemerkungen
Komponenten mussen interne Sensoren MB_SENSR8XV
noch weitere Module interne 5x5-LED-Matrix MB DISP.8xv
geladen werden. Sie interne Button A+ B MB BUTNS.8xv
enthalten jeweils die interner Funk MB_RADIO.8xv
Ansteuerung fir die interne Pin's MB_PINS.8xv
Zusatz-Gerate. Grove-Sensoren MB_GROVE.8xv
Neopixel MB_NEOPX.8xv
Sound MB_MUSIC.8xv

Als nachstes muss der micro::bit mit einer neuen Software ausgestattet werden. Die Datei
heillt ti_ce_runtime.hex und wird nach dem Download direkt auf das — vom micro::bit erzeug-
te — Laufwerk kopiert

BK_Sekl+II_Python_spez.docx - 100 - (c,p) 2015 - 2026 Isp: dre

https://education.ti.com/de/alles-fuer-die-schule/microbit

Nach der Installation der neuen Firmware (fir Python) ist der micro::bit auf diese Aufgabe
eingeschrankt. Soll wieder die "normale" Firmware verwendet werden, dann muss diese auf
den micro::bit Gbertragen werden (wie oben die ti_ce_runtime.hex). Die notwendige hex-
Datei wird von microbit.org/code/ bereitgestellt.

Nun kann der micro::bit mit einem Mini-zu-Micro-USB-Kabel verbunden werden.
Mit Hilfe der Datei NPTEST.8xv kann und sollte nun ein Test der Funktionsfahigkeit erfolgen.

Links:

https://education.ti.com/de/alles-fuer-die-schule/microbit
https://python.microbit.org/v/2.0 (online-Python-Editor)
https://python.microbit.org/v/2 (online-Python-Editor (neueste Version))
https://archive.microbit.org/de/ (weitere Materialien)

Downloads:

https://ti-unterrichtsmaterialien.net/materialien?country=1&langauge=2&qg=micro%3Abit (- MICRO-
BIT.8xv; MB_SENSR.8xv; ...)
https://ti-unterrichtsmaterialien.net/fileadmin/DE-Materialien/Materialien/T]_Runtime 2.6.hex
(= ti_ce_runtime.hex)

(=)

10.7.x. Miniroboter Edison (Microbric)

Edison

Set besteht aus 1x Edison und 1x Verbindungs-Kabel
mit zusatz-Set und / oder LEGO® erweiterbar / ausbaufahig

extrem robust
etwas filigrane Abdeckung des Batterie-Fach's

vorgesehen fir AAA-Batterien
Verbindungs-Kabel

- startedison.com

BK_Sekl+II_Python_spez.docx - 1 01 - (c,p) 2015 - 2026 Isp: dre

https://microbit.org/code/
https://education.ti.com/de/alles-fuer-die-schule/microbit
https://python.microbit.org/v/2.0
https://python.microbit.org/v/2
https://archive.microbit.org/de/
https://ti-unterrichtsmaterialien.net/materialien?country=1&langauge=2&q=micro%3Abit
https://ti-unterrichtsmaterialien.net/fileadmin/DE-Materialien/Materialien/TI_Runtime_2.6.hex

verschiedene Programmier-Mdglichkeiten

e Barcodes

e EdBlocks

e EdScratch

e EdPy

Links:

www.meetedison.com

startedison.com

durch das Scannen (Uberfahren) von Barcode's auf der Fahrbahn
werden voreingestellte aktiviert

kein Computer etc. zum Lernen notwendig

gedacht ab Alter von 4 Jahren

graphische Programmierung mit Blocken

Blécke sind durch Symbol-Bilder charakterisiert (nur noch Eingabe
von Parametern notwendig)

gedacht ab Alter von 7 Jahren (Grundschule 2. Klasse)

- http://stemgoals.co.uk/

Scratch-basierte Block-Programmierung
gedacht ab Alter von 10 Jahren (Grundschule 4. Klasse / Orientie-
rungstufe)

Text-basierte Programmierung mit Python
online-Nutzung: www.edpyapp.com
gedacht ab Alter von 13 Jahren (Sekundarstufe |)

https://meetedison.com/robot-programming-software/edpy/ (u.a. Video-Tutorial's)

BK_Sekl+Il_Python_spez.docx

-102 - (c,p) 2015 - 2026 Isp: dre

http://stemgoals.co.uk/
http://www.edpyapp.com/
http://www.meetedison.com/
https://meetedison.com/robot-programming-software/edpy/

10.8. Python und Data Science

Datenbank-Begriffe im Data science
Datenséatze sind Falle
Attribute / Felder sind Merkmale bzw. Variablen

Offnen einer Datenbank in den Speicher
with open (dateiname, ‘rb’) as datenbestand:
print (dateiname + “ hat den Inhalt: “+ datenbestand.read()

Offnen einer Datenbank als Stream

with open(dateiname, ‘rb’) as datenstrom:
for auswahl in datenstrom:
print (“gelesene Daten: “ + auswahl)

Streamen mit Auswahl einzelner Datensétze (Fiélle)
bedingung=2?7?7?
with open(dateiname, ‘rb’) as datenstrom:
for j, auswahl in enumerate (datenstrom) :
if j == bedingung:
print (“gefundene Daten: “+str(j)+” ---> “+auswahl)

zuféllige Auswahl aus einem Stream
from random import random
beispielwert=0.3333
with open(dateiname, ‘rb’) as datenstrom:
for j, auswahl in enumerate (datenstrom) :
if random()<=beispielwert:
print (“gefundene Daten: “+str(j)+” ---> “+auswahl)

Flatfile ist Textdatei (libliche Seperator-getrennte Daten-Elemente in einem Datensatz)
Klassische Struktur einer CSV-Datei

In der ersten Zeile sind die Felder definiert

Datensatze (Falle) sind durch Zeilenumbruch getrennt / beendet

Attribute (Felder, Merkmale, Variablen) sind durch Kommata getrennt

Zeichenketten werden durch Anfihrungszeichen umschlossen

Integer-Zahlen ohne Anfuhrungszeichen

Reele Zahlen ebenfalls ohne Anfliihrungszeichen und ein Punkt als Dezimal-Trenner

CSV-Datei liber Pandas einlesen:

import pandas as pds
inhalt=pds.io.parsers.read csv(dateiname)
wert = inhalt[[attribut]]

print (wert)

BK_Sekl+II_Python_spez.docx - 1 03 - (c,p) 2015 - 2026 Isp: dre

EXCEL-Datei mit Pandas einlesen:

import pandas as pds

kalk=pds.ExcelFile (dateiname)

ausgeleseneWerte = kalk.parse (“Tabellel”, indexZeile=None, na:values=[NA])
print (ausgeleseneWerte)

Laden / Offnen von Dateien mit unstrukturierten Daten
from skimage.io.import imread

from skimage.transform import resize

from matplotlib import pyplot als plt

import matplotlib.cm as cm

unstrukDaten =
(“http://upload.wikimedia.org/”+”wikimedia/commons/7/7d/Dog_face.png”)
image = imread(unstrukDaten, as grey=True)

plt.imshow (image, cmap=cm.grey)

plt.show()

Resizen u.a. méglich (= Data Science mit Python fir DUMMIES, S.116ff)

der Titanic-Daten-Bestand

Daten zu den Passagieren der Titanic

zu installierende Bibliotheken
pip install statsmodels

pip install xIrd

pip install openpyxl

eigentlichen Programm bzw. interaktives Arbeiten mit den Daten
(nach Q: https://deepnote.com/@leonard-puttmann-a8ef/Titanic-Dataset-544c6818-f79a-4068-bbc1-d6fdf42d2998)

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm

from statsmodels.formula.api import ols

from scipy.stats import t

from sklearn.linear_model import LogisticRegression

from sklearn.decomposition import PCA

from sklearn.pipeline import Pipeline

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score

from sklearn.ensemble import RandomForestClassifier

BK_Sekl+II_Python_spez.docx - 104 - (c,p) 2015 - 2026 Isp: dre

Laden des Daten-Bestands
titanic = pd.read_excel('3_Titanic.xlsx")

Analyse der Tabelle Gber die obersten 10 Zeilen
titanic.head(10)

Anzeige der Datentypen
titanic.info()

Analyse mit deskriptiver Statistik
titanic.describe()

#Visualisierung einzelner Attribute
EDA_cols =['Age’, 'Pclass']
EDA data = titanic[EDA_cols]

plt.figure(figsize = (10,10))

plt.style.ise(‘ggplot)’

sns.boxplot(x = 'Pclass’, y = 'Age’, data = EDA _data, palette = 'YIGnBu')
plt.ylabel('Alter")

plt.xlabel('Klasse')

plt.show()

#Visualisierung Uberlebende pro Klasse
EDA cols2 = ['Survived', 'Pclass']
EDA data2 = titanic|[EDA_cols2]

plt.figure(figsize = (10,10))

plt.style.ise('ggplot)’

sns.boxplot(x = 'Pclass’, y = 'Survived', data = EDA_data2, palette = 'YIGnBuU')
plt.ylabel('Anteil Uberlebende")

plt.xlabel('Klasse")

plt.show()

Analyse nach Geschlecht — Verteilung Passagiere

plt.figure(figsize = (10,10))

plt.style.ise(‘ggplot)’

sns.boxplot(x = 'Sex’, y = titanic.idex, data = titanic, palette = 'tab10', alpha =0.8)
plt.ylabel('Anzahl Passagiere')

plt.xlabel('Geschlecht')

plt.show()

Analyse nach Geschlecht — Verteilung Uberlebende

plt.figure(figsize = (10,10))

plt.style.ise(‘ggplot)’

sns.boxplot(x = 'Sex’, y = 'Survived', data = titanic, palette = 'tab10', alpha =0.8)
plt.ylabel('Uberlebende')

plt.xlabel('Geschlecht')

plt.show()

kategorische Daten fur die weitere Bearbeitung encoden und Voranzeige
titanic['Sex'] = pd.get_dummies(titanic['Sex'])

titanic['Embarked'] = pd.get_dummies(titanic['Embarked')
print(titanic.head(10))

Anzeige der Uberlebenden (Survived=1)

BK_Sekl+II_Python_spez.docx - 1 05 - (c,p) 2015 - 2026 Isp: dre

titanic["].value_counts()

Testen von Hypothesen

print("Uberlebens-Wahrscheinlichkeit abhéangig von mitgereisten Familien-Angehdrigen")
titanic['Parch'].value_counts()

parch_survivors = titanic.query('Survived >= 1 & Parch >= 1')
parch_survivors['Survived'].value_counts()

print("Uberlebens-Wahrscheinlichkeit abhéngig vom Geschlecht")
fem_parch_survivors = titanic.query('Survived >= 1 & Parch >= 1 & Sex == 1")
fem_parch_survivors['Survived'].value_counts()

print("Hypothesen-Test: Uberlebens-Chance abhéngig von mitgereisten Familien-
Angehdrigen und Geschlecht")

hypothese = pd.DataFrame(colums = ['Uberlebt’, 'mit Familie', 'Familie Gberlebt’, 'Fam. Uber-
lebt + weibl."], dtype = float)

werte = {'Uberlebt":342, 'mit Familie:213, 'Familie Uberlebt:109, 'Fam. Uberlebt + weibl.":80}
hypothese = hypothese.append(werte, ignore_index=True)

plt.figure(figsize(10, 10))

plt.style.use('ggplot’)

sns.barplot(data = hypothese, palette="YIGnBuU")
plt.xticks(rotation=10)

plt.show()

ANOVA-Analyse

anova_model = ols('Survived ~ Parch', data = titanic).fit()
anova_ergebnisse = sm.stats.anova_Im(anova_model, typ = 2)
print(anova_ergebnisse['PR(>F)")

Analyse Korrelationen zwischen Attributen
plt.figure(figsize(10, 10))

plt.style.use('ggplot’)

corr_matrix = titanic.corr()

sns.heatmap(corr_matrix, annot = True, linewidths = 1)
plt.show()

print("Durchschnitt Alter: ", titanic.Age.mean())
print("Median Alter: ", titanic.Age.median())

Anpassung der Daten fiirs MachineLearning
X = titanic.loc[:, feauture_cols]
print(X.shape)

y = titanic.Survived
print(y.shape)

logistische Regression
logistic_reg = LogisticRegression()

#Training

logistic_reg.fit(X, y)

prd_lIr = logistic_reg.predict(X)
print("Genauigkeit: ",accuracy_score(y, prd_Ir))

Teilen Trainings- und Test-Daten-Teil
X train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)

BK_Sekl+II_Python_spez.docx - 106 - (c,p) 2015 - 2026 Isp: dre

Pipeline initialisieren
logreg = LogisticRegeression()
pipe = Pipeline(steps = [('logistic_Reg', logreg)])

werte_raster = {'logistic Reg__ C' : np.logspace(-4, 4, 5), 'logistic_ Reg__penalty' : ['[1", 12,
'none']}

Modell-Training
model_Ir = GridSearchCV(pipe, param_grid = werte_raster, cv = 5, verbose = True)

Anzeige Leistung

model_lIr.fit(X_train, y_train)

pred = model_Ir(X_test)

print("Genauigkeit: ",accuracy_score(y_test, pred))

print("beste Ergebnisse: ", model_Ir.best_params_)

Random Forest
schwarzwald = RandomForestClassifier(n_estimators = 100)

schwarzwald.fit(X_train, y_train)

y_pred = schwarzwald.predict(X_test)
acc_random_forest = schwarzwald.score(X_train, y_train)
print("Genauigkeit: ",acc_random_forest)

Nutzung des Modells fir fiktive Daten

fikt_pers = pd.DataFrame(columns = [Pclass', 'Age', 'Parch’, 'Sex', 'SibSp', 'Embarked'],
dtype=float)

fikt_pers.head()

rose = {'Pclass': 1, 'Age': 17, 'Parch': 0, 'Sex': 1, 'SibSp': 1, 'Embarked' : 0}
jack ={'Pclass' : 3, 'Age': 20, 'Parch’: 0, 'Sex' : 0, 'SibSp' : 0, 'Embarked' : 0}

fikt_pers = fikt_per.append(rose, ignore_index = True)
fikt_pers = fikt_per.append(jack, ignore_index = True)

Vorhersagen fur fiktive Personen

wahrscheinlichkeit_fiktpers = schwarzwald.predict_proba(fikt_pers)
printin("Uberlebens- und Vorhersage-Wahrscheinlichkeit")
printin(wahrscheinlichkeit_fiktpers)

Wichtigkeit der einzelnen Attribute

importances = schwarzwald.feature_importances_

feature_names = ['Pclass', 'Age’, 'Parch’, 'Sex', 'SibSp', 'Embarked']
forest_importances = pd.Series(importances, index = feature_names)

std = np.std([tree.feature_importances_ for tree in schwarzwald.estimators_], axis = 0)

fig, ax = plt.subplots()
forest_importances.plot.bar(yerr = std, ax = ax)
ax.set_title("Wichtigkeit der Attribute")
ax.set_ylabel("%")

fig.tight_layout()

BK_Sekl+II_Python_spez.docx - 1 07 - (c,p) 2015 - 2026 Isp: dre

plt.show

BK_Sekl+II_Python_spez.docx - 108 - (c,p) 2015 - 2026 Isp: dre

10.9. Python und Kiinstliche Intelligenzg

direkt machbar mit diversen zuséatzlichen Bibliotheken, die meist extra zu installieren sind

pip install numpy
pip install pandas
pip install scikit-learn

besonders sinnvoll im Zusammenhang mit Jupyter-Notebook's, da so die einzelnen Schritte
interaktiv eingebbar und abarbeitbar gemacht werden

online-Jupyter
https://jupyter.org/try

offline Installation am Besten Uber eine aktuelle Anaconda-Installation

Integration in die klassische Python-Umgebung

pip install jupyter
pip install matplotlib
jupyter notebook

der letzte Befehl ist die Ubliche Start-Sequenz

als Anzeige wird der Standard-Browser genutzt (= http://localhost:8888/tree)
Wechsel zwischen Eingabe-Bereich und einem Ausgabe-Bereich

10.9.x. Entscheidungs-Baume

praktische Nutzung eines Entscheidungs-Baum's Uber (geschachtelte) Verzeigungs-
Strukturen

10.9.x. Korrelation und Regression

BK_Sekl+II_Python_spez.docx - 1 09 - (c,p) 2015 - 2026 Isp: dre

https://jupyter.org/try

10.9.x. maschinelles Lernen

BK_Sekl+II_Python_spez.docx - 1 1 0 - (c,p) 2015 - 2026 Isp: dre

10.10. Python kommuniziert in Discord

10.10.0. Allgemeines und Vorbereitung

Discord ist ein weit verbreitetes und besonders bei Gamern beliebtes Kommunikations- Pro-
gramm.
Spiele kénnen diskutiert werden, es kann wahrend des Spiel's gechattet werden

Steuerung und Programmierung von Discord ist Gber eine spezielle Schnittstelle moglich. Fir
diese existiert auch ein Python-Modul: discord.py

Mit Python ist eine Programmierung diverser Funktionen von dsicord moglich.
Installation der Libary in der Konsole:

python3 —m pip install —U discord.py[voice] --user

(ev. auch nur: pip install —U discord.py)

Registrierung der eigenen App auf der Webseite von discord - discordapp.com notwendig
unter "Application" -- "New Application" vergibt man der eigenen App einen Namen, z.B.
meineApp

im MenU Bot erstellt man dann einen Bot-User Uber "Add Bot"

der Bot sollte Ublicherweise mit "Public Bot" aktiviert werden, sonst kdnnen andere Nutzer
den Bot nicht einladen

Option "Requires OAuth2 Code Grant" sollt nicht gesetzt werden

Die Einladung des Bot's (meineApp) erfolgt im HauptmenU des eigenen Server's unter O-
Auth2

hier wird die Option "Scopes > Bot" gesetzt

es wird ein Link generiert, der dann im Browser eingegeben werden kann

damit wird der Bot angemeldet

eine Spieler-Gilde wird auch bendtigt
in Dicord oder auf der Webseite von discord kann dann eine Instanz erstellt werden

dazu auf das Plus-Symbol klicken

weiterfiihrende Links:
https://praxistipps.chip.de/discord-bot-erstellen-eine-anleitung 118538 (allg Hinweise; Einrichtung)

BK_Sekl+II_Python_spez.docx - 1 1 1 - (c,p) 2015 - 2026 Isp: dre

https://praxistipps.chip.de/discord-bot-erstellen-eine-anleitung_118538

10.10.2. erste Kommunikations-Versuche

Besonderheiten der asynchronen Kommunikation

bot.py
import os

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN')

client = discord.Client ()
@client.event
async def on ready():

print (f'{client.user} has connected to Discord!"')

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

client ist eine Instanz / ein Objekt der Klasse Client
on_ready() ist der Event-Handler fur die bestehenden Kommunktions- und Bedienungs-
Moglichkeiten

Sollen bestimmte Informationen z.B. der eigene Token nicht im Programm-Text ersche, kon-
nen solche Informationen in einer .envim-Datei gespeichert werden. Diese muss sich im glei-
chen Ordner, wie der Quell-Text befinden

.env

DISCORDiTOKEN={your—bot—token}
ev. muss zusatzlich noch die Bibliothek dotenv installiert werden
pip install —U python-dotenv

die Methode client.run() fihrt dann das Programm aus

fur weitere Versuche muss dann auch der Gilde-Token mit angegeben werden
z.B. in der envim-Datei:

.env
DISCORD TOKEN={your-bot-token}
DISCORD GUILD={your-guild-name}

ansonsten geht auch direkt im Quell-Text:

bot.py
import os

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN')
GUILD = os.getenv ('DISCORD GUILD'")

BK_Sekl+II_Python_spez.docx - 1 12 - (c,p) 2015 - 2026 Isp: dre

https://realpython.com/how-to-make-a-discord-bot-python/

client = discord.Client ()

@client.event
async def on ready():
for guild in client.guilds:
if guild.name == GUILD:
break

print (
f'{client.user} is connected to the following guild:\n'
f'{guild.name} (id: {guild.id})"'

)

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py
import os

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN'")
GUILD = os.getenv ('DISCORD GUILD'")

client = discord.Client ()

@client.event
async def on ready():
for guild in client.guilds:
if guild.name == GUILD:
break

print (
f'{client.user} is connected to the following guild:\n'
f'{guild.name} (id: {guild.id})\n'

)

members = '\n - '.join([member.name for member in guild.members])
print (£f'Guild Members:\n - {members}"')

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py
import os

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN'")
GUILD = os.getenv('DISCORD GUILD')

client = discord.Client ()

@client.event
async def on ready() :
for guild in client.guilds:
if guild.name == GUILD:
break

BK_Sekl+II_Python_spez.docx - 1 1 3 - (c,p) 2015 - 2026 Isp: dre

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

print(
f'{client.user} is connected to the following guild:\n'
f'{guild.name} (id: {guild.id})"

)

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py
import os

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN"')
GUILD = os.getenv ('DISCORD GUILD')

client = discord.Client ()

@client.event
async def on ready():
guild = discord.utils.find(lambda g: g.name == GUILD, client.guilds)
print(
f'{client.user} is connected to the following guild:\n'
f'{guild.name} (id: {guild.id})"
)

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py
import os

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv('DISCORD TOKEN')
GUILD = os.getenv ('DISCORD GUILD'")

client = discord.Client ()

@client.event
async def on ready():
guild = discord.utils.get(client.guilds, name=GUILD)
print(
f'{client.user} is connected to the following guild:\n'
f'{guild.name} (id: {guild.id})"
)

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py
import os

import discord
from dotenv import load dotenv

load dotenv ()

BK_Sekl+II_Python_spez.docx - 1 14 - (c,p) 2015 - 2026 Isp: dre

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

TOKEN = os.getenv ('DISCORD TOKEN'")

class CustomClient (discord.Client) :
async def on ready(self):
print (f'{self.user} has connected to Discord!"')

client = CustomClient ()
client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

Begriflung neuer Mitglieder

bot.py
import os

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN'")

client = discord.Client ()

@client.event
async def on_ready():
print (f'{client.user.name} has connected to Discord!")

@client.event
async def on member join (member) :
await member.create dm()
awalt member.dm channel.send (
f'Hi {member.name}, welcome to my Discord server!'

)

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

auf Nachrichten antworten

@client.event
async def on message (message) :
if message.author == client.user:
return

brooklyn 99 quotes = [

'I\'m the human form of the 199 emoji.',
'Bingpot!"',
(

'Cool. Cool cool cool cool cool cool cool, '

'no doubt no doubt no doubt no doubt.'
) s
]

if message.content == '99!':
response = random.choice (brooklyn 99 quotes)
awalt message.channel.send (response)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

Geburtstags-Gluckwiinsche

BK_Sekl+ll_Python_spez.docx - 1 1 5 -

(c,p) 2015 - 2026 Isp: dre

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

@client.event
async def on message (message) :
if 'happy birthday' in message.content.lower () :
await message.channel.send('Happy Birthday! §)§%')
Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py
import os
import random

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN')

client = discord.Client ()

@client.event
async def on ready() :
print (f'{client.user.name} has connected to Discord!"'")

@client.event
async def on member join (member) :
await member.create dm()
await member.dm channel.send/(
f'Hi {member.name}, welcome to my Discord server!'

)

@client.event
async def on message (message) :
if message.author == client.user:
return

brooklyn 99 quotes = [
'I\'m the human form of the 19 emoji.',
'Bingpot!"',
(

'Cool. Cool cool cool cool cool cool cool,
'no doubt no doubt no doubt no doubt.'
),
1

if message.content == '99!":
response = random.choice (brooklyn 99 quotes)
await message.channel.send(response)

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

Ausnahme-Behandlung

bot.py
import os
import random

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN')

BK_Sekl+II_Python_spez.docx - 1 1 6 - (c,p) 2015 - 2026 Isp: dre

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

client = discord.Client ()

@client.event
async def on ready():
print (f'{client.user.name} has connected to Discord!")

@client.event
async def on member join (member) :
await member.create dm()
await member .dm channel.send(
f'Hi {member.name}, welcome to my Discord server!'

)

@client.event
async def on message (message) :
if message.author == client.user:
return

brooklyn 99 quotes = [
'"I\'m the human form of the 109 emoji."',
'Bingpot!',
(
'Cool. Cool cool cool cool cool cool cool, '
'no doubt no doubt no doubt no doubt.'
)
1

if message.content == '99!"':
response = random.choice (brooklyn 99 quotes)
awailt message.channel.send (response)

elif message.content == 'raise-exception':
raise discord.DiscordException

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

@client.event
async def on error (event, *args, **kwargs):
with open('err.log', 'a') as f:

if event == 'on message':

f.write(f'Unhandled message: {args[0]}\n'")
else:

raise

Q: https://realpython.com/how-to-make-a-discord-bot-python/

10.10.3. Programmierung eines Bot's

Bot's sind automatisierte Programme, die bestimmte Aufgaben erfillen
in discord kann das z.B.:

e BegruRung neuer Nutzer / Mitspieler im Team / in der Gilde

sein

BK_Sekl+ll_Python_spez.docx - 1 1 7 -

(c,p) 2015 - 2026 Isp: dre

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

extra Ordner anlegen
Uber einen beliebigen Editor die Datei bot.py in diesem Ordner anlegen

der Quell-Text lautet:

import discord from discord.ext import commands TOKEN = 'Token hineinkopie-
ren' description = '''ninjaBot in Python''' bot = com-

mands.Bot (command prefix='?', description=description) @bot.event async def
on ready(): print('Logged in as') print(bot.user.name) print (bot.user.id)
print ('------ ') @bot.command() async def hello(ctx): """Says world""" await
ctx.send ("world") @bot.command() async def add(ctx, left : int, right

int): """Adds two numbers together.""" await ctx.send(left + right)

bot.run (TOKEN)
Q: https://praxistipps.chip.de/discord-bot-erstellen-eine-anleitung 118538

der gespeicherte Quell-Text kann dann ausgefuhrt werden:
python3 bot.py

Ausgaben erscheinen im discord-Programm in der lokalen Konsole

in Fortsetzung des obigen Quell-Textes

Bot verbinden

bot.py

import os

import random

from dotenv import load dotenv

1
from discord.ext import commands

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN')

2
bot = commands.Bot (command prefix="'!")
@bot.event

async def on ready() :
print (f'{bot.user.name} has connected to Discord!")

bot.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py
import os
import random

import discord
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN')

client = discord.Client ()

BK_Sekl+II_Python_spez.docx - 1 1 8 - (c,p) 2015 - 2026 Isp: dre

https://praxistipps.chip.de/discord-bot-erstellen-eine-anleitung_118538
https://realpython.com/how-to-make-a-discord-bot-python/

@client.event
async def on message (message) :
if message.author == client.user:
return

brooklyn 99 quotes = [
'I\'m the human form of the 190 emoji.
'Bingpot!'’',
(

'Cool. Cool cool cool cool cool cool cool,
'no doubt no doubt no doubt no doubt.'

)y
]

if message.content == '99!':

response = random.choice (brooklyn 99 quotes)

await message.channel.send(response)

client.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py
import os
import random

from discord.ext import commands
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN'")

bot = commands.Bot(command_prefix:'I')
@bot .command (name="'99")

async def nine nine(ctx):
brooklyn 99 quotes = [

'I\'m the human form of the 19 emoji.',

'Bingpot!"',
(

'Cool. Cool cool cool cool cool cool cool,
'no doubt no doubt no doubt no doubt.'

)y

response = random.choice (brooklyn 99 quotes)

awalt ctx.send(response)

bot.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

bot.py
import os
import random

from discord.ext import commands
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv('DISCORD_TOKEN')

bot = commands.Bot (command prefix="'!")

14

BK_Sekl+ll_Python_spez.docx - 1 1 9 -

(c,p) 2015 - 2026 Isp: dre

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

@bot.command (name="'99', help='Responds with a random quote from Brooklyn 99'")

async def nine nine (ctx):
brooklyn 99 quotes = [

'I\'m the human form of the 190 emoji.',

'Bingpot!"',

(
'Cool. Cool cool cool cool cool cool cool, '
'no doubt no doubt no doubt no doubt.'

),

response = random.choice (brooklyn 99 quotes)
await ctx.send(response)

bot.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

Parameter konvertieren

@bot.command (name='roll dice', help='Simulates rolling dice.')
async def roll(ctx, number of dice, number of sides):
dice = [
str(random.choice (range (1, number of sides + 1)))
for in range (number of dice)
1
await ctx.send(', '.join(dice))
Q: https://realpython.com/how-to-make-a-discord-bot-python/

Befehls-Pradikate prifen

if message.author == client.user:
return
bot.py

import os

import discord
from discord.ext import commands
from dotenv import load dotenv

load dotenv ()
TOKEN = os.getenv ('DISCORD TOKEN')

bot = commands.Bot (command prefix="'!")

@bot.command (name="'create-channel')

@commands.has_role('admin')

async def create channel (ctx, channel name='real-python'):
guild = ctx.guild

existing channel = discord.utils.get (guild.channels, name=channel name)

if not existing channel:
print (f'Creating a new channel: {channel name}')
await guild.create text channel (channel name)

bot.run (TOKEN)
Q: https://realpython.com/how-to-make-a-discord-bot-python/

BK_Sekl+Il_Python_spez.docx - 120 -

(c,p) 2015 - 2026 Isp: dre

https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/
https://realpython.com/how-to-make-a-discord-bot-python/

11. Uben! uben und nochmals uben

hier folgen Aufgaben unterschiedlichster Schwierigkeitsgrade und Komplexitaten

keine Abfolge, wie im Skript

einfache Sammlung verschiedener — in diversen Quellen gefundener — Aufgabenstellungen
oder (informatischer) Probleme

nicht taduschen lassen, Aufgaben, die leicht oder einfach zu I16sen scheinen, konnen sich als
echte Programmier-Diamanten herausstellen. Dagegen kénnen Aufgaben mit seitenlangen
Aufgabenstellungen mit ein paar Zeilen Quelltext erschlagen werden. Man erinnere sich an
die Wundertute Rekursion (= 8.4.2. Rekursion)

im Allgemeinen hilft nur probieren

eine LAsung die ich oder ein anderer als leicht einschatze, kann fur jemanden Anderes ein
unlésbares Problem sein, aber es geht natlrlich auch anders herum. So manche Aufgabe,
fur die ich viele Zeilen Quelltext brauche erledigt ein findiger Programmierer mit genial weni-
gen Zeilen. So ist die Welt, und das ist gut so!

nicht unendlich in eine Aufgabe reinsteigern; Grenzen setzen; auf das Wesentliche konzent-
rieren

gibt es scheinbar unlésbare Hindernisse / Probleme, dann Problem / Sachverhalt (z.B. im
Quelle-Text) kurz notieren; dann erst mal eine andere Aufgabe (zum Ablenken) erledigen

BK_Sekl+II_Python_spez.docx - 121 - (c,p) 2015 - 2026 Isp: dre

11.x. Aufgaben aus der Abiturpriifung Informatik MV

aus rechtlichen Grinden wurden die Formulierungen der Aufgabenstellungen geandert
die eigentliche Aufgabenstellung bleibt aber erhalten

11.x.y. Abitur 2010

Rechner hat 177.122.66.99/16

GUI IPRechner

©Gul(..) © getDual(dezZahl: integer): String

® Bt_IPdual_ActionPerformed(...) P © getDual8(dezZahl: integer): String

® Bt_Adressklasse_ActionPerformed(...) ® get_Adressklasse(Oktett: integer): String

® Bt_Subnetzmaske_ActionPerformed(...) ® get_IPdual(Oktett1, Oktett2, Oktett3, Oktett4: integer): String
® main(...) ® get_Subnetzmaske(Oktett: integer): String

Klasse IPRechner

11.x. Aufgaben der Landesolympiade Informatik MV

aus rechtlichen Grinden wurden die Formulierungen der Aufgabenstellungen geandert
die eigentliche Aufgabenstellung bleibt aber erhalten

11.x.y. 2014/2015

11.x.y.7. Sekundarstufe 11

BK_Sekl+II_Python_spez.docx - 122 - (c,p) 2015 - 2026 Isp: dre

Literatur und Quellen:

"l

12/

13/

14/

15/

6/

17/

18/

18/

18/

SANDE, Warren D.; SANDE, Carter:

Hello World! — Programmieren fur Kids und Anfanger.-Munchen: C. Hanser Verl..-2,
akt. u. erw. Aufl.

ISBN 978-3-446-43906-4

LINGL, Gregor:

Python fiir Kids.-Heidelberg, Minchen, Landsberg, Frechen, Hamburg: bhv Verl. /
mitp Verl.-4. Aufl.

ISBN 978-3-8266-8673-3

WEIGEND, Michael:

Python 3 — Lernen und professionell anwenden.- Heidelberg, Miinchen, Landsberg,
Frechen, Hamburg: mitp Verl.-5., akt. Aufl.

ISBN 978-3-8266-9456-1

ARNHOLD, Werner:
Lieben Sie PYTHON?-IN: LOG IN, 21(2001) Heft 2.-S. 18 ff.-Berlin: LOG IN Verl.
ISSN 0720-8642

MONK, Simon:

Raspberry Pi programmieren — Alle Befehle, und es klappt mit dem Raspberry.-Haar
bei Minchen: Franzis Verl.; 2014

ISBN 978-3-645-60261-7

auch sonst als reine Python-Einfiihrung sehr empfehlenswert

VON LOWIS, Martin; FISCHBECK, Nils:

Das Python-Buch — Referenz der objektorientierten Skriptsprache fur GUIs und
Netzwerke.-Bonn: Addison-Wesley-Verl., 1997.- 1. Aufl.

ISBN 3-8273-1110-1

ERNESTI, Johannes; KAISER, Peter:
Python 3 — Das umfassende Handbuch.-: Rheinwerk Verl..- 4. Aufl. 2015
ISBN 978-3-8362-3633-1

~ Verl..- Aufl
ISBN 978-3-

~ Verl..- Aufl.
ISBN 978-3-

:-: Verl..- Aufl.
ISBN 978-3-

BK_Sekl+II_Python_spez.docx - 123 - (c,p) 2015 - 2026 Isp: dre

1A/ Wikipedia
http://de.wikipedia.org

Die originalen sowie detailliertere bibliographische Angaben zu den meisten Literaturquellen
sind im Internet unter http://dnb.ddb.de zu finden.

BK_Sekl+II_Python_spez.docx - 124 - (c,p) 2015 - 2026 Isp: dre

http://de.wikipedia.org/
http://dnb.ddb.de/

Abbildungen und Skizzen entstammen den folgende ClipArt-Sammlungen:
1A/

andere Quellen sind direkt angegeben.

Alle anderen Abbildungen sind geistiges Eigentum:

lern-soft-projekt: drews (c,p) 1997 — 2026 Isp: dre
fur die Verwendung auflerhalb dieses Skriptes qilt fur sie die Lizenz:

@gsie. @O CC-BY-NC-SA @Ol

Lizenz-Erklarungen und —Bedingungen: http://de.creativecommons.org/was-ist-cc/
andere Verwendungen nur mit schriftlicher Vereinbarung!!!

verwendete freie Software:

o Inkscape von:inkscape.org (www.inkscape.org)
e CmapTools von: Institute for Human and Maschine Cognition (www.ihmc.us)

H- (c,p) 2015 - 2026 lern-soft-projekt: drews -H
H- drews@lern-soft-projekt.de -B
H- http://www.lern-soft-projekt.de -B
H- 18069 Rostock; Luise-Otto-Peters-Ring 25 -H
H- Tel/AB (0381) 760 12 18 FAX 760 12 11 -B

BK_Sekl+II_Python_spez.docx - 125 - (c,p) 2015 - 2026 Isp: dre

http://de.creativecommons.org/was-ist-cc/
http://www.inkscape.org/
http://www.ihmc.us/
mailto:drews@lern-soft-projekt.de
http://www.lern-soft-projekt.de/

