

BK_SekI+II_Python_prof.docx (c,p) 2015 - 2026 lern-soft-projekt: drews

Informatik
für die Sekundarstufe I + II

- Programmieren mit Python –

Teil 2: für Fortgeschrittene

Autor: L. Drews

Grüner Baum-Python

(s) Morelia viridis
Q: de.wikipedia.org (Mwx)

>>>
while eval(input("?:")) != 0:

 print("Stoppen",end='')

teilredigierte Version 0.11h (2026)

BK_SekI+II_Python_prof.docx - 2 - (c,p) 2015 - 2026 lsp: dre

Nutzungsbestimmungen / Bemerkungen zur Verwendung durch Dritte:
(1) Dieses Skript (Werk) ist zur freien Nutzung in der angebotenen Form durch den

Anbieter (lern-soft-projekt) bereitgestellt. Es kann unter Angabe der Quelle und /
oder des Verfassers gedruckt, vervielfältigt oder in elektronischer Form veröf-
fentlicht werden.

(2) Das Weglassen von Abschnitten oder Teilen (z.B. Aufgaben und Lösungen) in
Teildrucken ist möglich und sinnvoll (Konzentration auf die eigenen Unterrichts-
ziele, -inhalte und -methoden). Bei angemessen großen Auszügen gehört das
vollständige Inhaltsverzeichnis und die Angabe einer Bezugsquelle für das Ori-
ginalwerk zum Pflichtteil.

(3) Ein Verkauf in jedweder Form ist ausgeschlossen. Der Aufwand für Kopierleistungen, Datenträger
oder den (einfachen) Download usw. ist davon unberührt.

(4) Änderungswünsche werden gerne entgegen genommen. Ergänzungen, Arbeitsblätter, Aufgaben
und Lösungen mit eigener Autorenschaft sind möglich und werden bei konzeptioneller Passung
eingearbeitet. Die Teile sind entsprechend der Autorenschaft zu kennzeichnen. Jedes Teil behält
die Urheberrechte seiner Autorenschaft bei.

(5) Zusammenstellungen, die von diesem Skript - über Zitate hinausgehende - Bestandteile enthalten,
müssen verpflichtend wieder gleichwertigen Nutzungsbestimmungen unterliegen.

(6) Diese Nutzungsbestimmungen gehören zu diesem Werk.
(7) Der Autor behält sich das Recht vor, diese Bestimmungen zu ändern.
(8) Andere Urheberrechte bleiben von diesen Bestimmungen unberührt.

Rechte Anderer:
Viele der verwendeten Bilder unterliegen verschiedensten freien Lizenzen. Nach meinen Recherchen
sollten alle genutzten Bilder zu einer der nachfolgenden freien Lizenzen gehören. Unabhängig von
den Vorgaben der einzelnen Lizenzen sind zu jedem extern entstandenen Objekt die Quelle, und
wenn bekannt, der Autor / Rechteinhaber angegeben.

public domain (pd) Zum Gemeingut erklärte Graphiken oder Fotos (u.a.). Viele der verwen-
deten Bilder entstammen Webseiten / Quellen US-amerikanischer Ein-
richtungen, die im Regierungsauftrag mit öffentlichen Mitteln finanziert
wurden und darüber rechtlich (USA) zum Gemeingut wurden. Andere
kreative Leistungen wurden ohne Einschränkungen von den Urhebern
freigegeben.

gnu free document li-
cence (GFDL; gnu fdl)

creative commens (cc)

 od. neu … Namensnennung

 … nichtkommerziell

 … in der gleichen Form

 … unter gleichen Bedingungen

Die meisten verwendeten Lizenzen schließen eine kommerzielle (Weiter-)Nutzung aus!

Bemerkungen zur Rechtschreibung:
Dieses Skript folgt nicht zwangsläufig der neuen ODER alten deutschen Recht-
schreibung. Vielmehr wird vom Recht auf künstlerische Freiheit, der Freiheit der
Sprache und von der Autokorrektur des Textverarbeitungsprogramms microsoft ®
WORD ® Gebrauch gemacht.
Für Hinweise auf echte Fehler ist der Autor immer dankbar.

Legende:
mit diesem Symbol werden zusätz-
liche Hinweise, Tips und weiterfüh-
rende Ideen gekennzeichnet

BK_SekI+II_Python_prof.docx - 3 - (c,p) 2015 - 2026 lsp: dre

Inhaltsverzeichnis:
Seite

7. Problem-Lösen mit Python ... 9

7.0. Aufgaben versus Probleme .. 9
7.0.1. Programm-Entwicklungs-Strategien ... 11
7.0.2. Strategien zur Lösung von (echten) Problemen .. 14

kleine Programm-Beispiele ... 20
7.0.3,14 Python am Pi-Day .. 21

Pi-Berechnung durch Monte Carlo Simulation .. 21
Pi-Berechnung über Verhältnis der Flächen von äußeren und inneren Vieleck 21
(einfache) besondere Zahlen .. 22
über Teilersummen definierte besondere Zahlen ... 22
sonstige (ganz) besondere Zahlen ... 23
seltene oder ungewöhnliche Zahlen und Zahlensysteme (in der Schule) 23

8. Python für Fortgeschrittene ... 24

8.1. Strings – Zeichenketten .. 24
8.1.1. einzelne Symbole / Zeichen / Charaktere ... 24
8.1.2. Sequenzen von Zeichen - Zeichenketten / Strings .. 25

8.1.2.1. f-Strings ... 27
8.1.3. Objekt-orientierte Nutzung von Strings ... 28
8.1.4. besondere Möglichkeiten für Strings in Python ... 29

8.2. Datentypen und Typumwandlungen .. 31
8.2.1. Zahlen .. 33

8.2.1.1. ganze Zahlen ... 33
Zahlendarstellung über spezielle Literale ... 33

8.2.1.2. Fließkommazahlen / Gleitkommzahlen .. 33
8.2.1.3. Wahrheitswerte ... 35
8.2.1.4. komplexe Zahlen ... 35

8.2.2. Strings und Co als Datentypen ... 36
8.2.2.1. einzelne Zeichen ... 36
8.2.2.2. Sequenzen von Zeichen - Zeichenketten ... 36

8.2.3. Listen, die I. – einfache Listen .. 38
8.2.3.0. theortische Vorbetrachtungen .. 39

8.2.3.0.1. Listen – eine Form der Datensammlung ... 39
8.2.3.0.2. Daten-Struktur: Liste ... 41

8.2.3.1. Definition und Zuweisung von Listen in Python .. 46
8.2.3.2. Listen-Operationen (Built-in-Operatoren) ... 48
8.2.3.3. Listen-Indexierung ... 50
8.2.3.4. Listen-Bearbeitung .. 52
8.2.3.5. Listen-Abschnitte (Slicing) ... 56
8.2.3.6. Listen-Erzeugung – fast automatisch ... 57
8.2.3.7. Listen - extravagant ... 58

erweitertes Listen-Generieren ... 58
erweitertes Slicing ... 59

8.2.3.8. Ringe – geschlossene Listen ... 61
8.2.4. Dictionarys - Wörterbücher ... 63

8.3. komplexe Datentypen ... 66
8.3.1. Tupel .. 66
8.3.2. Mengen – Set's .. 68

8.3.2.1. Mengen – einfach .. 68
8.3.2.1.1. Mengen-Erstellung .. 68
8.3.2.1.2. Mengen-Operationen .. 69
einfache Operationen .. 69
typischen Mengen-Operationen .. 71
Bearbeitung in Schleifen etc. .. 72
8.3.2.1.x. automatische Mengen-Generierung ... 72

BK_SekI+II_Python_prof.docx - 4 - (c,p) 2015 - 2026 lsp: dre

8.3.2.2. Mengen – objektorientiert .. 73
8.3.2.4. Anwendung von Mengen ... 74

8.3.2.4.1. ein bißchen Graphen .. 74
8.3.3. Dictonary's - Wörterbücher ... 76

8.3.3.1. Erfassen von unbekannten Objekten und Zählen der Objekte in einem
Wörterbuch ... 81

8.3.3.2. Objekt-orientierte Operationen mit Dictonary's ... 82
8.3.3.3. Dictonary-Comprehension ... 83
8.3.3.4. eine Datenbank mit Dictonary's ... 83

8.3.4. Listen, die II. – objektorientierte Listen ... 85
8.3.5. List-Comprehension ... 89

8.4. Interation oder Rekursion? – das ist hier die Frage! .. 91
8.4.1. Interation .. 92

8.4.1.1. typische Interations-Anwendungen .. 93
8.4.1.1.1. Summen-Bildung .. 93
8.4.1.1.2. Produkt-Bildung .. 95

8.4.2. Rekursion ... 96
8.4.2.1. Rekursions-Beispiele: Summen- und Produkt-Bildung 98
8.4.2.2. weitere typische Anwendungen für Rekursionen 100

8.4.2.2.1. Überführung einer Dezimal-Zahl in eine Dual-Zahl.. 100
8.4.2.2.2. die Fakultät ... 100
8.4.2.2.3. die FIBONACCHI-Folge ... 101
8.4.2.2.4. das ggT – der Größte gemeinsame Teiler ... 102
8.4.2.2.5. Erkennung von Palindromen .. 104
8.4.2.2.x. weitere klassische Rekursions-Probleme .. 105

8.4.2.3. direkte Gegenüberstellung von interativen und rekursiven Algorithmen 114
8.4.2.3.1. GGT – größter gemeinsamer Teiler ... 114
8.4.2.3.2. Palindrom-Prüfung ... 115
8.4.2.3.3. Potenz-Prüfung .. 115

8.4.3. komplexe Programmier-Aufgaben: ... 116

8.5. Umgang mit Dateien .. 118
8.5.0. Dateien und Ordner .. 118
8.5.1. Dateien lesen ... 119

8.5.1.1. Lesen von Text-Dateien ... 119
8.5.1.1.1. Lesen von CSV- bzw. strukturierten TXT-Dateien ... 119
8.5.1.1.2. Lesen von XML-Dateien ... 120
8.5.1.1.3. Lesen von JSON-Dateien .. 120

8.5.1.2. Lesen von Binär-Dateien ... 120
8.5.2. Dateien schreiben .. 121

8.5.2.1. Schreiben von Text-Dateien .. 121
8.5.2.1.1. Schreiben einer neuen Datei .. 121
8.5.2.1.2. anhängendes Schreiben .. 121
8.5.2.1.3. Schreiben von CSV- bzw. strukturierten TXT-Dateien....................................... 121
8.5.2.1.4. Schreiben von XML-Dateien .. 122
8.5.2.1.5. Schreiben von JSON-Dateien .. 122

8.5.2.2. Schreiben von Binär-Dateien ... 122
8.5.3. gepickelte Dateien – Dateien mit gemischten Daten ... 122

8.5.3.1. Schreiben von Dateien mit gemischten Daten ... 122
8.5.3.2. Lesen von Dateien mit gemischten Daten .. 122

8.6. Module ... 123
8.6.1. "built-in"-Funktionen ... 125
8.6.2. wichtige interne Module .. 126

8.6.2.1. die Bibliothek math .. 126
ausgewählte Konstanten .. 126
ausgewählte Funktionen .. 126

8.6.2.2. die Bibliothek random .. 128
8.6.2.3. Verschiedenes zum Modul: statistics ... 128
8.6.2.x. Verschiedenes zum Modul: sys ... 128

BK_SekI+II_Python_prof.docx - 5 - (c,p) 2015 - 2026 lsp: dre

8.6.2.x. Verschiedenes zum Modul: time .. 129
8.6.2.x. Verschiedenes zum Modul:datetime .. 130
8.6.2.x. Verschiedenes zum Modul: os ... 133
8.6.2.x. Verschiedenes zum Modul: collections .. 133
8.6.2.x. Verschiedenes zum Modul: inspect ... 134
8.6.2.x. Verschiedenes zu eigenen Modulen .. 136

8.6.3. externe Module installieren und nutzen .. 137
8.6.3.x. Package-Installer PIP .. 137

8.6.4. Modul / Bibliothek NumPy .. 138
Importieren der Bibliothek... 138
Erstellen von Array's .. 138

Initialisieren eines leeren Array's .. 139
Initialisieren eines Array's mit Nullen (Null-Matrix).. 139
Initialisieren eines Array's mit Nullen (Null-Matrix).. 139
Initialisieren eines Array's mit Zufalls-Zahlen .. 139

Daten aus Dateien einlesen ... 139
Zugriff auf Daten-Elemente .. 140
Operationen / Funktionen mit / zu Array's ... 140
Lineare Algebra (z.B. Lösen von Gleichungs-Systemen) .. 141

8.6.5. Modul / Bibliothek MatPlotLib ... 142
8.6.5.1. allgemeines Vorgehen (Workflow) ... 144
8.6.5.2. Erstellen und Manipulieren von Diagrammen .. 146

8.6.5.2.1. Entscheidung für einen Diagramm-Typ .. 146
8.6.5.2.2. Sichern der Diagramme .. 150
8.6.5.2.3. Diagramm gestalten / formatieren .. 151
8.6.5.2.4. weitere Diagramm-Typen.. 159

8.6.5.3. ein komplexes Diagramm-Projekt – Erdbeben-Anzeige 163
8.6.6. Modul / Bibliothek network .. 164
8.6.7. Modul / Bibliothek re ... 165
8.6.8. Modul / Bibliothek pymongo ... 166
8.6.9. Modul / Bibliothek ?? (Word Embedding) ... 167
8.6.99. Cheat Sheet's für einige Bibliotheken ... 168

zu NumPy .. 168
zu Matplotlib .. 168
zu SciPy (lineare Algebra) .. 168
zu Pandas ... 168
weitere Cheat Sheet's ... 169

8.7. Graphik .. 170

8.8. Turtle-Graphik – ein Bild sagt mehr als tausend Worte 171
8.8.1. Turtle auf der Shell ... 171
8.8.2. Turtle-Programme und Sequenzen .. 174
8.8.3. Schleifen .. 176
8.8.4. Verzweigungen .. 178
8.8.5. Funktionen ... 180
8.8.6. Rekursion ... 183
8.8.7. Eingaben mit der Maus... 184
8.8.8. Und wie geht es weiter? ... 185

Windrad aus Rechtecken .. 185
Parkettierung (mit Rhomben) .. 185
Zeichnen eines Strauches .. 186
Baum mit Früchten .. 187
Python-Stern ... 187

8.8.9. Turteln bis zu Umfallen - rekursive Probleme schrittweise Lösen 188
8.8.10. Verändern des Schildkröten-Zeigers .. 201
8.8.11. Animationen mittels turtle-Grafik ... 201
8.8.12. Realisierung des Snake-Spiel's mittels turtle-Grafik .. 204

8.9. Musik mit python ... 212
8.9.1. Musik mit Board-Mitteln .. 212

BK_SekI+II_Python_prof.docx - 6 - (c,p) 2015 - 2026 lsp: dre

8.9.2. Musik mit python-sonic ... 212

8.10. das Modul "pygame" ... 213
8.10.0. Quellen und Installation .. 213
8.10.1. Ausprobieren / Testen / Grundlagen ... 214
8.10.1. Sound mit pygame.. 216

8.10.1.1. Sound-Dateien abspielen ... 216
8.10.1.2. Sound-Dateien erzeugen / aufnehmen .. 217
8.10.1.3. Musik aus dem Synthesizer ... 217

8.10.2. Grafik mit pygame .. 217

8.11. Objekt-orientierte Programmierung ... 219
Design pattern – Entwurfsmuster ... 224

8.11.x. Objekt-orientierte Programmierung mittels Turtle-Grafik 225
8.11.x. Klassen – selbst erstellen ... 228

Klasse-Objekt-Beziehung ... 232
"ist"-Beziehung (Vererbung) ... 232
"besteht_aus"-Beziehung (Aggregation) .. 232
"hat"-Beziehung (Komposition) .. 233
"kennt"-Beziehung .. 233

Übersicht / Legende zu UML-(Klassen-)Diagrammen: .. 235
8.11.x.1. Erstellen einer Klasse .. 236
8.11.x.1.1. der Konstruktor ... 237
8.11.x.2. Attribute einer Klasse ... 238
8.11.x.3. Methoden einer Klasse .. 239
8.11.x.4. Speicher-Bereinigung .. 241
8.11.x.4.1. der Destruktor ... 241
8.11.x.6. eine "Auto"-Klasse ... 249

8.11.x.6.1. Erweiterung der "Auto"-Klasse um LKW's .. 249
8.11.x.7. eine "Personen"-Klasse ... 250

8.11.x.7.1. Erweiterung der "Personen"-Klasse auf eine Familie 251
8.11.x.7. eine "Nachrichten"-Klasse .. 252
8.11.x.y. eine Klasse zu "Dreiecken" .. 252
8.11.x.y. eine Graphik-Beispiel-Klasse ... 253
8.11.x.2. Polymophismus und Vererbung ... 258
8.11.x.y. Tips und Tricks zu Objekt-orientierten Programmen / Klassen-

Definitionen .. 262
8.11.x. OOP-Programmbeispiele .. 263

8.12. GUI-Programme mit Tkinter .. 266
8.12.1. … und der erste Programmierer sprach: "Hallo Welt!" 268
8.12.2. Nutzung verschiedener Bedienelemente .. 269

8.12.2.1. Button's - Schaltflächen ... 270
8.12.2.1.1. eine eigene Button-Aktion erstellen... 271
8.12.2.1.2. Button gestalten / formatieren ... 273
8.12.2.2. Nachrichten-Felder / Text-Felder ... 274
8.12.2.3. Eingabe-Felder / Eingabezeilen ... 275
8.12.2.4. Nachrichten-Boxen .. 277
8.12.2.5. Checkbutton-Wdget's – Options-Felder ... 279
8.12.2.6. Radiobutton-Widget – Options-Auswahl .. 280
8.12.2.7. Text-Fenster / Text-Widget .. 283
8.12.2.8. Frames – Group-Box's – Gruppen-Boxen .. 285
8.12.2.9. Menüs / Menu-Widget .. 286

8.12.2.9.2. eine Tool-Bar einbauen .. 288
8.12.2.9.3. eine Status-Zeile (Status-Bar) einbauen .. 289

8.12.2.10. Umgang mit Standard-Dialogen ... 290
8.12.2.11. Listbox-Widget – Auswahl-Listen – List(en)-Boxen 291
8.12.2.12. Options-Menüs – Auswahl-Schaltflächen ... 292
8.12.2.13. Scale-Widget – Gleiter / Regler .. 294
8.12.2.14. Scrollbar-Widget - Bildlaufleisten ... 295

BK_SekI+II_Python_prof.docx - 7 - (c,p) 2015 - 2026 lsp: dre

8.12.2.15. Widget x .. 295
8.12.x. Tkinter – stark, stärker, noch stärker Objekt-orientiert..................................... 296

8.12.x.1. nochmal "Hello Welt!" .. 296
8.12.x. diverse Tkinter-Beispiele .. 301

8.13. Internet ... 302
8.13.x. Python und das http-Protokoll ... 302

Variante 1 ... 302
Variante 2 ... 302

8.13.x. einfacher Web-Server ... 304
8.13.x. Python und die eMail-Protokolle (smtp, pop3, imap) 305
8.13.x. Zugriffe über die REST-API .. 305

8.13.x.y. SOAP ... 305
8.13.x.y. REST ... 306

8.14. besondere mathematische Möglichkeiten in Python .. 307
8.14.1. imaginäre Zahlen .. 307
8.14.2. Matrizen (Matrixes) ... 307
8.14.3. Python numerisch, Python für Big Data .. 309

Numpy ... 309
Scipy ... 309
Matplotlib ... 309
Pandas .. 310

8.15. Behandlung von Laufzeitfehlern – Exception's .. 311
try … except … else ... 311
try … except … finally .. 312
try … finally .. 312
raise 312
pass 312
traceback 313

8.15.1. Exception – das Exception-Objekt .. 313

8.16. Sortieren – eine Wissenschaft für sich .. 315
8.16.x. Bubble-Sort .. 315
8.16.x. Selection-Sort ... 315
8.16.x. Quick-Sort .. 316
8.16.x. Tree-Sort .. 318
8.16.x. Merge-Sort ... 318
8.16.x. Selection-Sort ... 319
8.16.x. Insertion-Sort .. 319
8.16.x. Gnome-Sort .. 320
8.16.x. Counting-Sort ... 320
8.16.x. Radix-Sort .. 321
8.16.x. Tim-Sort ... 321
8.16.x. Heap-Sort ... 321
8.16.x. Bucket-Sort ... 322
8.16.x. -Sort ... 322
8.16.x. Vergleich ausgewählter Sortier-Algorithmen ... 323
8.16.x. das Häufigste Element finden – der Modus .. 324

Beispiel-Implementierung ... 325

8.17. Nutzung weiterer (/ besonderer) graphischer Benutzer-Oberflächen 326

8.18. (die hohe Kunst der) Spiele-Programmierung .. 327

8.19. Python im Geheimen - Kryptologie .. 327
8.19.0. Grundlagen .. 327

8.19.0.1. Codierung .. 327
8.19.0.2. Chiffrierung .. 327

8.19.1. symmetrische Verschlüsselung .. 329
8.19.1.x. CÄSAR-Verschlüsselung ... 329
8.19.1.x. ROT13 ... 330

BK_SekI+II_Python_prof.docx - 8 - (c,p) 2015 - 2026 lsp: dre

8.19.1.x.1. ROT13 mit einer Funktion .. 333
8.19.1.x.2. Häufigkeits-Analyse .. 335

8.19.1.x. Umsetzung der CÄSAR-Verschlüsselung .. 337
8.19.1.x. moderne CÄSAR-Verschlüsselung mit Schlüssel 338
8.19.1.x. POLYBIOS-Verschlüsselung ... 339
8.19.1.x. VIGENÈRE-Verschlüsselung ... 340

8.19.1.x.y. Krypto-Analyse der VIGENÈRE-Verschlüsselung.. 342
8.19.1.x. bifid-Verschlüsselung ... 343
8.19.1.x. ADFGX-Verschlüsselung ... 346
8.19.1.x. trifid-Verschlüsselung ... 348
8.19.1.x. Four-Square-Verschlüsselung ... 352

8.19.2. asymmetrische Verschlüsselung .. 354

8.20. Code verbessern und optimieren ... 355

8.21. Test-gestütztes Programmieren mit Python .. 356

8.22. Konsolen-Dialoge und Dokumentation mit Jupyter-Notebook 358
8.22.1. Jupyter-Notebook unter Anaconda ... 358
8.22.2. Jupyter-Erweiterung in microsoft Visual Studio Code 358

8.23. online programmieren eines Spiel's mit Replit ... 359
8.23.1. ein neues Projekt (repl) anlegen ... 359
8.23.2. Erstellen eines Fenster's und Initialisierung der pygame-Umgebung 359
8.23.3. Erstellen der Spiel-Schleife (Aktualisierungs-Schleife) 360
8.23.4. Hintergrund und Spielfigur einbauen .. 360
8.23.5. Spiel-Figur bewegen ... 361
8.23.6. Verbessern / Erweitern der Bewegung + Kollisionen behandeln 362
8.23.7. mehrere Spiel-Figuren .. 363
8.23.8. Spielstand (Score) und Spielende .. 365

9. Python, informatisch – Datenstrukturen, Klassen, Automaten, … 368

9.1. Keller .. 370

9.2. Warteschlangen .. 375

9.3. Bäume .. 378

9.4. Graphen ... 379

9.5. endliche Automaten .. 380

9.6. Keller-Automaten .. 382

9.7. TURING-Automaten ... 382

BK_SekI+II_Python_prof.docx - 9 - (c,p) 2015 - 2026 lsp: dre

7. Problem-Lösen mit Python

7.0. Aufgaben versus Probleme

besser wahrscheinlich Aufgaben-Lösen

Problem-Lösen ist eine Stufe komplizierter und geht im Allgemeinen davon aus, das es noch
keine Lösung / keinen Algorithmus zur Bearbeitung gibt bzw. dieser nicht sofort offensichtlich
ist

meist Umsetzung von Aufgaben-Stellungen / Pflichten-Hefte in Software gemeint

in der Software-Entwicklung wird aber allgemein von einer Problem-Umsetzung gesprochen
das Erledigen von Aufgaben hat so etwas Profanes / Minderanspruchvolles
das Schreiben von Routine-Funktionen ist nicht die Herausforderung, die Software-
Entwickler mit dem Image ihres Berufsstandes verbinden
sie brauchen echte Herausforderungen, welche an die Grenzen der Technik oder der Pro-
grammiersprache herankommen
es ist quasi ein Kampf Mann (oder Frau) gegen Maschine, in dem man auf sich allein gestellt
ist und unbedingt zum großen Helden werden muss
problematisch ist, dass weder die Chef's der Entwicklungs-Abteilungen noch die Nutzer das
honorieren, sie können die Komplexität der Programmierung einfach nicht einschätzen
selbst, die im Team mitarbeitenden Programmierer bekommen von der Heldentat nichts mit,
weil sie ihren eigenen einsamen Kampf führen

also was macht der unbemerkte Held - er programmiert so, dass kein anderer sein Pro-
gramm versteht, so ist ihm vielleicht ein verspäteter Ruhm in Aussicht gestellt

ein Mittel dagegen - mit vielen weiteren Vorteilen - ist die Paar-Programmierung (Pair pro-
gramming, Tandem-Programmierung)
zwei Programmierer arbeiten gemeinsam und gleichzeitig an einem Problem
der eine tippt und der andere kontrolliert gleich mit, der eine ist also aktiv, der andere eher
passiv
nach einer aktiven Zeit wechseln die Paar-Mitglieder ihre Rolle
Kombinationen aus Frauen und Männern haben sich i.A. am Besten bewährt, sie gehen un-
terschiedlich an Probleme heran, hier ergänzen sich diese Vorgehensweisen
da bleibt die Aufmerksamheit länger enthalten, weil sich die Tätigkeiten abwechseln
große Aufmerksamkeit wird auch auf die Verständlichkeit des Code's gelegt
die Paare werden regelmäßig neu zusammengestellt, damit sich keine eingeschworenen
Team's bilden

Vorteile der Paar-Programmierung:

• weniger Programm-Fehler

• gegenseitiges Lernen und Lehren

• mehr Freude an der Arbeit (auch bei Routine-Programmier-Aufgaben)

• kleinere / effektivere Programme

• höhere Disziplin bezüglich Absprachen, Team-Regeln, …

• besserer Code

• Arbeitsabläufe werden belastbarer

• geringeres Risiko, das Know how eines Team's zu verlieren, wenn Mitarbeiter Projek-
te / Firmen / … wechseln

• Paare werden seltener in der Arbeit unterbrochen

BK_SekI+II_Python_prof.docx - 10 - (c,p) 2015 - 2026 lsp: dre

• Paar-Programmierung kann auch verteilt / distanziert (z.B. über das Internet) erfolgen

Eine Programmierer-Regel sagt, dass das Finden von Fehlern erst in der Praxis oder bei
ersten Tests ungefähr 10x so teuer / aufwändig ist, wie das sofortige Erkennen in der Ent-
wicklungs-Phase
Aber wo es soviele Vorteile gibt, sind die Schattenseiten nicht weit.

Nachteile / Probleme der Paar-Programmierung:

• Paare müssen sich immer wieder aufeinander einstellen, das kostet Arbeitszeit

• Leistungs-Niveau beider Programmierer muss ähnlich sein

• effektiv verlangsamt sich die Programmierung im Vergleich zur parallelen Arbeit bei-
der Programmierer an jeweils anderen Aufgaben

• Urheber-Rechte

• Haftung bei Problemen

Vielfach wird natürlich mit der Entwicklung neuartiger Programm auch informatisches Neu-
land betreten.

BK_SekI+II_Python_prof.docx - 11 - (c,p) 2015 - 2026 lsp: dre

7.0.1. Programm-Entwicklungs-Strategien

Wie fängt man ein komplexeres Projekt sinnig an? Es einfach von vorne bis hinten in einem
Ritt zu schreiben, birgt viele Risiken. Was passiert, wenn es vielleicht gar nicht in die Spra-
che umsetzbar ist? Oder vielleicht möchte der Auftraggeber auch mal Zwischenergebnisse
sehen?
In der Praxis haben sich Grund-Techniken für die Pro-
gramm-Entwicklung herauskristallisiert. Bei der einen
Variante – dem Top-down-Entwurf – beginnt man mit
einem sehr einfachen Programm-Rahmen. Im einfachs-
ten Fall ist es einfach nur der Aufruf eines leeren Haupt-
programms.
Nach und nach ergänzt man nun einzelne Komponen-
ten. Z.B. könnte man das leere Hauptprogramm in die
Teile Eingabe, Verarbeitung und Ausgabe strukturieren.
Im nächsten Schritt erweitert, ergänzt oder verbessert
man die einzelnen Komponenten bis man schließlich ein
fertiges Produkt erzielt.
Man spricht hier von Deduktion. Die Entwicklung erfolgt
quasi von oben nach unten, vom Allgemeinen zum Spe-
ziellen.
Der große Vorteil dieser Variante ist, dass man praktisch
zu jeder Zeit ein funktionierendes Programm hat, dass
nach und nach immer besser / Leistungs-fähiger / Feh-
ler-freier wird.

Erstellen eines Rah-
menprogramm's

 Erweitern um Modul-
Grundgerüste

 Ergänzen der
Arbeitsfunktionen

Nachteilig wirkt sich hier aus, dass der komplizierteste Teil – die spezielle Daten-
verarbeitung – irgendwie fast immer zum Schluss übrig bleibt. Wenn jetzt was nicht läuft,
dann hat Huston ein wirkliches Problem. Die möglichen Konsequenzen sind halbfertige Pro-
gramme, die erst beim Kunden reifen (sogenannte Bananen-Software) oder Verzögerungen beim
Zeitablauf.
Sachlich steckt hinter diesem Programmier-Prinzip die Dekomposition. Sie beinhaltet die
Zerlegung / Auflösung eines Ganzen in immer kleiner werdende Teile / Segmente. In der
Programmierung sind das dann Module, Unterprogramme, Prozeduren oder Funktionen.

BK_SekI+II_Python_prof.docx - 12 - (c,p) 2015 - 2026 lsp: dre

Natürlich kann man auch zuerst die spezielle(n) Funkti-
on(en) entwickeln und testen. Schrittweise, werden dann
zusätzliche Komponenten hinzugefügt, bis schließlich
ein fertiges Programm entstanden ist. Diese Technik
nennt man Bottom-up.
Es handelt sich hier um eine Induktion, also einer Ent-
wicklung von unten nach oben, vom Speziellen zum All-
gemeinen.
Vorteilhaft ist die frühzeitige Fertigstellung der kritischen
Programmteile.

Als Nachteil kann sich dabei herausstellen, dass man zwar super Leistungs-fähige Funktio-
nen entwickelt hat, denen aber ein verbindendes Großes-Ganzes fehlt.
Fehlen dann bestimmte Forderungen aus dem Pflichten-
Heft, dann sind vielleicht auch sehr aufwändige Nachko-
rekturen an den Kern-Funktionen notwendig. Das bedeu-
tet dann erneute Tests, Anpassungen usw. usf. Auch bei
dieser Projekt-Lösung kann es zu erheblichen Verzöge-
rungen der Fertigstellung kommen.

Die Bottom-up-Technik ist praktisch eine Aggregation. Segmente / Teile / Funktionen / …
werden zu einem Großen-Ganzen vereint.

Erstellen der Basis-
Funktionen

 Zusammenfassen
zu Modulen

 Zusammenstellen des
Hauptprogramm's

Heute werden häufig Top-down- und Bottom-up-Methoden kombiniert. In vielen Software-
Schmieden gibt es fertige Sammlungen von Funktionen, die in eine Top-down-Entwicklung
nach und nach integriert werden.
Man verlässt sich auf die geprüfte Leistung vorgefertigter Funktionen und hat zu jeder Zeit
ein mehr oder weniger gut funktionierendes Programm.

Prototyp mit ersten
Funktionen

 Erweitern und
Modularisieren

 Ergänzen fehlender
Funktionen

Eine weitere Strategie, die in der letzten Zeit viel von sich reden lassen hat, ist "Design
Thinking". Darunter versteht man Methoden, Verfahren und Fähigkeiten, sich in Aufgaben-

BK_SekI+II_Python_prof.docx - 13 - (c,p) 2015 - 2026 lsp: dre

stellungen und / oder Probleme hineinzufühlen, sie kreativ zu bedenken, Ideen zu kommuni-
zieren sowie produktiv und kollaborativ zusammenzuarbeiten. Vieles wird vorrangig aus der
Sicht des Nutzers / Endverbrauchers betrachtet und dieser steht auch im Mittelpunkt. Letzt-
endlich muss dieser mit dem Produkt leben und arbeiten.
In die Entwicklung eines Produkt's oder der Lösung eines Problem's sollen von Anfang an
möglichst alle beteiligte Personen-Gruppen einbezogen werden. Team-working, selbstkriti-
sches und kollaboratives Arbeiten sind Kern des Arbeitens. Fehler dürfen gemacht werden,
sollen aber möglichst frühzeitig erkannt werden, ohne nach "Schuldigen" zu suchen. Es sol-
len schnellsens Korrekturen, Verbesserungen und Erweiterungen umgesetzt werden.

Phasen des Design Thinking

• Phase 1: Situations-Analyse Wie ist der aktuelle Stand? Welche Situation ist
unbefriedigend? Welches Problem gibt es?

• Phase 2: Perspektiven entwickeln Was wäre das Tollste / Utopischte / …, was
man sich als Lösung des Problem's oder der
Situation denken könnte?
Sei kreativ! (Be creative!)
Was gefällt an anderen Lösungen nicht?

• Ideen generieren Was kann mit den gegebenen Mitteln realisert
werden? Was soll unbedingt realisiert werden?

• Konzept-Entwicklung Entwickeln erster Prototypen, die einzelne Teil-
Probleme lösen, die einen Eindruck von der
Lösung geben bzw. die einen ersten Lösungs-
Ansatz umsetzen.

• Testen des Konzept's Ausprobieren der Teil-Lösungen sowie des
fertigen Produkt's in der Real-Umgebung.
Solange die Lösung unbefriedigend oder noch
unvollständig oder erweiterbar ist, wird wieder
mit Phase 1 gestartet.

Aufgaben:

1. Vergleichen Sie die Startegien "Top-down", "Bottom-up" sowie die gemisch-

te in einer geeigneten Tabelle!

2.

BK_SekI+II_Python_prof.docx - 14 - (c,p) 2015 - 2026 lsp: dre

7.0.2. Strategien zur Lösung von (echten) Problemen

Zerlegen des Problems in kleinere Aufgaben / Probleme
Analogien zu anderen Problemen suchen (und dann deren Lösungen als Grundlage benut-
zen)
Versuch und Irrtum (trial and error)
Lernen durch Einsicht

Hilfsmittel / Techniken:

• Brainstorming

• Mind Mapping

• Concept Mapping

• Kopfstand-Technik
Umkehr-Technik
Flip-Flop-Technik

1. Aufgabenstellung umdrehen
2. Lösung für diese Aufgabe suchen
3. Lösung auf den Kopf stellen
4. Lösung anpassen / optimieren

• Negativ-Konferenz

• Provokations-Technik Provokation z.B. durch Verallgemeinerung, Pauschalisie-
rung, … als Inspirations-Quelle / zum Verlassen der ein-
getretenen Denkpfade

• Superposition

• kollektive Notizzettel
(collective Notebook,
CNB)

über einen bestimmten Zeitraum sammeln die Team-
Mitglieder ihre Gedanken, Assoziationen, Geistesblitze
und Ideen auf Notizzetteln zu notieren → 3 Phasen:
1. Vorbereitung (Problemstellung formulieren; Teilnehmer auswählen;
Notizblöcke bereitstellen)
2. Durchführung (Notizen machen (spontan und täglich); persönl.
Zusammenfassung erstellen)
3. Auswertung (Zusammenfassungen abgleichen; Notizen durchge-
hen; Basis-Vorschläge für Lösung heraussuchen / ableiten; Konzept-
Erstellung)

• Pinnwand-Moderation
ähnlich: Clustern

Sammeln von Ideen- wie beim Brainstorming – allerdings auf Kärtchen
/ Post-ist; wiederholte Gruppierung der Kärtchen und Gruppen-
Benennung; Zusammenfassung des Ergebnisses in möglichst neutra-
ler Form

• EDISON-Prinzip 1. Erfolgs-Chancen erkennen
2. eingetretene Pfade verlassen
3. Inspirationen suchen
4. Spannung erzeugen
5.Ideen und Erkenntnisse ordnen
6. Nutzen herausziehen

• progressive Abstraktion Finden von Zusammenhängen zwischen Problem und
erwarteter Lösung; Festlegen von Maßnahmen(-Ebenen)
die am Erfolg-versprechendsten erscheinen

• semantische Intuition

•

BK_SekI+II_Python_prof.docx - 15 - (c,p) 2015 - 2026 lsp: dre

für klassische (sofort lösbare) Aufgaben ("einfache Probleme") bietet sich die folgende Vor-
gehensweise an:

1. Erfassen des IST-Zustandes (IST-Ananlyse, Ist-Aufnahme, …)
2. Erkennen / Aufzeigen des Unterschiedes / Widerspruchs zum SOLL-Zustand
3. Suchen nach geeigneten Lösungs-Verfahren / Algorithmen
3. Anwendung eines Lösungs-Verfahrens (/ Algorithmus)
4. Prüfen des erreichten Standes bis IST und SOLL gar nicht mehr nur noch im akzep-

tablen Maß abweichen (ansonsten quasi Zurücksprung zu 1.)

BK_SekI+II_Python_prof.docx - 16 - (c,p) 2015 - 2026 lsp: dre

Beispiel für Top-down-Strategie: Erfragung einer Karte aus dem französischen Blatt

1. Prototyp – Test des Verfahrens

Die Umsetzung des Struktogramm wird ganz schematisch erledigt. Für den ersten Versuchs-
Prototypen verzichten wir auf fast jeden Schnickschnack. Wir wollen lediglich sehen, ob es
funktioniert.

eingabe = input("Ist es eine rote Karte? (j)")

if eingabe == "j":

 farbe = "rot"

else:

 farbe = "schwarz"

print("Die Karte ist: ",farbe)

Eingabe-Block
Verzweigungs-Block
 Ja-Zweig

 Nein-Zweig

Ausgabe-Block

 >>>

Neben der reinen Funktionalität, sollte man auch gleich die Handhabbarkeit prüfen. Wie kann
man die Eingaben für den Nutzer am Einfachsten machen, was macht ein Nutzer intuitiv?
Nichts ist nerviger, als eine umständliche Bedienung. Wird der Nutzer z.B. auf deutsch ge-
fragt und muss er dann aber mit "y" für "ja" antworten, da geht das spätestens bei der zwei-
ten Fragen mächtig auf den Docht. Grundsätzlich muss man sich da von seiner egomani-
schen, selbstbezogenen Zufriedenheit trennen. Es gibt für den Programmierer nur einen
"Gott" / eine Werte-Instanz und der sitzt vor dem Computer und versucht das Programm zu
bedienen.
Für unsere Ja-Nein-Fragen werden wir nur die Abfrage auf "j" programmieren, das ist ver-
ständlich und auch gut zu programmieren. Um vielleicht noch etwas flexibler zu sein, fragen
wir auch den Groß-Buchstaben ab. Die notwendige Erweioterung des Programms ist leicht
gemacht und wenn wir dann ein Grundgerüst für das Fragestellen und –auswerten haben,
dann können wir die restlichen "paar" Fragen mit copy-and-paste dazuprogrammieren.

eingabe = input("Ist es eine rote Karte? (j)")

if eingabe == "j" or eingabe == "J":

 farbe = "rot"

else:

 farbe = "schwarz"

print("Die Karte ist: ",farbe)

Erweiterung um "J"

BK_SekI+II_Python_prof.docx - 17 - (c,p) 2015 - 2026 lsp: dre

2. Schritt – Austausch eines allgemeinen Blockes gegen differenzierte Blöcke

 >>>

BK_SekI+II_Python_prof.docx - 18 - (c,p) 2015 - 2026 lsp: dre

3. Schritt – Erweiterung / Vervollständigung

 >>>

BK_SekI+II_Python_prof.docx - 19 - (c,p) 2015 - 2026 lsp: dre

4. Schritt – nächster Abschnitt

 >>>

BK_SekI+II_Python_prof.docx - 20 - (c,p) 2015 - 2026 lsp: dre

letzter. Schritt – Verschönerung / Verfeinerung / Benutzerführung optimieren

 >>>

kleine Programm-Beispiele

BK_SekI+II_Python_prof.docx - 21 - (c,p) 2015 - 2026 lsp: dre

7.0.3,14 Python am Pi-Day

Am 14. März ist der Pi-Day. An diesem Tag beschäftigen sich Mathematiker und Schüler mit

der wohl berühmtesten Konstante der Kreiszahl . Das Datum ergibt sich aus der amerikani-
schen Datum-Notation "3/14". Die ganz hart Gesottenen feiern exakt um 01:59:26 Uhr, um Pi
bis auf die 7. Nachkommastelle zu ehren.
Auch der 22. Juli wird gelegentlich als Pi-Annäherungstag zelebriert. Hier ergibt sich das

Datum aus dem Bruch 22/7, der rund 3,14 – also  ergibt.
Hier seien einige Programme vorgestellt, die Pi auf irgendeine Variante berechnen oder er-
mitteln.
Vielleicht geht der eine oder andere Quelltext über das gegenwärtige verständnis von Python
hinaus, das soll aber bei einem so spannenden Thema nicht das Abbruch-Kriterium sein.

Pi-Berechnung durch Monte Carlo Simulation

pi-monte_carlo.py
pi-Bestimmung mit der Methode von Monte Carlo
from random import random
print "Monte Carlo Methode zur"
print "Näherung für pi:"
g = input("Gesamtzahl der Tropfen: ")
v = 0
x=0; y=0 # Koordinaten des Punktes P
for i in range(1,g+1):
 x = random()
 y = random()
 if x*x+y*y<= 1:
 v = v + 1
pi_naeh = 4.0*v/g
print g,"Tropfen, davon",v,"Tropfen im Viertelkreis,"
print "pi etwa",pi_naeh

Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

Pi-Berechnung über Verhältnis der Flächen von äußeren und inneren Vieleck

Interations-Term

 𝑠𝑛+1 =
𝑠𝑛

√2+ √4−𝑠𝑛
2

pi-berechn2.py
pi-Berechnung mit regulären 2n-Ecken
from math import sqrt, pi
n = 6 # Start mit regulärem Sechseck
s = 1 # Seitenlänge des reg. Sechsecks
print "Schrittweise Näherung von pi mit Hilfe eines 2n-Ecks"
for i in range(1,21):
 pi_naeherung = 0.5*n*s
 print pi_naeherung
 s = s/sqrt(2+sqrt(4-s*s))
 n = 2*n # doppelte Eckenzahl
print "Gute Iteration!"
print "pi =",pi

Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

BK_SekI+II_Python_prof.docx - 22 - (c,p) 2015 - 2026 lsp: dre

Exkurs: besondere Zahlen – Stoff für viele Python-Programme

(einfache) besondere Zahlen

Dreieckszahlen:

Dreieckszahlen lassen sich über die Formel 𝑥𝑖 =
𝑖 (𝑖+1)

2
 berechnen (mit i dem

Rang der Zahl).
Die 10 ist nach PYTHAGORAS eine heilige Zahl, weil sie sich aus der Summe
der ersten i Zahlen (also: 1+2+3+4) ergibt. Außerdem lässt sich daraus ein vollkom-

men gleichseitiges Dreieck legen.

 Beispiele / Folge:
1, 3, 6, 10, 15, …

EULERsche Zahl:

Die EULERsche Zahl e berechnet sich als Grenzwert 𝑒 = lim (1 +
1

𝑛
)

𝑛

 bzw.

als unendliche Folge 𝑒 =
1

0!
+

1

1!
+

1

2!
+

1

3!
+ … bzw. in der Summen-

Schreibweise 𝑒 = ∑
1

𝑘!

∞
𝑘=0

Die EULERsche Zahl ist eine der bedeutenden Konstanten in der Naturwis-
senschaft und Mathematik.

 Wert:
2,718'281'828'…

goldener Schnitt:
irrationale Zahl

 =
1 + √5

2

Der Quotient aus zwei aufeinanderfolgenden FIBONACCHI-Zahlen nähert sich
immer mehr dem goldenen Schnitt an.

 Beispiele:

Kreiszahl :
irrationale Zahl
stellt Verhältnis von Umfang und Durchmesser eines Kreises dar
Verbindung zum goldenen Schnitt 6/5 2

 Wert:
3,141'592'654'…

narzißtische Zahlen:
Eine narzißtische Zahl mit n Stellen ist gleich groß
der Summe der n.-Potenzen ihrer Ziffern.

 Beispiele:
 153 = 13 + 53 + 33
54748 = 55 + 45 + 75 + 45 + 85

Vampir-Zahlen:
Vampir-Zahlen haben eine gerade Anzahl von Stellen und lassen sich aus
einer beliebigen Multiplikation von Zahlen, die halb soviele Stellen besitzen,
wie die Vampir-Zahl selbst hat, keine führende Null beinhalten und insgesamt
alle Ziffern der Vampir-Zahl enthalten.

 Beispiele:
1260 = 21 * 60
1530 = 30 * 51
2187 = 27 * 81

Urantia-Zahlen:

 Beispiele:

Zahl des heiligen AUGUSTINUS:
Die Zahl des heiligen AUGUSTINUS ist die erste narßistische
Zahl. Sie lässt sich auch aus der Summe der Fakultäten von 1 bis
5 berechnen.

 Beispiele:
153 = 1! + 2! + 3! + 4! + 5!
153 = 13 + 53 + 33

???:

 Beispiele:

über Teilersummen definierte besondere Zahlen

Teilersumme: Beispiele:

BK_SekI+II_Python_prof.docx - 23 - (c,p) 2015 - 2026 lsp: dre

die Teiler-Summe  (einer Zahl) ist die Summe aller ihrer Teiler begin-
nend bei 1 und abschließend mit der Zahl selbst

(12)
= 1+2+3+4+6+12
= 28

echte Teilersumme:

die echte Teiler-Summe  (einer Zahl) ist die Summe aller ihrer Teiler
beginnend bei 1 und dabei die Zahl selbst ausschließend

 Beispiele:

(12)
= 1+2+3+4+6
= 16

defiziente Zahl:
eine Zahl heißt dedizient (oder teiler-arm), wenn die die echte Teiler-
summe kleiner als die Zahl selbst ist

(n) < n

 Beispiele:

(10)
= 1+2+5 = 8
8 < 10

abundante Zahl:
eine Zahl heißt dedizient (oder teiler-reich), wenn die die echte Teiler-
summe größer als die Zahl selbst ist

(n) > n

 Beispiele:

(12)
= 1+2+3+4+6 = 16

16  6

vollkommene Zahl:
eine Zahl heißt vollkommen, wenn die die echte Teilersumme die Zahl
selbst ist

(n) = n

 Beispiele:

(6)
= 1+2+3 = 6
6 = 6

befreundete Zahlen:
Befreundete Zahlen sind zwei unterschiedliche natürliche Zahlen, bei deren
die echte Teilersumme genau der anderen Zahl entspricht.

 Beispiele:
1184 und 1210
5020 und 5564

sonstige (ganz) besondere Zahlen

???:

 Beispiele:

???:

 Beispiele:

seltene oder ungewöhnliche Zahlen und Zahlensysteme (in der Schule)

komplexe Zahlen:

→ in Python intern definiert, dadurch sofort nutzbar

 Beispiele:

???:

 Beispiele:

Q:

BK_SekI+II_Python_prof.docx - 24 - (c,p) 2015 - 2026 lsp: dre

8. Python für Fortgeschrittene

Nachdem wir die grundlegenden Elemente von Python besprochen haben, gehen wir jetzt
mehr in die Detail's. Natürlich gibt es keine echte Grenze zwischen Grundlagen und fortge-
schrittener Programmierung. Ab nun schauen wir auch intensiver hinter die Oberfläche und
kümmern uns um spezielle Eigenschaften und Möglichkeiten.
Auf den folgende Seiten verzichte ich jetzt auch dann und wann mal auf die farbige Darstel-
lung der Quell-Texte. Wer an dieser Stelle einsteigt, sollte genug Grundkenntnisse besitzen,
um mit Python umzugehen. Natürlich können einzelne Quelltexte und Programme auch im
Blindflug benutzt und ausprobiert werden. Ob das Sinn macht, muss jeder für sich entschei-
den. Aber ein Blindflug wird auch nicht an der Farbigkeit des Quelltextes im Editor scheitern.

Wegen der besonderen Bedeutung von Texten besprechen wir diese hier in einem geson-
derten Abschnitt. Im Programmier-Jargon heißen sie Strings (engl. Fäden) oder Zeichenket-
ten.
Einige Programmiersprachen betrachten Zeichenketten auch als eigenständigen / erweiter-
ten Datentyp. Python trennt hier nicht so streng.

8.1. Strings – Zeichenketten

Wie wir schon vilefach gesehen haben, sind Zahlen für sich nicht sehr informativ. Wir brau-
chen immer Beschreibungen, um die Zahlen in sinnvolle Zusammenhänge zu bringen.
Schon die Ausgabe des Namens einer (physikalischen) Größe oder die Nennung einer Ein-
heit sind mit Text-Symbolen verbunden. Erst so macht z.B. eine "21" Sinn. Wenn denn näm-
lich noch "Temperatur" und die Einheit "°C" dazu angegeben wird, dann verstehen wir die 21
auch im Speziellen.
Heute ist die Verarbeitung von Zeichenketten eine der häufigsten Tätigkeiten / Aufgaben für
Programmierer. Viele Daten liegen zuerst einmal als Zeichenketten vor. Bevor man sie für
Berechnungen usw. nutzen kann, müssen sie ersteinmal aufgearbeitet werden (→ 8.2. Da-
tentypen und Typumwandlungen).

8.1.1. einzelne Symbole / Zeichen / Charaktere

wir sprechen auch von Charakteren – abgekürzt in vielen Programmiersprachen mit char
oder chr
gemeint ist die Repräsentation von Zeichen im ASCII-Zeichensatz oder in den modernen
Versionen der Programmiersprachen im Unicode-Zeichensatz

Symbole müssen im Programm-Text entweder in einfache Hockkommata oder Anführungs-
zeichen gesetzt werden
immer nur ein gültiges Zeichen

Beispiele:
'a'
'1'
'.'
'#'

BK_SekI+II_Python_prof.docx - 25 - (c,p) 2015 - 2026 lsp: dre

Speicherung in Variablen möglich

Umwandlungen von Symbolen und ASCII-Code

ord()
gibt für ein Zeichen / Charakter den ASCII-Code zurück

chr()
wandelt einen ASCII-Code (Ganzzahl!) in ein Symbol / Charakter um

8.1.2. Sequenzen von Zeichen - Zeichenketten / Strings

erste allgemeine und unterschwellige Besprechung schon weiter vorne (u.a. → 6.1. Ausga-
ben und 6.4.2.2. Sammlungs-bedingte Schleifen)
hier noch einmal mit zusammenfassendem Charakter

im Programmierer-Jargon Strings genannt
ist ein nicht-veränderbarer Datentyp (immutable)

Zeichenkette ist eine Symbol-Folge
Im Programm-Text / Listen usw. müssen Strings / Texte entweder in einfache Hockkommata
oder Anführungszeichen gesetzt werden
Empfehlung (aber kein Muss!) einzelne Symbole in einfache Hochkommata und Strings in
Anführungszeichen

Zeichenketten sind unveränderlich (immutable), einmal definiert sind sie nur durch direktes
oder indirektes Kopieren / Manipulieren zu verändern
eine Zeichenänderung über zeichenkette[3] = 's' ist nicht möglich

Symbole / Zeichenketten lassen sich durch Addition (+) verketten / konkatenieren
ein Symbol / eine Zeichenkette läßt sich durch Multiplikation (*) wiederholend verketten /
konkatenieren

Vergleich – wie in Python üblich – über == bzw. !=
für die andereren Vergleiche gelten die lexikalischen Ordnungen
ein längerer String ist immer größer

es läßt sich der in-Operator verwenden
also prüfen, ob ein Symbol / Teilstring in einem anderen String enthalten ist

in-Statement
prüft, ob etwas (Text) in einer Zeichenkette enthalten ist
z.B.:

BK_SekI+II_Python_prof.docx - 26 - (c,p) 2015 - 2026 lsp: dre

enthalten = "aaa" in text

liefert Wahrheits-Wert

len()
Länge der Zeichenkette / Buchstaben-/Zeichen-Anzahl

str()
Umwandlung in einen String

Zugriff auf einzelne Zeichen über den Index
Zählung beginnt mit 0 für das erste Zeichen

zeichen = zeichenkette[Index]

es ist auch der Zugriff auf Zeichenketten-Abschnitte möglich (Slice-Notation)
zeichenkettenabschnitt = zeichenkette[:3] liefert die ersten drei (3) Zeichen (Quasi bis zum
3. Zeichen)
zeichenkettenabschnitt = zeichenkette[3:] kopiert alle Zeichen ab dem dritten bis zum Zei-
chenkettenende
zeichenkettenabschnitt = zeichenkette[4:7] in der Variable zeichenkettenabschnitt befindet
sich die Zeichen von Position 4 bis 6 (also nicht mehr 7)

die Indizes können auch negative Zahlen sein, dann wird von rechts nach links – also quasi
vom Ende her – gearbeitet (0 und -0 ist aber die gleiche Position!)
[:-3] liefert die Zeichenkette ohne die letzten drei Zeichen
[-4:] liefert die letzten vier Zeichen der Zeichenkette

Ausgaben mit Platzhaltern

print("Hauptzeichenkette %s Restzeichenkette" % "Zeichenkette")
print("Hauptzeichenkette %s Restzeichenkette" % ZeichenkettenVariable)

print("Hauptzeichenkette %s Restzeichenkette %s weitere Zeichenkette" % (Zeichenkette1,
Zeichenkette2))

typische Fehler beim Bearbeiten von Zeichenketten

IndexError … beim Versuch auf ein Zeichen hinter dem String zuzugreifen
TypeError … beim Benutzen eines Indexes, der vom Typ nicht passt (z.B. ein float) oder

wenn man versucht in die Zeichenkette zu schreiben oder eine Zeichenkette soll
mit einer Zahl od.ä. Nicht-Texten kombiniert werden

zeichenkette.split() teilt die Zeichenkette in Worte (Trennzeichen ist Leerzeichen (und
andere übliche Trenner (z.B. auch \n) auf und erzeugt eine Liste von Worten (es kann mit
sep="?" auch ein anderes Trennzeichen benutzt werden)
zeichenkette.split("?")

BK_SekI+II_Python_prof.docx - 27 - (c,p) 2015 - 2026 lsp: dre

gesplitte Zeichenkette in einer Liste kann mit Angabe des Seperator's zu einer Zeichenkette
zusammengesetzt werden

zeichenkette = " ".join(liste)

8.1.2.1. f-Strings

vor die Zeichenkette wird ein f geschrieben
nun kann man in die Zeichenkette mit geschweiften Klammern Referenzen auf andere Vari-
ablen / Objekte integrieren

nutzer = "Thomas"

zeit = "Tag"

print(f"Hallo {nutzer}, guten {zeit}")

in den geschweiften Klammern können auch Berechnungen usw. stehen, diese werden vor
der Integration berechnet

BK_SekI+II_Python_prof.docx - 28 - (c,p) 2015 - 2026 lsp: dre

8.1.3. Objekt-orientierte Nutzung von Strings

Das hört sich irgendwie gefährlich an – Objekt-orientierte Nutzung von Strings – ist aber ei-
gentlich gar nicht sowas Neues. Viele der schon besprochenen / genutzten Module realisie-
ren genau das moderne Objekt-Konzept. Wir werden uns später genauer damit beschäfti-
gen. Also keine Angst – einfach ran an die Bouletten.

Zuweisung:
neuerString = String
bringt nur Referenz auf den originalen String; ändert man den originalen String, ist der refe-
rierte String mit "geändert"

eine echte Kopie mit der copy()-Funktion

echtneuerString = originalString.copy()

Zeichenkette.strip()
Zeichenkette.strip([zeichen])::
Entfernt Leerzeichen und Zeilenumbrüche von den Enden des Strings
innere Leerzeichen und Zeilenumbrüche bleiben erhalten

Zeichenkette.lower()
Umwandlung in Kleinbuchstaben

Zeichenkette.upper()
Umwandlung in Großbuchstaben

Zeichenkette.append(e)

Zeichenkette.extend(l)

Zeichenkette.count(e)

Zeichenkette.index(e)

Zeichenkette.insert(i,e)

Zeichenkette.pop(i)

Zeichenkette.remove(e)

Zeichenkette.reverse()

BK_SekI+II_Python_prof.docx - 29 - (c,p) 2015 - 2026 lsp: dre

Zeichenkette.sort()
Zeichenkette.sort(reverse=True)

Zeichenkette.find(e)
Zeichenkette.find(e,istart)
Zeichenkette.find(e,istart,iende)

Zeichenkette.rfind(x,istart,iende)

Zeichenkette.rjust()

Zeichenkette.ljust()

Zeichenkette.replace(ealt,eneu)

Zeichenkette.endwith(zeichen,anzahl)

Zeichenkette.split()
Zeichenkette.split(Trennzeichen)
split() teilt eine Zeichenkette in Wörter auf. Diese Wörter werden als Liste zurückgegeben.
Als Ternnzeichen wird das Leerzeichen benutzt.
Soll ein spezielles Trennzeichen verwendet werden, dann kann dieses bei splitt() als Argu-
ment angegeben werden.
Auf diese Art lassen sich z.B. Zeilen aus CSV-Dateien in ihre Elemente Zerlegen, wenn man
das gültige Trennzeichen kennt. Da alle Elemente der Liste Texte sind, muss u.U. noch eine
Umwandlung in Zahlen – wenn es denn solche sind – erfolgen.

Zeichenkette.rsplit()

join(Liste)
erzeugt aus den Elementen der Liste einen verketteten Text
braucht man z.B. Leerzeichen zwischen den Elementen, dann kann man dies so notieren:
" ".join(Liste)
Für die Erzeugung von CSV-Zeilen lässt sich statt dem Leerzeichen natürlich auch ein ande-
res Trennzeichen verwenden.

8.1.4. besondere Möglichkeiten für Strings in Python

zwei aufeinanderfolgende Literale werden automatisch verknüpft
'Pyt' 'hon' ergibt 'Python'
schöner natürlich mit +-Operator: 'Pyt' + 'hon'

BK_SekI+II_Python_prof.docx - 30 - (c,p) 2015 - 2026 lsp: dre

gilt nicht für beliebige Kombinationen mit Zeichenketten(-Funktionen)
mit +-Operator aber beliebige Zeichenketten-Kombinationen realisierbar

Zahlen müssen ev. vorher mittels str()-Funktion in eine Zeichenkette umgewandelt werden

BK_SekI+II_Python_prof.docx - 31 - (c,p) 2015 - 2026 lsp: dre

8.2. Datentypen und Typumwandlungen

Irgendwie hat Python fast immer erkannt, mit was für eine Art Daten wir arbeiten. Diese Fle-
xibilität wird von jüngeren Programmierern gelobt und von den älteren / klassischen Pro-
grammierern als deutlicher Mangel von Python hervorgehoben.

Grundsätzlich hatten wir es bis hierher mit zwei Datentypen zu tun, die Zahlen und die Texte.
Weitere Datentypen sind None als leeres Objekt oder eben "Nichts" und

Bei den Zahlen unterscheiden Informatiker mehrere klassische Zahlen-Arten, die sich zwar
an mathematischen Typen orientieren, aber im Wesentlichen unterschiedlich im Prozessor
(CPU) verarbeitet werden.
Die einfachste Art Zahlen sind die ordinären bzw. ganzen Zahlen. Sie sind die praktische
Darstellung einer Zahl im Dualsystem. Da sie keine Nachkommstellen haben und somit das
Komma immer an der rechten Seite haben, spricht man auch von Festkomma-Zahlen. Für
das Vorzeichen ist bei einigen (bei Python bei allen) Zahlen-Formaten das höchstwertige Bit
reserviert. Diese Art der Zahlen-Darstellung haben wir prinzipiell schon vorgestellt (→
3.1.2.1. Mathematik für Informatiker – binäres Rechnen). In Python ist das kleinste Fest-
komma-Zahlenformat der Typ int. Das früher vorhandene und größer als int definierte Typ
lon ist in int aufgegangen. Somit gibt es nur noch int, was den Umgang mit Festkommazah-
len erleichtert. Die darstellbaren Zahlen sind nicht mehr begrenzt . Für eine Zahl oder eine
Variable mit diesem Typ werden also immer viele Bytes vom Haupt-Speicher verbraucht.

Typ Beschreibung ev. Grenzen,
…

Beispiel

None nichts; NULL

Integer Ganzzahl mit führender 0
wird Wert als
Oktalzahl, mit
führenden 0x als
Hexadezimalzahl
interpretiert!

x = 3
o = 0127
h = 0x6f4ea

int()

Float Fließkommazahl
Gleitkommazahl

 f = 7.85
f1 = 2e6
f2 = -7.25e-3

float()

Complex komplexe Zahl complex()

Bool Wahrheitswert w = True
w = False

bool()

String Zeichenkette

List (veränderbare) Liste (von
Elementen)
Sequenz

Tuple unveränderliche Liste /
Sequenz

Dictionary Kombinations-Feld
Kombinations-Liste
Lexikon-Eintrag
assoziatives Feld

Set (veränderbare) Menge
(von Elementen)

Frozenset unveränderliche Menge

Mit der Funktion type() kann der Daten-Typ ermittelt werden.

BK_SekI+II_Python_prof.docx - 32 - (c,p) 2015 - 2026 lsp: dre

Eine Überprüfung, ob ein Objekt einen bestimmten Daten-Typ hat, erfolgt mit is-
instance(ausdruck, datentyp)

z.B.: istinstance(4, float) → False

isinstance("Hallo", (int, float, str)) → True

Wo sind die Variablen abgespeichert und wieviel Platz (Byte) werden für sie verbraucht?

In Python sind Variablen Referenzen (Verweise / Zeiger) auf bestimmte Speicherzellen. Mitt-
les der id-Anweisung bekommt man die (erste) Speicher-Adresse zurückgeliefert.

Den verbrachten Speicherplatz kann man über die Typ-Bestimmung für die Variable ermit-
teln. Dazu gibt es die type-Anweisung.

>>>

eigener Speicher-Verbrauch des Programms:

BK_SekI+II_Python_prof.docx - 33 - (c,p) 2015 - 2026 lsp: dre

8.2.1. Zahlen

8.2.1.1. ganze Zahlen

int mit einem Werte-Bereich von -9’223’372’036’854’775’808 bis 9’223’372’036’854’775’807
(-9 Trillionen bis 9 Trillionen)
Das entspricht dem Maximum, was in einer 64bit-Variablen möglich ist

Zahlendarstellung über spezielle Literale

oktale Literale
0o724

binäre Literale
0b01001

hexadezimale Literale
0xA1F31

Umwandlungs-Funktion: bin(), oct() und hex()
arbeiten nur mit int-Zahlen
es handelt sich um Funktionen, die direkt in Python zugänglich sind, ein Modul-Import ist
nicht notwendig

8.2.1.2. Fließkommazahlen / Gleitkommzahlen

Zahlen mit Kommastellen nennen die Informatiker auch Fließkomma-Zahlen. Die Zahl be-
steht dabei immer aus einer vorzeichenbehafteten Mantisse. Die Mantisse hat eine Spanne
von 1,0 bis 9,9999… Dazu gehört immer ein Exponent der die zugehörige Zehner-Potenz
charakterisiert. Vielleicht kennen Sie die Zahlen-Darstellung als wissenschaftliches Zahlen-
Format oder .

3,9745 * 10-20 → 3.9745e-20

Die Möglichkeit, dass auch nur ein e schon eine – zumindestens theoretisch – mögliche
Fließkommazahl ist (0,0 * 100), kann in einigen Programmen und / oder Programmierspra-
chen zu Problemen führen.

float für Gleitkommazahlen ebenfalls als 64bit-Variable
durch spezielle Verteilung der Bit’s für Matisse und Exponent kommt man auf einen mögli-
chen Bereich von -1,797’693’134’862’315’7*10308 bis +2,225’073’858’507’201’4*10308

BK_SekI+II_Python_prof.docx - 34 - (c,p) 2015 - 2026 lsp: dre

In der Mathematik gibt es auch noch eine etwas ungewöhnlich anmutende Zahlen-Menge –
die imaginären oder komplexen Zahlen. Sie ergeben sich aus der Lösung des Problems um
die Berechnung der Wurzel aus -1. Im Bereich der "normalen" Zahlen (natürliche, ganze,
reele, rationale Zahlen) gibt es keine Lösung für die Wurzel aus -1.
Zu diesem Daten-Typ und den zugehörigen Verarbeitungs-Möglichkeiten kommen wir in ei-
nem späteren Kapitel genauer. Hier ist erst einmal nur wichtig, dass eine komplexe Zahl in
Python vom Typ complex ist und aus zwei Bestandteilen besteht, den reelen und den imagi-
nären Teil. In der Mathematik wird der imginäre Teil mit einem i (imaginäre Einheit) gekenn-
zeichnet, in Python wir dafür das j verwendet.

komplexe Zahlen lassen sich als Summe (besser auch in Klammern) aus reelen und imagi-
nären Teil zusammensetzen 4+5j

BK_SekI+II_Python_prof.docx - 35 - (c,p) 2015 - 2026 lsp: dre

8.2.1.3. Wahrheitswerte

Zu den Zahlen- oder nummerischen Formaten zählen auch die BOOLEschen Werte für
WAHR (TRUE) und FALSCH (FALSE). Sie sind gleichfalls durch 1 bzw. 0 und die Ausdrücke
True und False repräsentiert.
In Python haben alle Werte und Daten-Strukturen einen bestimmten Wahrheitswert. Das ist
oft sehr praktisch, kann aber auch schwierig für die Lesbarkeit eines Programm-Codes sein.

Da boolsche Werte zu den
nummerischen Datentypen
zählen sind neben den ty-
pisch boolschen Operato-
ren auch die arithmetri-
schen Operatoren zugelas-
sen.
Bei der Verwendung unge-
wöhnlicher Ausdrücke sollte
man ev. eine offensichtli-
chere Schreibung verwen-
den oder gut kommentie-
ren.

 Operator Beschreibung / Operation

 a & b bitweise UND AND

 a | b bitweise ODER OR

 a ^ b bitweise exklusives ODER XOR

 a >> n Bit-Verschiebung um n Stellen
nach rechts

entspricht: /2

 a << n Bit-Verschiebung um n Stellen
nach links

entspricht: *2

 not a Negation von a

 a and b UND-Verknüpfung

 a or b ODER-Verknüpfung

 a + b

 a - b

 a * b

 a ** b

 a == b Gleichheit

 a != b Ungleichheit

8.2.1.4. komplexe Zahlen

abweichend zur üblichen Notierung mit einm i wird in Python ein j verwendet

4 + 3i → 4 + 3j

BK_SekI+II_Python_prof.docx - 36 - (c,p) 2015 - 2026 lsp: dre

8.2.2. Strings und Co als Datentypen

Die Zeihenketten haben wir schon wegen vieler Besonderheiten und der großen Bedeutung
weiter vorne besprochen (→ 8.1. Strings – Zeichenketten).
Hier gehen wir nur noch einmal in Bezug auf Typ-Umwandlungen auf sie ein. Einige Aspekte
kommen hier wiederholend vor.

8.2.2.1. einzelne Zeichen

ord()
gibt für ein Zeichen / Charakter den ASCII-Code zurück

chr()
wandelt einen ASCII-Code (Ganzzahl!) in ein Symbol / Charakter um

8.2.2.2. Sequenzen von Zeichen - Zeichenketten

str()
produziert vorrangig für Menschen lesbare Strings

repr()
erstellt Strings, die optimal für den Interpreter sind

float()
wandelt eine Zeichenkette in eine Fließkomma-Zahl um
Achtung! bei Fehler-behafteten Zeichenketten ergibt sich ein Laufzeitfehler
Abfangen von Laufzeitfehlern über Exception's möglich (→ 8.14. Behandlung von Laufzeit-
fehlern – Exception's)

int()
wandelt eine Zeichenkette in eine Festkomma-Zahl um
Achtung! bei Fehler-behafteten Zeichenketten ergibt sich ein Laufzeitfehler
Abfangen von Laufzeitfehlern über Exception's möglich (→ 8.14. Behandlung von Laufzeit-
fehlern – Exception's)

BK_SekI+II_Python_prof.docx - 37 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Schreiben Sie ein Programm, dass einen einzugebenen Text in eine Liste

von ASCII-Code's zerlegt und diese Liste dann ausgibt!

2. Erweitern Sie das Programm von der Aufgabe 1 dahingehend, dass die Lis-

te der ASCII-Code's in eine weitere Liste aus Symbolen umgewandelt wird!

Lassen Sie diese Liste dann auf dem Bildschirm erscheinen!

3. Im letzten Schritt soll das Programm nochmals um die Rekonstruktion eines

String's aus der ASCII-Code-Liste (!!!) erweitert werden!

4. Ein (neues) Programm soll eine einzugebene positive Ganzzahl (z.B.: 134)

in "gesprochene" Ziffern-Folgen (z.B.: "eins drei vier") zerlegen!

für die gehobene Anspruchsebene:

5. Erweitern Sie das Programm um die Ausgabe eines Vorzeichens für negati-

ve Ganzzahlen!

6. Erstellen Sie ein Programm, dass eine einzugebene Fließkommazahl (z.B.:

183.45) in eine "deutsche", "gesprochene" Ziffernfolge zerlegt! (hier: "eins

acht drei Komma vier fünf")!

BK_SekI+II_Python_prof.docx - 38 - (c,p) 2015 - 2026 lsp: dre

8.2.3. Listen, die I. – einfache Listen

In den vorderen Kapiteln haben wir schon das eine oder andere Mal unterschwellig Listen
verwendet, ohne genau auf diese Daten-Struktur einzugehen. Hier sollen nun verschiedene
einfache Zugriffs-Möglichkeiten usw. genauer besprochen werden.
Später betrachten wir die Listen auch noch mal aus der Sicht der Objekt-orientierten Pro-
grammierung (→ 9.7. Listen, die II. – objektorientierte Listen). Listen sind nämlich auch ein-
fach nur Objekte, für die es dann vorgefertigte Attribute und Methoden gibt. Hier bieten sich
dann viele genial-einfache Listen-Nutzungs-Möglichkeiten an, hinter deren Prinzip man aber
erst einmal steigen muss. Hier helfen uns die Kenntnisse über die grundsätzliche Art und
Weise der Objekt-orientierten Programmierung (→ 8.11. Objekt-orientierten Programmie-
rung).

Definition(en): Datenstruktur
Eine Datenstruktur ist der Informatik eine Vereinbarung zur Organisation und Speicherung
von Daten.

wichtige Daten-Strukturen:

• lineare Strukturen:
o Liste
o Keller
o Ring

• verzweigte Strukturen:
o Baum
o Netz

ausgewählte (bedeutsame) Datenstrukturen

Speicher-Typ: FIFO - First In - First Out, selten auch FCFS (für: First come, first served.)

Daten, die zuerst in die Struktur auf-
genommen / gespeichert werden,
werden auch zuerst wieder aus ihr
entfernt / entnommen

Wer zuerst kommt, mahlt zuerst.

First come, first served.

bekannteste und auch häufigste Struktur in informatischen Systemen ist die (Warte-
)Schlange
hier auch vielfach Queue oder Pipe genannt

alternativer Speicher-Typ für lineare Daten-Strukturen ist LIFO für "Last IN - First out"
z.B. bei Keller (Stapel-Speicher, Stack) realisiert
im englischen auch LCFS für "Last come - first served."

LIFO und FIFO sind ausschließlich Zeit-bedingt. Prioritäten spielen keine Rolle. Dafür wer-
den dann spezielle Versionen dieser Speicher-Typen realisert.

BK_SekI+II_Python_prof.docx - 39 - (c,p) 2015 - 2026 lsp: dre

8.2.3.0. theortische Vorbetrachtungen

8.2.3.0.1. Listen – eine Form der Datensammlung

Wahrscheinlich sind Listen wohl die älteste Form
der strukturierten Daten-Sammlung. Es gibt Höh-
lenmalerein, in denen die Jagd-Erfolge aufgelistet
sind.
Abei auch in unserem heutigen Leben spielen
Listen immer noch eine große Rolle. Vielzitierte
Beispiele sind:

• Einkaufs-Listen

• Stück-Listen (z.B. am Anfang von Bau-
Anleitungen (→ LEGO ®-Bausätze, IKEA
®-Möbel, …)

• Inventar-Listen

• Arbeits-Aufträge (To do-Listen)

• Check-Listen (für Flugzeugstart‘s od.ä.;
Reinigungs-Arbeiten, …)

• Vokabel-Listen

• Anrufer-Liste im Telefon

• Mail-Box

• empfangene oder gesendete eMail’s

• Schüler-Liste im Klassenbuch

• Strafakte

• Adressliste / Telefon-Liste

• Messwerte

• Playlist im MP3-Player / Smartphone

• Dateien in einem Ordner

• Inhalts-Verzeichnis

• Handels-Register

• Warte-Liste

• Chroniken

• Wähler-Verzeichnis

• Speisekarte / Menü-Liste

• Robinson-Liste

• Mitglieder-Liste eines Vereins

• Lieferschein

•

Neben den einzelnen Elementen interessieren in Listen oft auch die Anzahl der Einträge.
Quantitative Aspekte spielen bei Listen also eine wichtige Rolle. Listen haben einen Inventar-
Charakter bezogen auf Objekte, die unter einem Aspekt zusammengestellt wurden.

Definition(en): Listen
Eine Liste ist eine Sammlung von thematisch zusammengehördnen Informationen / Daten in
einer sich ständig wiederholenden Form.

BK_SekI+II_Python_prof.docx - 40 - (c,p) 2015 - 2026 lsp: dre

Selbst soetwas wie Spick-Zettel könnte man in die Kategorie Listen einordnen.
Viele der oben erwähnten Anwendungen von Listen gibt es sicher auch schon für unsere
modernen Smartphone’s als App. Hier ist dann der Bezug zur informatischen Datenstruktur
Liste meist besonders leicht herzustellen. Da hier die Daten (z.B. eMail's, Kontakte usw. usf.)
als Listen bereitgestellt werden.

Aufgaben:

1. Wählen Sie eine Gruppe von 10 App's auf Ihrem Smartphone aus (z.B. die

auf einer Seite zusammenstehen) und notieren Sie deren Namen und Zuge-

hörigkeit zu einem App-Typ! Prüfen Sie nun, ob und welche Daten in einer

oder mehrerer Listen verwaltet werden!

2. Was sind eigentlich Blacklist, Whitelist und Graylist?

3.

Listen sind entweder leer oder bestehen aus einem (Kopf-)Element und einem Verweis auf
eine (Rest-)Liste
die Rest-Liste kann natürlich auch leer sein

BK_SekI+II_Python_prof.docx - 41 - (c,p) 2015 - 2026 lsp: dre

8.2.3.0.2. Daten-Struktur: Liste

Listen sind in Python wohl die Daten-
Struktur. Ob wir sie dabei als vertikal oder
horizontal angeordnet betrachten, ist für uns
völlig egal. Meist wird aber eher eine hori-
zontale betrachtung vorgezogen.
Vielfach sind die Elemente / Einträge in einer
Liste gleichartig.

In Python muss dies nicht so sein. Man kann in einer Liste Obejekte ganz unterschiedlicher
Typen sammeln. Das können auch wieder Listen sein. Gerade dies macht Listen in Python
so unwahrscheinlich flexibel.
Im Vordergrund stehen die folgenden Gründe für den Einsatz von Listen:

• gleichartige zu bearbeitende Elemente

• einfache Aufzählung von Objekten

• unbestimmte Anzahl von Elementen, Anzahl ist mehr oder weniger stark veränderlich

• Reihen-Folge der Listen-Einträge kann, muss aber keine Rolle spielen

Definition(en): Liste
Im informatischen Sinn versteht man unter einer Liste eine Sammlung von (gleichartig zu
bearbeiteten) Elementen in einer Aneinander-Reihung.

Eine Liste ist eine dynamische Datenstruktur von Elementen / Objekten in einer verketteten
Form.

Eine Liste ist eine lineare Datenstruktur,

Einlisten – Eintragen eines Elementes / Listen-Eintrag’s in eine Liste
Auslisten – Entfernen eines Elementes / Listen-Eintrag’s aus einer Liste

Größe der Liste wird maßgeblich vom verfügbaren / bereitgestellten / (dafür) reservierten
Speicher bestimmt
die reine Anzahl an Einträgen kann sehr groß werden

Attribute von Listen:
Name
(aktuelle Zeiger-Position)

Operationen / Methoden zu / auf Listen:
initialisieren (init) → erstellen einer Liste
?leer / istLeer (isEmpty) → ist die Liste leer?
einspeichern / anhängen (append) → anhängen eines Element’s an eine bestehende Liste

BK_SekI+II_Python_prof.docx - 42 - (c,p) 2015 - 2026 lsp: dre

lesen / ausspeichern (read) → Lesen eines Eintrags, ohne ihn zu löschen
geheZumAnfang / (toFirst) → gehe zum ersten bzw. Kopf-Element
tauscheElement / (remove) → ersetze das aktuelle / ausgewählte Listen-Element durch ein

anderes
einfügen / (insert) → ein Element an der aktuellen Stelle (Zeiger-Position) einfügen und den

Rest der Liste anhängen
vorne einfügen / ()
entfernen / löschen () → entfernen / löschen des aktuellen Element’s (Rest-Liste wird an den
Vorgänger angehängt)

istEintrag / suche (search /) → ist ein bestimmter Eintrag in der Liste vorhanden?
finde / gibPosition (find / getPosition) → gibt die Listen-Position eines Eintrag‘s an / zurück
anzahl / länge (length) → gibt die Anzahl an Einträgen in der Liste zurück

Kopf-bezogenes Arbeiten:
insert bzw. push zum Einspeichern (neue Liste ::= neuer Eintrag, alte Liste)
pop(0) zum Ausspeichern (liefert das Kopf-Element zurück und entfernt es vom Kopf der
Liste)
Liste wird als Konstrukt aus Kopf und Rest verstanden

Schwanz- / Ende-bezogenes Arbeiten:
append() anhängen eines Eintrags an die Liste (einspeichern)
pop() zum Ausspeichern (liefert das letzte Element zurück und entfernt es vom Ende der
Liste) (!!! Fehler bei leerer Liste)
eine Liste wird als Konstrukt aus einer (kleineren) Liste und einem (letzten) Element - dem
Ende - verstanden

Vielfach sind Listen als zwei-
geteilte Objekte in Program-
miersprachen angelegt. Ne-
ben dem eigentlichen Daten-
Objekt enthält ein Eintrag
auch noch eine Referenz auf
den nächsten Eintrag. Eine
Referenz ist praktisch eine
Adresse im Hauptspeicher.

Beim letzten Eintrag wird die Referenz auf NIL gesetzt. NIL steht dabei für "Not in List" bzw.
"Not in line". Es repräsentiert einen Null-Wert.
In Python wurde eine abwei-
chende Organisations-Form
gewählt. Die Liste besteht
nur aus Referenzen. Diese
verweisen auf irgendwo ge-
speicherte Daten-Objekte.
Ganz genau informatisch
betrachtet sind Listen in Py-
thon also Felder (Array's)
von Zeigern (Pointern).
Der NIL-Wert kann auch als
Speicher-Adresse verstan-
den werden.

In dieser ist praktisch - wie in einem Mülleimer- ganz viel Platz.

in Python haben wir keinen Zugriff auf den Link-Teil eines Eintrages

BK_SekI+II_Python_prof.docx - 43 - (c,p) 2015 - 2026 lsp: dre

lediglich das soundsovielte Element einer Liste kann angesteuert werden, was dem temporä-
ren Setzen des Zeiger’s (auf ebendiesen Eintrag) entspricht

Listen lassen sich mithilfe von verschiedenen Schleifen durchlaufen
z.B. mit Zählschleife bei bekannter Anzahl von Einträgen (Index-Zugriffe)
z.B. mit einer bedingten Schleife und einer Erkennung des letzten Eintrag’s (→ NIL)
z.B. mit Sammlungs-bedingten Schleifen / (verdeckten) Interatoren

praktische Nutzungen / Abwandlungen in …:

• Warteschlange
o Drucker-Warteschlange
o Übertragungs-Puffer (z.B. TCP/IP; Tastatur-Eingaben)
o

•

Operationen auf Listen (Attribut-Schreibweise)

Bezeichnung Operation Resultat

 Liste = [] erzeugen einer leeren Liste

 Liste[i] = Wert i. Eintrag in der Liste (er)setzen / einspei-
chern

 Liste[i : j] = Teilliste in der Liste wird der Abschnitt von Eintrag
i bis j durch die angegebene Teilliste er-
setzt

 del Liste[i : j] löst in der Liste den Abschnitt von Eintrag
i bis j (→ Verkürzung der Liste)
äquivalent zu: Liste[i : j] = []

 Liste.append(Wert) hängt Wert als neuen Eintrag an die Liste
an
äquivalent zu: Liste[len(Liste) : len(Liste)]
= [Wert]

 Liste.extend(Wert)
äquivalent zu: Liste[len(Liste) : len(Liste)]
= Wert

 Liste.count(Wert) liefert die Anzahl der Einträge zurück, die
Wert entsprechen
return: Anzahl der i mit Liste[i] == Wert

 Liste.index(Wert) liefert den ersten Index zurück, bei dem
der Eintrag dem Wert entspricht
return: Erstes i mit Liste[i] == Wert

 Liste.insert(i, Wert) fügt einen neuen Eintrag mit dem Wert an
Position i ein
äquivalent zu: Liste[i : i] = Wert , wenn i
>= 0

 Liste.remove(Wert) entfernt das erste Auftreten eines Wertes
ohne Kenntnis des Index
äquivalent zu: del Liste[Liste.index(Wert)]

 Liste.peek() liest den obersten Wert der Liste
äquivalent zu: Liste[0]

 Liste.pop() liest und entfernt das oberste Objekt aus
der Liste
äquivalent zu: del Liste[0]

 Liste.reverse() Liste wird intern (in place) umgedreht

BK_SekI+II_Python_prof.docx - 44 - (c,p) 2015 - 2026 lsp: dre

(originale Reihenfolge durch erneutes reverse()
wiederherstellbar)

 Liste.sort() Liste wird intern (in place) sortiert (originale

Reihenfolge der Einträge geht verloren!)
 Liste.sort(VergleichsFunktion)

return -1, 0, +1 ; wenn x<y, x=y, x>y

 Liste.()

BK_SekI+II_Python_prof.docx - 45 - (c,p) 2015 - 2026 lsp: dre

Operationen auf Listen (Präfix-Schreibweise)

Bezeichnung Operation Resultat

 map(Funktion, Liste) neue (temporäre) Liste:
[Funktion(Liste[0], Funktion(Liste[1], …,
Funktion(Liste[n]]

 filter(Bedingung, Liste) neue (temporäre) Liste mit allen Einträgen
aus der Liste, die die Bedingung erfüllen

 Liste1 + Liste2 neue (temporäre) Liste mit allen Einträgen
aus Liste 1 und 2

 reduce(Funktion, Liste)

 reduce(Funktion, Liste, init)

 zip(Liste1, Liste2) erzeugen einer (temporären) Paar-Liste mit
zusammengehörenden Tupeln aus der Ein-
trägen der beiden Listen
[[Liste1[0], Liste2[0], [Liste1[1], Liste2[1], …,
[Liste1[n], Liste2[n]]

BK_SekI+II_Python_prof.docx - 46 - (c,p) 2015 - 2026 lsp: dre

8.2.3.1. Definition und Zuweisung von Listen in Python

Definieren wir uns zuerst einmal eine Liste mit dem Namen originalliste. Sie soll bei den
nächsten Versuchen immer wieder die Ausgangsbasis sein.

>>> originalliste=[1,5,3,4]

>>> print(originalliste)

[1, 5, 3, 4]

Der Name originalliste ist im
Prinzip ein Verweis (bzw. ein

Zeiger) auf die Speicher-
Zellen, wo sich die Daten
befinden.

originalliste 1 5 3 4

Die nachfolgende Shell-Eingabe liest sich so, als würde man eine neue Liste – sozusagen
eine Kopie vom Original erstellen.

>>> aliasliste=originalliste

>>> print(aliasliste)

[1, 5, 3, 4]

>>>

Praktisch wird aber nur ein
zweiter Verweis auf die Ori-
ginalliste gelegt.
Das merken wir spätestens,
wenn wir eine der Listen ver-
ändern.

originalliste
aliasliste

1 5 3 4

Einen Nebenverweis nennt man einen Alias bzw. einen Aliasnamen.

>>> aliasliste=aliasliste+[2]

>>> print(aliasliste)

[1, 5, 3, 4, 2]

>>> print(originalliste)

[1, 5, 3, 4, 2]

>>>

Beide Listen sind länger ge-
worden. Ganz exakt müsste
man eigentlich sagen, die
(eine) Liste ist länger gewor-
den

orginalliste
aliasliste

1 5 3 4 2

Das Aliasieren erzeugt nur eine sogenannte flache Kopie der Liste. Eine tiefe Kopie – wir
würden wohl eher echte Kopie sagen – erhält man z.B. durch das Slicing (→ 8.2.3.5. Listen-
Abschnitte (Slicing)).

>>> kopierteliste=originalliste[:]

>>> kopierteliste=kopierteliste+[7]

>>> print(originalliste)

[1, 5, 3, 4]

>>> print(kopierteliste)

[1, 5, 3, 4, 7]

>>>

BK_SekI+II_Python_prof.docx - 47 - (c,p) 2015 - 2026 lsp: dre

Die Original-Liste bleibt bei
Operationen auf die kopierte
Liste unverändert.
Das Löschen der Original-
Liste hat auch keine Auswir-
kungen, da beide Listen völ-
lig eigenständig sind.

orginalliste 1 5 3 4

kopierteliste 1 5 3 4 2

So zumindestens lautet die Theorie bzw. lauten die Aussagen vieler Buchautoren und der
Python-Guru's aus dem Internet.
In meinen Test's mit einem Python-System (V. 3.4.3; 32 bit) sah das alles anders aus. Hier
wird ganz offensichtlich eine echte (tiefe) Kopie der Liste erzeugt und auch durchgehend
verwaltet. Beide Listen (originalliste und aliasliste) lassen sich unabhängig manipulieren und
löschen.
Die zwei nachfolgenden Shell-Dialoge zeigen dieses ganz klar.

>>> originalliste=[1,5,3,4]

>>> print(originalliste)

[1, 5, 3, 4]

>>> aliasliste=originalliste

>>> print(originalliste)

[1, 5, 3, 4]

>>> print(aliasliste)

[1, 5, 3, 4]

>>> aliasliste=aliasliste+[3]

>>> print(originalliste)

[1, 5, 3, 4]

>>> print(aliasliste)

[1, 5, 3, 4, 3]

>>>

Erweiterung der Aliasliste

… und es wurde auch nur
die Aliasliste erweitert

>>> originalliste=[1,5,3,4]

>>> print(originalliste)

[1, 5, 3, 4]

>>> aliasliste=originalliste

>>> print(aliasliste)

[1, 5, 3, 4]

>>> originalliste=originalliste+[3]

>>> print(originalliste)

[1, 5, 3, 4, 3]

>>> print(aliasliste)

[1, 5, 3, 4]

>>> del originalliste[2]

>>> print(originalliste)

[1, 5, 4, 3]

>>> print(aliasliste)

[1, 5, 3, 4]

>>> del originalliste

>>> print(originalliste)

Traceback (most recent call last):

 File "<pyshell#11>", line 1, in <module>

 print(originalliste)

NameError: name 'originalliste' is not defined

>>> print(aliasliste)

[1, 5, 3, 4]

>>>

Erweiterung der Original-
liste ...
… und auch nur diese
wurde erweitert

Löschen des 3. Wertes in
der Originalliste …
was offensichtlich klappt
… aber die Aliasliste da-
von unberührt lässt.
… genau so wie das Lö-
schen der Originalliste

… die wirklich weg ist …

… aber die Aliasliste noch
völlig im "Original"-
Zustand vorhanden ist

BK_SekI+II_Python_prof.docx - 48 - (c,p) 2015 - 2026 lsp: dre

Erst einmal bleibt uns jeweils wohl nur der Test am eigenem System!

Kehren wir zur offiziellen Version zurück und nehmen mein System als Ausrutscher!

Wie bekommen wir nun aber eine echte / eigenständige Kopie einer Liste? Eine kleine Vari-
ante haben wir oben schon gezeigt. Eine weitere Möglichkeit sind fertige Objekt-orientierte
Funktionen zu Listen. Diese besprechen wir etwas später (→ 9.8. Listen, die II. – objektorien-
tierte Listen). Eine Möglichkeit werden wir gleich bei der Listen-Bearbeitung, eine weitere
nochmals genauer bei den Listen-Abschnitten (Slicing), besprechen. Python bietet mehrere
(gut und weniger gut leserliche) Möglichkeiten – der Programmierer hat hier die freie Wahl.
Man nennt dies auch Klonen von Listen.

8.2.3.2. Listen-Operationen (Built-in-Operatoren)

Für Listen funktionieren einige "Rechen"-Operationen im intuitiven Sinne. So ergibt sich bei
Verwendung des Multiplikations-Zeichens * eine x-mal erweiterte / verlängerte Liste.

>>> liste=[2]

>>> liste=liste*5

>>> print(liste)

[2, 2, 2, 2, 2]

>>>

Mit + lassen sich Listen addieren, aneinander anhängen bzw. verbinden.

>>> liste=liste + liste

>>> print(liste)

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

>>>

Nicht wirklich eine Rechen-Operation steckt hinter dem in-Operator. Mit ihm können wir
schnell testen, ob Etwas ein Element einer Liste ist. Als Ergebnis erhält man entweder 1 – für
ist in der Liste – oder eben 0 (nicht in der Liste).
Der in-Operator lässt sich mit not in Verbindung nutzen

>>> liste=['gelb','grün','rot','weiß','gelb','braun','blau']

>>> print(liste)

['gelb', 'grün', 'rot', 'weiß', 'gelb', 'braun', 'blau']

>>> 'grün' in liste

True

>>> 'schwarz' in liste

False

>>> 2 in liste

False

>>>

BK_SekI+II_Python_prof.docx - 49 - (c,p) 2015 - 2026 lsp: dre

Der in-Operator lässt sich mit not in Verbindung nutzen

>>> 'blau' not in liste

False

>>> 3 not in liste

True

>>>

Sehr praktisch sind die Funktionen min() und max(). Mit ihnen kann man ohne (eigenen)
Programmieraufwand das kleinste bzw. größte Listenelement heraussuchen. Bei Texten gilt
die alphabetische Ordnung, bei Zahlen die normale Rangfolge.

>>> liste=['rot', 'grün', 'gelb']

>>> print(min(liste1))

gelb

>>> print(max(liste1))

rot

>>>

Bei gemischten Listen gibt es eine Typ-Fehlermeldung.
An dieser Stelle hat die nachfolgende Funktion eigentlich keine Bedeutung. Ich erwähne sie
hier wegen der Vollständigkeit und einem vielleicht benötigtem Hinweis. Mit der Funktion
list() lassen sich Tupel (→) in Listen umwandeln. Das spielt immer dann eine Rolle, wenn
die Daten in Tupeln vorliegen und bearbeitet werden sollen, was bei Tupeln eigentlich nicht
geht.

>>> tupel1=(23,'gelb',['rot',2])

>>> print(tupel1)

(23, 'gelb', ['rot', 2])

>>> tupel1[0]=24

Traceback (most recent call last):

 File "<pyshell#15>", line 1, in <module>

 tupel1[0]=24

TypeError: 'tuple' object does not support item assignment

>>> liste1=list(tupel1)

>>> print(liste1)

[23, 'gelb', ['rot', 2]]

>>> liste1[0]=24

>>> print(liste1)

[24, 'gelb', ['rot', 2]]

>>>

cmp(liste1, liste2)
vergleicht Listen (wahrscheinlich nur bis Python2)

Anhängen eines Elemntes bzw. einer Liste an eine andere ist auch über den Plus-Operator
(+) möglich. Für interierende Aufgaben ist auch += möglich. Bei der Verwendung sollte man
aber beachten, dass diese Opratoren über 1'000x langsamer sind als z.B. die append()-
Funktion.

BK_SekI+II_Python_prof.docx - 50 - (c,p) 2015 - 2026 lsp: dre

8.2.3.3. Listen-Indexierung

Auf die einzelnen Elemente einer Liste kann man natürlich auch direkt zugreifen. Dazu muss
man aber wissen, dass die Liste mit mit 0 beginnend gezählt wird. Die Zählung wird deshalb
auch Indexierung genannt und der Zugriffswert Index. Das erste Listen-Element hat also den
Index 0.
Der Zugriff wird in Python denkbar
einfach ermöglicht. Wir müssen den
Index nur an den Listennamen in
eckigen Klammern angeben. Der
Index kann beliebig berechnet wer-
den.

liste 1 5 3 4 2

 Index: 0 1 2 3 4

Wichtig ist dabei nur, dass das Ergebnis immer ganzzahlig sein muss.

>>> liste=[1,5,3,4,2]

>>> print(liste)

[1, 5, 3, 4, 2]

>>> print(liste[2])

3

>>> print(liste[2*2-1])

4

>>> print(liste[5/2])

Traceback (most recent call last):

 File "<pyshell#17>", line 1, in <module>

 print(liste[5/2])

TypeError: list indices must be integers, not float

>>>

Aber das erscheint wohl logisch, denn z.B. ein 2,5tes Element gibt es eben nicht. Der Zugriff
auf einen fehlerhaften oder zu großen Index ergibt eine Fehler-Meldung:

>>> print(liste[13])

Traceback (most recent call last):

 File "<pyshell#18>", line 1, in <module>

 print(liste[13])

IndexError: list index out of range

>>>

Um hier fehlerfrei agieren zu können müssen wir natürlich wissen, wieviele Elemente in der
Liste sind. Dafür gibt es die Funktion len(), die genau diese Aufgabe erfüllt.

>>> len(liste)

5

>>>

Wird ein negativer Index angege-
ben, dann wird in der Liste zurück-
gezählt:
Natürlich darf auch hier der Index-
Wert nicht größer (gemeint ist natürlich:

kleiner) als die Listenlänge werden.

liste 1 5 3 4 2

 Index: -5 -4 -3 -2 -1

BK_SekI+II_Python_prof.docx - 51 - (c,p) 2015 - 2026 lsp: dre

Das Löschen einer ganzen Liste oder eines Elementes aus der Liste ist mit del möglich.

>>> originalliste=[1,5,3,4]

>>> del originalliste[2]

>>> print(originalliste)

[1, 5, 4]

>>>

where um Indizes anhand einer Bedingung auszuwählen

>>> i=0

>>> while i<len(farbenliste):

 print(farbenliste[i])

 i+=1

gelb

grün

rot

blau

braun

>>>

??? feld=array([[0,1,2],[3,4,5]])
??? feld[where(feld > 3)] where(feld > 3)

An die reine Indexierung schließt das sogenannte Slicing von Listen (→ 8.2.3.5. Listen-
Abschnitte (Slicing)) an.

Zuweisen von Werten aus einer
Liste auf Positionen, die in einer
anderen Liste verwaltet werden

Interieren über die Tupel (Paare)
von Index und Wert

 liste=[1,2,3,4,5,6,7,8,9,10]

indizies=[3,4,6]

neueWerte=[100,200,300]

 for i in zip(indizies, neueWerte):

 liste[i[0]]=i[1]

print(liste)

2. Möglichkeit
mit der eingebauten Funktion (Build
In Funktion) enumerate über Listen
interieren

 for index,wert in enumerate(indizies):

 liste[wert]=neueWerte[index]

print(liste)

BK_SekI+II_Python_prof.docx - 52 - (c,p) 2015 - 2026 lsp: dre

3. Möglichkeit
die Liste in ein (NumPy-)Array um-
wandeln und dann eine Zuweisung
af der Basis der Indizies durchfüh-
ren

zur Nutzung der Bibliothek NumPy
gibt es weitere Informationen in ei-
nem gesonderten Kapitel (→ 8.14.3.
Python numerisch, Python für Big
Data)

 import numpy as np

feld=np.array(liste)

feld[indizies]=neueWert

liste=list(feld)

print(liste)

8.2.3.4. Listen-Bearbeitung

Das Gute zuerst, Listen lassen sich bearbeiten. Das überrascht vielleicht etwas, nachdem
wir bei den Strings (→ 8.2. Strings – Zeichenketten) und den Feldern (→ 6.6. Vektoren, Fel-
der und Tabellen) dahingehend enttäuscht worden sind. Listen sind konzeptionell einfach die
priviligierten Daten-Objekt in Python.
An dieser Stelle sei kurz auf eine den Listen sehr ähnliche Daten-Struktur hingewiesen – die Tupel. In Abschnitt
9.1. Tupel werden sie noch genauer besprochen. Prinzipiell ähneln sie den Listen, man kann fast alle Operatio-
nen usw. auf sie anwenden. Allerdings sind Tupel feststehende Objekte. Nach ihrer Erzeugung lassen sie sich
nicht mehr ändern!

Am Einfachsten lassen sich Listen mittels Schleifen bearbeiten. Dabei bieten sich die for-
Schleifen sofort an.
Wollen wir die Listenelemente einzeln ausgeben, dann reicht schon der folgende – leicht
verständliche – Konstrukt:

BK_SekI+II_Python_prof.docx - 53 - (c,p) 2015 - 2026 lsp: dre

>>> farbenliste=['gelb','grün','rot','blau','braun']

>>> for farbe in farbenliste:

 print(farbe)

gelb

grün

rot

blau

braun

>>>

Es geht natürlich genauso mit einer while-Schleife, aber hier müssen wir die Indizierung
selbst verwalten.
Für die gleiche Beispiel-Aufgabe – also die Element-weise einer Liste – würde der Quelltext
dann z.B. so aussehen:

>>> i=0

>>> while i<len(farbenliste):

 print(farbenliste[i])

 i+=1

gelb

grün

rot

blau

braun

>>>

Natürlich hätte man hier auch z.B. die Lauf-Variable farbe benutzen können, wie in der for-
Schleife z.B. ein einfaches i.
Insgesamt ist der Programmier-Aufwand etwas größer. Welchen Schleifen-Konstrukt man
dann in seinem Programm später verwendet, entscheidet sich wahrscheinlich neben der
Vorliebe auch aus praktischen Abwägungen.
Um nun eine Liste zu klonen – also eine echte Kopie zu erzeugen – bietet sich der folgende
Algorithmus an:

>>> neueListe=[]

>>> for f in farbenliste:

 neueListe=neueListe+[f]

>>> print(neueListe)

['gelb', 'grün', 'rot', 'blau', 'braun']

>>>

Es wird praktisch jedes einzelne Element aus der Originalliste ausgelesen und in die Kopie
geschrieben.
Nachteilig ist es in vielen Programmiersprachen, wenn man lange Listen oder Felder (→)
mittels Schleifen-Konstrukt durchlaufen muss, um z.B. eine Summe zu berechnen oder das
Minimum herauszusuchen. Da bietet uns Python die map-Funktion, um beliebige mathemati-
sche Funktionen auf die Elemente einer Liste anzuwenden.

BK_SekI+II_Python_prof.docx - 54 - (c,p) 2015 - 2026 lsp: dre

map(funktion, liste)

Die Funktion kann eine von Python vordefinierte oder eine selbst-definierte Funktion sein. Im
map-Funktions-Aufruf wird die Funktion nur mit ihrem Namen (also ohne Klammern und Ar-
gumenten) notiert. Die Liste muss eine Sequenz sein, auf deren Elemente die Funktion an-
gewendet werden kann.
Definieren wir zuerst eine Funktion, die den übergebenen Wert mit 10 multipliziert und dann
noch inkrementiert. Die Operationen sind mit Absicht in einzelnen Schritten aufgeschrieben
worden. Natürlich können sie in einer Zeile oder gar hinter return zusammengefasst werden.

>>> def mult10add1(x):

 x*=10

 x+=1

 return x

>>>

Die klassische Struktur einer Ele-
ment-weisen Anwendung einer Funk-
tion kann z.B. wie nebenstehend aus-
sehen.
Wir definieren eine nutzbare Funktion.
Alternativ kann auch jede interne
Funktion genutzt werden.
In einer Schleife wird diese Funktion
dann Element-weise angewendet und
das Ergebnis an die ursprüngliche
Listen-Position gespeichert.

 def mult10add1(x):

 x*=10

 x+=1

 return x

…

liste=[2,3,5,8,11]

for i in range(len(liste)):

 liste[i]=mult10add1(liste[i])

print(liste)

 [21, 31, 51, 81, 111]

 liste = map(mult10add1, liste)

print(liste)

Der map-Operator ergibt im Allgemeinen kompaktere Quell-Code's. Auch die Ausführung ist
effektiver. Aus meiner Sicht sind die Quell-Texte aber nicht gut lesbar, da geschachtelte
Strukturen entstehen, die immer wieder mit zurück-denken oder eine Ebene höher-denken
zu tun haben. Map-Konstrukte sollten immer gut kommentiert werden! Sie sind etwas für
fortgeschrittene Programmierer / Programmier-Team's. Für kompexere Funktionen können
vor allem einzeilig notierte map-Funktionen praktisch unlesbar werden und sind deshalb un-
bedingt zu vermeiden.

BK_SekI+II_Python_prof.docx - 55 - (c,p) 2015 - 2026 lsp: dre

List-Comprehension

In der letzten Zeit werden auch sogenannte List-Comprehension's immer mehr in Program-
miersprachen umgesetzt. Das gilt auch für Python.
Comprehension's kann man als Bedeutungs- oder Anwendungs-Objekte oder -Strukturen
verstehen. Ziel ist eine bessere Lesbarkeit von Quelltexten, verbunden mit einer hohen
Kompaktheit des Quelltextes.
Soll z.B. aus einer Daten-Liste eine Liste mit Quadraten erzeugt werden, dann würde man
eine Sammlungs-orientierte FOR-Schleife benutzen. Dies ist im oberen Quellcode-Block no-
tiert.
Eine Comprehension-Struktur
könnte z.B. so aussehen, wie
es im 2. Block zu sehen ist.
Die Struktur besteht aus der
Listen-Beginn-Klammer ([)
gefolgt von der Operation (auch

Expression genannt) und der
FOR-Schleife. Die Expression
ist in Beispiel die Multiplikation
von Wert mit sich selbst. Das
Ende wird durch die schlie-
ßende Listen-Klammer (])ge-
kennzeichnet.

 daten=[1,2,3,4,5]

quadrate=[]

for wert in daten:

 quadrate.append(wert*wert)

 quadrate=[wert*wert for wert in daten]

 quadrate=[wert*wert for wert in daten 

 if wert > 0]

 quadrate=[wert*wert if wert > 0 else 0 

 for wert in daten]

Die Ausführung der Expression / Operation lässt sich noch durch Bedingungen steuern. Eine
ausschließliche IF-Bedingung (einfache Bedingung) wird hinter den Schleifen-Konstrukt ge-
schrieben. Der 3. Quellcode-Block zeigt ein Beispiel, dass hier zum gleichen Ergebnis führt,
wie die beiden oberen Quellcode-Abschnitte.
Benötigt man auch einen ELSE-Zweig, dann folgt der angepasste IF-ELSE-Konstrukt direkt
hinter der Expression und noch vor dem Schleifen-Teil.

Mit dem List
Comprehension
lassen sich auch
Listen filtern.

 [wert for wert in liste if wert>20]

 [wert for wert in liste if (wert>20) and (wert<100)]

 [True if wert==1 else False for wert in daten]

BK_SekI+II_Python_prof.docx - 56 - (c,p) 2015 - 2026 lsp: dre

8.2.3.5. Listen-Abschnitte (Slicing)

Der Zugriff auf Abschnitte einer Liste wird durch die sogenannte Slice-Notation (Doppelpunkt-

Notation) erheblich erleichtert. Für Python-Einsteiger oder Umsteiger aus anderen "normalen"
Programmiersprachen werden diese Konstrukte aber erst einmal schwer zu verstehen sein.
Zur Verdeutlichung nehmen wir eine etwas längere Liste mit etwas größeren Zahlen:

liste 111 222 333 444 555 666 777 888 999

 Index: 0 1 2 3 4 5 6 7 8

 Item: 1 2 3 4 5 6 7 8 9

Benötigt man nur die Liste bis zu einem bestimmten Index, dann wird der Abschnitt mit [:
endeindex] notiert.

>>> liste=[111,222,333,444,555,666,777,888,999]

>>> sliceliste=liste[:3]

>>> print(sliceliste)

[111, 222, 333]

>>>

Es sind mit [:3] also die ersten 3 Listen-Elemente (Items) gemeint, der Doppelpunkt steht
also hier für "bis" zum dritten (3.) Element. Da die Indizierung bei Null startet sind es also die
Index-Elemente 0, 1 und 2.

 111 222 333 444 555 666 777 888 999

 Index: 0 1 2 3 4 5 6 7 8

 Item: 1 2 3 4 5 6 7 8 9

Wird dagegen nur ein Index vor dem Doppelpunkt (Slice) eingegeben, dann meint man den
Abschnitt nach diesem indizierten Element bis zum Ende der Liste.

>>> sliceliste=liste[5:]

>>> print(sliceliste)

[666, 777, 888, 999]

>>>

Mittels [5:] wird also es sind die Listen-Elemente nach Item 5 (bzw. ab Index = 5) bearbeitet.

liste 111 222 333 444 555 666 777 888 999

 Index: 0 1 2 3 4 5 6 7 8

 Item: 1 2 3 4 5 6 7 8 9

Natürlich dürfen zur Auswahl eines Mittelstücks aus einer Liste auch vordere und hintere
Grenze angegeben werden.

>>> print(liste[2:7])

[333, 444, 555, 666, 777]

>>>

Mit [2:7] meint man dann den Abschnitt ab Index = 2 bis an den 7. Index ran.
es sind die Elemente nach dem 3. (also ab dem zweiten (2.)) bis zum 5. gemeint

liste 111 222 333 444 555 666 777 888 999

 Index: 0 1 2 3 4 5 6 7 8

 Item: 1 2 3 4 5 6 7 8 9

BK_SekI+II_Python_prof.docx - 57 - (c,p) 2015 - 2026 lsp: dre

Somit gilt also allgemein: abschnitt = liste[anfangsindex : endeindex].
Interessanterweise funktioniert das Slicen auch zum Einfügen eines Listen-Abschnitts:
Die Notierung wäre also: liste[anfangsindex : endeindex] = abschnitt

>>> print(sliceliste)

[666, 777, 888, 999]

>>> liste[6:7]=sliceliste

>>> print(liste)

[111, 222, 333, 444, 555, 666, 666, 777, 888, 999, 888, 999]

>>>

Die eingeslicte Liste wird zuerst noch einmal angezeigt (geprintet) und ist dann in der Ergeb-
nis-Liste farblich unterlegt.

8.2.3.6. Listen-Erzeugung – fast automatisch

mit range() werden Listen automatisch erzeugt

range(ende)
erzeugt Liste von 0 bis (ausschließlich) ende

range(anfang, ende)
erzeugt Liste von anfang bis (ausschließlich) ende

range(anfang, ende, schrittweite)
erzeugt Liste von anfang bis (ausschließlich) ende mit der schrittweite (also: anfang + n *
schrittweite)

Listen können auch wieder Listen enthalten (Verschachtelung, Nesting)
so lassen sich Matrizen darstellen und bearbeiten. da das aber eher für mahematisch Fort-
geschrittene interessant wird, folgen dazu in Kapitel → 8.13.2. Matrizen (Matrixes) mehr In-
formationen

Zugriff für aneinander-gereihte Index-Operatoren
Hierbei ist besonders auf die Gültigkeit der Indexes zu achten

Eine andere Möglichkeit zum Listen-Klonen (Kopieren einer Liste) ergibt sich aus der Slice-
Notierung. Die neue Liste soll den Namen listenkopie bekommen.

>>> listenkopie=originalliste[:]

>>> print(listenkopie)

[1, 5, 3, 4, 2]

>>>

BK_SekI+II_Python_prof.docx - 58 - (c,p) 2015 - 2026 lsp: dre

Der Doppelpunkt in der Sli-
ce-Notierung zieht eine
Grenze. Da aber weder da-
vor eine Anzahl Elemente,
noch danach eine Anzahl
angegeben wurde, handelt
es sich um die gesamte Lis-
te.

orginalliste
aliasliste

1 5 3 4 2

listenkopie 1 5 3 4 2

Zum Überprüfen, dass es sich bei der Kopie wirklich um einen neue / eigenständige Liste
handelt, verändern wir sie durch Hinzufügen eines weiteren Elementes:

>>> aliasliste=aliasliste+[6]

>>> print(aliasliste)

[1, 5, 3, 4, 2, 6]

>>> print(listenkopie)

[1, 5, 3, 4, 2]

>>>

Die Situation im Speicher
kann man sich etwa so vor-
stellen:

.

orginalliste
aliasliste

1 5 3 4 2 6

listenkopie 1 5 3 4 2

8.2.3.7. Listen - extravagant

Der Umgang mit Listen hält noch weitere Besonderheiten / Überraschungen bereit.

erweitertes Listen-Generieren

liste = [x for x in range(20) if x % 2]
erzeugt eine Liste der ungeraden Zahlen (von 0) bis an 20 ran

liste = [(x,y) for x in range(10) if not x % 3 for y in range(6) if y % 2]
erzeugt eine Liste aus Tupel, bei denen x die durch 3 teilbaren Zahlen (von 0) bis an 10 ran
und y die ungeraden Zahlen (von 0) bis an 6 ran verwendet werden

gemeinsame Elemente zweier Liste in eine neue Liste
liste1=[1,2,3,4]
liste2=[3,4,5,6]
liste=[i for i in liste1 if i in list2]

aus zwei Datenlisten eine Liste aus Tupeln zusammenstellen
liste1=[1,2,3,4]
liste2=['a','b','c','d']
tupelliste=[(i,j) for i in liste1 for j in liste2]

BK_SekI+II_Python_prof.docx - 59 - (c,p) 2015 - 2026 lsp: dre

erweitertes Slicing

text = 'abcdefg'
print(text[1:6:2]) ➔ 'bdf'
vom ersten bis zum sechsten Element (Achtung es geht immer noch bei 0 los!) jedes zweite
Element

print(text[::-1]) ➔ 'gfedcba'

print(range(10)[::2]) ➔ [0, 2, 4, 6, 8] (entspricht: range(0,10,2) (besser verständlich)
print(range(10)[::-1]) ➔ [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] (entspricht: range(9,-1,-1))

Aufgaben:

x. Die chemischen Elemente lassen sich in verschiedene Gruppen einteilen.

Dazu gehören die Hauptgruppen und die Metalle und Nichtmetalle. Schrei-

ben Sie ein Programm, dass ein einzugebenes chemisches Symbol – z.B. Na

– einer Hauptgruppe (mit Namen) zuordnet!

Erweitern Sie das Programm dann um die Zuordnung in die Perioden sowie

zu den Metallen, Nichtmetallen bzw. Halbmetallen!

Zusatz:

Unterscheiden Sie die Elemente auch nach ihrem Aggregatzustand! Versu-

chen Sie möglichst kleine Listen (Datenbasen) zu verwenden!

Gruppe Vertreter

I. Hauptgruppe, Alkalimetalle H, Li, Na, K, Rb, Cs, Fr

II. Hauptgruppe, Erdalkalimetalle Be, Mg, Ca, Sr, Ba, Ra

III. Hauptgruppe, Bor-Gruppe, Erdmetalle B, Al, Ga, In, Tl

IV. Hauptgruppe, Cohlenstoff-(Silicium-)Gruppe, Tetrele C, Si, Ge, Sn, Pb

V. Hauptgruppe, Stickstoff-(Phosphor-)Gruppe, Pnictogene N, P, As, Sb, Bi

VI. Hauptgruppe, Chalkogene, Erzbildner, Sauerstoff-Gruppe O, S, Se, Te, Po

VII. Hauptgruppe, Halogene, Fluor-Gruppe, Salzbildner F, Cl, Br, I, At

VIII. Hauptgruppe, Edelgase, Helium-Gruppe He, Ne, Ar, Kr, Xe, Rn

BK_SekI+II_Python_prof.docx - 60 - (c,p) 2015 - 2026 lsp: dre

kleine Zusammenfassung (Indexierung / Slicing)

allgemeine Struk-
tur

Funktion / Leistung
Umschreibung

Beispiel-Liste:
liste=[1,2,3,4,5,10,11,12,13,14,15]

Beispiel Ergebnis

liste[i] liefert den Eintrag von Index i
(Achtung! Zählung / Index be-
ginnt bei 0)
Welcher Wert steht an Index-
Position i?

liste[2]

liste[0]

liste[6]

3

1

11

liste[-1] liefert das letzte Elem. zurück
Welcher Wert steht an der letzten
Index-Position?
Welcher Wert steht an 1. von
hinten gezählten Index-Position?
(Achtung! Zählung / Index be-
ginnt hier mit -1, da es ein -0 natür-

lich nicht gibt)

liste[-1] 15

liste[-i] liefert den i-ten Eintrag von
hinten
Welcher Wert steht an der zurück
gezählten Index-Position i?

liste[-3]

liste[-10]

13

2

liste[:] liefert alle Elemente (ohne Be-

grenzungen) einer Liste als neue
Liste
Welche Werte stehen in der Liste
(ohne Begrenzungen durch Indi-
zies)?

liste[:] [1,2,3,4,5,10,11,12,13,14,15]

liste[nach:] liefert die Elemente nach Posi-
tion bzw. ab Index nach als
neue Liste
Welche Werte folgen ab der In-
dex-Position?

liste[2:]

liste[6:]

liste[0:]

[3,4,5,10,11,12,13,14,15]

[12,13,14,15]

[1,2,3,4,5,10,11,12,13,14,15]

liste[:bis] liefert die Elemente bis Positi-
on bzw. kleiner dem Index bis
als neue Liste
Welche Werte stehen vor der
Index-Position?

liste[:2]

liste[:7]

liste[:-1]

[1,2]

[1,2,3,4,5,10,11,12]

[1,2,3,4,5,10,11,12,13,14]

liste[nach:bis] liefert als neue Liste die Ele-
mente nach Position bzw. ab
Index nach und bis Position
bzw. kleiner dem Index bis
Welcher Wert stehen zwischen
den Index-Positionen?

liste[1:4]

liste[4:8]

list[3:-1]

[2,3,4]

[5,10,11,12,13]

[4,5,10,11,12,13,14]

liste[::sprung] liefert eine neue Liste der Ein-
träge einer originalen Liste, die
nacheinander mit einem
sprung erreicht werden (begin-

nend mit Index 0)
Welcher Wert steht an Index-
Position i?

liste[::3]

liste[::-2]

liste[::0]

[1,4,12,15]

[15,13,11,4,2]

→ Fehler

liste[nach::] wie liste[nach:] bzw.
liste[nach::sprung]

liste[2::] [3,4,5,10,11,12,13,14,15]

liste[nach::sprung] liefert die Einträge, die nach
dann nacheinander mit einem
sprung erreicht werden
Welche Werte folgen ab der In-
dex-Position in bestimmten Schrit-
ten?

liste[4::2]

liste[2::4]

liste[0::1]

[5,12,14]

[3,12]

[1,2,3,4,5,10,11,12,13,14,15]

BK_SekI+II_Python_prof.docx - 61 - (c,p) 2015 - 2026 lsp: dre

allgemeine Struk-
tur

Funktion / Leistung
Umschreibung

Beispiel-Liste:
listeA=[1,2,3,4,5,10,11,12,13,14,15]

Beispiel Ergebnis

listeA[nach:]=
listeB[von:bis]

ersetzt in der A-Liste die Ele-
mente ab nach durch die Ele-
mente aus der B-Liste (hier ein
Ausschnitt)

liste[2:]=
liste[2:7]

liste[4:]=

listeA[:bis]=
listeB[von:bis]

ersetzt in der A-Liste die Ele-
mente vor bis durch die Ele-
mente aus der B-Liste (hier ein
Ausschnitt)

liste[:2]

listeA[vor:nach]=
listeB[von:bis]

fügt in die A-Liste in die Positi-
on zwischen vor und nach
ersetzend die B-Liste (hier ein
Ausschnitt) ein

liste[3:4]=
liste[2:7]

liste[4:7]=
liste

[1,2,3,3,4,5,10,11,12,5,10,
11,12,13,14,15]

Aufgaben:

1. Erstellen Sie sich eine Liste mit den ersten 9 Buchstaben (als Zeichen) unter

dem Namen liste!

2. Überlegen Sie sich (ohne Python!)) für alle Beispiele aus der Zusammenfas-

sungs-Tabelle oben die Ergebnisse!

3. Prüfen Sie nun mit Python!

4. Erstellen Sie sich eine Liste aller Groß-Buchstaben als Liste von Zeichen

mit dem Namen buchstaben!

5. Geben Sie für die nachfolgenden Problemstellungen eine Listen-

Formulierung an!

a)

6. Prüfen Sie nun mit Python!

8.2.3.8. Ringe – geschlossene Listen

Ringe sind in Python als solche nicht vorgesehen. Da man aber auch mit negativen Indizies
arbeiten kann, hat man es praktisch bei Listen mit Ringen zu tun. Die Ring-Größe wird durch
die Länge der Liste bestimmt. Die jeweilige Schreib- oder Lese-Position wird durch den aktu-
ellen Index der innerhalb der Listen-Länge inkrementiert oder dekrementiert werden kann.
Alternativ bietet sich auch eine Überwachung über die Modulo-Operation an.

Aufgaben:

1. Erstellen Sie sich ein Programm, dass in einer einzugebenen Liste aus Ele-

menten jeweils die Liste und die aktuelle Index-Postion (Zeiger) anzeigt

(z.B. als "I" unter der Liste, s.a. folgendes Beispiel)!

 Liste/Ring : 1 2 3 4 5 6 7 8

 akt. Zeiger(= 2): I

BK_SekI+II_Python_prof.docx - 62 - (c,p) 2015 - 2026 lsp: dre

2. Erweitern Sie nun das Programm von 1. so, dass der Nutzer (in einer

Schleife) angeben kann, um wieviele Positionen sich der Zeiger verschieben

soll! Die Anzeige soll wieder die Liste und die aktuelle Zeiger-Postionen

sein!

3.

BK_SekI+II_Python_prof.docx - 63 - (c,p) 2015 - 2026 lsp: dre

8.2.4. Dictionarys - Wörterbücher

Wenn man es ganz genau nimmt, dann sind Dictionarys eigentlich eher Vokabel-Listen oder
Daten-Paare. Ein Daten-Paar besteht immer aus einem "Schlüssel" – also dem beschrei-
benden Begriff – und einem zugeordneten Daten-Element. Als Daten dürfen die verschiede-
nen schon besprochenen Datentypen fungieren, sowie deren Verknüpfungen in Tupel (→),
Mengen (→) und Vektoren (→).
Wir sehen hier schon, dass Dictonary’s auch so einiges mit Listen gemeinsam haben. In der
Informatik werden die Dictonary’s aber eher als sehr lockere Liste besser Sammlung von
Daten-Paaren gesehen.
Dictonary’s werden einfach als eine spezielle Datenstruktur definiert. Wenn man etwas mit
einfachen Listen machen will (→ 8.2.3. Listen, die I. – einfache Listen), dann nutzt man auch
die Datenstruktur Liste. Stehen díe Daten-Paare im Vordergrund und die Auflistung ist zweit-
rangig, dann sind Dictonary’s eine mögliche Wahl.
Eine etwas ausführlichere Besprechnung erfolgt im Kapitel → 9.3. Dictonary's - Wörterbü-
cher. Hier gehen wir auf einfache Nutzungen ein.

Definition(en): Dictonary
Im informatischen Sinn versteht man unter der Datenstruktur Dictonary eine Listen-artige
Sammlung von Daten-Paaren.

typische Nutzung z.B. Vokabel-Wörterbücher

allerdings keine gleichberechtigten Paare von Wörtern, sondern eine einseitig gerichtete Zu-
ordnung von Daten-Elementen.
die linke Seite (quasi das erste Wort) ist der Schlüssel (engl. key), dieser muss im Wörter-
buch eindeutig sein, d.h. er dar nur ein einziges Mal vorkommen
jedem Schlüssel wird dann noch ein Wert zugeordnet. Dieser darf mehrfach im Werte-
Bereich vorkommen.
zusammen sprechen wir von Schlüssel-Wert-Paaren (key-value-Paare)

vokabel = {

 "Stadt": "City",

 "U-Bahn": "subway",

 "gelb": "yellow"

}

print(vokabel)

Reihenfolge ist nicht durch Notieren im Quell-Code oder nach einem Einlesen festgelegt
die Reihenfolge kann sich leicht ändern

len(vokabel)

gibt die Anzahl der Schlüssel-Wert-Paare zurück
Zugriff ähnlich wie Listen, nur dass hier statt einem Index der Schlüssel verwendet wird

print(vokabel["gelb"])

daraus abgeleitet erfolgt der ändernde Zugriff mit:

BK_SekI+II_Python_prof.docx - 64 - (c,p) 2015 - 2026 lsp: dre

vokabel["U-Bahn"]="tube"

wird mit einem unbekannten Schlüssel gearbeitet, dann gibt es keinen Fehler, sondern es
wird ein neuer Eintrag in das Wörterbuch aufgenommen

vokabel["orange"]="orange"

mit

del(vokabel["gelb"])

wird der gesamte Eintrag zum Schlüssel "gelb" gelöscht
zum Interieren über ein Wörterbuch kann man auf die Schlüssel-Liste zugreifen

for schluessel in vokabel.keys():

 print(schluessel)

genauso kann man auch über die Werte eines Wörterbuch's interieren:

for wert in vokabel.values():

 print(wert)

will man über die Schlüssel-Wert-Paare interieren, dann geht das über

for eintrag in vokabel.items():

 print(eintrag)

 print("deutsch: ",eintrag[0]," heisst englisch" ",eintrag[1])

die Null steht dabei für den Schlüssel und die Eins für den Wert eines Eintrag's

auch gut geeignet um einfache Statistiken zu führen
z.B. Wort-Häufigkeiten

hier Beispiel zum Zählen von Farben in einer Liste

 arbeitsListe = ["gelb","blau","blau","rot","blau","gelb","blau",

 "gelb","blau"]

haeufigkeit={

 "gelb": 0,

 "rot": 0,

 "blau": 0}

for elem in arbeitsListe:

 haeufigkeit(elem) += 1

print("aktuelle Häufigkeiten:")

print(haeufigkeit)

BK_SekI+II_Python_prof.docx - 65 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Bauen Sie das Programm zur Analyse von Farb-Häufigkeiten in einer Liste

so um, dass es auch Farben zählt, die nicht im Häufigkeits-Dictonary enthal-

ten sind erfasst! Hierfür soll es im Ditonary ein Schlüsselwort "Reste" geben.

2. Bauen Sie das Programm zur Analyse von Farb-Häufigkeiten in einer Liste

so um, dass es auch Farben zählt, die nicht im Häufigkeits-Dictonary enthal-

ten sind erfasst! Neue Farben sollen als neue Einträge in das Dictonary hin-

zugefügt werden.

3. Erstellen Sie ein Programm, dass einen Text, der in Listen-Form vorliegt,

hinsichtlich der enthaltenen Wörter statistisch analysiert! Neben der Wort-

Häufigkeit, soll auch die Anzahl der Wörter insgesamt sowie die Anzahl un-

terschiedlicher Worte im Dictonary gespeichert werden!

BK_SekI+II_Python_prof.docx - 66 - (c,p) 2015 - 2026 lsp: dre

8.3. komplexe Datentypen

8.3.1. Tupel

Tupel sind Aufzählungen von Daten(-Objekten)
können, müssen aber nicht, den gleichen Typ haben

man kann sie als Paare oder Gruppen verstehen
beim Lesen des Quelltextes erscheinen viele Anweisungen kryptisch oder falsch
Anflug von Trick-Programmierung; meist aber elegante und effektive Lösungen, die in ande-
ren Programmiersprachen viele Anweisungen oder eine etwas aufwändigere Programmie-
rung erfordert hätten.
deshalb sollte die Anweisungen mit Tupel gut kommentiert werden

Tupel-Elemente werden in runde Klammern notiert
im Prinzip fest definierte und unveränderliche Listen
Zugriff aber – wie üblich bei Indixies – in eckigen Klammern

praktisch fast alle Operationen, wie bei Listen (→ 8.2.3. Listen, die I. – einfache Listen und
9.7. Listen, die II. – objektorientierte Listen) möglich
Tupel lassen sich aber nicht ergänzen oder ändern, nach ihrer Erzeugung sind sie unverän-
derlich
lassen sich aber aneinanderreihen

ein-elementige Tupel (Singleton) müssen nach dem (ersten) Element noch ein Komma auf-
weisen!

Können auch geschachtelt sein
geschachtTupel = (1,2,3,(4,5,6,(7,8,9))) hier dreifach geschachtelt: 1. Tupel ist (1,2,3 und
ein Tupel (hier der Klammer-Ausdruck), dito für das nächste / innerste Tupel

ein Zerlegen solcher Tupel ist z.B. so möglich:
for wert1 in geschachTupel:

 if type(wert1)== int:

 print(wert1)

 else:

 for wert2 in wert1:

 if type(wert2)==int:

 print(“\t”, wert2)

 else:

 for wert3 in wert2:

 print(“\t\t”, wert3)

Hinweis:
\t erzeugt Tabulator

…

Vertauschen von Werten

if kleinereZahl > groessereZahl:

 kleinereZahl, groessereZahl = groessereZahl, kleinereZahl

BK_SekI+II_Python_prof.docx - 67 - (c,p) 2015 - 2026 lsp: dre

…

Fast jede andere Programmiersprache
braucht eine Hilfsvariable oder einen Kel-
lerplatz zum zeitweisen Abspeichern der
einen Zahl, damit diese für die Übernahme
der anderen bereitsteht, erst dann kann die
zweite mit dem Wert aus der Hilfsvariable
versehen werden

//Tauschen in PASCAL

hilfVar:=kleinereZahl;

kleinereZahl:=groessereZahl;

groessereZahl:=hilfVar;

BK_SekI+II_Python_prof.docx - 68 - (c,p) 2015 - 2026 lsp: dre

8.3.2. Mengen – Set's

auch Set's genannt
keine echte Informatik-Daten-Struktur, aber wichtiges Element in Python

Mengen sind Sammlungen von Objekten in denen jedes Objekt nur einmal vorkommt, eine
Reihenfolge oder Ordnungs-Struktur gibt es nicht
in der Mathematik weden Mengen in geschweiften Klammern notiert
eine Menge ohne ein Element ist eine leere Menge

8.3.2.1. Mengen – einfach

8.3.2.1.1. Mengen-Erstellung

in Python gibt es die veränderlichen Mengen, die mit set() erstellt werden und es gibt unver-
änderliche Mengen für deren Erstellung die Funktion frozenset() zuständig ist

>>> menge1=set([1,3,5,4,2,3])

>>> menge2=set([2.1, 0.0, 5.3, 7.9])

>>> menge3=set("Farbenspiel")

>>> menge4=set(["gelb", "grün", "rot", "blau", "blau", "blau"])

>>> menge1

{1, 2, 3, 4, 5}

>>> print(menge1)

{1, 2, 3, 4, 5}

>>> menge2

{0.0, 5.3, 7.9, 2.1}

>>> menge3

{'p', 'l', 's', 'F', 'r', 'b', 'a', 'i', 'n', 'e'}

>>> menge4

{'rot', 'gelb', 'grün', 'blau'}

>>>

Die Ausgabe erfolgt immer schön ordentlich in geschweiften Klammern. Ev. mehrfach auf-
tauchende Objekte werden eliminiert

>>> alphabet=frozenset("abcdefghijklmnopqrstuvwxyz")

>>> print(alphabet)

frozenset({'l', 'k', 'o', 'v', 'i', 'p', 't', 'f', 'a', 'z', 'j',

'n', 'g', 'm', 's', 'w', 'b', 'q', 'u', 'x', 'r', 'h', 'y', 'd', 'c',

'e'})

>>> alphabet

frozenset({'l', 'k', 'o', 'v', 'i', 'p', 't', 'f', 'a', 'z', 'j',

'n', 'g', 'm', 's', 'w', 'b', 'q', 'u', 'x', 'r', 'h', 'y', 'd', 'c',

'e'})

>>>

Interessant ist hierbei, dass frozenset's scheinbar anders zusammengestellt werden, als
normale Mengen (set's). Die sind sortiert, während die Elemente im frozenset scheinbar will-
kürlich auftauchen, obwohl sie im Ursprungs-Objekt sortiert vorkamen.

BK_SekI+II_Python_prof.docx - 69 - (c,p) 2015 - 2026 lsp: dre

Die Ausgabe verdeutlicht uns immer, dass wir es hier mit einer feststehenden / unveränderli-
chen Menge zu tun haben.

8.3.2.1.2. Mengen-Operationen

Ein existierendes Frozenset kann in Python niemals das Ergebnis einer Mengen-Operation
werden, da mit ihnen die Unveränderlichkeit verbunden ist. Aber sie können natürlich Argu-
ment bzw. Operant sein.

einfache Operationen

len(menge)
gibt die Anzahl der Elemente in der Menge zurück

min(menge)

max(menge)

elem in menge

elem not in menge

teilmenge <= menge
ist True, wenn teilmenge eine Teilmenge von der Menge menge ist

teilmenge < menge
ist True, wenn teilmenge eine echte Teilmenge von der Menge menge ist

menge1 | menge2
erzeugt neue (Vereinigungs-)Menge von menge1 und menge2; die alle Elemente von bei-
den Mengen enthält

menge1 & menge2
erzeugt neue (Schnitt-)Menge von menge1 und menge2, die nur gemeinsame Elemente
enthält

menge - teilmenge
erzeugt neue Menge, die alle Elemente von menge enthält, außer sie kommen in teilmenge
vor
Differenz-Bildung

BK_SekI+II_Python_prof.docx - 70 - (c,p) 2015 - 2026 lsp: dre

menge1 ^ menge2
erzeugt neue (Vereinigungs-)Menge von menge1 und menge2, außer den Elementen, die in
beiden mengen enthalten sind
ergibt symmetrische Differenz oder auch Vereinigungs-Menge – Schnitt-Menge

BK_SekI+II_Python_prof.docx - 71 - (c,p) 2015 - 2026 lsp: dre

typischen Mengen-Operationen

Zum Veranschaulichen der Mengen-Operationen erstellen wir uns zwei einfache Mengen:

>>> menge1=set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> menge2=set([0, 2, 4, 6, 8, 10, 12])

>>> menge1

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> menge2

{0, 2, 4, 6, 8, 10, 12}

>>>

Aus der Mathematik kennen wir als typische Mengen-Operationen die Vereinigung, den
Durchschnitt und die Differenz.

Vereinigung
Unter der Vereinigung von Mengen versteht man die Gesamt-
Menge aus den Teilmengen. In beiden Mengen mehrfach vorkom-
mende Elemente sind in der Ergebnis-Menge natürlich nur einmal
vorhanden.

>>> menge1 | menge2

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}

>>>

Durchschnitt
Der Durchschnitt zweier Mengen beschreibt die Menge der ge-
meinsamen Elemente aus beiden Mengen. In der Ergebnis-Menge
kommen diese Elemente nur einmalig vor.

>>> menge1 & menge2

{0, 8, 2, 4, 6}

>>>

Differenz
Bei der Differenz von Mengen werden aus der ersten Menge, die
Elemente entfernt, die auch in der subtrahierten Menge vorkom-
men, entfernt.
Die Differenzen zweier Mengen sind i.A. nicht symmetrisch bzw.
kommutativ. D.h. normalerweise ist Menge1 – Menge2 ǂ Menge2 –
Menge1 (alternative Notierung: Menge1 \ Menge2 ǂ Menge2 \ Menge1).

>>> menge1 - menge2

{1, 9, 3, 5, 7}

>>> menge2 - menge1

{10, 12}

>>>

Durchschnitt und Vereinigung sind dagegen kommutativ.

BK_SekI+II_Python_prof.docx - 72 - (c,p) 2015 - 2026 lsp: dre

Bearbeitung in Schleifen etc.

Mengen lassen sich ebenfalls mit Schleifen durchlaufen. Wir benötigen wieder einen Intera-
tor (eine Laufvariable), um auf die einzelnen Elemente zuzugreifen.

iter(menge)
liefert einen Interator für die Menge

8.3.2.1.x. automatische Mengen-Generierung

Ähnlich, wie bei den Listen (→ 8.4.0.5. Listen-Erzeugung – fast automatisch) lassen sich
auch Mengen automatisch generieren. Die Konstrukte unterscheiden sich praktisch nicht.
Lediglich die Verwendung der Schlüsselwörtchen set bzw. frozenset kommt hinzu.

>>> quadrate=set(i**2 for i in range(16))

>>> quadrate

{0, 1, 64, 225, 4, 36, 100, 196, 9, 169, 16, 49, 81, 144, 25, 121}

>>>

Natürlich hätte man die Mengen für die Veranschaulichung der Mengen-Operationen
(s.a.w.v.) auch mittels Generator (i for i in range(10)) erzeugen können.

>>> menge1=set(i for i in range(10))

>>> menge2=set(i*2 for i in range(7))

>>> menge1

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> menge2

{0, 2, 4, 6, 8, 10, 12}

>>>

Weitere Möglichkeiten können gerne in der Listen-Besprechung nachgeschlagen werden (→
8.4.0.5. Listen-Erzeugung – fast automatisch).

BK_SekI+II_Python_prof.docx - 73 - (c,p) 2015 - 2026 lsp: dre

8.3.2.2. Mengen – objektorientiert

menge1.add(element | menge2)
fügt das Element oder eine Menge2 der Menge1 hinzu

menge.clear()
löscht alle Elemente aus der Menge
es entsteht eine leere Menge

menge.discard(element)
das Element wird aus der Menge entfernt, wenn es dann dort enthalten ist

menge.pop()
liefert ein zufällig gewähltes Element aus der Menge zurück. Das Element selbst wird aus
der Menge entfernt!

menge.remove(element)
das Element wird aus der Menge entfernt, wenn es dann dort enthalten ist, wenn es nicht
vorhanden ist, gibt es eine Fehler-Meldung (KeyError)

die aufgezählten Operationen gelten nur für normale Mengen (set's), da sie Veränderlichkeit
unterstellen
alle nachfolgenden Operationen gelten für set's bzw. frozenset's

menge.copy()
erstellt eine (flache) Kopie der Menge

menge1.difference(menge2)
berechnet die Differenz von Menge1 und Menge2 (menge1 – menge2 bzw. menge1 \ men-
ge2)

menge1.intersection(menge2)
erstellt den Durchschnitt aus beiden Mengen

menge1.union(menge2)(
vereint die beiden Mengen

menge1.issubset(menge2)
prüft, ob Menge1 eine Teilmenge von Menge2 ist
liefert True bzw. False zurück

menge1.issuperset(menge2)
prüft, ob Menge1 die Obermenge von Menge2 ist
liefert True bzw. False zurück

BK_SekI+II_Python_prof.docx - 74 - (c,p) 2015 - 2026 lsp: dre

8.3.2.4. Anwendung von Mengen

8.3.2.4.1. ein bißchen Graphen

Graphen sind geometrische Objekte, die durch Kno-
ten und Kanten beschrieben werden. Jeder Knoten
(hier nummeriert) hat mindestens eine Verbindung (/
Kante) zu einem anderen.

Graphen werden z.B. zur Beschreibung von Wege-
oder Raum-Plänen benutzt. Die Einmündungen bzw.
Kreuzungen oder eben die Räume entsprechen den
Knoten. Die möglichen Verbindungen (Wege oder
Türen) zwischen den Knoten sind die Kanten.

Im nachfolgenden Programm werden neben "norma-
len" Mengen (set's) auch feste Menge (frozenset's)
und Tupel (→ 9.1. Tupel) verwendet.

zwei vorgegebene Graphen (oben)
und der gemeinsame Graph (unten)

def findeNachbarKnoten(graph, knoten):

Funktion zum Durchsuchen des Graphen nach den Nachbarknoten

zu einem vorgegebenem Knoten

 alleKnoten, alleKanten = graph

 KantenDesKnoten = set(k for k in alleKanten if knoten in k)

 NachbarKnoten = set()

 for k in KantenDesKnoten:

 NachbarKnoten = NachbarKnoten | k

 NachbarKnoten= NachbarKnoten – set([knoten])

 return NachbarKnoten

def vereinigeGraphen(graph1, graph2):

Funktion zur Verbindung von zwei Graphen (gemeinsame Knoten

müssen gleiche Bezeichnung in beiden Graphen haben (mind. einer notw.!)

 return (graph1[0] | graph2[0], graph1[1] | graph2[1])

=======Beispiel-Graphen (Daten)

Graph1Knoten={1,2,3,4,5,6}

Graph1Kanten= set(frozenset(k)

 for k in [(1,2), (2,3), (2,4), (3,4), (3,5), (4,6), (5,6)])

Graph1=(Graph1Knoten, Graph1Kanten)

Graph2Knoten={5,6,7,8,9,10,11}

Graph2Kanten= set(frozenset(k)

 for k in [(5,6), (5,11), (6,7), (7,8), (8,9), (9,10), (10,11)])

Graph2=(Graph2Knoten, Graph2Kanten)

=======Hauptprogramm (Beispiel)

GesamtGraph=vereinigeGraphen(Graph1, Graph2)

print("Gesamtgraph: ...")

print(" Knoten: ", end='')

for i in GesamtGraph[0]:

 print(i, end='; ')

print()

BK_SekI+II_Python_prof.docx - 75 - (c,p) 2015 - 2026 lsp: dre

print(" Kanten: ", end='')

for j in GesamtGraph[1]:

 print(tuple(j), end='; ')

print()

print("----------------------------------")

eingabe=1

while eingabe>0:

 eingabe=eval(input("Für welchen Knoten werden die Nachbarn gesucht?"

 +" (Abbruch mit 0) ?: "))

 if eingabe>0:

 NachbarKnoten=findeNachbarKnoten(GesamtGraph, eingabe)

 print("Der Knoten",eingabe,"hat die / den Nachbarknoten: ",end='')

 for n in NachbarKnoten:

 print(n, end=', ')

 print()

 print()

input()

 >>>

Gesamtgraph: ...

 Knoten: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

 Kanten: (2, 4), (1, 2), (5, 6), (6, 7), (3, 5), (8, 9), (3, 4),

(8, 7), (2, 3), (4, 6), (10, 11), (11, 5), (9, 10),

Für welchen Knoten werden die Nachbarn gesucht? (Abbruch mit 0) ?: 4

Der Knoten 4 hat die / den Nachbarknoten: 2, 3, 6,

Für welchen Knoten werden die Nachbarn gesucht? (Abbruch mit 0) ?: 1

Der Knoten 1 hat die / den Nachbarknoten: 2,

Für welchen Knoten werden die Nachbarn gesucht? (Abbruch mit 0) ?: 0

>>>

BK_SekI+II_Python_prof.docx - 76 - (c,p) 2015 - 2026 lsp: dre

8.3.3. Dictonary's - Wörterbücher

übersetzt Verzeichnis, praktisch eine Sammlung von Daten-Paaren, einem Schlüsselwert
(Key) und einem Datenwert oder Eintrag (Value)
Schlüssel und Wert werden durch einen Doppelpunkt (:) getrennt
entspricht also einem Wörterbuch, deshalb auch gerne für direkte Übersetzungen benutzt. In
der gesprochenen Sprache aber eher nur für einzelne Worte geeignet.
Angabe in geschweiften Klammern ({ … })
Schlüssel-Wert-Paare werden, Komma-getrennt notiert

prinzipiell Listen-artige Struktur; kann durch eine Liste aus zwei-stelligen Listen ersetzt wer-
den
für "mehr-sprachige" Wörterbücher ist u.U. eine "mehr-spaltige" ("mehr-stellige") Liste besser
geeignet.
(dann benötigt man auch keine gespiegelten Dictonary's, wobei dass auch nur programm-
technisch interessant ist)

Notierung auch mehrzeilig möglich, dann muss die erste geschweifte Klammer in der Defin-
tions-Zeile stehen und die abschließende Klammer hinter der letzten Zeile.
Die Wörterbuch-Einträge sollten Zeilen-weise notiert werden.
Dictonary's eigenen sich auch gut zum Abspeichern und Einlesen aus einer Text-Datei.

ebenfalls keine typische Daten-Struktur, Mischung aus Daten-Strukturen für die interne Da-
ten-Verwaltung und -Verarbeitung
besonders auch bei der Speicherung der Daten bedeutsam

Zuweisung eines Dictonary zu einer Variable erzeugt nur Verweise / Pointer / Zeiger auf das
Original
erst mit neuesDictonary = dictonary.copy() wird eine echte Kopie (z.B. intern für

Funktionen) erstellt

Anhängen eines neuen Eintrags
dictonary_name[neuer_schlüssel] = neuer_eintrag

dictonary_name[schlüssel]
liefert den zugeordneten Wert zurück

dictonary_name[schlüssel] = wert
ordnet dem Schlüssel einen neuen Wert zu
wenn der Schlüssel nicht existiert, dann wird er ins Dictonary mit seinem Wert übernommen

Empfehlung: In Dictonary's sollten die String's (besonders bei Schlüsseln) immer mit ' ' ge-
kennzeichnet werden, dann können die String-Einträge auch in f-String's mit " " ausgege-
ben werden

mit der update()-Funktion kann ein Dictonary mit einem anderen aktualisert werden
vorhandene Schlüssel werden überschrieben und neue Schlüssel mit ihrem Wert neu einge-
baut

Bestimmen der Länge / Größe / Einträgezahl eines Dictonary's

BK_SekI+II_Python_prof.docx - 77 - (c,p) 2015 - 2026 lsp: dre

len(dictonary_name)
jedes Paar zählt als ein Eintrag

Löschen eines Eintrages durch Angabe des Schlüssels
del dictonary_name[schlüssel]

ist die Position bekannt, dann kann auch ein Löschen über den Index erfolgen
del(dictonary_name[index])

nicht mehr empfohlen wird:
del(dictonary_name[Schlüssel])

das gesamte Dictonary lösen mit:
dictonary.clear()

weitere Objekt-orientierte Möglichkeit des Löschens eines Eintrages über .pop(schlüssel)
der gefundene Wert wird zurückgegeben und entfernt!
mit dictonary_name.pop(Schlüssel, "Fehlertext") wird, falls der Schlüssel nicht im Dictonary
ist der Fehlertext oder ein Fehler-Wert zurückgegeben
(verhindert KeyError)

mit dictonary_name.get(Schlüssel, "Fehlertext")
damit kann man sowohl den Schlüssel abfragen und den Wert zurückbekommen, als auch
im Fall, dass der Schlüssel nicht existiert einen Fehlertext oder Fehler-/Ersatz-Wert zurück-
erhalten

dictonary_name.keys()
liefert die Schlüssel des Dictonary's als Liste

dictonary_name.values()
liefert die Werte des Dictonary's als Liste
mit dictonary_name.items() interiert man durch die Einträge

dict = { … }

for schluessel, wert in dict.items():

 print("Schlüssel: ", schluessel," → Wert: ", wert)

mit dem in-Operator kann geprüft werden, ob ein Schlüssel oder ein Wert in der Schlüssel-
bzw. Werte-Liste enthalten ist
Schlüssel in Dictonary.keys()

oder kürzer:
Schlüssel in Dictonary

(diese Operation ist schneller)

Koordinaten = {

"Erlangen": [56,23],

BK_SekI+II_Python_prof.docx - 78 - (c,p) 2015 - 2026 lsp: dre

"Berlin": [34,51],

"München": [12,23],

"Rostock": [11,45]

}

for key in Koordinaten:

 print(key, Koordinaten[key])

 >>>

München [12, 23]

Rostock [11, 45]

Erlangen [56, 23]

Berlin [34, 51]

Hauptstädte={

 "Baden-Württemberg":"Stuttgart",

 "Bayern":"München",

 "Berlin":"Berlin",

 "Brandenburg":"Potsdam",

 "Bremen":"Bremen",

 "Hamburg":"Hamburg",

 "Hessen":"Wiesbaden",

 "Mecklenburg-Vorpommern":"Schwerin",

 "Nordrhein-Westfalen":"Düsseldorf",

 "Niedersachsen":"Hannover",

 "Rheinland-Pfalz":"Mainz",

 "Saarland":"Saarbrücken",

 "Sachsen":"Dresden",

 "Sachsen-Anhalt":"Magdeburg",

 "Schleswig-Holstein":"Kiel",

 "Thüringen":"Erfurt"

}

for k in hauptstädte.items():

 print(k[0]+ " hat die Hauptstadt " + k[1])

 >>>

Baden-Würtemberg hat die Hauptstadt Stuttgart

Bayern hat die Hauptstadt

Berlin hat die Hauptstadt Berlin

Brandenburg hat die Hauptstadt Potsdam

Bremen hat die Hauptstadt Bremen

Hamburg hat die Hauptstadt Hamburg

Mecklenburg-Vorpommern hat die Hauptstadt Schwerin

Nordrhein-Westfalen hat die Hauptstadt Düsseldorf

Niedersachsen hat die Hauptstadt Hannover

Rheinland-Pfalz hat die Hauptstadt Mainz

Saarland hat die Hauptstadt Saarbrücken

Sachsen hat die Hauptstadt Dresden

Sachsen-Anhalt hat die Hauptstadt Magdeburg

Schleswig-Holstein hat die Hauptstadt Kiel

Thüringen hat die Hauptstadt Erfurt

def Stadtstaaten():

 StadtstaatenListe=[]

 for land in Hauptstädte.items():

 if land[0] == land[1]:

 StadtstaatenListe.append(land[0])

 return StadtstaatenListe

BK_SekI+II_Python_prof.docx - 79 - (c,p) 2015 - 2026 lsp: dre

def spiegeln(Dict):

 SpiegelDict={}

 for eintrag in Dict.items():

 SpiegelDict[eintrag[1]]=eintrag[0]

 return SpiegelDict

Schlüssel und Werte eines Wörterbuch's spiegel

 woerterbuch = {

 1: "uno"

 2: "due"

 3: "tres"

 '0': "zero"

}

print(woerterbuch)

getauschtesWoerterbuch = {}

for schluessel, wert in woerterbuch.items():

 if wert not in getauschtesWoerterbuch:

 getauschtesWoerterbuch[wert] = []

 getauschtesWoerterbuch[wert].append(schluessel)

print(getauschtesWoerterbuch)

def spiegeln(woerterbuch):

 gespiegelt={}

 for schluessel, wert in woerterbuch.items():

 if wert not in gespiegelt:

 gespiegelt[wert]=schluessel

 #gespiegelt[wert].append(schluessel)

 return gespiegelt

print(woerterbuch)

print(spiegeln(woerterbuch))

BK_SekI+II_Python_prof.docx - 80 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen ein Wörterbuch und ein kleines Anzeige-Programm (für alle Ein-

träge) für die nächstkleinere Verwaltungs-Einheit Ihres Bundeslandes /

Stadtstaates!

2. Ergänzen Sie dann eine – sich wiederholende – Abfrage eines beliebigen

Schlüssels aus Ihrem Dictonary mit Anzeige des zugehörigen Eintrages in

Form eines vollständigen Satzes! Der Abbruch der Eingabe soll bei der

Eingabe eines leeren Textes erfolgen, fehlerhafte Eingabe sollen als solche

auf dem Bildschirm vermerkt werden!

3. Erstellen Sie ein Deutsch-Englisch- und Englisch-Deutsch-Wörterbuch-

Programm, dass bekannte Wort-Paare anzeigt und unbekannte lernt! (Wir

gehen von einer immer richtigen Eingabe der Vokabeln aus!) Das Anfangs-

Vokabular soll mindestens 30 Wort-Paare bzw. die Vokabeln der letzten

Unterrichts-Module enthalten.

BK_SekI+II_Python_prof.docx - 81 - (c,p) 2015 - 2026 lsp: dre

8.3.3.1. Erfassen von unbekannten Objekten und Zählen der Objekte in einem Wör-

terbuch

Da man Dictonary's mit beliebigen Schlüsseln
betreiben kann und auch die Aufnahme-Men ge
an unterschiedlichen Objekten nicht begrenzt ist,
bieten sie sich für das Zählen von irgendwelchen
Objekten an.
Damit das Dictonary sowohl in der Funktion – als
auch im Haupt-Programm nutzbar ist, definiert
man es vor der Notierung der Funktion (im
Haupt-Programm).

 Anzahl={}

def zaehle(objekt):

 Anzahl[objekt]+=1

print(Anzahl)

zaehle("Maus")

print(Anzahl)

Es gibt allerdings ein Problem: In unserem Anzahl-Wörterbuch gibt es gar keine Schlüssel-
wörter.
Habe ich eine definierte Menge, kann ich sie im
Vorfeld gleich mit definieren. Universeller – aber
auch nicht perfekt – ist die nebenstehende Versi-
on:
Jetzt wird immer dann, wenn kein passendes
Objekt in dem Anzahl-Wörterbuch gefunden wird,
ein neues mit dem Zähl-Wert 1 angelegt.
Überlegen wir uns nun noch ein kleines Test-
Programm für unsere Wörterbuch-Struktur.
Dabei wird auch die Effektivität der Speicherung
deutlich.

 Anzahl={}

def zaehle(objekt):

 if objekt in Anzahl:

 Anzahl[objekt]+=1

 else:

 Anzahl[objekt]=1

zaehle("Maus")

print(Anzahl)

Statt in einem Feld von 100 Objekten, werden
jetzt nur die Objekte erfasst und zählend gespei-
chert, die wirklich bei einem Zufalls-Erzeugungs-
Verfahren entstehen.
Bei einer weiteren Nutzung des Wörterbuches
muss man ev. beachten, dass es bestimmte Ein-
träge eben nicht gibt. Um hier keinen Laufzeitfeh-
ler zu bekommen, muss man dann vor der Be-
nutzung immer die Existenz abtesten!

 from random import randint

Anzahl={}

def zaehle(objekt):

 if objekt in Anzahl:

 Anzahl[objekt]+=1

 else:

 Anzahl[objekt]=1

for _ in range(50):

 zaehle(randint(1,20))

print(Anzahl)

 >>>
{1: 4, 2: 1, 3: 5, 5: 3, 6: 3, 7: 2, 8: 3, 9: 3, 10: 6,

11: 6, 12: 1, 13: 2, 14: 2, 15: 3, 16: 3, 17: 1, 19: 1,

20: 1}

>>>

Aufgaben:

1. Verbessern Sie das obige Programm zum Zählen der Zufallszahlen um eine

verständliche Ausgabe!

2. Erstellen Sie eine Programm-Version eines Würfel-Programms, das 200x

würfelt und die Wurf-Anzahl hinterher als Balken-Diagramm aus Rauten

darstellt!

3.

BK_SekI+II_Python_prof.docx - 82 - (c,p) 2015 - 2026 lsp: dre

8.3.3.2. Objekt-orientierte Operationen mit Dictonary's

Löschen eines Eintrages aus dem Dictonary über den Index
dictonary_name.pop(index)
die Funktion liefert ein reduziertes Dictonary zurück

dictonary_name.clear()
löscht den Inhalt des Dictonary

dictonary_name.copy()
erzeugt eine flache Kopie von dictonary_name
erzeugt Alias-Dictonary

dictonary_name.items()
gibt eine Liste aller gespeicherter Schlüssel mit ihren Werten im Dictonary (jeweils Tupel-
weise) zurück

dictonary_name.keys()
gibt eine Liste aller gespeicherter Schlüssel im Dictonary zurück

dictonary_name.key()

dictonary_name.values()
gibt eine Liste aller gespeicherter Werte (Value's) im Dictonary zurück

dictonary_name.values()
gibt eine Liste aller gespeicherter Werte im Dictonary zurück

dictonary_name.get(schluessel, alternativwert)
liefert den Wert zum Schlüssel zurück (wenn dieser existiert); sonst den Alternativwert

dictonary_name.setdefault(schluessel, inhalt)
setzt im Schlüssel-Eintrag/Inhalt-Paar mit dem angegebenen Schlüssel (wenn dieser vor-
handen ist) den Inhalt → dic[schluessel] = inhalt
wenn Eintrag mit Schlüssel schon vorhanden ist, dann wird dessen aktueller Inhalt zurückge-
liefert

dictonary_name.iteritems()
zum Durchlaufen aller Schlüssel-Eintrag/Inhalt-Paare in einer for-Schleife

dictonary_name.iterkeys()
zum Durchlaufen aller Schlüssel in einer for-Schleife

dictonary_name.itervalues()
zum Durchlaufen aller Einträge einer for-Schleife

BK_SekI+II_Python_prof.docx - 83 - (c,p) 2015 - 2026 lsp: dre

8.3.3.3. Dictonary-Comprehension

Kombination von (Ergebnis-)Listen-Erzeugung und Bearbeitung mit einer for-Schleife
gleiches Prinzip, wie bei List-Comprehension (→ 9.7.1. List-Comprehension)
Vorteil: sehr kompakter Code
Nachteil: Zwischen -Werte lassen sich kaum sinnvoll ausgeben
statt den eckigen Listen-Klammern werden jetzt geschweifte Dictonary-Klammer eingesetzt

text = " ….. "
ergebnisDict = { wort:len(wort) for wort in text.split() }

weiteres Beispiel
halbiertDict = { schluessel:wert/2 for (schluessel, wert) in einfachDict.items() }

lassen sich auch mit Bedingungen kombinieren
auswahlDict = { schluessel:wert for (schluessel, wert) in original.Dict.items() if bedingung }

Beispiel: Serien-Umwandlung von Messwerten in °F in °C
dictF = { 'mess1' : -30, 'mess2' : 20, 'mess3' : 73, 'mess4' : 100, 'mess5' : 0 }

print("Fahrenheit-Dictonary")

print(dictF)

dictC = { schl:5/9*float(wert-32) for (schl,wert) in dictF.items() }

print("Celsius-Dictonary")

print(dictC)

dictC = { schl+"C":round(wert) for (schl, wert) in dictC.items() }

print("Celsius-Dictonary")

print(dictC)

print("____")

dictC = { schl+"C":round(5/9*float(wert-32)) for (schl, wert) in dictF.items() }

print("Celsius-Dictonary")

print(dictC)

input()

8.3.3.4. eine Datenbank mit Dictonary's

personen = { # Tabelle "Personen"

 # PrimärSchlüssel : Attribute

 # Name, Vorname, Geb.Datum, Geb.Ort, Hobby's

 1: ["Schmidt", "Andy", "09.03.2005", "Berlin",

 ["lesen", "Fußball spielen", "ins Kino gehen"]],

 2: ["Bauer", "Cindy", "21.11.2006", "Rostock",

 ["Videos schauen", "feiern"]],

 3: ["Franke", "Tom", "28.02.2005", "München",

 ["Musik hören", "mit Frenden feiern", "ins Kino gehen"]],

 4: ["Mamut", "Cem", "09.03.2005", "Hamburg",

 ["lesen", "Fußball spielen", "Bergsteigen"]],

 5: ["Mamut", "Leihla", "01.08.2004", "Berlin",

 ["Fußball spielen", "ins Kino gehen", "lesen"]],

 6: ["Schmidt", "Berit", "09.03.2005", "Berlin",

 ["Handball spielen"]],

}

befreundet = {

BK_SekI+II_Python_prof.docx - 84 - (c,p) 2015 - 2026 lsp: dre

 # Person1, Person2 aus personen

 1: [1, 5],

 2: [4, 3],

 3: [3, 2],

 4: [3, 1],

}

for i in personen.keys(): # iterieren über die Schlüssel der Personen-Tabelle

 …

for eintrag in personen.items():

 print(eintrag[0]) # Schlüssel

 print(eintrag[1]) # Wert

es gibt aber auch noch weitere spezielle Iterations-Funktionen

BK_SekI+II_Python_prof.docx - 85 - (c,p) 2015 - 2026 lsp: dre

8.3.4. Listen, die II. – objektorientierte Listen

Im Abschnitt "Listen, die I. (→ 8.4. Listen, die I. – einfache Listen)haben wir die Listen ganz
einfach betrachtet. Nun gehen wir zur Objekt-orientierten Nutzung über. Das hört sich viel-
leicht irgendwie kompliziert an, ist es aber gar nicht. Vom Objekt-orientierten Ansatz merken
wir kaum etwas. Nur die übliche Objekt-orientierte Schreibung bzw. der Aufruf der Funktio-
nen über die Punkt-Schribweise erinnert an sie. Ach ja, und jetzt heißen die Funktionen Me-
thoden. Da werden wir uns aber schnell eingewöhnen.
Wir greifen auf auf das Lis-
ten-Beispiel aus dem ersten
kapitel zurück. Wer will, kann
ja noch mal schnell nach-
schlagen (→ 8.4. Listen, die
I. – einfache Listen).

orginalliste
aliasliste

1 5 3 4 2 6

listenkopie 1 5 3 4 2

eine Zuweisung einer Liste zu einer Variablen erzeugt nur einen Verweis (einen Zeiger /
Pointer) auf die ursprüngliche Liste
wird die ursprüngliche Liste geändert, ändert sich auch die "Kopie" (, weil der Zeiger immer
noch auf die Liste zeigt)

eine echte Kopie mit der copy()-Funktion

echtneueListe = originalListe.copy()

einige Methoden auf Listen lassen Operationen zu, die man eher den Keller- bzw. Warte-
schlangen-Datenstrukturen zuordnen würden
hie wird wieder die herausragende Rolle der Listen als Daten-Objekte (in Python und auch
sonst) sichtbar

Listen lassen sich mit dem +-Operator aneinanderhängen
verketteteListe = liste1 + liste2

len(liste)
liefert die Anzahl der Elemente in der Liste

mit dem *-Operator lassen sich Listen vervielfachen (mehrfach aneinanderhängen)
listenname = liste * anzahl

listenname.remove(element)
löscht aus der Liste das angegebene Element

del(listenname[index])
löscht aus der Liste das Element an der Index-Position

BK_SekI+II_Python_prof.docx - 86 - (c,p) 2015 - 2026 lsp: dre

listenname.count(element)
zählt, wie häufig ein Elementes in einer Liste ist

listenname.append(element)
hängt ein Element an die Liste mit dem angegebenen Namen an
werden mehrere Elemente angehängt, dann erfolgt dies als ein Element, also als eigene
Liste, das Ergebnis wäre eine Liste am Ende der (alten) Liste
Rückgabewert ist None, dieser muss aber nicht entgegengenommen werden

"\n".join(woerterliste)
erzeugt einen String aus den Wörtern, die jeweils durch einenZeilenumbruch getrennt sind

bei gemischten Listen muss ein Stern vor die gemeiste Liste gesetzt werden und ein Sepera-
tor (sep= …) angegeben werden
print(*gemischteListe, sep='\n")

listenname.insert(index, element)
fügt ein Element in eine Liste an der indizierten Position ein

listenname.extend(liste)
hängend ein oder mehrere Elemente (aus liste) einzeln an eine Liste (hier listenname) an

listenname.index(element)
liefert die Index-Position (echte Position-1) von element zurück

element=listenname.pop()
liefert das letzte Element der Liste zurück, und es wird aus der Liste entfernt!

einige Programmiersprachen kennen neben pop auch noch peek bei peek wird das letzte
Element aber nicht entfernt, sondern nur gelesen; in python lässt sich hierfür liste[-1] benut-
zen

element=listenname.pop(index)
liefert das indizierte Element der Liste zurück, es wird aus der Liste entfernt!

listenname.sort()
sortiert die Elemente einer Liste aufsteigend (eine (Neu-)Zuweisung ist nicht notwendig)
bietet als Argument noch die Schlüsselwörtchen key und reverse
mit reverse wird die Liste absteigend (also umgekehrt) sortiert

listenname.sort(reverse=True)

BK_SekI+II_Python_prof.docx - 87 - (c,p) 2015 - 2026 lsp: dre

listenname.reverse()
dreht die Reihenfolge der Elemente um
reverse ändert die angegebene Liste selbst!
aber Vorsicht:
liste = liste.reverse() löscht praktisch die ursprüngliche Liste und gibt dann None zurück

mit dem Wörtchen key kann man der Sortierfunktion noch eine einargumentige Funktion
übergeben, die als Sortierkriterium dienen soll z.B. die Länge der Strings (→ len())

listenname.sort(key=len)

die Schlüsselwörtchen lassen sich auch gemeinsam verwenden

element in liste liefert den Wahrheitswert, ob element in der Liste enthalten ist

element not in liste liefert den Wahrheitswert, ob element (noch) nicht in der Liste enthal-
ten ist

durch den Allias wird lediglich ein weite-
rer Zeiger (genannt Variable) auf die
gleiche Liste gelegt

beim Verändern der einen Liste wird die
“andere“ Liste mit geändert

nur mit Deep-Kopie kann eine unabhän-
gige Kopie erstellt werden

 >>> a=[3,2,1]

>>> a

[3, 2, 1]

>>> b=a

>>> b

[3, 2, 1]

>>> a.sort()

>>> a

[1, 2, 3]

>>> b

[1, 2, 3]

>>>

auch bei Übernahme einer Alias-Liste in
eine andere Liste wird nur der Zeiger
übernommen

Veränderungen an der "originalen" Alias-
Liste wirken sich auch eine weitere Ali-
as-Nutzung aus

 >>> a=[3,2,1]

>>> a

[3, 2, 1]

>>> b=["A", "B","C"]

>>> b

["A", "B", "C"]

>>> a.append(b)

>>> a

[1, 2, 3,["A", "B", "C"]]

>>> b.reverse

>>> b

["C", "B", "A"]

>>> a

[1, 2, 3, ["C", "B", "A"]]

>>>

listenname.reverse()
sortiert die Elemente einer Liste absteigend

BK_SekI+II_Python_prof.docx - 88 - (c,p) 2015 - 2026 lsp: dre

listenkopie = copy.deepcopy(originalliste)

listenname.split()
zerlegt einen String in die Teile, die durch Leerzeichen voneinander getrennt sind
element_liste = text.split()

Erstellen eines Strings aus den Elementen einer Liste
listenname.join()

liste = ['a', 'b', 'c']]

print(''.join(liste)) ➔ 'abc'

print(' '.join(liste)) ➔ 'a b c'

print('_'.join(liste)) ➔ 'a_b_c'

Listen:
Vorteile:

• effektive Speichernutzung

• schnelles Einspeichern (Anhängen)

• einfache Algorithmen (suchen (, entfernen, einfügen an Position))

Nachteile:

• allgemein Arbeits-aufwändiger

• langsames Suchen

BK_SekI+II_Python_prof.docx - 89 - (c,p) 2015 - 2026 lsp: dre

8.3.5. List-Comprehension

Listen-Erstellung und Listen-Erstellung mit einer For-Schleife in komprimierter Form

ergebnisListe = [funktion(argument) for element in datenListe]

entspricht map-Konstrukt: ergebnisListe = list(map(funktion, datenListe))

lässt sich auch mit if-Konstrukten erweitern:

ergebnisListe = [element for element in datenListe if bedingung]
z.B.:
mitAnfangA = [wort for wort in wortListe if wort[0]="A"]
relativ gut lesbar: mache Wort für Wort in der Wörterliste prüfe, Anfang mit "A"

Beispiele:
Berechnen der Summe der Quadrate von Werten:
werte = [2,4,6]

erg = sum([wert**2 for wert in werte])

Auswählen von Zahlen, die gerade sind:
zahlen = [2,3,4,5]

erg = [zahl for zahl in zahlen if zahl%2 == 0]

Ermitteln des Maximum's aus 100 Zufallszahlen (hier exponentiell verteilt (multipliziert mit
0,1))
import random

erg = max([random.expovariante(0.1) for _ in range(100)])

BK_SekI+II_Python_prof.docx - 90 - (c,p) 2015 - 2026 lsp: dre

BK_SekI+II_Python_prof.docx - 91 - (c,p) 2015 - 2026 lsp: dre

8.4. Interation oder Rekursion? – das ist hier die Frage!

Die Frage, die wir uns hier stellen müssen, ist die nach dem besten Vorgehen beim Lösen
eines Problems. Eine Variante wäre es ein Problem zuerst einmal auf ein oder mehrere ein-
fachere Probleme zurückzuführen. Das macht man solange, bis es kein einfacheres Problem
mehr gibt oder die Lösung offensichtlich ist. Auf dem Rückweg zum ehemaligen aufrufenden
(großen) Problem ergänzt man die primitive Lösung immer ein Stück weiter.
Glaubt man der Literatur, dann ist dieses Lösungs-Verfahren, welches von Menschen und
Programmierern (auch das sollen Menschen sein?!), am häufigsten / vorrangig genutzt wird.
Die andere Variante ist das gleichartige Wiederholen einer bekannten / einfachen Lösung
bzw. einer Teil-Tätigkeit, bis die Aufgabe gelöst ist.
Meiner Meinung nutzen Menschen eher diese Methode. Bei Personen, die Programmieren
lernten ist es ebenfalls die zuerst gewählte Lösungs-Strategie.
Praktisch ist es wohl eine nicht-entscheidbare Frage – wie die, was denn nun zuerst da war,
das Huhn oder das Ei. Zum Einen lassen sich Probleme fast immer mit beiden Strategien
lösen. Dabei ist meist die eine Strategie eleganter / effektiver / cleverer / schöner / …, aber
das steht nicht Disposition.
Zum Anderen gibt es sie nicht – die universell beste Strategie, sonst könnten wir sie ja ein-
fach ansagen / lehren / predigen. Vielfach hängt das beste Vorgehen von den Rahmen-
Bedingungen ab, die zur Verfügung stehen. Im Computer-Bereich sind dies z.B. Speicher-
platz oder die Rechen-Zeit.
Meist geht es bei Interation und Rekursion auch begrifflich etwas hin und her. Den die Intera-
tion oder die Rekursion gibt es nicht. Es sind verallgemeinerte Strategien.
Praktisch müsste man zwischen der interativen und / oder rekursiven Defintion einer Funkti-
on und der programmiertechnischen Implementierung unterscheiden.
i.A. lassen sich die – wie auch immer definierten – Funktionen auf beide Arten implementie-
ren; allerdings gibt es ohne weiteres Programmier-System, die bestimmte Strategien bevor-
zugen bzw. manche andere gar ausschließen.
Vielfach entscheidet der Programmierer, was günstiger ist.
Da beide Umsetzungen Vor- und Nachteile haben, müssen die System-Bedingungen aber
mit beachtet werden

Die Suchmaschine google zeigt nach der Eingabe eines Suchbegriffes gleich unter der Tref-
ferzahl und er Bearbeitungszeit oft auch ein "Meinst du: XYZ". Dabei werden vorrangig kleine
Schreibfehler "korrigiert" oder alternative Begriffe angeboten. Sucht man nun auf der deut-
schen google-Seite nach Rekursion, dann ist das Ergebnis schon etwas überraschend. Auch
auf der englischsprachigen Seite passiert mit dem Begriff "recursion" das Gleiche. Ist google
hier ein Fehler unterlaufen? Wie unterscheiden sich die – und weitere alternative - Antwort-
seiten?

BK_SekI+II_Python_prof.docx - 92 - (c,p) 2015 - 2026 lsp: dre

8.4.1. Interation

Denken wir z.B. an die Aufgabe eine 10 Kisten mit Was-
serflaschen in der dritten Stock zu transportieren. Für ei-
nen echten Body-Builder kein Problem. Er weiss bloß
nicht, was er in die andere Hand nehmen soll (;-).
Jeder würde diese Aufgabe sicher dadurch lösen, dass er
kleinere Mengen (wahrscheinlich immer 2 Kästen) nach
oben bringt. Die komplizierte (schwer zu lösende) Aufgabe
wurde in mehrere gleiche Teil-Aufgaben zerlegt.

 Teilaufgabe

 Teilaufgabe

 Teilaufgabe

 Teilaufgabe

 Teilaufgabe

Ein solches Problem-Lösen nennen wir interatives Vorgehen.
Aus informatischer Sicht ist das die Wiederholung strukturgleicher Blöcke mit Teilaufgaben.
Wenn wir irgendwelche Dinge – z.B. eine Ausgabe x-mal wiederholen wollten, dann haben
wir das in einer Schleife erledigt. Das ist eine klassische interative Lösung. Wir hätten auch
ein Programm schreiben können, dass zumindestens für eine bekannte Anzahl von Wieder-
holungen, genau die gleiche Ausgabe in einem Stück erzeugt hätte. Da würden wir uns ent-
weder die Finger wund tippen oder x-mal die Copy-und-Paste-Strategie anwenden müssen.
Alle Schleifen stellen typische Interationen dar. Der Wortstamm kommt auch vom lataini-
schen interare für wiederholen.

Definition(en): Interation
Unter Interation versteht man das mehrfache (abzählbare / gezählte) Wiederholen einer
Aktion / Handlung / Anweisung.

Interation ist die Anwendung immer gleicher Prozesse auf bereits gewonnene Zwischen-
Ergebnisse.

Vorteile einer / der Interation

• weniger Speicher-Bedarf

• intuitiv verständlich

• im direkten Vergleich meist schneller meist sogar deutlich schneller

•

Nachteile einer / der Interation

• kompliziertere Umsetzung

• längere Programmtexte

•

BK_SekI+II_Python_prof.docx - 93 - (c,p) 2015 - 2026 lsp: dre

8.4.1.1. typische Interations-Anwendungen

Eigentlich könnte ich mir diesen Abschnitt sparen, da die bisher besprochenen Wiederholun-
gen fast ausnahmslos Interationen waren.
Da aber Summen und Produkte und vor allem deren Entwicklung in Schleifen zu den klassi-
schen Programmier-Aufgaben gehören, seien sie hier noch mal aufgeführt, wiederholt und
zum systematischen Verständnis dargestellt.
Wem die Summen- und Produkt-Bildung schon zur Nase raushängt und die Schwierigkeit
damit nicht verstehen kann, der sollte gleich zu den Rekursionen (→ 8.4.2. Rekursion) über-
gehen. Da erwartet ihn vielleicht Neueres und Spannendes.

8.4.1.1.1. Summen-Bildung

def summe(endzahl):

 sum=0

 for i in range(1,endzahl+1):

 sum=sum+i

 return sum

main

endzahl=eval(input("Bis zu welcher Zahl soll summiert werden?: "))

print("Die Summe lautet: ",summe(endzahl))

Wie sieht die Speicher-Belegung zum Zeit-
punkt des Eintritts in die Zählschleife aus?
Ein Speicherzelle "endzahl" wurde mit der Ein-
gabezeile angelegt und mit der Nutzer-Eingabe
(hier: 10) gefüllt.
Beim Aufruf der Funktion summe wird nun eine
Kopie dieser Speicherzelle angelegt, die aber
nur innerhalb der summe-Funktion gültig ist.
Gleiches gilt für die anderen Variablen.

 summe() i 1

 summe() sum 0

 summe() endzahl 10

 endzahl 10

 Name Speicher

Man kann die Unabhängigkeit von endzahl gut testen, indem man z.B. innerhalb der Funkti-
on die endzahl (vielleicht direkt vor dem return) ändert. Eine Ausgabe von endzahl im Haupt-
programm liefert die eingegebene Zahl. Mit dem return werden alle Variablen der Funktion
summe gelöscht.
Auch davon kann man sich durch eine ver-
suchte Ausgabe der summe-Funktions-
Variablen im Hauptprogramm überzeugen. Es
gibt eine Fehlermeldung.
Beim ersten Schleifen-Durchlauf ist i gleich 1
und wird in der Summierungszeile zuerst ein-
mal (rechte Seite des Terms) auf den (alten)
Inhalt von sum aufaddiert. Das Berechnungs-
Ergebnis wird dann in der Speicherzelle sum
(quasi als neue Belegung) gespeichert.

 summe() i 1

 summe() sum 1

 summe() endzahl 10

 endzahl 10

 Name Speicher

Eigentlich würden wir in Python die Aufsummierung ja eher so schreiben: sum+=i. Das
macht den Ablauf der inneren Speicher-Abläufe aber nicht nachvollziehbar.

 summe() i 1

BK_SekI+II_Python_prof.docx - 94 - (c,p) 2015 - 2026 lsp: dre

 summe() sum 1

 summe() endzahl 10

 endzahl 10

 Name Speicher

BK_SekI+II_Python_prof.docx - 95 - (c,p) 2015 - 2026 lsp: dre

Mit dem Erreichen der letzten Schleifen-
Anweisung (hier haben wir ja nur eine) wird i
um Eins erhöht und geprüft, ob die Schleife ein
nächstes Mal durchlaufen werden muss (i ist
jetzt noch kleiner als endzahl+1).
Am Ende aller Schleifendurchläufe ist sum mit
55 belegt. Dieser Wert wird nun an die print-
Anweisung übergeben. Natürlich hätte man
auch eine andere Variable zur Übernahme des
Funktionswertes nutzen können.

 summe() i 11

 summe() sum 55

 summe() endzahl 10

 endzahl 10

 Name Speicher

Die gesamte Variablen-Struktur der Funktion wird nach dem return gelöscht und ist nicht
wieder erreichbar. Nur bei speziellen Generator- Funktionen (→ 6.5.3. Generator-Funktionen
– Funktionswerte schrittweise) bleibt die Variablen-Struktur für einen erneutetn Funktions-
aufruf erhalten.

8.4.1.1.2. Produkt-Bildung

Die algorithmischen Änderungen zur Summe-Funktion sind minimal. Natürlich sollten die
Bezeichner usw. angepasst werden. Aber für ein schnelles Test-Programm würde es auch
ohne gehen.

def produkt(endzahl):

 prod=1

 for i in range(1,endzahl+1):

 prod=prod*i

 return prod

main

endzahl=eval(input("Bis zu welcher Zahl soll multipliziert werden?: "))

ergebnis= produkt(endzahl)

print("Das Produkt lautet: ",ergebnis)

Aufgaben:

1. Erstellen Sie ein Speicher-Schema für das Produkt-Programm!

2. Überlegen Sie sich, was passieren würde, wenn man innerhalb der Schleife

ergebnis immer auf 13 setzt! Diskutieren Sie Ihre Voraussage mit anderen

Kursteilnehmern! Probieren Sie es dann aus!

3. Schreiben Sie eine Summe- und eine Produkt-Funktion in einem Pro-

gramm, welche immer die Zahlen von einer Start- bis zu einer Endzahl

(über Eingaben festzulegen) verarbeiten!

BK_SekI+II_Python_prof.docx - 96 - (c,p) 2015 - 2026 lsp: dre

8.4.2. Rekursion

Kommen wir noch mal auf unser 10-Wasser-Kisten-Beispiel zurück. Um sie in den drutten
Stock zu bekommen, können wir selbst mit jeweils 2 Kisten fünfmal Treppen steigen und die
Kisten hochschleppen.
Eine andere Strategie wäre es, die Aufgabe einfach zu zerlegen. Ich übergebe das Kisten-
Problem an den nächsten Party-Gast / Wassertrinker, indem ich ihn für den Transport von 8
Kisten verantwortlich mache. Ich selbst nehme 2 Kisten und bringe sie hoch. Der andere hat
ein deutlich einfacheres Problem, als ich vorher mit 10 Kisten. Der Zweite kann nun genauso
vorgehen. Sich einen "Dummen" suchen, der 6 Kisten als Auftrag bekommt und er selbst
auch 2 Kisten nach oben transportiert. Der "Dumme" wird so weiterverfahren. Wenn es dann
irgendwann nur noch 4 Kisten sind, übergibt der vorletzte Transporteur die (leichteste / letz-
te) Aufgabe an den letzten Party-Gast / Wassertrinker. Jeder der beiden löst nun seine
Transport-Aufgabe und bringt jeweils 2 Kisten nach oben. In der Wohnung wird dann alles
wieder zu einem 10-Kisten-Stapel zusammengesetzt.

in der Informatik versteht man darunter die Rückführung einer schwierigeren / aufwändigeren
/ komplizierteren / allgemeinen Aufgabe in eine leichtere / weniger aufwändigen / einfacheren
/ speziellen.
vom lat.: recurrere (zurücklaufen, zurückkehren)

besonders gern benutzt und besonders eindrucksvoll sind Rekursionen in der Grapfik-
Programmierung
nutzt man dann noch die Turtle-Graphik (→ 8.8. Turtle-Graphik – ein Bild sagt mehr als tau-
send Worte), dann kann man Rekursion praktisch erleben (→ 8.8.6. Rekursion)

– theoretisch unendlich oft – in sich selbst geschachtelte Schleife
wobei hier nicht die Schleife das Struktur-Objekt ist sondern eine sich selbst-aufrufende
Funktion

Ein Problem haben wir allerdings. Man braucht
immer eine leichteste / letzte Teilaufgabe. Die-
se nennen wir Rekursions-Abbruch oder aus
der anderen Richtung betrachtet Rekursions-
Anfang. Die anderen – delegierenden / verein-
fachenden – Schritte werden Rekursions-
Schritt genannt.

 komplizierte Aufgabe

 leichtere Teilaufgabe

 leichtere Teilaufgabe

 einfachste Teilaufg.

In der Mathematik ist die Rekursion ein gängiges Mittel zur Definition von Funktionen

z.B.: Bildung einer Summe

 sum(0) = 0 Rekursions-Anfang

jede andere Summe lässt sich dann so berechnen:

 sum(n) = sum(n-1) + n Rekursions-Schritt

die gesamte Definition lautet dann

sum(n) = { 0, falls n = 0 Rekursions-Anfang
sum(n-1) + n, sonst Rekursions-Schritt

BK_SekI+II_Python_prof.docx - 97 - (c,p) 2015 - 2026 lsp: dre

Auch wenn es ein bisschen wie eine interative Lösung aussieht, hier ist der entscheidende
Unterschied, dass die Funktion sich selbst wiederaufruft. Bei der Interation wird nur wieder-
holt.

damit ein Problem rekursiv zu lösen geht, muss es die folgenden Bedingungen erfüllen:

• das Problem muss sich in eine einfachere Variante von sich selbst zerlegen lassen

• bei der Zerlegung in eine einfachere Variante muss irgendwann eine Variante erreicht
werden, die sich ohne weitere Zerlegung lösen lässt

• wenn die Teilprobleme gelöst sind, dann müssen sich die Teil-Lösungen zu einer Lö-
sung des Ausgangs-Problems zusammensetzen lassen

Definition(en): Rekursion
Unter Rekursion versteht man das nicht voraussehbare Wiederholen einer Aktion / Funktion
durch Aufruf von sich selbst.

Rekursion ist das Problemlösungs-Konzept, bei dem eine (komplexe) Aufgabe in (kleinere,
leichter lösbare) Teil-Aufgaben (der gleichen Klassen) zerlegt wird, diese gelöst werden und
dann zur Gesamt-Lösung zusammengesetzt werden.
Rekusionen bedürfen einer trivialen Teil-Aufgaben-Lösung, ab der eine weitere Aufgaben-
Zerlegung nicht mehr durchgeführt werden kann.

Vorteile einer / der Rekursion

• relativ einfache Defintion

• dem menschlichen Denken ähnlich

• Korrekheit ist i.A. leichter zu prüfen

• kürzere Formulierung

• kürze Implementierungen

• spart Variablen

• (i.A.) sehr effektiv

Ob rekursives Arbeiten wirklich dem menschlichen Denken sehr nahe kommt, wage ich zu
bezweifeln. Meine Erfahrungen sagen eher, dass rekursive Prinzipien / Funktionen zumin-
destens sehr einfach erscheinen, beim Umsetzen in ein Programm wird es deutlich schwieri-
ger und problematisch wird es, wenn selbst neuartige Sachverhalte / Probleme rekursiv ge-
löst werden sollen
Meist erscheint dann irgendwie die interative Lösung logischer oder eingängiger. Kommt
man später auf eine rekursive Lösung, ist sie zwar meist deutlich eleganter, aber auch
schwerer zu verstehen und zu warten.

Nachteile einer / der Rekursion

• unübersichtlicher Programmablauf

• schlechtes Laufzeit-Verhalten meist deutlich langsamer

• größerer Speicher-Bedarf
(großer Overhead von Funktions-Aufrufen)

z.B. für Rücksprung-Adressen von
noch nicht gelösten übergeordneten
Funktions-Aufrufen

BK_SekI+II_Python_prof.docx - 98 - (c,p) 2015 - 2026 lsp: dre

•

einige Programmiersprachen kennen nur Rekursionen, bei ihnen fehlen andere Wiederho-
lungs-Strukturen (z.B. Scheme)
Computer arbeiten intern aber immer interativ, aber das ist nicht unsere Ebene

Wir unterscheiden direkte und indirekte Rekursion. Die direkte ist dadurch gekennzeichnet,
dass die Funktion sich immer wieder selbst aufruft. Bei der indirekten Rekursion rufen sich
mehrere Funktionen gegenseitig auf. Sind es z.B. zwei, dann ruft Funktion1 die Funktion2
auf und diese dann wieder Funktion1.

8.4.2.1. Rekursions-Beispiele: Summen- und Produkt-Bildung

def summe(endzahl):

 sum=0

 for i in range(1,endzahl+1):

 sum=sum+i

 return sum

main

endzahl=eval(input("Bis zu welcher Zahl soll summiert werden?: "))

print("Die Summe lautet: ",summe(endzahl))

Betrachten wir hier auch die beiden Funktionen (summe und produkt), die oben bei den Inte-
rationen nochmals besprochen worden.
Über die Rekursion beschreiben wir die Funktion summe wie oben besprochen:

summe(n) = { 0, falls n = 0 Rekursions-Anfang
summe(n-1) + n, sonst Rekursions-Schritt

def summe(endzahl):

 if endzahl==0:

 return 0

 else:

 return summe(endzahl-1)+endzahl

main

endzahl=eval(input("Bis zu welcher Zahl soll summiert werden?: "))

print("Die Summe lautet: ",summe(endzahl))

Typisch ist die umgekehrte Abarbeitung zur
kleinsten Zahl / zum Abbruch-Kriterium hin.
Die Speicher-Belegung ist aber letztendlich
deutlich verschieden.
Beim Aufruf der Funktion summe wird wieder
eine Kopie von endzahl angelegt. Nun wird die
Verzeigung passiert und bevor irgenwas getan

 summe() endzahl 10

 endzahl 10

 Name Speicher

BK_SekI+II_Python_prof.docx - 99 - (c,p) 2015 - 2026 lsp: dre

wird, wird die Funktion schon wieder verlassen
allerdings mit einem erneuten Aufruf von sum-
me. Das Argument wurde aber um Eins verrin-
gert.
Zur Kennzeichnung eines untergeordneten
Aufrufs verwende ich unterschiedlich dunkle
Grautöne.
Dieser Vorgang wiederholt sich jetzt einige
Male bis der Aufruf mit dem Argument 0 (für
die endzahl) erfolgt.
Es erfolgt ein Return mit 0 und nun wird der
Speicherstapel abgebaut, indem der Rückga-
be-Wert des untergeordneten Funktions-
Aufrufs mit der – auf der jeweiligen Ebene gül-
tigen – endzahl addiert wird.
Letztendlich kommen wir so zum 1. Funktions-
aufruf zurück und der gibt nun das Ergebnis
(aus der Berechnung summe(9)+endwert) an
den aufrufenden Programmschritt zurück (hier
die Ausgabe).

 summe() endzahl 9

 summe() endzahl 10

 endzahl 10

 summe() endzahl 0

 summe() endzahl 1

 …

 summe() endzahl 7

 summe() endzahl 8

 summe() endzahl 9

 summe() endzahl 10

 endzahl 10

Schon bei nur 10 Rekursionen wird also deutlich mehr Speicher gebraucht, als in der intera-
tiven Version.
Typische Rekursionen haben meist eine deutlich größere Rekursionstiefen und häufig auch
noch interne Variablen. Auch diese benötigen Platz im sogenannten Kellerspeicher, LIFO-
Speicher oder Stack. Der zuletzt gespeicherte Inhalt wird zuerst wieder herausgeholt (Last In
First Out). Anders herum kann man sich das Speicher-Prinzip auch als Stapel (engl.: stack)
verstellen. Man muss Neues oben auflegen und auch von oben der Stapel wieder abbauen.
Die informatische Datenstruktur "Keller" wird später nochmals ausführlich (Objekt-orientiert)
besprochen (→ 9.8. Keller).

Aufgaben:

1. Erstellen Sie die Definition für ein Produkt!

2. Erstellen Sie ein Programm mit einer rekursiven Produkt-Funktion!

3. Zeigen Sie an einem Speicher-Schema, welche Variablen wann angelegt

werden und welche Werte sie beinhalten!

BK_SekI+II_Python_prof.docx - 100 - (c,p) 2015 - 2026 lsp: dre

8.4.2.2. weitere typische Anwendungen für Rekursionen

8.4.2.2.1. Überführung einer Dezimal-Zahl in eine Dual-Zahl

def dualzahl(dezimalzahl):

 ganzzahlteiler=dezimalzahl/2

 rest=dezimalzahl%2

 if rest==0:

 stellensymbol="0"

 else:

 stellensymbol="1"

 if ganzzahlteiler==0

 return stellensymbol

 else:

 return dualzahl(ganzzahlrest) + stellensymbol

8.4.2.2.2. die Fakultät

faktorielle Funktion
für die Wahrscheinlichkeitsrechnung / Stochastik häufig gebraucht
in der Mathematik durch das Ausrufe-Zeichen nach der Zahl ausgedrückt:

6! = 1 * 2 * 3 * 4 * 5 * 6 = 720

oder eben allgemein:

n! = 1 * … * (n-1) * n = ∏ 𝑖𝑛

𝑖=1

die meisten Programmierer würden wohl auch eher interativ an die Implementierung heran-
gegen (→ 8.4.1.1.2. Produkt-Bildung)
hier schauen wir uns aber auch mal die rekursive Lösung an:

fakultät(n) = { 1, falls n = 1 Rekursions-Anfang
fakultät(n-1) + n, sonst Rekursions-Schritt

def fakultaet(x):

 if x==1: return 1

 else:

 return fakultaet(x-1)*x

BK_SekI+II_Python_prof.docx - 101 - (c,p) 2015 - 2026 lsp: dre

8.4.2.2.3. die FIBONACCHI-Folge

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

fib(n) = {
0, falls n = 0

Rekursions-Anfang
1, falls n = 1

fib(n-1) + fib(n-2), sonst Rekursions-Schritt

Exkurs: FIBONACCHI ohne die Vorglieder?

Das Berechnen eines bestimmten Gliedes der FIBONACCHI-Folge ist durch Rekursion und
Interation möglich. Beide Lösungswege – also die interative bzw. die rekursive – haben
durch die vielen Wiederholungen bzw. Funktionsaufrufe einen recht großen Rechenaufwand.
Schließlich müssen alle Vorglieder berechnet werden, um dann die letzten beiden Vorglieder
zum Ergebnis zu addieren.
Besonders für höhergliedrige Werte in der Folge ist der Rechenaufwand dann enorm.
Der französische Mathematiker J.-Ph.-M. BINET schlug (1843) eine andere Funktion zur Be-
rechnung der Einzelglieder vor:

 𝑓𝑖𝑏(𝑛) =
1

√5
 ((

1+ √5

2
)

𝑛

− (
1− √5

2
)

𝑛

)

Einen solchen Lösungsweg nennen wir explizit. Explizite Lösungen sind meist extrem
schnell – vor allem im Vergleich zu den anderen beiden Lösungs-Strategien. Der Aufwand
für die Implementierung liegt im Bereich der Interation – also etwas aufwändiger, als für eine
Rekursion.
Explizte Lösungen von Problemen, die im "normalen" Leben einen großen Rechnenaufwand
haben stellen z.B. häufig Sicherheits-Probleme dar. Wenn z.B. eine Sicherheits-Lösung da-
rauf aufbaut, dass sie erst mit einem riesigen Rechenaufwand geknackt werden kann, und
es exisiert auf einmal eine explizite Lösung, dann stürzt das Sicherheits-Konzept in sich zu-
sammen.

Aufgaben:

1. Programmieren Sie die nachfolgende "Super"-FIBONACCHI-Folge als rekur-

sive Funktion mit kleinem Rahmen-Programm zur Anzeige mehrerer Folge-

Glieder!

sfib(n) = {
0, falls n = 0

Rekursions-Anfang 1, falls n = 1

2, falls n = 2

sfib(n-1) + sfib(n-2) + sfib(n-3), sonst Rekursions-Schritt

 zur Kontrolle: erwartete erste Glieder der Folge:
 0, 1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, …

BK_SekI+II_Python_prof.docx - 102 - (c,p) 2015 - 2026 lsp: dre

Aufgaben (für Fortgeschrittene):

2. Erstellen Sie ein Programm, dass für die ersten 20 Glieder der FIBONAC-

CHI-Folge die Werte jeweils klassisch interativ und rekursiv und dann noch

einmal mit der BINET-Funktion berechnet. Prüfen Sie, ob es Differenzen

gibt (Anzeigen lassen!)!

3. Die sogenannte PADOVAN-Folge (auch: kleine Schwester der FIBONACCHI-

Folge) versucht die verzögerte Fortpflanzungs-Fähigkeit der Nachkommen

nachzubilden. Statt mit den beiden unmittelbaren Vorgängern (n-1 und n-2)

zu rechnen, werden die Vorgänger n-2 und n-3 addiert. Gestartet wird mit

dem Wert 1 für die ersten drei Glieder. Ertellen Sie ein Programm, dass die

PADOVAN-Folge für die Glieder 1 bis 20 simuliert!

4. Stellen Sie die Glieder der FIBONACCHI- und der PADOVAN-Folge in einer

tabellarischen Form gegenüber (Glieder 1 bis 30)!

pad(n) = {
0, falls n = 0

Rekursions-Anfang 1, falls n = 1

1, falls n = 2

pad(n-2) + pad(n-3), sonst Rekursions-Schritt

 zur Kontrolle: erwartete erste Glieder der Folge:
 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, …

Aufgaben für das gehobene Anspruchsniveau:

5. Untersuchen Sie, ob es zwischen den Gliedern der FIBONACCHI-Folge ei-

nen Wachstums-Faktor (Quotient des aktuellen und dem vorlaufenden

Glied) gibt! Wie verhält sich dieser Quotient im Verlauf der Folge?

6. Untersuchen Sie gleiches für die PADOVAN-Folge!

8.4.2.2.4. das ggT – der Größte gemeinsame Teiler

Natürlich müsste es der ggT (GGT; eng.: gcd (greatest common divisor)) heißen, aber wer spricht
schon so?

beim ggT mehrerer (mehr als 2) Zahlen muss allerdings auf die Primfaktoren-Zerlegung zu-
rückgegriffen werden

bei zwei Zahlen

 10584 = 23 * 33 * 72
 40500 = 22 * 34 * 53

 ggT: 22 * 33 = 108

BK_SekI+II_Python_prof.docx - 103 - (c,p) 2015 - 2026 lsp: dre

wird für mehr Zahlen

 1400 = 23 * 52 * 72
 283500 = 22 * 34 * 53 * 71
 20250 = 21 * 34 * 53

 ggT: 21 * 52 = 50

Primfaktoren-Zerlegung sehr rechen-aufwändig

EUKLIDischer und STEINscher Algoritmus

Grundidee von EUKLID und dann durch STEIN verbessert

 40500 : 10584 = 3 Rest: 8748
 10584 : 8748 = 1 Rest: 1836
 8748 : 1836 = 4 Rest: 1404
 1836 : 1404 = 1 Rest: 432
 1404 : 432 = 3 Rest: 108
 432 : 108 = 4 Rest: 0

 ggT(x, y, z) = ggT(ggT(x, y), z) = ggT(x, ggT(y, z))

BK_SekI+II_Python_prof.docx - 104 - (c,p) 2015 - 2026 lsp: dre

8.4.2.2.5. Erkennung von Palindromen

rekursiv:

def ist_palindrom(zeichenkette):

 if len(zeichenkette)<=1:

 return 1

 if zeichenkette[0]!=zeichenkette[-1]:

 return 0

 return ist_palindrom(zeichenkette(s[1:-1])

interativ:

def ist_palindrom(zeichenkette):

 links=0

 while links<rechts:

 if zeichenkette[links]!=zeichenkette[rechts]:

 return 0

 links+=1

 rechts-=1

 return 1

mit speziellen Python-Funktionen für Strings und Listen:

def ist_palindrom(zeichenkette):

 buchstabenliste=list(zeichenkette)

 buchstabenliste.reverse()

 return ("".join(1))

ist bei Zeitvergleichen die schnelleste Variante, weil die Listen- und String-Funktionen in Ma-
schinensprache realisiert sind

BK_SekI+II_Python_prof.docx - 105 - (c,p) 2015 - 2026 lsp: dre

8.4.2.2.x. weitere klassische Rekursions-Probleme

Türme von Hanoi

rekursive Zerlegung des aktuellen Turm in die größte / untereste Scheibe und einen kleine-
ren (Rest-)Turm

ACKERMANN-Funktion

1926 von Wilhelm ACKERMANN beschrieben
wird zur Austestung von Speicher- und Computer-Modellen benutzt, da die Funktion extrem
schnell wächst

 ack(a, b, 0) = a + b
 ack(a, 0, n+1) = ack2(a, n)
 ack(a, b+1, n+1) = ack(a, ack(a, b, n+1), n)

{
0, wenn n=0

 ack2(a, n) = 1, wenn n=1
 a, wenn n>1

durch PÈTER 1935 etwas einfacher definiert:

 ack(0, m) = m+1
 ack(n+1, 0) = ack(n, 1)
 ack(n+1, m+1) = ack(n, ack(n+1, m))

rekursiv:
def ackermann(n, m):

 if n==0:

 return m+1

 elseif m==0:

 return ackermann(n-1, 1)

 else:

 return ackermann(n-1, ackermann(n, m-1)

teilweise interativ:
def ackermann(n, m):

 while n!=0:

 if m==0:

 m=1

 else:

 m=ackermann(n, m-1)

 n+=1

 return m+1

BK_SekI+II_Python_prof.docx - 106 - (c,p) 2015 - 2026 lsp: dre

Quicksort

Beim Quicksort-Verfahren wird eine Liste von Zahlen od.ä. Objekten dadurch sortiert, das die
originale Liste in immer kleiner werdende Liste aufgeteilt wird. Dabei wird einfach nur nach
Größe in die eine oder andere Liste eingeordnet. Als Entscheidungs-Element (Grenzwert)
wird ein zufälliger Wert oder z.B. einfach das erste Element der Liste benutzt. Das Entschei-
dungs-Element wird auch Pivot-Element genannt. Das Wörtchen pivot bezeichnet im Fran-
zösischen den Dreh- und Angel-Punkt.
Optimalerweise sollten die Teil-Listen immer die halben Listen der Vorgänger-Liste sein,
dann sortiert dieses Verfahren sehr schnell.
Genaueres später bei der Besprechung verschiedener Sortier-Algorithmen (→ 8.15. Sortie-
ren – eine Wissenschaft für sich).

Mergesort

Eine ähnliche Strategie verfolgt der Sortier-Algorithmus Mergesort. Auch hier wird in klei-
ne(re) Listen zerlegt, die dann für sich sortiert werden. Am Schluss werden die sortierten
Teil-Listen durch Mischen (merge = engl.: verschmelzen) vereint.
Mergesort folgt dem Teile-und-herrsche-Prinzip (divide and conquer), welches erstmals von
J. VON NEUMANN (1945) beschrieben wurde und praktisch auch in seinen Rotor-
Maschinen zum Knacken des Enigma-Code's verwendet wurde.
Genaueres später bei der Besprechung verschiedener Sortier-Algorithmen (→ 8.15. Sortie-
ren – eine Wissenschaft für sich).

Potenzierung von Zahlen

interativ
def potenz(basis, exponent):

 pot=1

 for i in range(exponent+1):

 pot*=basis

 return pot

rekursiv
def potenz(basis, exponent):

 if exponent==0:

 return 1

 else:

 return basis*potenz(basis, exponent-1)

BK_SekI+II_Python_prof.docx - 107 - (c,p) 2015 - 2026 lsp: dre

Rucksack-Problem

eng.: knapsack problem
Optmirungs-Problem aus der Kombinatorik

gegeben ist eine Menge von Objekten, die einen
Nutzwert und ein Gewicht (Kostenfaktor) besitzen
gesucht ist eine Teilmenge, deren Gewicht eine be-
stimmte Grenze nicht überschreitet und der Nutzen
aber maximiert sein soll

gehört zu den klassischen NP-vollständigen Prob-
lemen (Richard KARP (1972))

Veranschalichung des

Rucksack-Problems
Q: de.wikipedia.org (Dake)

Zahlen-Beispiel von http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo15.php

Objekt 1 2 3 4 5 6 7 8

Gewicht 153 54 191 66 239 137 148 249

Profit 232 73 201 50 141 79 48 38

Profit-Dichte 1,52 1,35 1,05 0,76 0,59 0,58 0,32 0,15

Gewichts-Schranke soll z.B. bei 645 liegen

1. intuitiver Lösungs-Ansatz:
nehme die Objekte mit der höchsten Profit-Dichte
 also → 1, 2, 3, 4 → Gewicht=464 → Profit=556

2. Lösung, wie 1. und Auffüllen mit weiteren passenden Objekten (entsprechend der Rang-
folge)
 also → 1, 2, 3, 4, 6 → Gewicht=601 → Profit=647

→ aber nicht optimal! ?????
es muss jede Kombination ausprobiert werden!

2n Möglichkeiten (einpacken oder nichteinpacken / 1 oder 0)
Problem ist hier die expotentielle Steigerung des Rechen-Aufwandes
es gibt scheinbar mehrere Lösungen !?

besser ist der Algorithmus von NEMHAUSER und ULLMANN (1969)
basiert auf PARETO-Prinzip

BK_SekI+II_Python_prof.docx - 108 - (c,p) 2015 - 2026 lsp: dre

Alpha-Beta-Suche für Spielzüge bei Brettspielen (Computer-Stategie)

Volumen-Berechnung einer n-dimensionalen Hyperkugel

Suche in einem Baum

Weg aus einem Labyrint

Rechte-Hand-Regel

geht natürlich auch als Linke-Hand-Regel

Permutationen

def permutation():

 return

BK_SekI+II_Python_prof.docx - 109 - (c,p) 2015 - 2026 lsp: dre

effektive Speicherung von Daten (z.B. Bilder)

Wollten wir das nebenstehende Bit-Muster / Bild über
eine Liste abspeichern, dann würde diese mit 64
Elementen doch recht lang werden. Nehmen wir an,
es geht oben links los und es wird Zeilen-weise gear-
beitet, dann ergibt sich die folgende Liste:

muster=[1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,

1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,
0, 0, 1, 1, 1, 1, 0, 0, 0, 0]

 1 1 1 1 0 0 0 0

 1 1 1 1 0 0 0 0

 1 1 1 1 0 0 1 1

 1 1 1 1 0 0 1 1

 0 1 0 0 0 0 0 0

 1 0 0 0 0 0 0 0

 1 0 1 1 0 0 0 0

 1 1 1 1 0 0 0 0

Das Bild / Daten-Muster wird zuerst als das größtmögliche Quadrat (gleicher Elemente) be-
trachtet. Wäre es z.B. homogen nur mit Einsen gefüllt, dann würde sich als Muster die Liste
muster=[1] ergeben. Statt der 64 Speicher-Elemente hätten wir es nur noch mit einem zu
tun. Wir bräuchten also grob 1/64 des Speicherbedarfs – wenn das keine Kompression ist?!
Das Muster ist aber heterogen, also müssen wir es verkleinern.
Die verkleinerten Quadrate sind umrandet hervorgehoben. Für jedes der kleineren Quadrate
müssen wir nun in unserer muster-Liste ein Listen-Element verwenden. Da es mehr als eins
ist, wird klar, dass das gesamte 8x8-Quadrat strukturiert ist. Die Grundstruktur sieht dann so
aus:

muster=[, , ,]

Wären jetzt die kleineren (4x4)-Quadrate einheitlich gefärbt (mit 1 oder 0 belegt), dann würden wir mit 4 Listen-
Elementen hinkommen, was immer noch einer Effektivität der Kompression von 4/64 entsprechen würde. Aber
leider ist es im Beispiel nicht so, also müssen wir genauer weiter differenzieren.

Das oberste linke Quadrat ist vollständig mit Einsen gefüllt, also speichern wir uns in die Teil-
Liste eine Eins:

muster=[1, , ,]

Nun wechseln wir zum rechten oberen 4x4-Quadrat. Es ist nicht homogen und muss deshalb
wieder unterteilt werden. Es entsteht also eine Liste (rot gekennzeichnet) in der Liste (Das Listen-

Element ist selbst wieder eine Liste).

muster=[1, [, , ,], ,]

Die sich ergebenden 2x2-Quadrate sind homogen, also kann die Muster-Liste nun so ge-
schrieben werden:

muster=[1, [0, 0, 0, 1], ,]

Das untere, linke Quadrat ist nicht homogen, also muss es zerlegt werden. Auch das oberste
linke 2x2-Quadrat ist nicht homogen, also muss es als Bit-Muster in die Liste geschrieben
werden.

muster=[1, [0, 0, 0, 1], [[0, 1, 1, 0], , ,],]

Das zweite 2x2-Quadrat ist homogen mit Nullen belegt, also speichern wir ein 0 in die Liste.

muster=[1, [0, 0, 0, 1], [[0, 1, 1, 0], 0, ,],]

BK_SekI+II_Python_prof.docx - 110 - (c,p) 2015 - 2026 lsp: dre

Bei den unterern beiden 2x2-Quadraten verfahren wir in der gleichen Weise und erhalten
dann:

muster=[1, [0, 0, 0, 1], [[0, 1, 1, 0], 0, [1, 0, 1, 1], 1],]

Bleibt das letzte (untere, rechte) 4x4-Quadrat. Es ist homogen, so dass die Liste nur die da-
rin enthaltene Null repräsentieren muss:

muster=[1, [0, 0, 0, 1], [[0, 1, 1, 0], 0, [1, 0, 1, 1], 1], 0]

Im vergleich zur obigen Voll-Liste kommen wir nun mit 26 Speicher-Elementen aus. Das be-
deutet eine Verbesserung fast um den Faktor 2,5 (grob: 16/64).
Die Kompressionsraten sind sehr theoretisch berechnet. Es muss beachtet werden, dass
noch Strukturierungs-Elemente (zur Unterscheidung von über- und unter-geordneten Listen)
mit abgespeichert werden müssen.
So ähnlich – wie hier besprochen – laufen z.B. Kompressions-Verfahren, wie das JPEG oder
MP4 ab. Neben dem Vergleich der Bild-Elemente werden auch noch die vorlaufenden Bilder
mit verglichen. Dabei nutzt man den Effekt aus, dass sich in einer Bildfolge meist nur wenige
– isolierte – Teile verändern.

Aufgaben:

1. Übernehmen Sie das Muster und Muster-Liste! Kennzeichen Sie durch un-

terschiedlich farbige Umrandungen im Muster und durch entsprechend far-

bige Klammern, welche Bitmuster zu welchen Listen-Elementen gehören!

Eine Rekursion bietet sich immer dann an, wenn das Problem / die Funktion
schrittweise auf ein kleineres / leichteres Problem // eine einfachere Funktion
reduziert werden kann.

BK_SekI+II_Python_prof.docx - 111 - (c,p) 2015 - 2026 lsp: dre

McCARTHYs "91-Funktion"

f(n) = { n-10 falls n > 100
f(f(n+11)) sonst

PELL-Folge

P(n) = {
0, falls n = 0 Rekursions-Anfang

1, falls n = 1 Rekursions-Anfang
2P(n-1) + P(n-2) sonst Rekursions-Schritt

erste Elemente: 0, 1, 2, 5, 12, 29, 70, 169, 408, …

die ersten beiden Elemente sind mit 0 und 1 definiert
die nachfolgenden Elemente ergeben sich als Summe aus dem verdoppelten Vorgänger und
dem (einfachen) Vorvorgänger

PELL-Folge 2. Art

Q(n) = {
2, falls n = 0 Rekursions-Anfang

2, falls n = 1 Rekursions-Anfang
2Q(n-1)+Q(n-2) sonst Rekursions-Schritt

erste Elemente: 2, 2, 6, 14, 34, 82, 198, 478, 1154, …

die ersten beiden Elemente sind mit 2 definiert
die nachfolgenden Elemente ergeben sich als Summe aus dem verdoppelten Vorgänger und
dem (einfachen) Vorvorgänger

BK_SekI+II_Python_prof.docx - 112 - (c,p) 2015 - 2026 lsp: dre

LUCAS-Folge(n)

L(n) = {
x, falls n = 0 Rekursions-Anfang

y, falls n = 1 Rekursions-Anfang
L(n-1)+L(n-2) sonst Rekursions-Schritt

erste Elemente: immer abhängig von x und y
 bei x=2 und y=1 → 2, 1, 3, 4, 7, 11, 18, 29, 47, …

die ersten beiden Elemente sind mit x und y definiert
die nachfolgenden Elemente ergeben sich als Summe aus dem Vorgänger und dem Vorvor-
gänger

JACOBSTHAL-Folge

J(n) = {
0, falls n = 0 Rekursions-Anfang

1, falls n = 1 Rekursions-Anfang
J(n-1)+2J(n-2) sonst Rekursions-Schritt

erste Elemente: 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, …

die ersten beiden Elemente sind mit 0 und 1 definiert
die nachfolgenden Elemente ergeben sich als Summe aus dem Vorgänger und dem verdop-
pelten Vorvorgänger

RECAMÀNs-Folge
(OEIS → A005132)

R(n) = {
0, falls n = 0 Rekursions-Anfang

R(n-1)-n falls R(n) >= 0 und nicht in Sequenze Rekursions-Schritt
R(n-1)+n sonst Rekursions-Schritt

erste Elemente: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, …

die ersten beiden Elemente sind mit 0 und 1 definiert
die nachfolgenden Elemente ergeben sich als Summe aus dem Vorgänger und dem verdop-
pelten Vorvorgänger

BK_SekI+II_Python_prof.docx - 113 - (c,p) 2015 - 2026 lsp: dre

interessante Links:
https://oeis.org/wiki/Welcome (On-Line Encyklopedia of Integer Sequences ® OEIS ®)
https://oeis.org/A?????? (Informationen zur Folge mit der Nummer ??????)

Aufgaben für die gehobene Anspruchsebene:

1. Informieren Sie sich zur Biographie von N.J.A. SLOANE!

2. Was verbirgt sich hinter der Folge A000108?

NUR!!! zum Üben: die DREWS-Folgen

Nicht wundern, natürlich gibt es diese Folge (wahrschein) nicht wirklich – und wenn, dann
unter einem anderen Namen! Sie sind praktisch abgewandelte FIBONACCHI-Folgen. Bei der
ersten Folge wird immer eine 1 dazuzählt. Also typisch DREWS – immer noch Einen drauf
setzen. Die Folgen haben keinen tieferen Zweck, außer dem Programmieren zu dienen.

 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, …

dre(n) = {
0, falls n = 0

Rekursions-Anfang
1, falls n = 1

dre(n-1) + dre(n-2) + 1, sonst Rekursions-Schritt

Die zweite Folge ist etwas komplexer. Hier unterscheidet sich das Zuzählen danach, ob die
Gliednummer gerade oder ungerade ist.

 0, 1, 2, 5, 8, 15, 24, 41, 66, 109, 176, 287, …

dre2(n) = {
0, falls n = 0 Rekursions-

Anfang 2, falls n = 1

dre2(n-1) + dre2(n-2) + 1, sonst, falls n gerade Rekursions-
Schritte dre2(n-1) + dre2(n-2) + 2 sonst, falls n ungerade

Aufgaben:

1. Programmieren Sie die 1. DREWS-Folge als rekursive Funktion mit einem

kleinen Rahmen-Programm!

2. Erstellen Sie ein Programm, mit dem die DREWS-Folge sowohl rekursiv als

auch interativ berechnet wird!

3. Entwickeln Sie nun ein Programm, das die DREWS2-Folge rekursiv berech-

net!

für die gehobene Anspruchsebene:

4. Erstellen Sie ein Programm, mit dem die DREWS2-Folge sowohl rekursiv

als auch interativ berechnet wird!

5. Vergleichen Sie den Implementier-Aufwand für die Berechnung der

DREWS2-Folge beim interativen und rekursiven Vorgehen!

BK_SekI+II_Python_prof.docx - 114 - (c,p) 2015 - 2026 lsp: dre

8.4.2.3. direkte Gegenüberstellung von interativen und rekursiven Algorithmen

In der Literatur und in der täglichen Programmierarbeit finden sich bzw. entstehen die unter-
schiedlichsten Umsetzungen von bestimmten Problem. Einige sind hier gesammelt und jeder
programmierer wird nach und nach den einen oder anderen programm-Text hinzutuen kön-
nen. Ob die einzelnen Lösungen immer optimal (gut lesbar, schnell, wenig Speicherbedarf,
…) sind, wird hier nicht bewertet. Sollten Algorithmen entscheidend für ein Programm sein,
dann müssen spezielle Test (Abfrage Speicherbedarf, Zeitmessungen, …) erfolgen. Auf eini-
ge Möglichkeiten gehen wir noch ein.
In einigen Algorithmen sind blaue print-Anweisungen eingebaut. Diese dienen als optionale
Ausgabe, um das Arbeiten des Algorithmus zu verfolgen. Für echte Anwendungen sollten sie
dann raus genommen werden. Ev. lassen sich weitere sinnvolle Ausgaben erzeugen, z.B.
um die Anzahl der Schleifendurchläufe bzw. die Rekursion-Aufrufe zu zählen. Dafür müssen
dann aber eigene Variablen und Zähl-Anweisungen eingebaut werden.
Bei einigen ausgewählen Algorithmen-Umsetzungen notieren wir das in roter Farbe. Auch
diese Quelltext-Teile sollten vor dem echten Einsatz entfernt werden.

8.4.2.3.1. GGT – größter gemeinsamer Teiler

Lösung interativ rekursiv

1 def ggt(a,b):

 i = 0

 while b > 0:

 i += 1

 print("Durchlauf: ",i)

 print("a= ",a,"b= ",b)

 r = a % b

 a = b

 b = r

 return a

def ggt(a,b,i):

 i += 1

 print("Aufruf: ",i)

 print("a= ",a,"b= ",b)

 if b == 0:

 return a

 return ggt(b, a % b,i)

Aufruf der Funktion:

i = 0

ggt(a,b,i)

2 def ggt(a,b):

 while b != 0:

 a,b = b, a % b

 return a

def ggt(a,b):

 return if a == b:

 a

 elif a > b:

 ggt(a-b,b)

 else:

 ggt(a, b-a)

3 def ggt(a,b):

 while a != b:

 if a > b:

 a=a-b

 else:

 b=b-a

 return a

 def ggt(a,b):

 return if a > b:

BK_SekI+II_Python_prof.docx - 115 - (c,p) 2015 - 2026 lsp: dre

8.4.2.3.2. Palindrom-Prüfung

Lösung interativ rekursiv

1 def ist_palim(s):

 links = 0

 rechts = len(s)-1

 while links < rechts:

 if s[links] != s[rechts]:

 return 0

 links += 1

 rechts -= 1

 return 1

def ist_palim(s):

 if len(s) <= 1:

 return 1

 if s[0] != s[-1]:

 return 0

 return ist_palim(s[1:-1])

2

außer
Konkur-

renz

def ist_palim(s):

 liste = list[s]

 liste.reverse()

 return ("".join(liste))

8.4.2.3.3. Potenz-Prüfung

ist p eine ganzzahlige Potenz von x

Lösung interativ rekursiv

1 def istpotenz(p,x):

 return if p == 1 or p == x

 or p % x != 0:

 p == 1 or p == x

 else:

 istpotenz(p/x,x)

def istpotenz(p,x):

 return if p == 1 or p == x:

 True

 elif p % x !=0:

 False

 else:

 istpotenz(p/x,x)

2 def istpotenz(p,x):

 while p != 1 and p != x

 and p % x == 0:

 p = p / x

 return p == 1 or p == x

BK_SekI+II_Python_prof.docx - 116 - (c,p) 2015 - 2026 lsp: dre

8.4.3. komplexe Programmier-Aufgaben:

Wählen Sie eine geeignete oder Ihre präferierte Programmiersprache zur Lö-

sung der nachfolgenden Aufgaben aus!

Überlegen Sie sich bzw. vergleichen mit anderen, ob die von Ihnen präferierte

programmiersprache gut geeignet ist das gewählte Problem zu lösen!

Zahlen-Eigenschaften nach: www.zahlen.mathematic.de

Aufgaben:

1. Berechnen Sie die Summe und das Produkt einer Reihe von einzugebener

Zahlen sowie Summe und Produkt der reziproken Werte!

2. Erstellen Sie ein Programm, dass im Zahlen-Raum bis zur einer einzugebe-

nen (größeren) natürlichen Zahl, die Kombination von drei aufeinanderfol-

genden Primzahlen findet, deren Produkt möglichst dicht an der Zahlen-

Grenze liegt!

3. Prüfen Sie ob eine als Zeichen-String vorgegebene Zahl (ohne Leer- und

Vorzeichen bzw. Nachkommastellen) im auszuwählenden Zahlensystem gül-

tig ist! (Die Ziffern werden als ASCII-Zeichen notiert. Gültige und unter-

scheidbare Zeichen sind: 0 .. 1 A .. Z a .. z → das sollte auch bis zum

Sexagesimal-System reichen! Doppeldeutung A = a muss nicht beachtet

werden!)

4. Lassen Sie durch eine Erweiterung des Programms von 3. prüfen, ob es

sich bei der eingegeben Zahl um eine normale Zahl handelt! Normale Zah-

len enthalten alle Ziffern ihres Alphabetes mit der gleichen Häufigkeit.

5. Erstellen Sie das Programm "Zahlen-Charakterisierer"! Das Programm soll

eine einzugebene ganze Zahl (ev. zuerst nur für natürliche Zahlen) Charak-

ter-Eigenschaften prüfen bzw. bestimmen und ausgeben, ob die Zahl die Ei-

genschaft hat oder nicht bzw. den berechneten Wert. Das Programm sollte

später um weitere Zahlen-Eigenschaften ergänzt werden können und pas-

send kommentiert sein! Auf die (spätere) Nutzbarkeit von Unterprogrammen

ist zu achten! Wählen Sie sich mindestens 12 Eigenschaften aus! Die Rei-

henfolge kann frei geändert werden!

a) männliche Zahl (Zahl ist ungerade und größer als 1)

b) Quersumme (ist die Summe der einzelnen Ziffern der Zahl (ohne deren

Potenzwert))

c) titanische Zahl (ist eine Primzahl mit mindestens 1000 Stellen

d) weibliche Zahl (Zahl ist eine positive gerade Zahl)

e) Totient od. Indikator (ist die Anzahl der Primzahlen, die kleiner als die

(gegebene) Zahl ist)

f) zusammengesetzte (od. zerlegbare od. teilbare) Zahl (ist eine Zahl, die

mehr als zwei positive Teiler hat ODER eine gerade Zahl, die größer als

1 ist)

g) abundante Zahl (wenn echte Teilersumme (Summe aller Teiler (ohne

Rest), außer die Zahl selbst) größer als die Zahl selbst ist)

h) arme od. defizierte od. mangelhafte Zahl (wenn echte Teilersumme klei-

ner als das doppelte der Zahl ist)

BK_SekI+II_Python_prof.docx - 117 - (c,p) 2015 - 2026 lsp: dre

i) vollkommene od. perfekte Zahl (wenn die echte Teilersumme gleich der

Zahl selbst ist)

j) Sophie-GERMAIN-Primzahl (sind Primzahlen, bei denen der Term 2 p

+1 wieder eine Primzahl ist)

k) reiche od. überschießende od. übervollständige Zahl (wenn die echte Tei-

lersumme größer als das Doppelte der Zahl selbst ist)

l) SMITH-Zahl (wenn die Quersumme der Zahl gleich der Quersummen ih-

rer Primfaktoren ist; außer Primzahlen!)

m) erhabene Zahl (wenn Zahl und deren echte Teilersumme vollkommene

Zahlen sind)

n) palindrome Zahl (wenn die Zahl und die umgedrehte Ziffernfolge gleich

(groß) sind)

o) palindrome Primzahl (wenn Zahl eine Primzahl ist und die Zahl und de-

ren umgedrehte Ziffernfolge gleich sind)

p) SIERPINSKI-Zahl (ist eine ungerade, natürliche Zahl n, bei der der Term

n 2
x
 + 1 immer eine zusammengesetzte Zahl ergibt (x ist eine beliebige

natürliche Zahl))

q) RIESEL-Zahl (sind ungerade, natürliche Zahlen, bei denen der Term n 2
x

- 1 immer eine zusammengesetzte Zahl ergibt (x ist eine beliebige natür-

liche Zahl))

r) strobogrammatische Zahl (ist eine Zahl, die um 180° gedreht wieder die

gleiche Zahl ergibt (hier gelten 1, 2 mit 5, 6 mit 9, 8 und 0 als drehbare

oder strobogrammatische Ziffern))

s) strobogrammatische Primzahl (ist eine Primzahl, die auch strobogramma-

tisch ist)

6. Gesucht wird ein modulares Programm, dass für zwei natürliche Zahlen

prüft, ob es sich um ein Paar mit den folgenden Eigenschaften handelt!

a) befreundete Zahlen (wenn die echten Teilersummen beider Zahlen gleich

sind))

b) Primzahlen-Zwilling (wenn zwei aufeinanderfolgende Primzahlen eine

Differenz von 2 aufweisen)

c) Teiler-fremde (od. inkommensurable) Zahlen (ganze Zahlen, die außer -1

und 1 keine gemeinsamen Teiler besitzen)

7. Gesucht wird ein modulares Programm, dass für drei natürliche Zahlen

prüft, ob es sich um ein Tripel mit den folgenden Eigenschaften handelt!

a) pythagoreische Zahlen (Tripel erfüllt die diophantische Gleichung 2.

Grades (a
2
 + b

2
 = c

2
))

b) Primzahlen-Drilling (wenn drei aufeinanderfolgende Zahlen die Reihe p,

p+2, p+6 bilden ODER wenn innerhalb einer Dekade (also 10 aufei-

nanderfolgenden Zahlen) drei Primzahlen vorkommen)

8.

BK_SekI+II_Python_prof.docx - 118 - (c,p) 2015 - 2026 lsp: dre

8.5. Umgang mit Dateien

8.5.0. Dateien und Ordner

Text-Dateien
relativ leicht zu erzeugen, immer selbst durch Programmierer möglich, meist aber Module
zum effektiveren Umgang verfügbar, sowohl vom Computer, als auch von Menschen lesbar
relativ Fehler-tolerant

praktisch ein Umleiten der Bildschirmausgabe in eine Datei

Binär-Dateien
Daten sind sehr kompakt gespeichert, praktisch nur noch Maschinen-lesbar
Fehler können für völlige Unlesbarkeit der Daten sorgen

Arbeiten mit Dateien bestehen immer aus drei Abschnitten, die unbedingt eingehalten bzw.
erledigt werden müssen

• Eröffnung, Initialisierung Festlegen der Datei über den Dateinamen
und den Datentyp
Festlegung der Zugriffsart auf Datei

• eigentliches Schreiben bzw. Lesen eben genau das
(praktisch könnte dieser Abschnitt auch ent-
fallen, aber wozu dann der andere – unbe-
dingt notwendige! - Aufwand)

• Datei-Freigabe Beenden des Zugriffs auf die Datei, damit
wird die Datei für andere Programme, Pro-
grammteile etc. benutzbar
an dieser Stelle erfolgt vielfach erst das physikalische
Schreiben

Einfaches Datei-Handling:

dateiName = "Beispiel.txt"

with open(dateiName) as datei: # with sorgt auch für das Schließen der Datei am

 # Ende

 inhalt = datei.read()

dateiName = "Beispiel.txt"

with open(dateiName) as datei:

 inhalt = datei.read().splitelines() # zerlegt inhalt in Zeilen (gespeichert

 als Liste von Strings

BK_SekI+II_Python_prof.docx - 119 - (c,p) 2015 - 2026 lsp: dre

8.5.1. Dateien lesen

8.5.1.1. Lesen von Text-Dateien

Dateivariable = open(Dateiname,"r")

Zeilenlistenvariable = Dateivariable.readlines()

Zeilenvariable = Dateivariable.readline()

Dateivariable.close()

Dateivariable.seek(Position)

Will man den gesamten Datei-Inhalt in einen String schreiben, dann lässt sich das folgen-
dermaßen realisieren:

Dateivariable = open(Dateiname,"r")
Inhalt = Dateivariable.read()
print("Datei-Typ: ",type(Inhalt)
print("Datei-Inhalt:")
print(Inhalt)
Dateivariable.close()

8.5.1.1.1. Lesen von CSV- bzw. strukturierten TXT-Dateien

BK_SekI+II_Python_prof.docx - 120 - (c,p) 2015 - 2026 lsp: dre

Einlesen einer Text-Datei und Speichern als CSV

 zielDatei = open("daten.CSV", "w")

for zeile in open("Text.TXT"):

 zeile = zeile.strip()

 if zeilestartswith("#"):

 continue

 elemente = zeile.split()

 print(elemente)

print(";".join(elemente), file = zielDatei)

8.5.1.1.2. Lesen von XML-Dateien

spezielle Module verfügbar

8.5.1.1.3. Lesen von JSON-Dateien

spezielle Module zum decodieren verfügbar

 import sys, json

dateinmae = "test.JSON"

print(json.dumps(json.load(dateinmae)), indent =2))

8.5.1.2. Lesen von Binär-Dateien

BK_SekI+II_Python_prof.docx - 121 - (c,p) 2015 - 2026 lsp: dre

8.5.2. Dateien schreiben

8.5.2.1. Schreiben von Text-Dateien

8.5.2.1.1. Schreiben einer neuen Datei

Dateivariable = open(Dateiname,"w") zum Neuschreiben

Dateivariable.write("\n"+Zeile | "\n"+Zeilenvariable)
die write-Funktion liefert übrigens die Anzahl der geschriebenen Zeichen wieder zurück

alternativ auch Umleitung der Bildschirmausgabe möglich
print >> Dateivariable, Text | Textvariable
etwas einfacher, weil Ausgaben immer in String- / Text-Format umgewandelt werden

Dateivariable.close()
hier extrem wichtig, weil erst jetzt das echte Speichern erfolgt!

mit writelines(StringListe) kann eine Liste von Strings in einen Text-Datei geschrieben wer-
den

8.5.2.1.2. anhängendes Schreiben

zum Anhängen weiterer Daten an eine existierende Datei
Dateivariable = open(Dateiname,"a")
Dateivariable.write(Zeile+"\n" | Zeilenvariable+"\n")

letzte Zeile ohne "\n"
Dateivariable.write(Zeile | Zeilenvariable)

Dateivariable.close()
nicht vergessen!

8.5.2.1.3. Schreiben von CSV- bzw. strukturierten TXT-Dateien

BK_SekI+II_Python_prof.docx - 122 - (c,p) 2015 - 2026 lsp: dre

8.5.2.1.4. Schreiben von XML-Dateien

8.5.2.1.5. Schreiben von JSON-Dateien

8.5.2.2. Schreiben von Binär-Dateien

8.5.3. gepickelte Dateien – Dateien mit gemischten Daten

8.5.3.1. Schreiben von Dateien mit gemischten Daten

8.5.3.2. Lesen von Dateien mit gemischten Daten

BK_SekI+II_Python_prof.docx - 123 - (c,p) 2015 - 2026 lsp: dre

8.6. Module

= Bibliothek
Sammlung vorgefertigter Programm-Teile (meist Funktionen)
praktisch Objekte (→ Objekt-orientierte Programmierung)

Probleme dann möglich, wenn im aktuellen Programm-Ordner schon eine Datei mit dem
Namen des Moduls vorhanden ist, dann muss mit Fehler-Meldungen gerechnet werden
genau wenn man versucht seine eigene Datei mit dem Namen eines Moduls abzuspeichern,
das geht zwar, aber der Aufruf der Module / Modul-Funktionen geht nicht → Fehler-
Meldungen

vollständiger Import eines Moduls

import modul

wert = modul.funktion(10)

print(modul.funktion(20))

Laden eines Modil's
Funktionen müssen mit vorgesetztem Modul-Namen aufgerufen werden
Vorteile:
man kann eigene Funktionen und (globale) Variablen mit dem gleichen Namen im Programm
händeln

Nachteile:
lästiges Mitschreiben des Modul-Namens

Import einzelner Funktionen eines Moduls

from modul import funktion

wert = funktion(10)

print(funktion(20))

Vorteile:
Funktion kann ohne Modul-Namen aufgerufen werden

Nachteile:
Aufruf from … import für jede einzelne Funktion oder für Gruppen notwendig

vollständiger Import eines Moduls als integraler Programmteil

from modul import *

wert = funktion(10)

print(funktion(20))

BK_SekI+II_Python_prof.docx - 124 - (c,p) 2015 - 2026 lsp: dre

Vorteile:
keine selektiven Importe mehr

Nachteile:
es werden viele unnötige Funktionen importiert

Modul-Import mit Vergabe eines internen Namens

import modul as mo

wert = mo.funktion(10)

print(mo.funktion(20))

Vorteile:
keine selektiven Importe mehr
kürzere Modulschreibung möglich
Module mit gleichen internen Funktionen / Attributen lassen sich sauber trennen

Nachteile:
es werden viele unnötige Funktionen importiert

Anzeige der verfügbaren Funktionen und (globalen) Variablen

import math

print(dir(math))

 >>>

['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'a-

cos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'co-

pysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1',

'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypo-

t', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10',

'log1p', 'log2', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh',

'sqrt', 'tan', 'tanh', 'trunc']

Um Module auch in der Konsole nutzen zu können, müssen diese am Ende des Quell-
Code's folgenden Konstrukt enthalten:

if __name__ == "__main__":

 …

BK_SekI+II_Python_prof.docx - 125 - (c,p) 2015 - 2026 lsp: dre

8.6.1. "built-in"-Funktionen

Funktionen, die schon direkt im klassischen Python verfügbar sind
häufig gebraucht; weiterhin sollen sie schnell und Fehler-frei bzw. Fehler-unanfällig sein
in vielen anderen Programmiersprachen gehören sie gleich zum Befehls-Umfang dazu
in Python extra Module; dadurch etwas langsamer aber auch veränderlich / überschreibbar,
wenn's denn wirklich notwendig ist

z.B. max(), min(), abs(), type()

 Built-in Functions

abs() dict() help() min() setattr()

all() dir() hex() next() slice()

any() divmod() id() object() sorted()

ascii() enumerate() input() oct() staticmethod()

bin() eval() int() open() str()

bool() exec() isinstance() ord() sum()

bytearray() filter() issubclass() pow() super()

bytes() float() iter() print() tuple()

callable() format() len() property() type()

chr() frozenset() list() range() vars()

classmethod() getattr() locals() repr() zip()

compile() globals() map() reversed() __import__()

complex() hasattr() max() round()

delattr() hash() memoryview() set()

mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#abs
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-dict
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#help
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#min
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#setattr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#all
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#dir
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#hex
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#next
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#slice
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#any
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#divmod
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#id
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#object
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#sorted
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#ascii
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#enumerate
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#input
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#oct
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#staticmethod
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#bin
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#eval
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#int
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#open
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-str
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#bool
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#exec
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#isinstance
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#ord
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#sum
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#bytearray
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#filter
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#issubclass
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#pow
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#super
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#bytes
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#float
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#iter
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#print
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-tuple
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#callable
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#format
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#len
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#property
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#type
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#chr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-frozenset
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-list
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-range
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#vars
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#classmethod
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#getattr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#locals
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#repr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#zip
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#compile
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#globals
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#map
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#reversed
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#__import__
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#complex
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#hasattr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#max
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#round
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#delattr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#hash
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-memoryview
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-set

BK_SekI+II_Python_prof.docx - 126 - (c,p) 2015 - 2026 lsp: dre

8.6.2. wichtige interne Module

8.6.2.1. die Bibliothek math

ausführlich unter: https://docs.python.org/3/library/math.html

ausgewählte Konstanten

math.pi

math.e

ausgewählte Funktionen

math.ceil(wert)
rundet auf die nächstgrößere Ganzzahl bzw. auf Wert, wenn Wert eine Ganzzahl ist
Gegenstück ist math.floor()

math.fabs(wert)
liefert den Absolut-Wert zurück

math.factorial(wert)
liefert die Fakultät von Wert zurück

math.floor(wert)
rundet auf die nächstkleinere Ganzzahl bzw. auf Wert, wenn Wert eine Ganzzahl ist
Gegenstück ist math.ceil()

math.fmod(wert)
Modulo-Funktion bevorzugt für Gleitkommazahlen (sonst besser x % y verwenden

math.frexp(wert)
liefert die Mantisse und den Exponenten als Paar zurück

math.gcd(wert {, wert})
liefert den größten gemeinsamen Teiler (GGT) der Werte zurück

math.lcm(wert {, wert})
liefert das kleinste gemeinsame Vielfache (KGV) zurück

math.perm(wert)

https://docs.python.org/3/library/math.html

BK_SekI+II_Python_prof.docx - 127 - (c,p) 2015 - 2026 lsp: dre

liefert die Anzahl der Permutationen (Kombinations-Möglichkeiten von k Elementen aus den
n Elementen) zurück

math.trunc(n, k=keine)
gibt den Nachkomma-Teil einer Gleitkommazahl zurück

math.exp(wert)
liefert den Funktions-Wert der Expotential-Funktion zu Wert zurück

math.log(wert [, basis])
liefert den Funktions-Wert der natürlichen Logarithmus-Funktion zu Wert zurück, bei Bedarf
kann eine zu e abweichende Basis angegeben werden

math.log10(wert)
liefert den Lorarithmus zur Basis 10 zurück

math.pow(wert, exponent)
liefert die Exponente Potenz von Wert zurück

math.sqrt(wert)
liefert die Quadrat-Wurzel zurück

math.sin(wert)
liefert den Sinus zu Wert zurück

math.cos(wert)
liefert den Cosinus zu Wert zurück

math.tan(wert)
liefert den Tangens zu Wert zurück

math.asin(wert)
liefert den Sinus zu Wert (gegeben in Bogenmaß) zurück

math.acos(wert)
liefert den Cosinus zu Wert (gegeben in Bogenmaß) zurück

math.atan(wert)
liefert den Tangens zu Wert (gegeben in Bogenmaß) zurück

math.dist(punkt1, punkt2)
liefert den EUKLIDischen Abstand zwischen den Punkten (mit Koordinaten) zurück

BK_SekI+II_Python_prof.docx - 128 - (c,p) 2015 - 2026 lsp: dre

math.degrees(wert)
liefert den Winkel in Grad zum Wert in Bogenmaß zurück

math.radians(wert)
liefert den Winkel in Bogenmaß zum Wert in Grad zurück

8.6.2.2. die Bibliothek random

ausführlich unter:

random.random() liefert Zufallszahl zwischen 0 und 1

random.randint(kleiste, groesste) liefert eine Zufallszahl zwischen und ein-

schließlich kleiste und groesste
z.B.:
random.randint(1,6) entspricht dem klassischen Würfeln

random.choice() wählt z.B. aus einer Liste zufällig aus

8.6.2.3. Verschiedenes zum Modul: statistics

ausführlich unter:

import statistics
statistics.median(liste)
liefert den Medien aus einer Liste

statistics.mean(liste)
liefert den arithmetischen Mittelwert

8.6.2.x. Verschiedenes zum Modul: sys

BK_SekI+II_Python_prof.docx - 129 - (c,p) 2015 - 2026 lsp: dre

8.6.2.x. Verschiedenes zum Modul: time

ausführlich unter:

clock()
liefert einen Programm-internen Zeitstempel (Programm-Laufzeit) zurück
für Laufzeit-Messungen vergleicht man einfach die Zeitstempel vor und nach dem zu prüfen-
den Programm-Teil / Algorithmus / Funktions-Aufruf

from time import *

…

t0 = clock()

hier steht dann der zu testende Quelltext

t1 = clock()

print("Laufzeit: ",t1-t0,"s")

 >>>

time()
liefert Zeitstempel als Fließkommazahl
gut für genauere Zeit-Differenzen auch im ms-Bereich geeignet

import time

…

t0 = time.time()

hier steht dann der zu testende Quelltext

t1 = time.time()

print("Laufzeit: ",t1-t0,"s")

 >>>

ctime()
Zeitstempel wird als Text ausgegeben (mit Datum und Uhrzeit)
Die Formatierung orientiert sich an der Zeit-Anzeige in der Programmiersprache C.

import time

zeitstempel = time.ctime()

print(zeitstempel)

BK_SekI+II_Python_prof.docx - 130 - (c,p) 2015 - 2026 lsp: dre

 >>>

Wed Dec 16 17:25:59 2020

>>>

strftime()
ermöglicht die formatierte Ausgabe von Datum und Zeit

import time
jetzt = time.strftime()

8.6.2.x. Verschiedenes zum Modul:datetime

ausführlich unter:

import datetime

oder auch:
import datetime as dttm

Abfrage des aktuellen Zeit-Stempels mit

dttm.datetime.now()

hat man auf das as dttm verzichtet, dann würde der Funktions-Aufruf so aussehen:

datetime.datetime.now()

mit Hilfe der str()-Funktion lässt sich aus dem Ergebnis-String eine lesbare / verständliche
Ausgabe erzeugen
zusammen z.B.:
str(dttm.datetime.now().date())

entsprechend für Zeit:
str(dttm.datetime.now().time())

oder als Selektion der einzelnen Zeit-/Datum-Elemente:
.year(), .month(), .day(), .hour(), .minute(), .second(), .microsecond()

Der Zeitstempel kann also mittels integrierter Funktionen / Attribute in die Anteile zerlegt
werden. Das ist dann wichtig, wenn nur bestimmte Zeit-Informationen gebraucht werden. Ein

BK_SekI+II_Python_prof.docx - 131 - (c,p) 2015 - 2026 lsp: dre

klassisches Problem ist z.B. die Angabe eines Zeitstempels in einem Datei-Namen. Zuerst
ist dies scheinbar kein Problem, da z.B. ctime() ja einen String zurückliefert. Aber wie immer
steckt der Teufel im Detail. Der String enthält in der Zeitangabe Doppelpunkte. Diese sind
aber nicht in Dateinamen zugelassen.

import datetime as dttm

zeitstempel = dttm.datetime.now()

print("Zeitstempel: ", zeitstempel)

print()

print("Stunden : ",zeitstempel.hour)

print("Minuten : ",zeitstempel.minute)

print("Sekunden: ",zeitstempel.second)

 >>>

Zeitstempel: 2020-12-16 17:45:48.235872

Stunden : 17

Minuten : 45

Sekunden: 48

>>>

Wahrscheinlich ist das erneute Zusammensetzen eines Zeitstemples aus den Bestandteilen
des datetime-Zeitstempels die flexibelste Variante. Hier kann man die gewünschten Bestand-
teile frei auswählen:

import datetime as dttm

zeitstempel = dttm.datetime.now()

print("Zeitstempel: ",zeitstempel)

print("Stunden : ",zeitstempel.hour)

print("Minuten : ",zeitstempel.minute)

print("Sekunden: ",zeitstempel.second)

zeitstempel_neu = ""

zeitstempel_neu += str(zeitstempel.hour)+"-"

zeitstempel_neu += str(zeitstempel.minute)+"-"

zeitstempel_neu += str(zeitstempel.second)

print()

print("Zeitstempel: ",zeitstempel_neu)

 >>>

Zeitstempel: 2020-12-16 19:34:48.928490

Stunden : 19

Minuten : 34

Sekunden: 48

Zeitstempel: 19-34-48

>>>

Deutlich kürzer ist die Umwandlung des Zeitstempels in einen String und dann nachfolgen-
des Slicing und Zusammensetzen der Elemente unter Herausschneiden der Doppelpunkte.

zeitstempel = str(zeitstempel)

zeitstempel_neu = zeitstempel[:13]+"-"

 +zeitstempel[14:16]+"-"+zeitstempel[17:19]

BK_SekI+II_Python_prof.docx - 132 - (c,p) 2015 - 2026 lsp: dre

den Zeit-Stempel mit strftime() frei formatieren

jetzt = time.strftime("%Y-%m-%d %H:%M UTC, time.gmtime())

print(jetzt)

BK_SekI+II_Python_prof.docx - 133 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen Sie einen neuen Zeitstempel für einen Dateinamen aus einer aktu-

ellen Tageszeit einschließlich Millisekunden!

2. Erstellen Sie eine Funktion, die aus einem datetime-Zeitstempel einen Zeit-

stempel-String erzeugt, der ein beliebiges Trennzeichen zwischen den Da-

tums- bzw. Zeit-Bestandteilen benutzt!

3.

8.6.2.x. Verschiedenes zum Modul: os

ausführlich unter:

import os

aktuelles Arbeits-Verzeichnis anzeigen:
os.getcwd().replace(os.sep, /")

Ermitteln des aktuell verfügbaren / freien Speichers

für Linux-basierte Systeme (über Shell-Aufruf)

import os

…

speicher = os.popen('df –m | grep rootfs | cut –c33-42').readline()

print("freier Speicher: ", int(speicher)," Byte")

 >>>

8.6.2.x. Verschiedenes zum Modul: collections

für divese Zähl-Aufgaben

liste = ["gelb", "gelb", "blau", "rot", "gelb", "rot", "gelb"]

collections.Counter(liste).most_common(2) zeigt die 2.häufigsten Elemente mit

ihrer Häufigkeit an

BK_SekI+II_Python_prof.docx - 134 - (c,p) 2015 - 2026 lsp: dre

Counter verarbeitet auch Strings, z.B. das Zählen von enthaltenen Buchstaben (liefert ein
Dictonary zurück)

das geht auch selektiv (Suche nach bestimmten Elementen)
hier wird dann nur Anzahl zurückgegeben

8.6.2.x. Verschiedenes zum Modul: inspect

für die Anzeige aller Objekte in der Datei mein.py
import mein

print("\n".join(dir(mein)))

Durchsuchen und Daten-Übernehmen ohne Datei zu öffnen
…

import inspect

print(inspect.getsource(mein.meineFunktion))

liefert dann z.B. den Quell-Code von meineFunktion

mit inspect.getfullargspec(meineFunktion) erhält man die Argumente der ge-

nannten Funktion

BK_SekI+II_Python_prof.docx - 135 - (c,p) 2015 - 2026 lsp: dre

die intern verfügbaren Module der Standard-Python-Installation (V. 3.5.0.)

AutoComplete _pickle enum pydoc_data

AutoCompleteWindow _pyio errno pyexpat

AutoExpand _random faulthandler pygame

Bindings _sha1 filecmp queue

CallTipWindow _sha256 fileinput quopri

CallTips _sha512 fnmatch random

ClassBrowser _sitebuiltins formatter re

CodeContext _socket fractions reprlib

ColorDelegator _sqlite3 ftplib rlcompleter

Debugger _sre functools rpc

Delegator _ssl gc run

EditorWindow _stat genericpath runpy

FileList _string getopt sched

FormatParagraph _strptime getpass select

GrepDialog _struct gettext selectors

HyperParser _symtable glob setuptools

IOBinding _testbuffer gzip shelve

IdleHistory _testcapi hashlib shlex

MultiCall _testimportmultiple heapq shutil

MultiStatusBar _thread hmac signal

ObjectBrowser _threading_local html site

OutputWindow _tkinter http smtpd

ParenMatch _tracemalloc idle smtplib

PathBrowser _warnings idle_test sndhdr

Percolator _weakref idlelib socket

PyParse _weakrefset idlever socketserver

PyShell _winapi imaplib sqlite3

RemoteDebugger abc imghdr sre_compile

RemoteObjectBrowser aboutDialog imp sre_constants

ReplaceDialog aifc importlib sre_parse

RstripExtension antigravity inspect ssl

ScriptBinding argparse io stat

ScrolledList array ipaddress statistics

SearchDialog ast itertools string

SearchDialogBase asynchat json stringprep

SearchEngine asyncio keybindingDialog struct

StackViewer asyncore keyword subprocess

ToolTip atexit lib2to3 sunau

TreeWidget audioop linecache symbol

UndoDelegator base64 locale symtable

WidgetRedirector bdb logging sys

WindowList binascii lzma sysconfig

ZoomHeight binhex macosxSupport tabbedpages

__future__ bisect macpath tabnanny

__main__ builtins macurl2path tarfile

_ast bz2 mailbox telnetlib

_bisect cProfile mailcap tempfile

_bootlocale calendar marshal test

_bz2 cgi math textView

_codecs cgitb mimetypes textwrap

_codecs_cn chunk mmap this

_codecs_hk cmath modulefinder threading

_codecs_iso2022 cmd msilib time

_codecs_jp code msvcrt timeit

_codecs_kr codecs multiprocessing tkinter

_codecs_tw codeop netrc token

_collections collections nntplib tokenize

_collections_abc colorsys nt trace

_compat_pickle compileall ntpath traceback

_csv concurrent nturl2path tracemalloc

_ctypes configDialog numbers tty

_ctypes_test configHandler opcode turtle

_datetime configHelpSourceEdit operator turtledemo

_decimal configSectionNameDialog optparse types

_dummy_thread configparser os unicodedata

_elementtree contextlib parser unittest

_functools copy pathlib urllib

_hashlib copyreg pdb uu

BK_SekI+II_Python_prof.docx - 136 - (c,p) 2015 - 2026 lsp: dre

_heapq crypt pickle uuid

_imp csv pickletools venv

_io ctypes pip warnings

_json curses pipes wave

_locale datetime pkg_resources weakref

_lsprof dbm pkgutil webbrowser

_lzma decimal platform winreg

_markerlib difflib plistlib winsound

_markupbase dis poplib wsgiref

_md5 distutils posixpath xdrlib

_msi doctest pprint xml

_multibytecodec dummy_threading profile xmlrpc

_multiprocessing dynOptionMenuWidget pstats xxsubtype

_opcode easy_install pty zipfile

_operator email py_compile zipimport

_osx_support encodings pyclbr zlib

_overlapped ensurepip pydoc

Für eine schnelle Hilfe kann folgender Link benutzt werden. Dabei wird random durch den
Namen der Bibliothek ersetzt:

https://docs.python.org/3/library/random.html

ansonsten als Einsprung-Punkt: https://docs.python.org/3/ nutzen

für die Bibliotheken ist der Index: https://docs.python.org/3/library/index.html

8.6.2.x. Verschiedenes zu eigenen Modulen

bei einer existierenden Datei mein.py kann Quelltext importiert werden

mein.py
inhalt = 100

im aktuellen Code dann:
from mein import inhalt

es geht auch:
import mein

print(mein.inhalt)

für die Anzeige aller Objekte in der Datei mein.py
import mein

print("\n".join(dir(mein)))

Durchsuchen und Daten-Übernehmen ohne Datei zu öffnen
import inspect

print(inspect.getsource(mein.meineFunktion))

liefert dann z.B. den Quell-Code von meineFunktion

https://docs.python.org/3/library/random.html
https://docs.python.org/3/
https://docs.python.org/3/library/index.html

BK_SekI+II_Python_prof.docx - 137 - (c,p) 2015 - 2026 lsp: dre

8.6.3. externe Module installieren und nutzen

8.6.3.x. Package-Installer PIP

Für das Installieren von Paketen (Bibliotheken, Modulen, …) gibt es Python das Tool PIP.
Es wird in der Eingabeaufforderung / Konsole bedient. Soll in ein aktuelles System ein zu-
sätzliches Paket installiert werden, dann wechselt man in der Konsole ins Installations-
Verzeichnis von Python.
Eine gute Hilfe für die nicht mehr DOS-mächtigen Konsolen-Benutzer ist ein verstecktes fea-
ture von Windows. Im Windows-Explorer klickt man bei gedrückter []-Taste auf die rechte
Maus-Taste. Im nun angezeigten Kontext-Menü findet man auch den Menü-Punkt: "Einga-
beaufforderung hier öffnen".
Sollte dieser Menü-Punkt nicht erscheinen, dann geht auch die folgende Schrittfolge:

1. Öffnen des Windows-Explorer's und Auswählen des übergeordneten Ordner's (bezo-
gen auf den Ziel-Ordner)

2. Öffnen der Konsole
3. Eintippen des Befehls: cd
4. Ziehen des Ziel-Ordner-Symbols aus dem Windows-Explorer in die Konsole
→ der vollständige Pfad steht jetzt hinter dem cd-Befehl und kann ausgeführt werden

Ev. muss noch ein Laufwerks-Wechsel mittels Laufwerk-Buchstabe und angehängtem Dop-
pelpunkt gemacht werden. In der Konsole wird dann mit:

pip install Paketname

das angegebene Paket installiert. Es werden diverse Verlaufs-Informationen angezeigt und
beim ordnungs-gemäßen Durchlauf auch eine Erfolgs-Bestätigung.
Zum Deinstallieren verwendet man:

pip uninstall Paketname

Das ist aber eigentlich in speziellen Situationen notwendig.
Läuft das Python-System schon länger, dann sollte man das PIP-Programm zuerst einmal
selbst updaten:

pip install –upgrade pip

Das ist auch eine Option, falls eine Paket-Installation nicht klappt. Oft geht es dann mit der
aktuellen PIP-Version.
Die Anzeige der installierten Pakete erfolgt mit:

pip list

Sollen (ver)alte(ter) Paket angezeigt werden und die zugehörigen neuerenVersionen, dann
hilft das Kommando:

pip list --outdated

Vielleicht ist der genaue Paketname nicht bekannt, oder die Versionen überschlagen sich,
dann ist eine Suche nach bestimmten Paketen mit:

pip search "Anfrage"

möglich.

BK_SekI+II_Python_prof.docx - 138 - (c,p) 2015 - 2026 lsp: dre

8.6.4. Modul / Bibliothek NumPy
ausführlich unter: https://numpy.org/doc/stable/

Die wichtigste Eigenschaft von NymPy ist wohl die bereitstellung von Feldern / Array's für
mathematische Aufgaben in Python. Die üblichen Listen des originalen Python sind für auf-
wendige mathematische Anwendungen einfach zu sperrig und zu langsam.

NumPy bietet viele Möglichkeiten seine Array's intern zu verknüpfen oder Funktionen dar-
über laufen zu lassen. Diesen direkten Weg sollte man immer der eigenen Interation über die
Array's vorziehen. Die NumPy-Umsetzungen sind deutlich schneller.

Importieren der Bibliothek

import numpy

oder etwas praktischer mit einem verkürzten Namen für die Bibliothek. Dabei hat sich in der
Programmierer-Welt np eingebürgert.

import numpy as np

Im Folgenden gehen wir genau von diesem Import aus.

Erstellen von Array's

Ein einfache Array (Feld) lässt sich über:

datenSet = np.array([4,3,6,2,7,2,2,3,4,4]) # 10 Daten-Punkte

erzeugen. In der Array- oder Matrix-Sprache handelt es sich um eine ein-dimensionales Feld
oder einen sogenannten Vektor. Auch der nächste Erstellungs-Befehl erzeugt einen solchen
Vektor:

datenSet = np.arange(12) #liefert aufsteigend belegtes Feld (von 0 bis 11)

Viele Daten liegen praktisch oder im Modell als mehr-dimensionale Struktur vor. Gerade hier-
für eigenet sich NumPy besonders. Ein mehr-dimensionales Array aus konkreten Daten(-
Listen) erstellt man so:

datenSet = np.array([[4,3,6,2,7,2,2], # 7 Beobachtungen

 [7,2,6,5,4,3,2],

 [3,2,6,4,3,2,1]]) # in 3 Beobachtung(s-Reih)en

print(datenset.shape) # liefert Dimensionen des Array's

print(np.max(datenSet, axis=1 – np.min(datenSet,axis=1)) #zeigt Spanbreite

 #der Beobachtungen innerhalb einer Reihe

https://numpy.org/doc/stable/

BK_SekI+II_Python_prof.docx - 139 - (c,p) 2015 - 2026 lsp: dre

Initialisieren eines leeren Array's

datenSet = np.empty([3,4,7]) # leeres 3-dim. Feld 3x4x7

Der Standard-Datentyp ist bei NumPy float.
Werden aber andere Daten vorgegeben und die Erstellungs-Funktion asarray() benutzt,
dann "errät" NumPy den passenden Datentyp.

Initialisieren eines Array's mit Nullen (Null-Matrix)

hier 2-Dim-Matrix

matrix = np.zeros((3,4))

Auch wenn es nicht scheint, die Nullen sind allesamt float-Werte! Das muss ev. bei Berech-
nungen usw. beachtet werden.

Initialisieren eines Array's mit Nullen (Null-Matrix)

hier 4-Dim-Matrix

matrix = np.ones((3,4,2,3))

Auch hier sind die Einsen vom Datentyp float.

Initialisieren eines Array's mit Zufalls-Zahlen

Vektor mit 10 Zufalls-Zahlen zwischen 0 und 1

matrix = np.random.rand(10)

Matrix mit deb Dimensionen von 4 Spalten und 3 Zeilen sowie ganzzahligen Werten zwi-
schen 4 und 10 (praktisch also obere Grenze: 11):

matrix = np.random.randint(4,11,(3,4))

Daten aus Dateien einlesen

Nichts ist nerviger als Daten beim Testen eines Programm's ständig per Hand einzugen.
Natürlich kann man sich ein Daten-Set direkt in den Quell-Text legen, aber von schöner und
universeller ist das Laden von Daten aus Dateien.

dateiname = "eingabedaten.csv"

datenset = np.genfromtxt(dateiname)

BK_SekI+II_Python_prof.docx - 140 - (c,p) 2015 - 2026 lsp: dre

Neben dem Dateinamen können Komma-getrennt auch noch merhrere Optionen angegeben
werden. Besonders interessant sind dabei das Trennzeichen zwischen den Daten-
Elementen in der Zeile. Dies wird mit delimiter festgelegt. Bei einer Semikolon-getrennten
CSV-Datei würde man dann delimiter=";" verwenden. Soll die erste Daten-Zeile überle-

sen werden, weil sie – wie häufig vorkommend – Überschriften enthält, dann kann dies mit
skip_header=1 eingestellt werden.
Der Dateiname ist vom Typ her offen. Man kann also auch gerne Datei-Typ-Kürzel wie .IN,
.OUT oder .TXT benutzen. Selbst wenn man es .BMP nennen würde, ist dies ok. Nur sollte
man damit rechnen, dass dann Objekt-bezogene Aufrufe durch das Betriebssystem oder
eine BMP-verarbeitendes Programm schief gehen werden. Intern ist und bleibt die Datei eine
Text-Datei.
Die Speicherung eines Array's in eine Text-Datei erfolgt über:

np.savetxt(dateiname)

Hier sind ebenfalls wieder diverse Optionen zulässig.
Mit Hilfe der Funktionen .tofile(dateiname) und .fromfile(dateiname) lassen sich NumpY-
Array's auch in Binär-Form speichern bzw. laden.

Zugriff auf Daten-Elemente

Der Zugriff auf einzelne Elemnte erfolgt, wie üblich über die Indicies in eckigen Klammern:

elem = datenset[3,2]

Mittels Slicing lassen sich Bereiche aus einem größeren Array herausholen. Dabei wird für
jede Dimension ein eigener Slicing-Ausdruck verwendet. Es gilt die übliche Notierung
start:ende:schrittweite.

Operationen / Funktionen mit / zu Array's

Multiplikation eines Vektor’s / einer Matrize mit einem Faktor
import numpy as np

vektor = np.array([12.3, 53.6, 31.5, 33.3])

vektor = vektor * faktor

print(vektor)

Multiplikation einer Matrize mit einem Vektor
matrix = np.array([[2,3,4,5],

 [4,5,6,7],

 [6,7,8,9]])

vektor = np.array([2,6,4,3])

erg = np.dot(vektor,matrix)

print(erg)

Multiplikation einer Matrize mit einer anderen
matrixA = np.array([[2,3,4,5],

 [4,5,6,7]])

matrixB = np.array([[1,2],

 [2,3],

BK_SekI+II_Python_prof.docx - 141 - (c,p) 2015 - 2026 lsp: dre

 [3,4],

 [4,5]])

erg = np.dot(matrixA,matrixB)

print(erg)

Vergleich von zwei NumPy-Array's und speichern des Ergebnis in einem Array mit BOOLE-

schen Werten, z.B.:

vergl_erg = NumPyArray1 < NumPyArray2

Lineare Algebra (z.B. Lösen von Gleichungs-Systemen)

Ein lineares Gleichungs-System lässt sich
in die Matrizen-Welt übersetzen. Dabei
ergibt sich eine Matrix (praktisch ein Vektor)
für die Ergebnisse (hier Schreibung links)
und dem Variablen-Teil.

 -8 = 3 x1 + -1 x2 + 2 x3
 2 = 2 x2 + 2 x3
 0 = 4 x1 + 1 x3

Die Faktoren vor den Variablen x1 bis x3 bilden eine zwei-dimensionale Matrix.
Dabei ist zu beachten, dass jedes Element eine num-
merisch verwertbare Zahl ist. Die nicht benutzten Vari-
ablen erhalten als Faktor eine 0 und die ohne Faktor
den Faktor 1.

 -8 3 , -1 , 2
 2 = 0 , 2 , 2
 0 4 , 0 , 1

faktoren = np.array([[3,-1,2], # Matrix muss quadr. u. vollst. sein

 [0,2,2] # keine Vielfache anderer Zeilen zulässig

 [4,0,1]]) # Determinante darf nicht 0 sein

ergebnisse = nparray([-8,2,0]) # quasi y-Werte

variablen = np.linalg.solve(faktoren,ergebnisse)

print(variablen)

interessante Links:
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf (→
Cheat Sheet zu NumPy)
https://riptutorial.com/de/numpy (Tutorial zu NumPy)

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://riptutorial.com/de/numpy

BK_SekI+II_Python_prof.docx - 142 - (c,p) 2015 - 2026 lsp: dre

8.6.5. Modul / Bibliothek MatPlotLib
aktuelle Dokumentation unter https://matplotlib.org/

Was dem Standard-Python fehlt, sind Befehle, um graphische Elemente auf dem Bildschirm
darzustellen. Für viele Berechnungen usw. würden wir uns aber gerne eine Ausgabe als Di-
agramm od.ä. wünschen. Zwar kann man sich für den Notfall auch mit Pseudographiken
helfen, die auf den Konsolen-Symbolen basieren. Für Facharbeiten usw. reicht sowas natür-
lich nicht. Hier brauchen wir professionelle Diagramme.
Die Bibliothek MatPlotLib bietet viele Funktionen zum einfachen Erstellen und Gestalten von
Diagrammen. Diese werden in einem separaten Graphik-Fenster angezeigt.
Praktisch ist das Modul MatPlotLib in reichlich Untermodule geteilt. Für unsere Zwecke –
der einfachen Erstellung anspruchvoller 2D-Diagramme – brauchen wir das Untermodul
PyPlot.
Hauptziel-Richtung von PyPlot ist die Präsentation von Daten in einer MATLAB-ähnlichen
Umgebung. Dabei wird derzeit auf 2D-Diagramme orientiert.
Da es sich bei MatPlotLib um eine externe Bibliothek handelt, kann eine Installation notwen-
dig sein.
Einige Entwicklungs-Umgebungen – wie z.B. Anaconda, WinPython und ActiveState – haben
MatPlotLib gleich mitinstalliert. Bei der klassischen Python-Installation (mit dem Installations-
Programm von python.org) ist die Bibliothek nicht dabei.
Ob MatPlotLib verfügbar ist, merkt man sofort nach einem Import der Bibliothek (s.a. sonst
auch weiter unten). Dazu reicht es in der Python-Konsole ein:

import matplotlib

einzugeben. Kommt keine Fehlermeldung, dann ist MatPlotLib schon integriert. Ansonsten
müssen wir es nachinstallieren.
Die Installation erfolgt auf der Konsole (Eingabeaufforderung, ms-dos-Fenster, PowerShell-
Fenster).

Für viele Windows-Nutzer gestaltet sich innerhalb der Konsole ein Verzeichniswechsel
schwierig, weil die alten ms-dos-Befehle (cd Pfad oder Verzeichnis und Laufwerkswechsel
mit Doppelpunkt) nicht mehr recht geläufig sind. Hier bietet sich ein kleiner Trick an:

1. Wählen Sie im Arbeitsplatz / Windows-Explorer / Datei-Manager / … das Laufwerk und
den Ordner aus, in dem Python installiert wurde.

2. Wenn Sie im rechten Fenster-Bereich den Ordner Python sehen, dann klicken Sie bei
gedrückter Hochstell-Taste mit der rechten Maus-Taste drauf.

3. Im nun sichtbaren erweiterten Kontext-Menü sieht man – je nach Betriebssystem – eine
Möglichkeit die Eingabeaufforderung oder die PowerShell zu öffnen.

In der geöffneten Konsole müssen wir nun Text-basiert einige Befehle eingeben, um unser
Python-System auf den neuesten Stand zu bringen.

https://matplotlib.org/

BK_SekI+II_Python_prof.docx - 143 - (c,p) 2015 - 2026 lsp: dre

Zuerst aktualisieren wir das Update-
Programm pip selbst:

python –m pip install –U pip

Es folgen u.U. mehrere Installations-
Vorgänge (s.a. Abb. rechts). Wenn dann der
Konsolen-Prompt wieder angezeigt wird, dann
installieren / updaten wir MatPlotLib mittels:

python –m pip install –U matplotlib

und wieder folgt im Allgemeinen eine Reihe
von Installationen.

BK_SekI+II_Python_prof.docx - 144 - (c,p) 2015 - 2026 lsp: dre

8.6.5.1. allgemeines Vorgehen (Workflow)

Die Diagramme werden in Python Plot's oder Figuren genannt. Je nach dem werden ent-
sprechend benannte Variablen benutzt. Diese können aber beliebig ausgetauscht werden.
Nur für den Austausch mit anderen Programmierern usw. sind standardisierte Namen eher
sinnvoll.

Arbeitsschrittfolge für die Diagramm-Erstellung

• Vorbereiten der Daten Daten in Listen oder NumPy-Array zusammenstellen /
berechnen / …

• 1D: aufgezählte y-Werte

• 2D: x- und y-Werte oder Bilder

• Importieren der Bibliothek
(Modul + Untermodul)

nur einmalig (zu Beginn des Programms / Modul's)
import matplotlib.pyplot as plt

plt kann durch anderen Namen ersetzt werden, hat
sich aber so eingebürgert

• Erzeugen eines Plot's Initialisierung eines Zeichen- / Diagramm- / Plot-
Objektes (auch Figur genannt)
plt.plot(…)

z.B. möglich:

• klassische X-Y-Diagramme

• Histogramme

• Balken-Diagramme

• Kreis-Diagramme

•

• Formatieren / Anpassen
eines Plot's

optional
viele Anpassungen / Festlegungen werden klassi-
scherweise schon gleich beim Erzeugen des Plot's
gemacht
zusätzlich z.B. Hinzufügen von:

• Legende

• Titel

• Achsen

•

• Speichern des Plot's optional
Diagramm als Bild-Datei speichern

• Anzeigen eines Plot's erst mit
plt.show()

wird das Zeichen-Objekt / das Diagramm / der Plot /
die Figur angezeigt (vorher nur Speicher-Objekt!)
nach Änderungen ist ein erneuter Aufruf notwendig!

• Schließen eines Plot's innerhalb des Programm's mit:
plt.close()

ansonsten wird Plot am Ende des Programm's auto-
matisch geschlossen

BK_SekI+II_Python_prof.docx - 145 - (c,p) 2015 - 2026 lsp: dre

Die Plot's / Diagramme werden klassischerweise in
qaudratischen Boxen (Figuren) angezeigt. In diesen ste-
hen einige Bedien-Elemente für eine interaktive Anpas-
sung zur Verfügung. Die Schaltflächen unten sind wei-
tesgehend selbsterklärend.
Mit dem Haus gelangt mann nach irgendwelchen Mani-
pulationen immer wieder zur ursprünglichen Anzeige
zurück. Man kann die Diagramm-Fläche verschieben
sich hineinzoomen und / oder auch die Grafik (mit all
ihren Parametern) einstellen.
Das letzte Button lässt eine Speicherung der Figur in
einer PNG-Datei zu. Gerade für Dokumentations-
Zwecke ist das sehr praktisch.

Aktivitäts-Schaltflächen

in der Diagramm-Anzeige

Einstell-Dialog

weitere Möglichkeiten:
Die quadratische Grund-Figur lässt sich kleinere Unter-Figuren – also Unter-Diagramme –
unterteilen.
Mit der Funktion imshow(…) lassen sich Bilder mit quadrat-förmiger Ausdehnung anzei-
gen. Dies wird z.B. gern für die Anzeige von Bilder aus Trainings-Set's für Programme zu
Künstlichen Neuronalen Netzen (KNN, → ( Programmieren mit Python Teil 3: für Ex-
perten → 10.8. Python und Data Science + 10.9. Python und Künstliche Intelligenz) genutzt.

BK_SekI+II_Python_prof.docx - 146 - (c,p) 2015 - 2026 lsp: dre

8.6.5.2. Erstellen und Manipulieren von Diagrammen

8.6.5.2.1. Entscheidung für einen Diagramm-Typ

Entsprechend der vorliegenden Daten muss in einem ersten Schritt festgelegt werden, wel-
chen Diagramm-Typ man benutzen möchte. Hier sind natürlich die allgemeinen Regeln für
die Auswahl zu beachten. Der Diagramm-Typ muss zu den Daten passen.

mögliche Diagramm-Typen (Auswahl klassischer Typen)

• Linien-Diagramm

• X-Y-Punkt-Diagramm

• Zeit-Diagramme

.plot()

.plot(… , 'o')

.plot_date()

• Säulen-Diagramm

• Balken-Diagramm

• Histogramm

.bar()

.barh()

.hist()

.hist2d()

BK_SekI+II_Python_prof.docx - 147 - (c,p) 2015 - 2026 lsp: dre

• Kreis-Diagramm
(Torten-Diagramm)

.pie()

• Polar-Diagramm .polar()

•

Um ev. später mit den Diagramm-Typen experimentieren zu können und vielleicht auch den
Quell-Code wiederzuverwenden, empfiehlt es sich, die Daten in Variablen zu speichern.
Die Daten werden in den meisten Fällen als Listen bzw. NumPy-Array's erwartet.
Zuerst werden wir hier nur die Linien- bzw. die recht ähnlichen Punkt-Diagramme bespre-
chen. An diesen zeigen wir dann auch die Formatierungs-Möglichkeiten auf (→ Diagramm
gestalten / formatieren). Die anderen – oben erwähnten – Diagramm-Typen sowie einige
außergewöhnliche Diagramme betrachten wir hinterher in einer komplexeren Form, ohne
dabei betont Erstellung und Formatierung zu trennen (→ weitere Diagramm-Typen).
Vielfach erwähnen wir nur den Funktions-Namen. Die Optionen und Gestaltungs-
Möglichkeiten sind für ein Skript, wie dieses, viel zu speziell. Der genötigte Anwender wird
sich über die Hilfe-Seiten von MatPlotLib aber schnell einarbeiten.

BK_SekI+II_Python_prof.docx - 148 - (c,p) 2015 - 2026 lsp: dre

Erstellen eines Linien-Plots (aus einfacher Daten-Reihe)
import matplotlib.pyplot as plt

werte = [2,3,3,4,5,6,7,7,8,10]

plt.plot(list(range(1,11)), werte)

plt.show()

Der obige Quell-Text erezugt ein einfa-
ches Linien-Diagramm (s.a. Abb. rechts),
bei dem nur eine Werte-Liste genutzt
wird. Die Werte bekommen über die ran-
ge()-Funktion Nummern für die x-Achse.
Zu beachten ist hier, dass die Daten im-
mer in Listen-Form bereitgestellt werden
müssen.

Durch eine einfache Options-Angabe
(hier: 'o'), kann aus dem Linien-
Diagramm das elementare Punkt-
Diagramm gemacht werden. Ob das
Verbinden der Punkte über eine Linie
überhaupt zulässig war, muss vorher
geprüft werden.

plt.plot(list(range(1,11)), werte, 'o')

Spätestens, wenn mehrere Punkt-
Reihen dargestellt werden sollen, muss
man sich um die Formatierung der Da-
ten-Punkte kümmern. Als Formatie-
rungs-Möglichkeiten für Daten-Punkte
sind unterschiedliche Symbole und auch
Farben möglich.
Bei den oben vorgestellten Linien-
Diagrammen kann bei der Formatierung
auf unterschiedliche Strich-Stärken und
Linien-Arten zurückgegriffen werden (→
8.6.5.2.3. Diagramm gestalten / formatie-
ren).

Aufgaben:

1. Erstellen Sie für die nochfolgenden Daten einer Reihe ein Linien-

Diagramm!

 5, 4, 4, 3, 3, 4, 5, 6, 7, 8, 7, 8, 8, 6, 4, 3

2. Verwenden Sie die nachfolgenden Daten zum Erstellen eines Punkt-

Diagramm's!

 2,3; 3,1; 2,8; 3,0; 4,0; 4,6; 3,9; 4,1

BK_SekI+II_Python_prof.docx - 149 - (c,p) 2015 - 2026 lsp: dre

Kombination von Daten-Reihen
import matplotlib.pyplot as plt

werte1 = [2,3,3,4,5,6,7,7,8,9]

werte2 = [4,4,4,5,5,5,6,6,6,5]

plt.plot(list(range(1,11)), werte1)

plt.plot(list(range(1,11)), werte2)

plt.show()

Linien- und Punkt-Diagramme lassen
sich auch kombinieren. Für den entspre-
chend veränderten Graphen wird einfach
die passende Option angegeben.

plt.plot(list(range(1,11)), werte2, 'o')

Desweiteren lassen sich die einzelnen
Daten-Reihen auch in einem plot-Befehl
vereinen:

x_werte = list(range(1,11))

plt.plot(x_werte, werte1,

 x_werte, werte2, 'o')

Die Anzahl der Paare von x- und y-
Werten ist praktisch nur durch die Über-
sichtlichkeit des Plot's begrenzt.

Aufgaben:

1. Erstellen Sie ein Punkt-Diagramm aus der folgenden Daten-Reihe!

 2, 4, 6, 8, 10, 10, 8, 6, 4, 2, 4, 6, 8, 10, 10, 8, 6

2. Erstellen Sie aus der gegebenen Daten-Reihe (von Aufgabe 1) ein kombi-

niertes Punkt- und Linien-Diagramm!

3. Lassen Sie sich ein Diagramm für die quadratische Funktion (für x nur na-

türliche Zahlen) anzeigen. Der Definitions-Bereich soll von 0 bis 10 gehen.

BK_SekI+II_Python_prof.docx - 150 - (c,p) 2015 - 2026 lsp: dre

8.6.5.2.2. Sichern der Diagramme

Das Abspeichern der Plot's gelingt ganz einfach aus der Anzeige heraus. Das Disketten-
Symbol steht hier für die Möglichkeit eine Graphik-Datei in verschiedenen Formaten zu er-
zeugen. Der klassische Datei-Typ wird wohl PNG sein.
Man kann aber auch direkt aus dem eigenen Programm heraus eine Speicherung auslösen.

Plot Programm-gesteuert abspeichern
plt.savefig(dateiname, format='png')

Zu beachten sind mehrere Sachen. Der Aufruf der Speicher-Funktion muss vor der show()-
Funktion erfolgen. Wahrscheinlich ist der Befehl als vorletzte Aktion (vor dem show()) am
universellsten.
Zum Zweiten werden Dateien, die schon existieren, ohne Nachfrage überschrieben. Wenn
also mehrere Diagramme in einem Programm gespeichert werden sollen, dann müssen die
Dateinamen entsprechend angepasst werden.
Dies kann z.B. durch den Einbau eines Datums-Zeit-Stempels im Diagramm-Namen gelöst
werden. Wie man hier vorgehen kann wurde schon beim Modul datetime besprochen (→
8.6.2.x. Verschiedenes zum Modul:datetime).
Desweiteren ist die Format-Vorgabe entscheidend. Es geht zwar auch folgender Aufruf:

plt.savefig("Diagramm.jpg", format='png')

aber die angebliche JPG-Datei ist und bleibt eine PNG-Datei, auch wenn sie anders heißt.
Für viele Zwecke benötigt man Bilder / Bild-Dateien mit einem transparenten Hintergrund.
Dann passen die besser zum Basis-Dokument. Der Transparenz-Modus wird über die Option
transparent gesteuert.

plt.savefig("Diagramm.png", format='png', transparent=True)

Aufgaben:

1. Passen Sie ein Diagramm-Programm so an, dass das erstellte Diagramm als

"MeinDiagramm.png" gespeichert wird!

2. Überlegen Sie sich eine Möglichkeit, wie Sie in den Dateinamen einen Zeit-

Stempel einbauen können! Realisieren ein passendes Programm!

Hinweis: Zeit-Stempel sind über das Modul time erreichbar.

3.

BK_SekI+II_Python_prof.docx - 151 - (c,p) 2015 - 2026 lsp: dre

8.6.5.2.3. Diagramm gestalten / formatieren

Jeder Linie kann eine individuelle Strich-Art und Farbe zugewiesen werden. Die Daten-
Punkte können ebenfalls ganz speziell festgelegt werden. Das erleichtert das Erkennen von
Graphen in komplexeren Diagrammen. Die speziellen Merkmale werden als Zeichen-Folge
im Options-String gesammelt, der Komma-getrennt an die Daten-Paare angehängt wird.

Linien-Arten formatieren
…

plt.plot(range1,11), werte2, ':')

…

Linienarten:
‘-‘ durchgezogen ‘:’ gepunktet
‘--‘ gestrichelt ‘-.’ Strich-Punkt-Linie

Marker / Daten-Punkte formatieren
oft in Kombination mit Linien-Art
…

plt.plot(range1,11), werte1,’o—')

plt.plot(range1,11), werte2,’h:’)

…

oder auch in Kombination mit einer Linien-Farbe
…

plt.plot(range1,11), werte1,’o—r')

…

Marker / Daten-Punkt-Arten
‘.’ Punkt ‘s’ Quadrat
‘,’ Pixel ‘p’ Fünfeck
‘o’ Kreis ‘*’ Stern
‘+’ Plus-Zeichen ‘h’ Sechseck 1
‘x’ Kreuz-Zeichen ‘H’ Sechseck 2
‘d’ Diamant-Zeichen, dünn ‘_’ horizontale Linie
‘D’ Diamant-Zeichen ‘|’ vertikale Linie
‘v’ Dreieck mit Spitze nach unten ‘1’ Dreiecksstern mit Spitze nach unten
‘^’ Dreieck mit Spitze nach oben ‘2’ Dreiecksstern mit Spitze nach oben
‘<’ Dreieck mit Spitze nach links ‘3’ Dreiecksstern mit Spitze nach links
‘>’ Dreieck mit Spitze nach rechts ‘4’ Dreiecksstern mit Spitze nach rechts

Linienfarben formatieren
…

plt.plot(range1,11), werte1,’r')

…

Linienfarben:
‘k’ schwarz ‘g’ grün ‘y’ gelb
‘b’ blau ‘m’ magenta ‘w’ weiß
‘c’ cyan ‘r’ rot

BK_SekI+II_Python_prof.docx - 152 - (c,p) 2015 - 2026 lsp: dre

feine Funktions-Diagramme

In der Praxis kommen Daten oft in NumPy-Array's daher. Diese sollen dann mittels MatPlot-
Lib als Funktions-Diagramme dargestellt werden.

Im folgenden Programm wird zuerst einmal eine Sinus-Funktion über 2-Intervalle erzeugt
und angezeigt.

import numpy as np

import matplotlib.pyplot as plt

import math as mth

x_min = 0

x_max = 4 * np.pi

x_werte = np.linspace(x_min, x_max, 40, endpoint=True)

fkt = np.sin(x_werte)

y_min = mth.floor(np.min(fkt))

y_max = mth.ceil(np.max(fkt))

plt.plot(x_werte, fkt)

plt.axis([x_min, x_max, y_min, y_max])

plt.show()

Auf der x-Achse haben wir hier – et-
was unschön – dezimale Werte. Prak-
tischer wäre hier eine Skalierung mit
Pi-Vielfachen. Soetwas bekommt man
durch Formatierung der Achsen ein-
gestellt (→ Achsen gesondert definie-
ren und formatieren).
Bei solchen Diagrammen kommt es
oft auch dazu, dass die Kurven an die
Achsen anstoßen. Wenn dies stört,
dann kann man durch geschickte
Wahl der Grenzen die Darstellung
entsprechend anpassen (→ Dia-
gramme ohne "anstößige" Kurven)

Bei Funktions-Diagrammen lassen sich natürlich auch mehrere Graphen darstellen:

fkt = np.sin(x_werte)

fkt2 = 1.5 * np.sin(0.75 * x_werte)

y_min = mth.floor(np.min(fkt))

y_max = mth.ceil(np.max(fkt))

y_min2 = mth.floor(np.min(fkt2))

if y_min2<y_min:

 y_min=y_min2

y_max2 = mth.ceil(np.max(fkt2))

if y_max2>y_max:

 y_max=y_max2

plt.plot(x_werte, fkt)

plt.plot(x_werte, fkt2)

plt.axis([x_min, x_max, y_min, y_max])

BK_SekI+II_Python_prof.docx - 153 - (c,p) 2015 - 2026 lsp: dre

Im Programm wurden die Grenzen
über die Maximum- und Minimum-
Funktion ermittelt und durch Runden
etwas erweitert. Da macht i.A. einen
angenehmeren Eindruck. Allerdings
muss man hier ev. noch Anpassun-
gen vornehmen, wenn die Grenzen
nicht im Einer-Bereich liegen. Ceil()
und floor() runden eben nur auf den
nächsten ganzzahligen Wert. Bei z.B.
einem Maximum von 10'342,3 macht
das keinen Sinn (Grenze wäre dann

10'343).

Die einzelnen Graphen lassen sich –
äquivalent zu oben – gestalten:

plt.plot(x_werte, fkt)

plt.plot(x_werte, fkt, 'bx')

plt.plot(x_werte, fkt2, color='green', linewidth=3, linestyle='--')

plt.axis([x_min, x_max, y_min, y_max])

Kehren wir zu unseren ursprünglichen
Kurven zurück. In diesen wollen wir
nun Flächen einfärben. Dazu stellt
Mathplotlib die Funktion fill_between()
bereit. Sie benötigt diverse Argument.
Als Erstes wird das Array mit den x-
Werten erwartet. Es folgen zwei Ar-
ray's für y-Werte. Diese können aber
auch auf 0 oder einen anderen Wert
(quasi Parallele zur x-Achse) gesetzt
werden.

plt.fill_between(x_werte,0,fkt)

plt.fill_between(x_werte,0.5,fkt)

BK_SekI+II_Python_prof.docx - 154 - (c,p) 2015 - 2026 lsp: dre

Über die Option alpha kann man die Farb-Intensität
anpassen. Die normale Intensität ist auf 1,0 gesetzt.
Durch eine kleinere Zahl läßt sich z.B. die Fläche auf-
hellen:

plt.fill_between(x_werte,0,fkt,alpha=0.2)

Das erzeugt für die normale Anwendung einen ange-
nehmeren Eindruck.
Kommen wir aber zu den Argumenten von
fill_between() zurück. Das zweite y-Argument kann
auch ein Array sein. So lassen sich Flächen zwischen
Graphen einfärben.

Hier nun noch einmal den gesamten Quelltext:

import numpy as np

import matplotlib.pyplot as plt

import math as mth

x_min = 0

x_max = 4 * np.pi

x_werte = np.linspace(x_min, x_max, 100, endpoint=True)

fkt = np.sin(x_werte)

fkt2 = 1.5 * np.sin(0.75 * x_werte)

y_min = mth.floor(np.min(fkt))

y_max = mth.ceil(np.max(fkt))

y_min2 = mth.floor(np.min(fkt2))

if y_min2<y_min:

 y_min=y_min2

y_max2 = mth.ceil(np.max(fkt2))

if y_max2>y_max:

 y_max=y_max2

print(y_min, y_max)

plt.plot(x_werte, fkt, 'r')

plt.fill_between(x_werte,0,fkt,color='yellow',alpha=0.3)

plt.plot(x_werte, fkt2, color='green')

plt.fill_between(x_werte,fkt,fkt2,color='green',alpha=0.4)

plt.axis([x_min, x_max, y_min, y_max])

plt.show()

BK_SekI+II_Python_prof.docx - 155 - (c,p) 2015 - 2026 lsp: dre

Zu erwähnen sind noch zwei weitere
möglich Argumente / Optionen. Da
wäre zum Einen "where". Where ist per
Default auf None gesetzt. Man kann
aber auch eine Numpy-Array mit
Boolean's übergeben, mit denen fest-
gelegt wird, wo eingefärbt werden soll.
Weniger gebräuchlich ist die zweite
Option "interpolate". Mit ihr wird per
Boolean-Wert festgelegt, ob zwischen
den beiden y-Kurven der Schnittpunkt
interploliert werden soll.
So ein Boolean-Array lässt sich z.B.
durch den Vergleich von zwei Numpy-
Array's erzeugen.
Mit fill_betweenh() lassen sich die
Flächen zwischen vertikalen Kurven
einfärben.

Aufgaben:

1. Erstellen Sie ein Diagramm, in dem die Sin- und die Cos-Funktion im Inter-

vall von 0 bis 10 angezeigt wird!

2. Lassen Sie sich die Fläche zwischen der x-

Achse und der Cos-Funktion hell-bläulich

einfärben!

3. Lassen Sie sich die Flächen zwischen der

Sin- und der Cos-Funktion hell-rötlich ein-

färben!

für die gehobene Anspruchsebene:

4. Bei der Sin-Funktion soll nun die Fläche

grünlich eingefärbt werden, die über einer

Geraden (von {0,0} bis {10,0.5}) liegt!

(s.a. Abb. rechts)

Label / Achsen-Beschriftungen hinzufügen / formatieren
…

plt.xlabel(‘x-Achse’)

plt.ylabel(‘y-Achse’)

…

BK_SekI+II_Python_prof.docx - 156 - (c,p) 2015 - 2026 lsp: dre

Achsen gesondert definieren und formatieren
…

achsen = plt.axes()

achsen.set_xlim([0,11])

achsen.set_ylim([-1,11])

achsen.xticks([1,2,3,4,5,6,7,8,9,10])

achsen.yticks([0,1,2,3,4,5,6,7,8,9,10])

plt.plot(range(1,11),werte)

plt.show()

Bereiche definieren und in einem Achsen-Aufruf unterbringen:
…

xmin=0

xmax=10

ymin=0

ymax=100

plt.axes([xmin, xmax, ymin, ymax])

…

Achsen bei einem bestimmten Wert schneiden lassen:

zuerst einmal die "alten" Achsen unsichtbar machen

achsen = plt.gca()

achsen.spines['right'].set_color('none')

achsen.spines['top'].set_color('none')

dann neue Achsen einstellen

achsen.xaxis.set_ticks_position('bottom')

achsen.spines['bottom'].set_position('data',0)

achsen.yaxis.set_ticks_position('left')

achsen.spines['left'].set_position('data',0)

Achsen im Programm-Ablauf anpassen (abfragen und neu festlegen)
…

print("Die aktuellen Minima und Maxima für die Achsen sind:")

print(plt.axes()) # Abfrage

print("die neue Grenzen werden nun festgelegt auf:")

xmin, xmax, ymin, ymax = 0, 12, 0, 90

print(xmin, xmax, ymin, ymax)

plt.axes([xmin, xmax, ymin, ymax]) # Setzen

print("Die aktuellen Minima und Maxima für die Achsen sind nun:")

print(plt.axes()) # Abfrage

An dieser Stelle ist z.B. auch ein automatisches Runterrunden der Minima und Aufrunden
der Maxima sinnvoll einzusetzen (Runden: →). So lassen sich auch Diagramme erstellen,
bei denen der Graph so skaliert wird, dass der Plot optimal ausgenutzt wird. Ev. nicht ge-
brauchte Zahlen-Bereiche werden so eleminiert.

BK_SekI+II_Python_prof.docx - 157 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Lassen Sie sich ein Diagramm für die Quadrate der Zahlen von 5 bis 15 an-

zeigen! Die Achsen sollen dabei so skaliert werden, dass der Graph mög-

lichst groß dargestellt wird!

2.

3.

Diagramme ohne "anstößige" Kurven
…

plt.xlim(X.min()*1.1, X.max()*1.1)

plt.ylim(Y.min()*1.1, Y.max()*1.1)

…

Gitternetz-Linien hinzufügen
Zum besseren Orientieren und Ablesen von Werten dienen Gitternetzlinien.

…

achsen.grid()

…

für Polar-Diagramme:

plt.rgrids(…)

Aufgaben:

1.

2. Erstellen Sie ein Diagramm für eine halbierte quadratische Funktion, in dem

die Funktionswerte von 0 bis 5 eingezeichnet sind! Mit Hilfe eines Gitternet-

zes und der geeigneten Achsen-Skalierung sollen Schüler die Möglichkeit

bekommen im Ausdruck (gespeichertes Bild), die Funktionswerte von 6 bis

10 zu ergänzen!

3.

Daten-Punkte beschriften
Mit xy wird die Position bezüglich des Gitternetzes bestimmt und mit s der auszugebene Text
…

plt.annotate(xy=[1,1], s=’Wert 1’)

…

BK_SekI+II_Python_prof.docx - 158 - (c,p) 2015 - 2026 lsp: dre

Legende hinzufügen / formatieren
…

plt.legend([‘Datenreihe 1’,’Datenreihe 2’], loc = 4

…

einer Achse eine Daten-Tabelle hinzufügen / formatieren

plt.table(…)

(Bsp. aus MatPlotLib-Dokumentation; übersetzt: dre)

mehrere Diagramme in einem Plot

plot, ((diag1, diag2), (diag3, diag4)) = plt.subplots(2,2)

Nachfolgend müssen dann die Unter-Diagramme diag1 bis 4 wie gewöhnliche plot's initiali-
siert und formatiert werden.

alle offenen Plot's schließen und die Optionen wieder zurücksetzen

plt.switch_backend()

sollen nur die Achsen wieder zurückgesetzt werden, dann geht dies mit:

plt. cla()

und die gesamte Figur / den gesamten Plot zurücksetzen durch:

plt.clf()

BK_SekI+II_Python_prof.docx - 159 - (c,p) 2015 - 2026 lsp: dre

8.6.5.2.4. weitere Diagramm-Typen

Kreis-Diagramm
werte = [20,30,20,15,15]

farben=[‘b’,’c’,’g’,’m’,’w’]

beschrift=[‘blaue’,’hellblaue’,’grüne’,’lilane’,’weiße’]

explodiert=[0,0.2,0,0,0]

plt.pie(werte, color=farben, labels=beschrift, explode=explodiert, au-

topct=%1.1f%%, counterclock=False, shadow=True)

plt.title(‘Werte’)

plt.show()

Balken-Diagramm

gemeint ist hier ein Säulen-Diagramm

…

weite = [0.7,0.7,0.7,0.7,0.7]

plt.bar(range(0,5), werte, width = weite, color = farben, align=’center’)

…

ein horizontales Balken-Diagramm (also ein echtes Balken-Diagramm erhält man mit:

plt.barh(…)

Aufgaben:

1. Recherchieren Sie die letzten Wahlergebnisse zum Bundestag

a) für Deutschland (insgesamt)

b) aus Ihrem Bundesland

2. Stellen Sie die Deutschland-Daten in einem Torten-Diagramm dar! Stellen

Sie eine Partei in explodierter Form heraus (z.B. Wahl-Sieger oder Ihre

Präferenz)!

3. Die Daten aus Ihrem Bundesland sollen in einem Säulen-Diagramm ange-

zeigt werden!

für die gehobene Anspruchs-Ebene:

4. Recherchieren Sie die vorletzten Wahlergebnisse zum Bundestag für

Deutschland dazu und erstellen Sie ein geeignetes Diagramm, in dem die

Zugewinne und Verluste sichtbar werden.

BK_SekI+II_Python_prof.docx - 160 - (c,p) 2015 - 2026 lsp: dre

Histogramm
Entwickeln eines Histogramm’s über eine Zufalls-bedingte Verteilung
import numpy as np

import matplotlib.pyplot as plt

werteX=20* np.random.randn(10000)

plt.hist(werteX, bins=10,

 #range(-50,50),

 histtype='bar', align='mid',

 color='b', label='Test-Verteilung')

plt.legend()

plt.title('Histogramm: Zufalls-Verteilung')

plt.show()

Auch möglich sind 2D-Histogramme.
Die Betrachtungs-Richtung ist nun
von oben und die Höhe der Säulen
wird durch die Farben ausgedrückt.
Die Funktion dafür heißt:

plt.hist2d(…)

Wir benötigen natürlich 2-
dimensionale Daten. Diese erzeugen
wir uns für ein Beispiel wieder per
Zufalls-Funktion aus dem NumPy-
Modul.

import numpy as np

import matplotlib.pyplot as plt

x = np.random.randn(1000)

y = np.random.randn(1000)

plt.hist2d(x, y, bins=10)

plt.show()

Eine weitere interessante Darstellung ist mit z.B.
.hexbin(x,y, gridsize=25) möglich. Allerdings wird
hier das Interpretieren der Daten schon schwieriger,
da ein exaktes Zuordnen der Daten unklarer bleibt.

Aufgaben:

1. Erstellen Sie eine Histogramm für 10'000 Zufallszahlen im Bereich von 0

bis 1,0

2. Erzeugen Sie sich ein Histogramm mit 10 Gruppen (bins) aus 1'000 Zufalls-

Zahlen aus dem Zahlen-Bereich von 0 bis 100 in der Farbe rot!

3. In einem Diagramm soll für 100'000 Würfe mit einem 6er Würfel die Vertei-

lung der gewürfelten Punkte dargestellt werden. Erstellen Sie ein entspre-

chenes Programm dafür!

4. Erstellen Sie ein 2D-Histogramm für 100'000 Zufalls-Zahlen, die in einem

Raster von 50x50 dargestellt werden sollen!

BK_SekI+II_Python_prof.docx - 161 - (c,p) 2015 - 2026 lsp: dre

Ein Linien- / Funktions-Diagramm mit Fehler-Indikator

plt.errorbar(…)

Streu-Diagramme / Haufen-Diagramme

plt.(…)

Box-Plot-Diagramme / Whisker-Diagramme

Box-Plot's eigenen sich besonders gut dazu, um
umfangreiche Datensätze mittels mehrerer
Kennwerte vergleichend darzustellen.
Die obere und untere Grenze (Maximum und
Minimum) werden auch als Whisker (frei übersetzt:

Haar-Linie) bezeichnet.

plt.boxplot(…)

???-Diagramme / Violin-Plot

vereint Histogramme in einer Box-Plot-ähnlichen
Struktur
oder anders herum: In Boxplot's werden die Daten
statt mit Boxen durch Verteilungen dargestellt
ermöglichen mehr Detail-Verständnis, dafür fallen
die kategorisierenden und verallgemeinernden
Kennwerte weg.

plt.violinplot(…)

Gruppen von Box-Plot’s

Darstellung von Graphen (Knoten und Kanten)

hierfür muss aber eine andere (Unter-)Bibliothek (mit) eingebunden werden, die sich mat-
plotlib.path nennt.

BK_SekI+II_Python_prof.docx - 162 - (c,p) 2015 - 2026 lsp: dre

Kästchen-Diagramme

Folge von horizontal angeordneten Rechtecken (z.B. für differenzierte Balken)

plt.broken_barh(…)

andere Varianten erreicht man durch:

plt.pcolormesh(…)

oder:

plt.contour(…)

Diagramme mit Wind-Fahnen (Barb's, Strömungs-
Fahnen)

Für Wetterkarten oder metreologische Modelle sind u.a.
Diagramme mit Wind-Fahnen gebräuchlich. Mit barbs()
lassen sich solche Wind-Fahnen auf einer 2D-Fläche
verteilen. Einige Grund-Informationen zur Codierung
kann aus der nebenstehenden Abbildung entnommen
werden.
Der Grund-Aufruf erfolgt über die Funktion:

plt.barbs(…)

Dabei sind Unmengen von Optionen und speziellen Dar-
stellungen möglich. Wer hier einsteigen will oder muss,
dem hilft die Hilfeseite zu dieser Methode / Funktion wei-
ter.
Für die Zwecke dieses Skriptes geht das zu weit.

Q: en.wikipedia.org (Thegreatdr)

Sehr ähnlich sind Diagramme mit Pfeilen / Pfeilspitzen

plt.quiver(…)

Diagramme mit Strömungs-Linien (Stromlinien-Diagramme)

plt.streamplot()

Zeichnen eines Spektrogramm's

plt.specgram(…)

BK_SekI+II_Python_prof.docx - 163 - (c,p) 2015 - 2026 lsp: dre

Zeichnen eine Phasen-Spektrum's

plt.phase_spectrum(…)

Magnituden-Spektren

plt.magnitude_spectrum(…)

Step-Diagramme (???)

plt.step(…)

interessante Links:
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
(Cheat Sheet zu MatPlotLib)
http://matplotlib.1069221.n5.nabble.com/Matplotlib-3-1-cheat-sheet-td49476.html (visuelles Cheat
Sheet zu MatPlotLib)
https://matplotlib.org/gallery.html (Diagramm-Gallerie mit Code-Beispielen)

8.6.5.3. ein komplexes Diagramm-Projekt – Erdbeben-Anzeige

Q: https://github.com/rougier/matplotlib-tutorial

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
http://matplotlib.1069221.n5.nabble.com/Matplotlib-3-1-cheat-sheet-td49476.html
https://matplotlib.org/gallery.html

BK_SekI+II_Python_prof.docx - 164 - (c,p) 2015 - 2026 lsp: dre

8.6.6. Modul / Bibliothek network

Mit der Bibliothek kann man sich die Arbeiten mit Graphen und Graph-Daten in Python ver-
einfachen.

Adjazenz-Matrix ist ein Mittel zur Darstellung der Kanten eines Graphen
Jeder Eintrag in der Matrix größer Null steht für eine Verbindung zwischen den Knoten, die
Höhe des Eintrags steht für die Länge / den Wert / die Kosten der Verbindung
Bei gerichteten Graphen muss die Matrix nicht spiegelbildlich / ??? sein

import network as netw

graf = netw.cycle_graph(10) // Beispiel: Zyklus mit 10 Knoten

adjMatrix = netw.adjacency_matrix(graf)

print (adjMatrix.todense())

- - - - - - - - erweiterte Fortsetzung
import matplotlib.pyplot as zeichnung

netw.draw_networkx(graf)

zeichnung.show()

- - - - - - - - erweiterte Fortsetzung
graf.add_edge(knoten1, knoten2)

netw.draw_networkx(graf)

zeichnung.show()

BK_SekI+II_Python_prof.docx - 165 - (c,p) 2015 - 2026 lsp: dre

8.6.7. Modul / Bibliothek re

Bei der Bibliothek handelt es sich um ein Modul zur Nutzung von rregulären Ausdrücken.

Suchmuster lassen sich mit re wesentlich effektiver nutzen, da diese in re sehr Maschinen-
nah programmiert wurden. Damit ist re deutlich effektiver als die meisten selbst-
programmierten Muster-Suchen.

import re

 muster=re.compiler(r‘(regulärer_Ausdruck))

eingabe=beispieltext

ausgabe=muster.search(eingabe).groups()

print(ausgabe)

(re) gruppiert reg.Ausd.e und behält den übereinstimmenden Text
(?: re) gruppiert reg.Ausd.e ohne den übereinstimmenden Text
(?# …) ist ein Kommentar; wird nicht vom Compiler verarbeitet
re? Maximal eine Übereinstimmung im vorherigen Ausdruck
re* keine oder mehrmalige Übereinstimmung im vorherigen Ausdruck (→ KLINE-Stern)
re+ mindestens eine Übereinstimmung im vorherigen Ausdruck
(?> re) Übereinstimmung in einem unabhängigen Muster ohne Rückverfolgung
[^ …] Übereinstimmung in jedem möglichen einzelnen Zeichen oder einer Reihe / Gruppe
von Zeichen, die nicht innerhalb der Klammern vorkommen
[…] Übereinstimmung in jedem möglichen einzelnen Zeichen oder einem Bereich / einer
Gruppe von Zeichen, die innerhalb der Klammern vorkommen
re(n, m) Übereinstimmung mit mindestens n und maximal m Vorkommen des vorherigen
Ausdrucks
\n, \r, \t, … Übereinstimmung mit Steuerzeichen (neue Zeile, Zeilenumbruch, Tabulator,
…)
\d Übereinstimmung mit Ziffern (äquivalent mit: [0-9])
\D Übereinstimmung mit einem Nicht-Ziffern-Symbol
\S Übereinstimmung mit einem Nicht-Leerzeichen-Symbol (alles außer Leerzeichen)
\s Übereinstimmung mit einem Leerzeichen (äquivalent zu: [\t\n\r\f])
\b Übereinstimmung mit Wortgrenzen außerhalb der Klammern (Übereinstimmung mit
Backspace (0x08) innerhalb der Klammern)
\B Übereinstimmung mit leeren Zeichenketten, die vor oder hinter einem Wort stehen (→
Trimmen des Ausdruck’s)
\w Übereinstimmung mit Wortzeichen
\W Übereinstimmung mit einem Nicht-Buchstaben-Symbol (alles außer Buchstaben)
\A Übereinstimmung mit dem Beginn einer Zeichenkette
^ Übereinstimmung mit dem Beginn einer Zeile
$ Übereinstimmung mit dem Zeilenende
\z Übereinstimmung mit dem Ende einer Zeichenkette
\Z Übereinstimmung mit dem Ende einer Zeichenkette, wenn eine folgende Zeile existiert
(Übereinstimmung vor dem Zeilenumbruch)
\1 … \9 Übereinstimmung mit dem n-gruppierten Unterausdruck
\G Übereinstimmung mit den Zeichen der zuletzt gefundenen Übereinstimmung
a | b Übereinstimmung mit a oder b
re{ n} Übereinstimmung mit exakt der Anzahl n des Vorkommens des vorherigen Aus-
drucks
re{ n, } Übereinstimmung mit mindestens der Anzahl n des Vorkommens des vorherigen
Ausdrucks

BK_SekI+II_Python_prof.docx - 166 - (c,p) 2015 - 2026 lsp: dre

(?= re) gibt eine Position unter Verwendung eines Musters zurück (das Muster hat keinen
bestimmten Bereich)
(?! re) gibt eine Position unter Verwendung der Negation eines Musters zurück (das Mus-
ter hat keinen bestimmten Bereich)
(?-imx) schaltet die (Compiler-)Optionen i-, m- und x- zeitweise aus (wenn Ausdruck in
Klammern, dann gilt die Optionen-Abschaltung nur für den Klammer-Ausdruck (→ (?-imx: re)
))
(?imx) schaltet die (Compiler-)Optionen i-, m- und x- zeitweise ein (wenn Ausdruck in
Klammern, dann gilt die Optionen-Einschaltung nur für den Klammer-Ausdruck (→ (?imx: re)
))

8.6.8. Modul / Bibliothek pymongo

Arbeiten mit einer NoSQL-Datenbank

import pymongo

import pandas as pds

from pymongo import Connection

verbindung = Connection()

datenbank = verbindung.database_name

eingabeDaten = datenbank.collection_name

daten = pds.DataFrame(list(input_data.find()))

BK_SekI+II_Python_prof.docx - 167 - (c,p) 2015 - 2026 lsp: dre

8.6.9. Modul / Bibliothek ?? (Word Embedding)

Tokenisierung
Ist die Segmentierung eines Satzes auf Einheiten der Wort-Ebene.

Stemming
Ist der Prozess der Reduzierung eines Wortes auf seinen Wortstamm.

Entfernen von Suffixen

Entfernen von Präfixen

Stop-Wörter
Sind solche Wörter, die für das Satz-Verständnis durch uns Menschen eine wichtige Rolle
spielen, für die Text-Analyse durch Computer aber eine untergeordnete Rolle haben.
 Beispiele für Stop-Wörter: ein, und, die, diese, …

Bag-of-Words-Modell
als Ergebnis einer Tokenisierung erhält man eine Wort-Menge, die als eine Struktur (Menge)
verfügbar ist
Sammeln der vorhandenen Wörter
Grammatik und Wortreihenfolgen werden ignoriert
Bag-of-Words (Wort-Behälter / -Tasche, Wort-Container) lässt sich dann für Klassifizierun-
gen und / oder andere Analysen (weiter-)verwenden
Im Vorfeld sollte eine Entfernung von Sonder- und / oder Steuer-Zeichen , ein Stemming und
das Entfernen von Stop-Wörtern erfolgen

N-Gramme
Ist eine kontinuierliche Folge von (allen) Elementen aus einem Text
N-Gramm kann ein Symbol, Silbe, Symbolfolge, ein Wort oder z.B. eine Basen-Sequenz (der
DNA) sein
N-Gramm der Länge Eins heißt Unigramm, mit der Länge 2 , mit Länge 3 Trigramm usw. usf.
z.B. für die Vorhersage von folgenden Sequenzen wichtig
weiterhin Vergleiche von Texten und / oder Autoren möglich
(interessant auch die Beziehung zwischen den häufigsten Wortlängen und der Popularität
von Texten (z.B. Welt-Literatur) sowie der Zielgruppe (Leserschaft))

TF-IDF-Transformation
Kommt von Term Frequency times Inverse Document Frequency ()
Verfahren, bei dem die Textlänge kompensiert wird (also kürzere und längere Texte ver-
gleichbar gemacht werden soll)
Verfahren macht deutlich, wie wichtig ein Wort für den Text ist (Häufigkeit wird zur Länge des
Textes in Bezug gesetzt)
TF ermittelt die Häufigkeit des Wortes
IDF bestimmt die Wichtigkeit des Wortes im / für den Text

BK_SekI+II_Python_prof.docx - 168 - (c,p) 2015 - 2026 lsp: dre

8.6.99. Cheat Sheet's für einige Bibliotheken

Zusammenstellungen / Übersichten / Hilfs-Blätter heißen Neudeutsch Cheat Sheet's.

von DataComp.com sind einige sehr gut zusammengestellte im Internet verfügbar
wenn ich noch andere zu den erwähnten Bibliotheken / Themen gefunden habe, dann wur-
den sie von mir gleich dahinter angegeben

welche Cheat Sheet's zu einem selbst passen, muss man einfach ausprobieren
so gewaltig unterscheiden sich die einzelnen Übersichten aber nicht

zu NumPy

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet
.pdf

zu Matplotlib

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sh
eet.pdf

http://matplotlib.1069221.n5.nabble.com/Matplotlib-3-1-cheat-sheet-td49476.html

zu SciPy (lineare Algebra)

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_SciPy_Cheat_Sheet_
Linear_Algebra.pdf

Scikit-Learn (Machine learning)
https://datacamp-community-prod.s3.amazonaws.com/5433fa18-9f43-44cc-b228-
74672efcd116

zu Pandas

http://datacamp-community-prod.s3.amazonaws.com/dbed353d-2757-4617-8206-
8767ab379ab3
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Pandas_Cheat_Sheet
_2.pdf

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
http://matplotlib.1069221.n5.nabble.com/Matplotlib-3-1-cheat-sheet-td49476.html
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_SciPy_Cheat_Sheet_Linear_Algebra.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_SciPy_Cheat_Sheet_Linear_Algebra.pdf
https://datacamp-community-prod.s3.amazonaws.com/5433fa18-9f43-44cc-b228-74672efcd116
https://datacamp-community-prod.s3.amazonaws.com/5433fa18-9f43-44cc-b228-74672efcd116
http://datacamp-community-prod.s3.amazonaws.com/dbed353d-2757-4617-8206-8767ab379ab3
http://datacamp-community-prod.s3.amazonaws.com/dbed353d-2757-4617-8206-8767ab379ab3
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Pandas_Cheat_Sheet_2.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Pandas_Cheat_Sheet_2.pdf

BK_SekI+II_Python_prof.docx - 169 - (c,p) 2015 - 2026 lsp: dre

weitere Cheat Sheet's

Importing Data
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Cheat+Sheets/Importing_Data
_Python_Cheat_Sheet.pdf

Tidyverse (transforming and visualizing data)
https://datacamp-community-prod.s3.amazonaws.com/e63a8f6b-2aa3-4006-89e0-
badc294b179c

Jupyter Notebook
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-
0c96c0133c40

keras (Neural networks)
https://datacamp-community-prod.s3.amazonaws.com/94fc681d-5422-40cb-a129-
2218e9522f17

Seaborn (Statistic Data Visualization)
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-
0c96c0133c40

PySpark (Spark DataFrames / SparkSQL)
https://datacamp-community-prod.s3.amazonaws.com/65076e3c-9df1-40d5-a0c2-
36294d9a3ca9

Bokeh (Daten-Präsentation in Web-Browsern)
https://datacamp-community-prod.s3.amazonaws.com/f9511cf4-abb9-4f52-9663-
ea93b29ee4b7

spaCy (advanced NLP)
http://datacamp-community-prod.s3.amazonaws.com/29aa28bf-570a-4965-8f54-
d6a541ae4e06

R ()
data.table R ()
https://datacamp-community-prod.s3.amazonaws.com/6fdf799f-76ba-45b1-b8d8-
39c4d4211c31

xts (time series in R)
https://datacamp-community-prod.s3.amazonaws.com/e04c5a6b-4aca-46f5-8cd5-
803d975ccc4b

Data Science
https://datacamp-community-prod.s3.amazonaws.com/e30fbcd9-f595-4a9f-803d-
05ca5bf84612

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Cheat+Sheets/Importing_Data_Python_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Cheat+Sheets/Importing_Data_Python_Cheat_Sheet.pdf
https://datacamp-community-prod.s3.amazonaws.com/e63a8f6b-2aa3-4006-89e0-badc294b179c
https://datacamp-community-prod.s3.amazonaws.com/e63a8f6b-2aa3-4006-89e0-badc294b179c
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-0c96c0133c40
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-0c96c0133c40
https://datacamp-community-prod.s3.amazonaws.com/94fc681d-5422-40cb-a129-2218e9522f17
https://datacamp-community-prod.s3.amazonaws.com/94fc681d-5422-40cb-a129-2218e9522f17
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-0c96c0133c40
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-0c96c0133c40
https://datacamp-community-prod.s3.amazonaws.com/65076e3c-9df1-40d5-a0c2-36294d9a3ca9
https://datacamp-community-prod.s3.amazonaws.com/65076e3c-9df1-40d5-a0c2-36294d9a3ca9
https://datacamp-community-prod.s3.amazonaws.com/f9511cf4-abb9-4f52-9663-ea93b29ee4b7
https://datacamp-community-prod.s3.amazonaws.com/f9511cf4-abb9-4f52-9663-ea93b29ee4b7
http://datacamp-community-prod.s3.amazonaws.com/29aa28bf-570a-4965-8f54-d6a541ae4e06
http://datacamp-community-prod.s3.amazonaws.com/29aa28bf-570a-4965-8f54-d6a541ae4e06
https://datacamp-community-prod.s3.amazonaws.com/6fdf799f-76ba-45b1-b8d8-39c4d4211c31
https://datacamp-community-prod.s3.amazonaws.com/6fdf799f-76ba-45b1-b8d8-39c4d4211c31
https://datacamp-community-prod.s3.amazonaws.com/e04c5a6b-4aca-46f5-8cd5-803d975ccc4b
https://datacamp-community-prod.s3.amazonaws.com/e04c5a6b-4aca-46f5-8cd5-803d975ccc4b
https://datacamp-community-prod.s3.amazonaws.com/e30fbcd9-f595-4a9f-803d-05ca5bf84612
https://datacamp-community-prod.s3.amazonaws.com/e30fbcd9-f595-4a9f-803d-05ca5bf84612

BK_SekI+II_Python_prof.docx - 170 - (c,p) 2015 - 2026 lsp: dre

8.7. Graphik

Auf der Kommando-Ebene und in der Grund-Version bietet Python keinen Zugriff auf die
graphischen Fähigkeiten von Windows oder vergleichbaren Betriebssystemen und / oder
ihren Benutzer-Oberflächen.
Für einfache Zwecke kann man sich mit Pseudo-Graphiken behelfen. Dabei werden die ver-
schiedensten ASCII-Symbole benutzt. Vor allem im erweiterten ASCII-Code ab Symbol 128
sind diverse Zeichen für Pseudographiken enthalten. Damit lassen sogar grobe Diagramme
zeichnen.

Um die graphischen Möglichkeiten moderner betriebssysteme zu nutzen, bedarf es aber der
Einbindung von geeigneten Modulen.
An vorderster Front ist hier die Turtle-Graphik mit dem Modul turtle (→ 8.8. Turtle-Graphik –
ein Bild sagt mehr als tausend Worte)zu nennen. Sie geht auf

zurück.
Heute ist die Turtle-Graphik vollständig Pixel-orientiert. Die Schildkröte als Zeichen-Stift soll
nur einer besseren Orientierung und der Verständlichkeit / Nachvollziehbarkeit dienen.

Andere graphische Systeme ermöglichen den Zugriff oder die Nutzung von typischen Be-
dien-Elementen aus den Betriebssystemen. Das sind zum Einen die Einzel-Bedienelemente,
wie Text-Felder (Edit-Feld), Beschriftungen (Label), Optionen (), Auswahl-Listen (List- oder
Combo-Boxen usw. usf. Zum anderen werden fertige Dialoge bereitgestellt. Hierzu zählen
kleine Meldungs-Fenster (Message-Dialog) aber auch Datei-Speicher- oder -Öffnen-Dialoge.
Dies ermöglicht es dem Programmierer, sich auf den Kern seines Programm's zu konzentrie-
ren und die sich wiederholenden, klassischen Aufgaben der Kompetenz von System-Profi's
zu überlassen.
Die Module stellen dabei vorrangig Schnittstellen und Übersetzungen zwischen Python und
den Graphik-Systemen der Betriebssysteme zur Verfügung.
Zu den bekanntesten Modulen, die Bedien-Elemente, Fenster und Dialoge bereitstellen, ge-
hört Tkinter (→ 8.12. GUI-Programme mit Tkinter).

BK_SekI+II_Python_prof.docx - 171 - (c,p) 2015 - 2026 lsp: dre

8.8. Turtle-Graphik – ein Bild sagt mehr als tausend Worte

didaktische Entwicklungs-Oberfläche (Interface-Builder)
schöne Bilder und coole Abläufe, Programmierung soll da so nebenbei mit aufgenommen
werden
aber genau das ist die Gefahr aus meiner Sicht, das Nebenbei wird häufig zu wenig aufge-
nommen und von einem Jahr Programmierung bleiben nur wenige Monate Ahnungs-Effekte
- an die tolle Oberfläche kann sich aber jeder noch erinnern
besonders gut für einen sehr frühen Kontakt mit Programmierung

wir werden hier die schon getätigten Schritte dieses Skriptes zur Einführung in die Program-
mierung quasi auf graphischem Niveau wiederholen

8.8.1. Turtle auf der Shell
Die Turtle-Graphik ist ein internes Modul, was mit der Installation von Python schon mit ein-
gerichtet wurde. Um die Turtle-Graphik nutzen zu können, müssen wir unsere aktuelle Py-
thon-Version etwas pushen.

Durch die Eingabe von import turtle

werden die Befehle und Funktionen der
Turtle-Graphik geladen und verfügbar
gemacht.
Eine alternative Bibliothek ist gturtle.

 >>> import turtle

>>> turtle.forward(0)

>>> turtle.forward(100)

>>>

In den meisten Fällen passiert gar nichts, weder
gibt es eine Meldung in der Shell, noch sehen wir
eine Schildkröte.
Gibt man als nächsten Befehl z.B. turt-

le.forward(0) ein, dann erscheint ein Graphik-

Fenster, in dessen Mitte eine Pfeilspitze zu sehen
ist. Die Pfeilspitze ist unsere Schildkröte. Sie zu
bewegen und sie dazu anzuregen Spuren zu hin-
terlassen, dass ist der Hintergedanke bei der
Turtle-Graphik.
Mit turtle.forward(100) bewegen wir die

Schildkröte 100 Pixel (auf dem Bildschirm) vor-
wärts. Üblicherweise werden die Pixel als Schritte
interpretiert.

Der zurückgelegte Weg wird als Linie (gesetzte Pixel) sichtbar. Rückwärtes geht’s mit turt-

le.backward(schritte). Die zurückgelegten Wege sind dann vollständig oder teilweise

deckungsgleich. Es ist aber nur eine Linie zu sehen.

Richtungs-Änderungen lassen sich mit
turtle.left() und turtle.right()

erreichen. Als Argument müssen wir den
(Dreh-)Winkel (in Grad) übergeben.
Wem das Dreieck als Turtle zu abstrakt
ist und lieber eine echte Schildkröte
wandern sehen möchte, der kann ja mal
turtle.shape("turtle") ausprobie-

ren.

 >>> turtle.backward(90)

>>> turtle.left(45)

>>> turtle.forward(150)

>>> turtle.right(135)

>>> turtle.forward(200)

>>> turtle.shape("turtle")

BK_SekI+II_Python_prof.docx - 172 - (c,p) 2015 - 2026 lsp: dre

Den ursprüngliche Dreiecks-Zeiger erhält man über den Text "classic". Weitere Formen

sind "arrow", "circle", "square" und "triangle".

Ein Neustart der Turtle-Graphik – quasi das
Löschen des Ausgabe-Bildschirm ("Verges-
sen der alten Wege") erreicht man mit
turtle.reset().

Beim Beenden des Shell-Fensters wird
auch die Turtle-Graphik geschlossen. Will
man dieses Fenster weiterhin sehen, gibt
man in der Shell den Befehl turt-

le.exitonclick() ein.

Erwähnt sei hier auch noch der Befehl
turtle.undo(), der den jeweils letzten

Befehl rückgängig macht.
Hat man etwas Geduld bei der Eingabe der
turtle-Befehle, das erscheint nach dem Ein-
tippen des Punktes eine Code-Ergänzungs-
Auswahlbox.
Mit der Tab-Taste wird die ausgewählte
Funktion übernommen.

Vorher kann man mit der Maus oder mitttels der Eingabe weiterer Buchstaben die geeignete
Funktion heraussuchen.

Aufgaben:

1. Aktivieren Sie die Turtle-Graphik und lassen Sie sich das Graphik-Fenster

mit der Schildkröte in Lauerstellung anzeigen!

2. Bewegen Sie die Schildkröte so, dass ein Summen-Zeichen (∑) auf dem

Bildschirm zu sehen ist!

Kommen wir nun schon im Vorfeld der echten Programmierung zu den Befehlen, die beson-
ders von Mädchen / weiblichen Programmierern als erstes erfragt werden. Das ist ein Befehl,
der die Farbe der Schildkröte und damit auch ihre Spur-Farbe ändern kann.
In einer ersten Möglichkeit legt man die Farbe mittels eines Color-Strings fest.
Das sind vordefinierte
Farben mit den üblichen
englisch-sprachigen
Bezeichnungen.

Die zweite Variante der Farb-Festlegung ist weitaus Leistungs-fähiger, aber auch aufwändi-
ger und komplizierter in der Umsetzung.

Bei dieser Variante wird
die Farbe als RGB-
Tupel übergeben. Es
können nun die Zahlen
für die Rot-, Grün- und
Blau-Anteile von 0 bis
255 verändert werden.

BK_SekI+II_Python_prof.docx - 173 - (c,p) 2015 - 2026 lsp: dre

Verwendet man die Funktion turtle.color() ohne Argumente, dann wird die aktuelle Farbein-
stellung als Color-String oder Hexadezimal-Code zurückgegeben.
Der Hintergrund des Graphik-Fenster lässt sich mit der Funktion turtle.bgcolor(farbcode) ein-
stellen.
Ein geschlossener Polygonzug kann auch in der Fläche eingefärbt werden.

BK_SekI+II_Python_prof.docx - 174 - (c,p) 2015 - 2026 lsp: dre

8.8.2. Turtle-Programme und Sequenzen

Das Erstellen von Programmen unterscheidet sich kaum von der Eingabe auf der Konsole
(Shell) bzw. von der bei anderen Programmen. Das forward(0) zum Aktivieren / Anzeigen
des Graphik-Fenster kann ausbleiben. Python zeigt das Fenster mit den ersten Programm-
schritten sofort an.
Wichtiger Hinweis auf einen Fehler-Klassiker bei der Turtle-Programmierung. Schnell vergibt
man den Dateinamen für den selbstgeschriebenen Quelltext mit turtle.py. Danach funktio-
niert die Turtle-Programmierung nicht mehr, weil das Turtle-Modul quasi durch das eigene
Programm ersetzt wurde. Man importiert das eigene Programm als Modul, was keinen Sinn
macht und auch noch rekursiv ins Nirvana führt.
Unsere erste Aufgabe soll das Zeichnen eine Quadrates sein. Dazu brauchen wir die vier
gleichen Seiten einer bestimmten Länge und am Ende der Seite immer eine Drehung um
90°.

Zeichen eines Quadrates

import turtle

laenge=100

turtle.forward(laenge)

turtle.left(90)

turtle.forward(laenge)

turtle.left(90)

turtle.forward(laenge)

turtle.left(90)

turtle.forward(laenge)

Das Ergebnis überrascht wenig.
Aber das einfache Aneinanderreihen von Turtle-Anweisungen nervt jetzt schon ein bisschen.
Viel tippen und wenig Leistung des Programms. Wir wissen ja schon, dass man mit Schleifen
effektiver arbeiten kann.
Eigentlich würden jetzt zuerst die Verzweigung folgen, aber Graphik-Programmierung lebt
mehr von Wiederholungen als von Alternativen. Die sind aber gleich danach dran (→ 8.8.4.
Verzweigungen).

BK_SekI+II_Python_prof.docx - 175 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen Sie ein Programm, in dem die Schildkröte ein Rechteck mit den

Kantenlängen 250 und 320 zeichnet!

2. Erstellen Sie ein Programm, das ein Quadrat mit einer Kantenlänge von 200

zeichnet!

3. Lassen Sie die Schildkröte das Quadrat so zeichnen, dass es um 45° gedreht

ist!

4. Erstellen Sie ein Programm mit der (ungeprüften) Eingabe eines Winkels

(am Zeichen-Ursprung) für ein rechtwinkliges Dreieck! Die erste Kanten-

länge soll 200 betragen! Lassen Sie alle anderen Winkel und Kanten be-

rechnen! (Die Quadrat-Wurzel-Funktion sqrt() ist in der math-Bibliothek

verfügbar.)

für die gehobene Anspruchsebene:

5. Gesucht ist das Programm, mit dem ein Rhombus mit einer Seitenlänge von

180 und den Winkeln 60 und 120 Grad gezeichnet wird! In der Erweiterung

soll der gleicher Rhombus um 45° gedreht zusätzlich dargestellt werden!

BK_SekI+II_Python_prof.docx - 176 - (c,p) 2015 - 2026 lsp: dre

8.8.3. Schleifen

Also programmieren wir unser Quadrat über eine Schleife. Der Einfachheit halber nehmen
wir auch noch eine abschließende Drehung in das Programm auf. Die Schildkröte wird somit
auf die Ausgangs-Position und –Richtung zurückgesetzt.

Zeichen eines Quadrates

import turtle

laenge=100

for i in range(4):

 turtle.forward(laenge)

 turtle.left(90)

Natürlich lässt sich das Gleiche auch mit
einer while-Schleife erreichen. Was man
praktisch wählt ist auch ein bisschen Ge-
schmackssache. Im Falle von klaren Zähl-
Vorgängen ist die Nutzung von for-
Schleifen aber logisch verständlicher.
Mich persönlich schreckt auch immer der zusätzliche Aufwand (Vorbelegung der Laufvariab-
le, Korrektur der Laufvariable) ab. Alles Fehler-Quellen, die sich durch eine "schöne" Zähl-
schleife in Grenzen halten lassen.

Zeichen eines Quadrates

import turtle

laenge=100

anzahl=0

while anzahl<4:

 turtle.forward(laenge)

 turtle.left(90)

 anzahl+=1

Beim Erzeugen von Mustern oder Wie-
derholungen, deren Anzahlen sich schwer
abschätzen lassen, sind while-Schleifen
dann natürlich die bessere Wahl.
Zur Demonstration nehmen wir hier mal das Zeichnen eines Musters aus Quadraten, die
immer leicht verdreht zueinander solange gezeichnet werden sollen, bis die Umkreisung
vollständig ist.

Zeichen eines Musters aus Quadraten

import turtle

laenge=100

drehwinkel=25

gesamtwinkel=0

while gesamtwinkel<360:

 for i in range(4):

 turtle.forward(laenge)

 turtle.left(90)

 turtle.right(drehwinkel)

 gesamtwinkel+=drehwinkel

Zeichnen begrenzen; Schluß nach mind. 360°
einegentliches Zeichnen des Quadrates

Drehung auf neue Anfangsricht
(Gesamt-)Drehwinkel verfolgen / korrigieren

BK_SekI+II_Python_prof.docx - 177 - (c,p) 2015 - 2026 lsp: dre

Schleifen-Konstrukte können wir auch
benutzen, um z.B. gestrichelte Linien
zu erzeugen.
Dazu müssen wir natürlich wissen,
wie man die Schildkröte ohne Spur
bewegt. Mit der Anweisung turt-

le.penup() wird der Zeichenstift (für

die Spur) abgehoben und mit turt-

le.pendown() wieder aufgesetzt.

Will man nun ein Muster mit getsri-
chelten Linien zeichnen, dann kommt
noch eine dritte Schleife hinzu, die
quasi die alte Linienführung (turt-
le.forward(laenge) durch eine zusätz-
liche Muster-Erzeugung ersetzt.
Hier würde ich intuitiv lieber eine whi-
le-Schleife nehmen. Vor allem, weil
die Länge ja als intern Veränderlich im
Programm steht. Da will man auf alle
Eventualitäten vorbereitet sein.

Um Ihnen nicht den Spaß am Programmieren und Experimentieren zu nehmen stelle ich hier
nur die Erzeugung einer einzelnen gestrichelten Linie vor. Das Zusammenstellen und Einar-
beiten in eigene Programme überlasse ich Ihnen.

Strichel- und Nichtstrichel-Länge müssen zusammen

einen Teiler von Länge bilden!

strichellaenge=5

nichtstrichellaenge=5

…

gesamtlaenge=0

while gesamtlaenge<laenge:

 turtle.forward(strichellaenge)

 turtle.penup()

 turtle.forward(nichtstrichellaenge)

 turtle.pendown()

 gesamtlaenge+=(strichellaenge+nichtstrichellaenge)

Ein Muster aus Quadraten mit Stri-
chelmustern könnte dann so ausse-
hen.

BK_SekI+II_Python_prof.docx - 178 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen Sie ein Programm, dass ein gleichseitiges Dreieck mit der Kanten-

länge 75 erzeugt!

2. Erweitern Sie das Dreiecks-Programm nun um die Drehung um 5° solange

bis die Schildkröte mindestens einmal um sich selbst gekreist ist!

3. Lassen Sie ein Sechseck mit einer Kantenlänge von 125 zeichnen!

4. Erstellen Sie ein Muster aus um sich kreisenden Sechsecken, die jeweils

immer um 25° zueinander verdreht sind! Das Muster-Zeichnen soll erst

dann beendet werden, wenn die Schildkröte wieder exakt die Ausgangsrich-

tung besitzt!

5. Verändern Sie das Programm von 3. so, dass nur while-Schleifen zur An-

wendung kommen!

für die gehobene Anspruchsebene:

6. Erstellen Sie ein Muster, wie oben, aus selbstgewählten n-Ecken! Die Li-

nien sollen getrichelt ausgeführt werden!

7. Erstellen Sie Programm, dass ein Muster aus Quadraten erstellt, bei dem

der Nutzer vorher eingeben darf, wie lang die Strichel- und die Nichtstri-

chellinien sein sollen! (Die Begrenzung auf Teilbarkeit soll und muss hier

aufgehoben und umschifft werden!)

8.8.4. Verzweigungen

übliche Verzweigungen
z.B. Auswertung von Eingaben

Verzweigungen basierend auf Turtle-Eigenschaften

Beispiel Abfrage, ob der Stift zeichnet oder nicht (unten oder oben ist)
isdown() liefert entsprechend True oder False zurück

oder Abfrage der X- bzw. Y-Koordinaten, um z.B. Überschreitungen von Grenzen auszuwer-
ten
Auswertung über Vergleiche

weitere auswertbare Eigenschaften der Schildkröte findet man in der Zusammenstellung der
Turtle-Funktionen (→ Anweisungen, Funktionen und Methoden des Turtle-Graphik-Moduls)

BK_SekI+II_Python_prof.docx - 179 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen Sie ein Programm, das eine getrichelte Linie zeichnet! Der Nutzer

soll vorher als Eingaben die Gesamt-Länge und die Strichel-Länge einge-

ben! (Die Prüfung der Exaktheit der Daten soll im Programm erfolgen und

ev. Fehlerhinweise ausgegeben werden! Nur dann zeichnen, wenn die Werte

ok sind.))

2.

für die gehobene Anspruchsebene:

3. Statt, wie in Aufgabe 1 soll eine Strich-Punkt-Linie gezeichnet werden! Der

Punkt wird hier mit einer Kantenlänge von 2 festgelegt! Die Striche müssen

mindestens doppelt so lang sein!

BK_SekI+II_Python_prof.docx - 180 - (c,p) 2015 - 2026 lsp: dre

8.8.5. Funktionen

Nutzung von Python-eigenen Funktionen bzw. Funktionen aus importierten Modulen kein
Problem
Nutzung, wie üblich mit vorgestelltem Modul-Namen oder dem speziellen Importnamen

Zusammenfassung von Turtle-Anweisungen

Beschreibung von Objekten z.B. ein Quadrat, n-Eck, …

übliche def-Struktur

ein Rückgabewert wird meist nicht gebraucht,
kann aber – wie üblich – zurückgegeben werden

z.B. um Fehlerwerte oder Berechnungs-
Ergebnisse dem übergeordneten Programm bzw.
der übergeordneten Funktion mitzuteilen

 from turtle import *

def rechteck(a,b):

 for _ in range(2):

 forward(a)

 left(90)

 forward(b)

 left(90)

rechteck(70,110)

BK_SekI+II_Python_prof.docx - 181 - (c,p) 2015 - 2026 lsp: dre

geschlossene farbige Polygonzüge

 from turtle import *

from random import *

Farbliste=[]

def farbQuadrat(x,y,l,farbe):

 up()

 goto(x,y)

 down()

 begin_fill()

 fillcolor(farbe)

 for _ in range(4):

 forward(l)

 left(90)

 end()

for farbe in Farbliste:

 x=randint(1,400)

 y=randint(1,400)

 l=randint(1,100)

 farbQuadrat(x,y,l,farbe)

Aufgaben:

1. Lassen Sie das Haus vom Nikolaus über eine Funktion zeichnen (die Sei-

tenlänge soll 100 betragen! Die Schildkröte soll am Schluß wieder in der

Start- bzw. Ausgangs-Ausrichtung stehen! (Überlegen Sie sich, ob es Sinn

macht, mit Parametern zu arbeiten!)

2. Lassen Sie sich mit Ihrer Nikolaus-Haus-Funktion 5 Nikolaus-Häuser di-

rekt nebeneinander zeichnen!

3. Ändern Sie das Programm von Aufgabe 2 nun so, dass die Häuser statt des

üblichen rechtwickligen Dach's nun ein gleichseitiges bekommen!

4. Verändern Sie das Progamm von Aufgabe 3 nun so, dass beliebige Seiten-

längen eingegeben werden können!

5. Erstellen Sie ein Programm, dass mit Hilfe einer Funktion gleichSeitiges-

Dreieck(laenge) eine Reihe von 12 Dreiecken direkt nebeneinander zeich-

net!

6. Machen Sie aus dem Programm von Aufgabe 5 ein neues, dass eine Reihe

von 7 Dreiecken zeichnet, die immer abwechselnd nach oben und unten

zeigen! Es darf nur eine Funktion gleichSeitigesDreieck(…) verwendet

werden!

7. Lassen Sie eine neue Programm-Version von Aufgabe 6 eine Dreiecks-

Reihe zeichnen, die aus 5 Basis-Dreiecken besteht! Die Dreiecks-Spitzen

sollen miteinander verbunden sein, so dass eine "Stahl-Brücke" im EIFEL-

Stil entsteht! (Es darf nur die neue Funktion gleichSeitigesDreieck(…)

verwendet werden!)

8. Zeichnen Sie ein Sechseck aus gleichseitigen Dreiecken!

BK_SekI+II_Python_prof.docx - 182 - (c,p) 2015 - 2026 lsp: dre

komplexe Aufgaben:

1. Erstellen Sie ein Programm, das

die abgebildete Szene zeichnet!

(Gehen Sie schrittweise vor! Ver-

wenden Sie sinnvolle Funktionen!)

2. Denken Sie sich ein eigenes

Muster oder eine Szene aus!

Skizieren Sie diese auf ein Blatt

Papier (z.B. kleinkariert) und le-

gen Sie die Maße fest!

Lassen Sie die Szene vom Kursleiter abzeichnen! Setzen Sie die Szene in

ein Turtle-Programm um! (Wenn das Programm funktioniert, können Sie

den Mal-Effekt durch eine delay()-Funktion zwischen den Programmteilen

noch verstärken!)

3. Erstellen Sie eine Funktion wellenOrnament(), die nebenstehendes

Muster erzeugt!

4. Gesucht ist ein Programm, dass die Turtle-Zeichenfläche mit diesem Muster

umgibt!

x.

für die gehobene Anspruchsebene:

x.

aktuellePosition = position()

…

def Funktion….

 …

 return aktPosition

aktuellePosition = Funktion(…)

aktPosition und aktuellePosition sind jeweils ein Tupel, deshalb funktioniert auch die Rück-
gabe aus der Funktion, weil ein Tupel hier eben nur ein Werte-Paar ist

BK_SekI+II_Python_prof.docx - 183 - (c,p) 2015 - 2026 lsp: dre

8.8.6. Rekursion

#rekursives Zeichen eines Baumes mit Turtle

import turtle

def baum(laenge,tiefe):

 if tiefe>=0:

 turtle.forward(laenge)

 turtle.left(45)

 zweiglaenge=laenge/1.5

 baum(zweiglaenge,tiefe-1)

 turtle.right(90)

 baum(zweiglaenge,tiefe-1)

 turtle.left(45)

 turtle.backward(laenge)

main

Eingaben

print("Zeichnen eines selbstähnlichen Baums")

laenge=eval(input("Stamm-Länge: "))

tiefe=eval(input("Verzweigungstiefe: "))

Beginn des Zeichnens

turtle.left(90) # Drehen zum Zeichnen nach oben

baum(laenge,tiefe)

turtle.right(90) # wieder auf die ursprüngliche Richtung drehen

Das Ergebnis und vor allem die Ar-
beit der Schildkröte beim Erstellen
der Graphik ist richtig cool.

Aufgaben:

1. Erklären Sie, warum die Schildkröte auf dem Rückweg immer die richtige

Weglänge weiss!

BK_SekI+II_Python_prof.docx - 184 - (c,p) 2015 - 2026 lsp: dre

8.8.7. Eingaben mit der Maus

onclick(auszuführende_Funktion)

 from turtle import *

def anzeige(x,y):

 print(Mausklick auf Position: ",x,",",y)

onclick(anzeige)

Programm nach einem Durchlauf beendet.

mit der Funktion mainloop() wird eine unendliche Kontrollschleife (für Eingaben / Ausgaben)
erzeugt, die praktisch während der gesamten Programm-Laufzeit aktiv ist

 from turtle import *

def anzeige(x,y):

 print(Mausklick auf Position: ",x,",",y)

onclick(anzeige)

mainloop()

Nutzung nun z.B. um die Schildkröte an die Klick-Position zu bewegen

 from turtle import *

def anzeige(x,y):

 goto(x,y)

onclick(anzeige)

mainloop()

so erhalten wir ein kleines Zeichen-Programm

BK_SekI+II_Python_prof.docx - 185 - (c,p) 2015 - 2026 lsp: dre

8.8.8. Und wie geht es weiter?

Die Objekt-orientierte Turtle-Programmierung folgt hinter der theoretischen Vorstellung und
ersten praktischen Übungen zur Objekt-orientierten Programmierung ganz allgemein.

Windrad aus Rechtecken

windrad.py

from turtle import *

def rechteck(seite): # Prozedur rechteck wird definiert

 for i in [1,2]:

 forward(seite); left(90)

 forward(seite/4); left(90)

tracer(0) # maximale Zeichengeschwindigkeit

width(2) # Zeichenstiftbreite

for i in range(1,9):

 rechteck(100)

 left(45)

Parkettierung (mit Rhomben)

parkett.py
from turtle import *
def raute(laenge, winkel, strich_dicke, col):
 width(strich_dicke)
 color(col)
 for i in range (1,3):
 forward (laenge); left(winkel)
 forward (laenge); left(180-winkel)
tracer(0)
anzahl_reihe = 10
up(); backward(280); left(90); forward(220); right(90); down()
for i in range(1,15):
 for j in range(1,anzahl_reihe+1):
 raute(50, 45, 1, 'darkgreen')

 up(); forward(50); down()
 up(); backward(anzahl_reihe*50); right(90); forward(35); left(90); down()

BK_SekI+II_Python_prof.docx - 186 - (c,p) 2015 - 2026 lsp: dre

Wald aus Bäumen

baeume.py
Wald mit Bäumen
from turtle import *
from random import random

def baum(a):
 for i in range(1,3):
 color("brown")
 fill(1)
 forward(a); left(90)
 forward(2*a); left(90)
 fill(0)
 up(); left(90); forward(2*a); left(90); forward(a); left(180); down()

 color("darkgreen")
 fill(1)
 forward(3*a); left(110)
 forward(4.39*a); left(140); forward(4.39*a); left(110)
 fill(0)
 up(); forward(a); right(90); forward(2*a); left(90); down()

tracer(0) # max. Zeichengeschwindigkeit
up(); backward(220); left(90); forward(220); right(90); down()
Turtle im Windwows-Fenster nach links oben setzen
a=8 # Breite Baumstamm
anzahl_x = 12 # Anzahl der Bäume in x-Richtung
anzahl_y = 8 # Anzahl der Baumreihen in y-Richtung
for j in range(1,anzahl_y+1):
 for i in range(1,anzahl_x+1):
 baum(a); up(); forward((0.5+random())*5*a); down()
 up(); backward(anzahl_x*5*a); right(90); forward(8*a); left(90); down()

Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

Zeichnen eines Strauches

strauch.py
Strauch
from turtle import *
import time

def strauch(a, n):
Die Prozedur strauch ruft sich rekursiv selber auf!

 if n>0:
 forward(a);left(30); forward(a);
 strauch(a/2,n-1); backward(a); right(30); forward(a);
 right(30); forward(a/2);
 strauch(a/2,n-1); backward(a/2); left(30); forward(a);
 strauch(a/2,n-1); backward(3*a)

tracer(0)
a=30 # Länge a
color("darkgreen")
width(2) # Strichdicke
left(90)
strauch(a,5) # Aufruf der Prozedur strauch
time.sleep(4) # Programm hält 4 Sekunden an
exit()

Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

BK_SekI+II_Python_prof.docx - 187 - (c,p) 2015 - 2026 lsp: dre

Baum mit Früchten

orangenbaum.py

from turtle import *

def baum(s,t):

 if t>1:

 color("brown")

 for i in range(1,3):

 fill(1)

 forward(s); left(90)

 forward(3*t); left(90)

 fill(0)

 forward(s)

 left(30)

 baum(s*0.6, t-1)

 right(55)

 baum(s*0.65, t-1)

 left(25)

 backward(s)

 elif t>=0:

 color("darkgreen")

 fill(1)

 forward(4*s); circle(2*s); backward(4*s)

 fill(0)

 color("red")

 fill(1)

 forward(3*s); circle(5); backward(3*s)

 fill(0);

 forward(s)

 left(50);

 color("brown")

 baum(s*0.6, t-1)

 right(85)

 baum(s*0.65, t-1)

 left(35)

 backward(s)

setup (width=400, height=400, startx=0, starty=0)

Fenstergröße

title(" Orangenbaum")

Fenstertitel

tracer(0)

left(90)

width(1)

up()

backward(150)

down()

baum(100,6)
Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

Python-Stern

from turtle import *

color('red', 'yellow')

begin_fill()

while True:

 forward(200)

 left(170)

 if abs(pos()) < 1:

 break

end_fill()

done()

BK_SekI+II_Python_prof.docx - 188 - (c,p) 2015 - 2026 lsp: dre

8.8.9. Turteln bis zu Umfallen - rekursive Probleme schrittweise Lösen

Ein rekursives Graphik-Problem zu lösen ist nicht immer so trivial, wie es die Definition einer
Rekursion suggeriert.
In Anlehnung an den gerade gezeigten Baum wollen wir nun einen Strauch rekursiv zeich-
nen. Er soll keinen Stamm haben und gleich mit Zweigen anfangen und statt der dichtomen
(zwei-spaltigen) Teilung noch einen mittleren Zweig enthalten (also trichotom geteilt sein).
Wir fangen bei ganz einfachen Versionen an und arbeiten uns dann zu einem vollständigen
Programm vor.
Im ersten Schritt erstellen wir eine einfache Funktion (noch ohne rekursive Elemente) für
einen rudimentären Strauch und ein einfaches Haupt-Programm. Selbst auf Eingaben ver-
zichten wir erst einmal um die Zeichnung ohne viel Schnick-Schnack auf den Bildschirm zu
bekommen.

import turtle

def strauch(laenge,tiefe):

 turtle.left(30)

 turtle.forward(laenge)

 turtle.backward(laenge)

 turtle.right(30)

 turtle.forward(laenge)

 turtle.backward(laenge)

 turtle.right(30)

 turtle.forward(laenge)

 turtle.backward(laenge)

 turtle.left(30)

Main

laenge=60

tiefe=4

turtle.left(90) # Turtle aufrecht drehen

strauch(laenge,tiefe)

turtle.right(90) # Turtle in die Ausgangslage zurückdrehen

Nachdem der rudimentäre Strauch steht,
können wir uns nun die Positionen heraus-
suchen, wo ein rekursiver Aufruf erfolgen
soll. Das muss immer jeweils am Ende der 3
Zweige erfolgen. Die Länge belassen wir
zuerst einmal so, wie in der ersten Re-
kursions-Ebene. Verkürzungen organisieren
wir als Nächstes.
Was man natürlich nicht vergessen darf, ist
der Rekursions-Abbruch, ansonsten zeich-
net das Sysem ziemlich lange.

BK_SekI+II_Python_prof.docx - 189 - (c,p) 2015 - 2026 lsp: dre

Wer will kann auch ersteinmal nur den ersten (linken) Zweig programmieren, damit Fehler
noch gut sichtbar sind.

import turtle

def strauch(laenge,tiefe):

 if tiefe>0:

 # linker Zweig

 turtle.left(30)

 turtle.forward(laenge)

 stauch(laenge,tiefe-1)

 turtle.backward(laenge)

 # mittlerer Zweig

 turtle.right(30)

 turtle.forward(laenge)

 turtle.backward(laenge)

 turtle.right(30)

 # rechter Zweig

 turtle.forward(laenge)

 turtle.backward(laenge)

 turtle.left(30)

Main

laenge=5

tiefe=0

turtle.left(90) # Turtle aufrecht drehen

strauch(laenge,tiefe)

turtle.right(90) # Turtle in die Ausgangslage zurückdrehen

Das Graphik-Fenster zeigt saubere Linien
und die Schildkröte ist auch wieder an ihrem
Start-Platz angekommen. Soweit scheint die
Programmierung und die Rekursion zu funk-
tionieren.

import turtle

def strauch(laenge,tiefe):

 if tiefe>0:

 # linker Zweig

 turtle.left(30)

 turtle.forward(laenge)

 strauch(laenge,tiefe-1)

 turtle.backward(laenge)

 # mittlerer Zweig

 turtle.right(30)

 turtle.forward(laenge)

 strauch(laenge,tiefe-1)

 turtle.backward(laenge)

 turtle.right(30)

 # rechter Zweig

 turtle.forward(laenge)

BK_SekI+II_Python_prof.docx - 190 - (c,p) 2015 - 2026 lsp: dre

 strauch(laenge,tiefe-1)

 turtle.backward(laenge)

 turtle.left(30)

Main

laenge=5

tiefe=0

turtle.left(90) # Turtle aufrecht drehen

strauch(laenge,tiefe)

turtle.right(90) # Turtle in die Ausgangslage zurückdrehen

Wenn die gesamte Funktion durchdefiniert
ist und es funktioniert, dann kann man noch
das Rahmen-Programm anpassen. Dazu
gehören sicher ordentlich abgesicherte Ein-
gaben und die angepasste (- kürzere -)
Zweiglänge für die untergeordneten Zweige.

import turtle

def strauch(laenge,tiefe):

 if tiefe>0:

 # linker Zweig

 turtle.left(30)

 turtle.forward(laenge)

 zweiglaenge=int(laenge/1.5)

 strauch(zweiglaenge,tiefe-1)

 turtle.backward(laenge)

 # mittlerer Zweig

 turtle.right(30)

 turtle.forward(laenge)

 strauch(zweiglaenge,tiefe-1)

 turtle.backward(laenge)

 turtle.right(30)

 # rechter Zweig

 turtle.forward(laenge)

 strauch(zweiglaenge,tiefe-1)

 turtle.backward(laenge)

 turtle.left(30)

Main

laenge=5

tiefe=0

turtle.delay(0) # Turtle beschleunigen

while not(laenge>=10 and laenge<=200):

 laenge=eval(input("Zweiglänge [10 .. 200]: "))

if laenge>=10 and laenge<200:

 while not(tiefe>=1 and tiefe<=10):

 tiefe=eval(input("Verzweigungen [1 .. 10]: "))

if tiefe>=1 and tiefe<=10:

 turtle.left(90) # Turtle aufrecht drehen

 strauch(laenge,tiefe)

 turtle.right(90) # Turtle in die Ausgangslage zurückdrehen

BK_SekI+II_Python_prof.docx - 191 - (c,p) 2015 - 2026 lsp: dre

>>>

Zweiglänge [10 .. 200]: 60

Verzweigungen [1 .. 10]: 5

Ob man das Ergebnis nun als
Strauch durchgehen lässt oder
es eher einem Blütenstand ei-
nes Doldenblüten-Gewächs
entspricht, bleibt der Phantasie
des Betrachters überlassen.

Aufgaben:

1. Ändern Sie die Funktion strauch() so ab, dass sie mit einem vom Haupt-

Programm vorgegebenen Winkel zwischen den Zweigen arbeiten kann!

für die gehobene Anspruchsebene:

2. Ändern Sie das Programm so ab, dass die Zweige einwenig zufällig differie-

ren! Geht das überhaupt, oder muss der Baum / Strauch immer symmetrisch

sein? Überlegen Sie sich eine begründete Anwort vor dem Lösen des Prob-

lems!

BK_SekI+II_Python_prof.docx - 192 - (c,p) 2015 - 2026 lsp: dre

Lösen von weiteren graphischen Aufgaben und Problemen

am Ende des Abschnittes zur Turtle-Graphik gibt es eine kleine Zusammenstellung der ver-
schiedenen Turtle-Befehle

Zeichnen eines Labyrint's (Aaron Bies)
import turtle, random, math

Zeichnet zwar kein Quadrat,

dafür aber ein perfektes Labyrinth.

Der Algorithmus ist rekusiv, also

kann es sein, dass es nach ein paar

Sekunden abstürtzt. Einfach Skript

neustarten, wenn das passiert.

Wenn jemand weiss, warum kein Quadrat

rauskommt, schreibt mir bitte.

turtle.delay(2)

size = 42

scale = round(380/size)

visited = []

def generate(x=0, y=0, lor=0):

 visited.append((x,y))

 order = list(range(4))

 random.shuffle(order)

 for direct in order:

 newX = max(-size/2, min(size/2,

 x+round(math.cos(direct*math.pi/2))))

 newY = max(-size/2, min(size/2,

 y+round(math.sin(direct*math.pi/2))))

 if (newX,newY) not in visited:

 turtle.goto(newX*scale, newY*scale)

 generate(newX, newY, lor+1)

 turtle.goto(x*scale, y*scale)

generate()

turtle.hideturtle()

BK_SekI+II_Python_prof.docx - 193 - (c,p) 2015 - 2026 lsp: dre

Aufgaben: (relativ einfach)

1. Erstellen Sie das Haus vom Nikolaus nach der klassichen Regel, das keine

Linie doppelt gezogen werden darf! (Als besondere intellektuelle Heraus-

forderung suchen wir noch das nebenstehende Haus vom Weihnachtsmann.)

2. Zeichnen Sie eine Strichel-Linie, bei der die Strichel-Linien immer ein klei-

nes Stück länger werden! (es reichen 10 Strichel!)

3. Erstellen Sie ein Programm, dass 10 ineinander geschachtelte Quadrate (mit

dem gleichen Startpunkt) zeichnet! Das erste Quadrat soll eine Kantenlänge

von 20 Pixeln haben, die nachfolgenden sollen immer um 10 Pixel verlän-

gert werden!

4. Erstellen Sie ein "Spielfeld" für ein Tic-Tac-Toe-ähnliches Spiel aus 9 ein-

zelnen Quadraten, die sich in den betreffenden Kanten berühren, aber nicht

überschneiden! Zur Demonstration, dass es sich auch wirklich um einzelne

Quadrate handelt, können Sie z.B. eine Diagonale mit einer Farbe ausfüllen.

5. Schreiben Sie ein Programm, bei dem 15 Rechtecke (Start-Seitenlängen 30

und 50 Pizel) mit einer Seiten-Verlängerung um 10 Pixel ineinander (eigent-

lich ja auseinander) schachtelt werden!

6. Schreiben Sie eine Funktion linie_ohne_bewegung(länge), bei der eine Linie der

mit der gewünschten Länge gezeichnet wird, die Schildkröte aber wieder

zum Ausgangspunkt zurückkehrt!

7. Zeichnen Sie mit Hilfe der Funktion von Aufgabe () einen Strahlenkranz

mit dem Radius 150 Pixel!

Aufgaben: (schon schwerer)

1.

2. Erstellen Sie ein Programm, dass aus Quadraten ein Dreh-Muster erstellt,

wobei immer abwechselnd links und rechts gezeichnet wird! (quasi ein Flü-

gel-Effekt)

3. Gesucht wird ein Programm, bei dem 12 ineinander geschachtelte Dreiecke

gezeichnet werden, bei denen sich keine Kanten berühren und die Dreicke

zueinander immer 20 Pixel Abstand haben! Das äußerste Dreieck soll eine

Kantenlänge von 400 Pixeln haben!

4. Erstellen Sie ein Muster aus 7 (gleichseitigen) Sechsecken, die zu einem

Wabenmuster angeordnet sind! Das Zeichnen eines Sechseckes ist als Funk-

tion zu realisieren!

BK_SekI+II_Python_prof.docx - 194 - (c,p) 2015 - 2026 lsp: dre

Aufgaben: (schwer)

1. Gesucht wird die Simulation einer Schildkröte, die sich in einem Kasten

(Kantenlänge 300 x 500) bewegt!

2. Erstellen Sie ein Programm für eine Teilchen-Simulation (Kugel) in einem

Gefäß (Kasten 400 x 200)! Die Teilchen-Bewegung erfolgt Zufalls-gesteuert

(BROWNsche Molekularbewegung). An den Wandungen wird das Teilchen

nach den Gesetzen der Physik zurückgeworfen.

Aufgaben für die gehobene Anspruchsebene: (richtig schwer)

x.

BK_SekI+II_Python_prof.docx - 195 - (c,p) 2015 - 2026 lsp: dre

Anweisungen, Funktionen und Methoden des Turtle-Graphik-Moduls
Cheat sheet zur Bibliothek "turtle"

allgemeine Hinweise / Bemerkungen
X- und Y-Positionen können Integer oder Float-Werte sein; als Rückgabe-Werte der Funktionen sind
es immer Float-Werte
None bedeutet, dass der Wert / das Argument i.A. weggelassen werden kann
zulässige Farbwerte sind: ""; "yellow"; "red"; "brown"; "green", "violet", "blue", "", "" oder z.B.: für weiss:
'#ffffff' od. 255 bzw. schwarz: '#000000' od. 0;

Schildkröten-Anweisung
turtle. …

Beschreibung / Leistung / Funktion Beispiele / Hinweise

addshape(formname, objektna-
me)

registriert ein definiertes Objekt und
macht es unter objektname (als Turtle)
benutzbar

formname kann auch
eine GIF-Datei sein

addcomponent(komponente,
farbstring, hintergrundfarbe)

fügt zu einem Objekt eine komponente
mit Vordergrund- und Hintergrund-
Farbe hinzu

Objekt muss vom Typ
"compound" sein (→
Shape)

back(länge) → backward

backward(länge) bewegt Turtle um länge Pixel rück-
wärts

begin_fill() Start- / Initialisierungs-Aufruf für nach-
folgendes Füllen

beenden mit →
end_fill(); Farbe setzen
mit → fillcolor()

begin_poly() Start- / Initialisierungs-Aufruf für nach-
folgendes Polygon-Zeichnen

aktuelle Position ist
erster Polygon-Punkt

bgcolor liefert die Hintergrundfarbe des zu-
grundeliegenden screen-Objektes
zurück

es kann auch
screen.bgcolor() ge-
nutzt werden

bgpic(bildname)
bgpic()

setzt den Bildschirmname mit bildna-
me oder gibt ihn zurück

es kann auch
screen.bgpic() genutzt
werden

bk(länge) → backward

bye() schließt das Zeichenfenster

circle(radius)
circle(radius, sektor)
circle(radius, sektor, schritte)

zeichnet einen Kreis mit dem angege-
benem radius; sektor ist der gezeich-
nete Kreisbogen in rad; schritte legt die
Anzahl Polygone fest, aus der der
Kreis gezeichnet werden soll

sektor und schritte
können auch None
sein

clear → clearscreen

clearscreen löscht die aktuelle Turtle-Zeichnung die Turtle wird nicht
bewegt od. ihre Para-
meter verändert!

clearstamp(stempel_ID) löscht den durch stempel_ID (stamp-
ID) gekennzeichneten Turtle-Stempel

clearstamps()
clearstamps(anzahl)
clearstamps(-anzahl)

löscht die aktuelle Liste der stamp-ID's
bzw. die durch anzahl bestimmten
ersten bzw. letzten Turtle-Stempel

clone() erstellt bzw. liefert einen Klon der Turt-
le an der aktuellen Position

color()
color(farbstring, hintergrundfarbe)
color(farbstring)
color(RGBtripel)
color(RGBtupel, RGBtupel)

liefert Tupel aus Vorder- und Hinter-
grundfarbe zurück bzw. setzt Vorder-
grund- und ev. auch Hintergrund-Farbe

hintergrundfarbe ist ein
farbstring

colormode(colormodus) setzt den colormodus (Wert kann 1 od.
255 sein)

begrenzt die Spanne
für die RGB-Anteile

degrees(gradzahl) legt die gradzahl / Schritte für einen
Vollkreis fest

Standard sind 360°

BK_SekI+II_Python_prof.docx - 196 - (c,p) 2015 - 2026 lsp: dre

Schildkröten-Anweisung
turtle. …

Beschreibung / Leistung / Funktion Beispiele / Hinweise

delay(verzoegerung)
delay()

setzt die verzoegerung in ms oder gibt
sie zurück

distance(koordinatenpaar)
distance(x_position, y_position)

liefert die Entfernung zu einem anvi-
sierten Punkt zurück

done() macht letzte Anweisung rückgängig

dot(groesse, farbe)
dot()
dot(groesse)

zeichnet einen Punkt mit den Parame-
tern groesse und farbe an der aktuel-
len Position

farbe ist ein Farbstring
oder ein RGBtripel
groesse kann auch
None sein

down() → pendown

end_fill() End- / Destruktions-Aufruf für Füll-
Vorgang
(der erste und letzte Punkt innerhalb
der Füll-Seqenz werden am Schluß
automatisch verbunden)

starten mit →
begin_fill(); Farbe set-
zen mit → fillcolor()

end_poly End- / Destruktions-Aufruf für Polygon-
Zeichen-Vorgang

aktuelle Position ist der
letzte Punkt des Poly-
gons und wird mit dem
ersten verbunden (→
begin_poly)

exitonclick() bindet die bye-Methode an einen
Mausclick auf / in das Zeichenfenster

fd(länge) → forward

fillcolor()
fillcolor(farbstring)
fillcolor(RGBtupel)
fillcolor(rotwert, gruenwert, blau-
wert)

gibt aktuelle Farbwerte (als RGBtupel)
zurück oder setzt die Werte

die Füllung wird dann für die Formen
zwischen begin_fill() und end_fill()
benutzt

farbstring kann sein:
Farbnamen → s.a.
oben oder ein:
RGBhexadezimalcode
(Start und Ende des
Füllens mit →
begin_fill() bzw.
end_fill())

filling() gibt True oder False zurück jenach-
dem, ob der Füllmodus eingschaltet
oder nicht-eingeschaltet ist

forward(länge) bewegt Turtle um länge Pixel vorwärts

get_poly() liefert das letzte gezeichnete Polygon
zurück

get_shapepoly() liefert das Polygon der aktuellen Turt-
le-Form als Koordinaten-Tupel zurück

getcanvas() liefert Zeichenfläche als Objekt zurück Objekt ist ein Tkinter-
Objekt und kann damit
weiter verwendet wer-
den

getpen() liefert das Turtle-Objekt sich selbst
(zeigt Speicher-Adresse des Objektes)

getscreen() liefert die Zeichen-Fläche als Objekt
zurück
(zeigt Speicher-Adresse des Objektes)

einzelne Attribute las-
sen sich dann ändern

getshapes() liefert eine Liste mit den Namen der
möglichen Turtle-Formen zurück

getturtle() liefert das Turtle-Objekt sich selbst
(zeigt Speicher-Adresse des Objektes)

goto(position) → setposition

heading

hideturtle() versteckt die Turtle samt Spur (z.B. bei
komplexen Zeichenvorgängen)

→ isvisible

home() setzt Turtle wieder auf die Start- / Aus-
gangs-Position

entspricht: turt-
le.setpos(0,0)

ht() → hideturtle

BK_SekI+II_Python_prof.docx - 197 - (c,p) 2015 - 2026 lsp: dre

Schildkröten-Anweisung
turtle. …

Beschreibung / Leistung / Funktion Beispiele / Hinweise

isdown() gibt True oder False zurück jenach-
dem, ob der Stift zeichnet oder nicht-
zeichnet

isvisible

left(winkel) dreht Turtle um winkel nach links

listen(dummy_x_position, dum-
my_y_position)

setzt den Focus auf die Zeichenfläche;
die Dummy-Argumente werden für die
onclick-Methode genutzt

lt(winkel) → left

mainloop() startet die Ereignis-Abfrage-Schleife
des übergeordneten Objektes (screen
von Tkinter)

muss die letzte Anwei-
sung in einem Turtle-
Programm sein (im
Script-Modus nicht
notwendig)

mode(modus)
mode()

setzt den modus für die Turtle-Graphik
oder liefert ihn zurück
modus kann sein: "logo", "world",
"standard"

"standard": Ausrich-
tung Ost, Drehung
entgegen Uhrzeiger;
"logo": Ausrichtung
Nord, Drehung mit
Uhrzeiger

numinput(titel, text, vorgabe, mi-
nimum, maximum)

erzeugt ein Popup-fenster mit dem /
einem titel und der Eingabe-
Aufforderung text; optional können
eine vorgabe, das minimum und ma-
ximum für die einzugebene Zahl ange-
geben werden

onclick(funktion) Aufruf einer Argument-losen funktion
beim Klicken mit der linken Maustaste

onclick(funktion, maustaste, add) Aufruf einer zwei-argumentigen funkti-
on (Click-Position) mit einer maustas-
te;

maustaste ist norma-
lerweise:
1 .. linke Maustaste
2 ..
3 ..

ondrag

onkey(funktion, taste) Aufruf einer Argument-losen funktion
beim Loslassen einer taste

taste kann auch ein
Tasten-Sybol-String
z.B. "space" sein

onkeypress Aufruf einer Argument-losen funktion
beim Drücken einer taste

taste kann auch ein
Tasten-Sybol-String
z.B. "space" sein

onkeyrelease(funktion, taste) Aufruf einer Argument-losen funktion
beim Loslassen einer taste

taste kann auch ein
Tasten-Sybol-String
z.B. "space" sein

onscreenclick

ontimer(funktion, zeit) Aufruf einer Argument-losen funktion,
nach einer bestimmten zeit in ms

pd → pendown

pen(kategorie) liefert Informationen zu bestimmten
Kategorien über die Turtle zurück:
kategorie:
"shown"; "pendown"; "pencolor"; "fillco-
lor"; "pensize"; "speed"; "resizemode";
stretchfactor"; "outline"; "tilt"

die Rückgabewerte
sind entweder True /
False oder die üblichen
Über- bzw. Rückgabe-
Werte / -Typen der
Kategorie)

Pen

BK_SekI+II_Python_prof.docx - 198 - (c,p) 2015 - 2026 lsp: dre

Schildkröten-Anweisung
turtle. …

Beschreibung / Leistung / Funktion Beispiele / Hinweise

pencolor()
pencolor(farbstring)
pencolor(RGBtupel)
pencolor(rotwert, gruenwert, blau-
wert)

liefert aktuellen Farbwert als RGBtupel
zurück bzw. setzt die Farbwerte

farbstring kann sein:
Farbnamen → s.a.
oben oder ein:
RGBhexadezimalcode

pendown() senkt den Stift zum Zeichnen ab (→
Turtle-Spur)

pensize(dicke)
pensize()

bestimmt die dicke der Spur bzw.
liefert die Dicke der Spur zurück

dicke kann auch None
sein

penup hebt den Stift ab (→ keine Turtle-Spur)

pos

position() liefert die aktuelle Turtle-Position als
Tupel zurück

turtlePos=turtle.pos()

pu → penup

radians(gradmass) setzt die Messeinheit (gradmass) für
(die nächste Aktion(en)) auf rad fest

???

RawPen

RawTurtle

register_shape(formname, ob-
jektname)

registriert ein definiertes Objekt und
macht es unter objektname (als Turtle)
benutzbar

formname kann auch
eine GIF-Datei sein

reset() → resetscreen

resetscreen löscht aktuelle Turtle-Zeichnung und
setzt alle Turtle-Parameter wieder auf
die Ausgangswerte

Turtle ist wieder auf
Ausgangsposition mit
allen Standardwerten

resizemode(modus)
modus kann sein: "auto", "user", "no-
resize"

right(winkel) dreht Turtle um winkel nach rechts

rt → right

Screen Tkinter-Objekt:

ScrolledCanvas Tkinter-Objekt:

screensize(bildschirmweite, bild-
schirmhoehe, farbstring)

setzt die Zeichenfläche (Turtle-
Bildschirm / übergeordnetes screen-
Objekt) auf eine bestimme Weite (x-
Ausdehnung), Höhe (y-Ausdehnung)
und Hintergrundfarbe

farbstring kann sein:
Farbnamen → s.a.
oben oder ein:
RGBhexadezimalcode
es kann auch
screen.screensize()
genutzt werden

seth → setheading

setheading(winkel) legt Orientierungs-Richtung (als win-
kel) für die Turtle fest

im logo-Modus ist Nor-
den bei 0°; sonst ist 0°
Richtung Osten
von Standard-Start
nach Nord →
setheading(90)

setpos(position) → setposition

setpostion(position) setzt Turtle auf die position
position ist ein Vec2D oder ein Koordi-
naten-Paar

setpos(20, 50)
setpos((20,50))

settilangle(winkel) die Ausrichtung der
Turtle wird nicht geän-
dert

setundobuffer(schritte) setzt oder deaktiviert den Rückschritt-
Speicher (Keller-Speicher) auf schritte

schritte kann None
sein

BK_SekI+II_Python_prof.docx - 199 - (c,p) 2015 - 2026 lsp: dre

Schildkröten-Anweisung
turtle. …

Beschreibung / Leistung / Funktion Beispiele / Hinweise

setup(x_pixel, y_pixel, x_start,
y_start)
setup(x_anteil, y_anteil)

gibt die Ausdehnung des Zeichenfens-
ters in Pixeln und die Start-Position
vor; bei Angabe einer Float-Zahl wird
der Anteil am Gesamtbildschirm ge-
wählt

Standard sind 50% =
0.5 des Gesamt-
Bildschirms

setworldcoordinates(x_linksoben,
y_linksoben, x_rechtsunten,
y_rechtsunten)

setzt die Zeichenflächen-Koordinaten
(Runter-Diagonale)

setx(x_wert) setzt x_wert der Turtle-Position (Hori-
zontal-Position)

sety(y_wert) setzt y_wert der Turtle-Position (Verti-
kal-Position)

shape(form) legt das Aussehen der Turtle fest;
form kann sein: "arrow", "turtle",
"circle", "square", "triangle", "classic"

form kann auch None
sein

Shape Tkinter-Objekt

shapesize()
shapesize(x_faktor, y_faktor,
umriss_staerke)

liefert die aktuelle Vegrößerungs-
faktoren und die Umriss-Stärke zurück
oder setzt sie (im → resizemodus =
"user")

x_faktor, y_faktor und
umriss_staerke sind
positive Werte od. No-
ne

shapetransform(t11, t12, t21, 22)
transformiert die Matrix der Turtle-
Form

t11, t12, t21, 22 kön-
nen auch None sein

shearfactor() gibt oder setzt die Ausrichtung der
Turtle wird nicht geän-
dert

showturtle() zeigt die (unsichtbare) Turtle bzw.
deren Spur an (seit letztem Unsicht-
barmachen)

→ isvisible

speed()
speed(geschwindigkeit)
speed(tempostring)

bestimmt die geschwindigkeit des Turt-
le's; Werte von 0 .. 10 werden ausge-
wertet, andernfalls wird 0 gesetzt; 0 ..
ohne Animation

tempostring:
"fastest" .. 0; "fast" ..
10; "normal" .. 6; "slow"
.. 3; "slowest" .. 1

st() → showturtle

stamp() hinterlässt eine Turtle-Abdruck an der
aktuellen Position und liefert eine
stamp_ID zurück

s.a. clearstamp

Terminator

textinput(titel, text) erzeugt ein Popup-Fenster mit dem /
einem titel und der Eingabe-
Aufforderung text

tilt(winkel) die Ausrichtung der
Turtle wird nicht geän-
dert

tiltangle(winkel) die Ausrichtung der
Turtle wird nicht geän-
dert

title(titel) setzt den titel des Zeichenfensters

towards(x-position, y_position)
towards(koordinatenpaar)

tracer(anzahl, verzoegerung)
tracer(schalter)

schalter legt fest, ob die Zeichnung mit
voller Geschwindigkeit (1) ohne sicht-
bare Turtle oder verzögert (0) mit
sichtbarer Turtle erstellt werden soll

→ delay

BK_SekI+II_Python_prof.docx - 200 - (c,p) 2015 - 2026 lsp: dre

Schildkröten-Anweisung
turtle. …

Beschreibung / Leistung / Funktion Beispiele / Hinweise

Turtle liefert ein neues Turtle-Objekt (Kon-
struktor)

turtles() liefert eine Liste der Turtle's vom Bild-
schirm zurück

TurtleScreen Tkinter-Objekt:

turtlesize

undo()
undo(anzahl)

macht die letzte bzw. die durch anzahl
bestimmte Menge an Turtle-Aktionen
rückgängig

undobufferentries() liefert die Anzahl der Einträge im
Rückschritt-Speicher zurück

up → penup

update zeigt den aktuellen Bildschrim z.B.
während eines tracer-Modus

→ tracer

Vec2D Tkinter-Objekt:

width(dicke)
width()

bestimmt die dicke der Spur bzw.
liefert die Dicke der Spur zurück

dicke kann auch None
sein

window_height gibt die Fenster-Höhe (y-Ausdehung)
des Zeichenfensters zurück

window_widht gibt die Fenster-Breite (x-Ausdehung)
des Zeichenfensters zurück

write(schreibobjekt, bewegt, aus-
richtung, schrift)

schreibt ein schreibobjekt mit der aus-
richtung ("left"; "center", "right") und
der schrift (schriftname, schriftgroesse,
schrifttyp) an der aktuellen Position

Bsp. für schrift:
"Arial, 11, "normal"
bewegt besagt, ob die
Schreib-Position auf
Ausgang oder Ende
des Schreib-Objektes
gesetzt werden soll

write_docstringdict

xcor() liefert die x-Koordinate der Turtle zu-
rück

ycor() liefert die y-Koordinate der Turtle zu-
rück

u.a. Q: https://docs.python.org/3.5/library/turtle.html (hier Dokumentation nach Kategorien!)

Default- / Vorgabe-Einstellungen für Turtle-Graphik (in turtle.cfg gespeichert)

width = 0.5

height = 0.75

leftright = None

topbottom = None

canvwidth = 400

canvheight = 300

mode = standard

colormode = 1.0

delay = 10

undobuffersize = 1000

shape = classic

pencolor = black

fillcolor = black

resizemode = noresize

visible = True

language = english

exampleturtle = turtle

examplescreen = screen

title = Python Turtle Graphics

using_IDLE = False

https://docs.python.org/3.5/library/turtle.html

BK_SekI+II_Python_prof.docx - 201 - (c,p) 2015 - 2026 lsp: dre

Es existieren verschiedene Demo-Programme / -Skripts zur Turtle-Graphik. Diese können
mit:
 python –m turtledemo

entpackt werden.

8.8.10. Verändern des Schildkröten-Zeigers

Mit der Funktion shape() kann man die Anzeige-Form der Schildkröte anpassen. Zugelassen
sind dabei die Formen:

• arrow → Pfeil

• circle → Kreis

• square → Quadrat

• triangle → Dreieck

• classic → Pfeilspitze

Die gewünschte Form wird als String in die shape()-Funktion eingegtragen.
Man kann aber auch eigene Formen festlegen und diese dann benutzen. Dazu muss man
zuerst die neue Form registrieren:

register_shape("rhombus", ((0,5),(5,10),(10,5),(5,0)))

und dann später genau diese registrierte Form zuweisen:

shape("rhombus")

8.8.11. Animationen mittels turtle-Grafik

Bisher war die Dynamik unserer Zeichnungen auf die Erstellung beschränkt. Nun wollen wir
uns an echte Animationen machen.
Nehmen wir als Beispiel einen Fisch. Dies könnte ein Skalar sein, der durch
sein rhomische Seiten-Ansicht ein Hinkucker in jedem Aquarium ist. Wir nut-
zen zuerst einmal nur wenige Linien zur Veranschaulichung. Später können
wir dann noch ein paar Details ergänzen.
Die Grundform könnte ein Quadrat und ein Dreieck sein. Eine andere Lösung
basiert auf drei rechten Winkeln.
Da es später große und kleine Fische geben soll, definieren wir eine Funktion
fisch() mit möglichen Eigenschaften. Für uns wäre das wohl die Seitenlänge
und die Farbe. Auch eine Schwimm-Richtung wäre wohl angebracht.

Unser Fisch soll aus Winkeln zusammengesetzt sein. Für diese Winkel entwickeln wir zuerst
auch eine Unter-Funktion. Neben Größe und Farbe interessiert uns sicher auch die Rich-
tung.

BK_SekI+II_Python_prof.docx - 202 - (c,p) 2015 - 2026 lsp: dre

Auch für die Win-
kel definieren wir
Richtungen. Als
Orientierung ver-
wende ich hier die
Himmels-
Richtungen.
Die Winkel-Funk-
tion soll möglichst
effektiv ablaufen,
da sie ja sehr häu-
fig benutzt wird.
In welcher Zu-
sammenstellung
wir aus Winkeln
einen "Fisch" ma-
chen, ist uns über-
lassen. Ich wähle
hier ein Quadrat
aus zwei Winkeln
und die Schwanz-
flosse als ein Win-
kel. Da kann ich
dann später viel-
leicht auch Fisch
mit andersfarbiger
Flosse erstellen.

 from turtle import *

def winkel(laenge, richtung):

 # Richtung: von 0 bis 3 für N, O, S u. W

 # am Ende hat Turtle wieder Start-Pos. u. –Richtg.

 case richtung on:

 1:

 else: # für 0

 end

 forward(laenge)

 left(90)

 forward(laenge)

 backward(laenge)

 right(90)

 backward(laenge)

 case richtung on:

 end

MAIN (Test-Programm)

delay(0)

winkel(100,0)

winkel(100,1)

winkel(100,2)

winkel(100,3)

Aufgaben:

1. Realisieren Sie die Winkel-Funktion!

2. Testen Sie die Geschwindigkeit der Winkel-Funktion, indem Sie sie z.B.

10'000x aufrufen und dabei die benötigte Zeit messen!

3. Varieren Sie die Erstellungs-Möglichkeiten für einen Winkel! Testen Sie die

Leistungsfähigkeit Ihrer Varianten! Wählen Sie die schnellste Variante aus!

für die gehobene Anspruchsebene:

4. Testen Sie die Leistungsfähigkeit anderer Erstellungs-Möglichkeiten für ei-

nen Fisch! Welche Variante ist warum die Günstigste?

Meine Variante ist aus mehreren Gründen nicht sehr effektiv. Sicher haben Sie eine schnel-
lere Variante für das Zeichnen gefunden. Diese sollten Sie nun weiter für das Erstellen eines
Fisches verwenden.

def fisch(laenge, farbe, richtung):

 # Richtung: -1 od. 1 für links od. rechts

 pencolor(farbe)

An dieser Stelle darf man auch Mal hinterfragen, ob es günstig ist, bei der Winkel-Funktion
immer an die Start-Position zurückzukehren oder ob man besser fährt, wenn man am Zei-
chen-Endpunkt stehen bleiben (und die Richtung vielleicht zurückmeldet)?
Egal, wie nun unser Fisch gezeichnet wird, jetzt kann er schon mal bewegt werden.
Für einen ersten Test nehmen wir eine Zählschleife mit

BK_SekI+II_Python_prof.docx - 203 - (c,p) 2015 - 2026 lsp: dre

def vorwaerts(schritte, richtung, flaenge, ffarbe, frichtung):

 # zuerst alten Fisch löschen

 fisch(flaenge, 0, frichtung)

 # Fisch an neuer Position zeichnen

 penup()

 apos=pos().x

 if richtung == 1:

 apos+=schritte

 else:

 apos-=schritte

 goto(apos, pos().y)

 pendown()

 fisch(flaenge, ffarbe, frichtung)

MAIN

pause=100

richtung=100

Fisch zeichnen (Start-Situation)

laenge=50

farbe=3

richtung=1

fisch(laenge, farbe, richtung)

while true:

 delay(pause)

Erstellen eigener Figuren (Sprite's)

register_shape(Name, Punktliste)

Beispiel: "Schiff"
register_shape('schiff', ((0,10),(5,0),(15,0),(20,10)))

setzen der (Vordergrund-)Farbe mit:
color(Farbname) 'red', 'blue', 'black', 'green', …

für mehrere Objekte:
t1 = Turtle() erzeugt ein neues turtle-Objekt mit dem Namen t1

BK_SekI+II_Python_prof.docx - 204 - (c,p) 2015 - 2026 lsp: dre

Zugriff über Variablennamen und dann mittels Punkt abgetrennt die zugehörigen Attribute
und Methoden, z.B.:

t1.shape('schiff')
t1.goto(posx,posy)

 from turtle import *

register_shape('schiff',((0,10),(5,0),(15,0),(20,10)))

1. Schiff

t1=Turtle()

t1.shape('schiff')

t1.left(90)

t1.up()

t1.color('red')

t1.goto(0,50)

1. Schiff

t2=Turtle()

t2.shape('schiff')

t2.left(90)

t2.up()

t2.color('green')

t2.goto(0,50)

for x in range(100):

 t1.goto(100-x,50)

 t2.goto(x,-50)

Eine Turtle-ähnliche Bibliothek ist frog (→ http://www.viktorianer.de/info/prog-frog.html), die
sich eher spielerisch an das Problem der Graphik-Programmierung macht und deshalb mehr
für jüngere Python-Programmierer geeignet ist

8.8.12. Realisierung des Snake-Spiel's mittels turtle-Grafik

Entwicklungs-Schritte an der Umsetzung durch den HPI-Python-Kurs (2020) orientiert
dazu sollte man sich die Video's von dort ansehen
hier erfolgt nur eine (leicht veränderte) Darstellung der dortigen Umsetzung

Kopf der Schlange (Snake) ist ein schwarzes Quadrat
Start-Position ist die übliche Turtle-Graphik-Fläche

from turtle import *

shape("square")

color("black")

penup()

http://www.viktorianer.de/info/prog-frog.html

BK_SekI+II_Python_prof.docx - 205 - (c,p) 2015 - 2026 lsp: dre

Bewegung des Quadrates ist immer mit Positions-Veränderungen um 20 Pixel jeweils in x-
bzw. y-Richtung verbunden
z.B. um eine Raster-Position nach oben, dann mit

goto(0,20)

erzeugt eine langsame Bewegung des Quadrates
gewünscht ist ev. / original im Spiel sprung-hafte Veränderung
dazu kann mit speed(0) die interne Verzögerung des Turtle-Moduls auf 0 gesetzt werden

speed(0)

goto(0,20)

ergänzt wird der erste Abschnitt um die Speicherung der (aktuellen Bewegungs-Richtung für
den Schlangen-Kopf (ist als solcher schon als direction in der Turtle-Bibliothek verfügbar.
zuersteinmal setzen wir diesen initial auf "stop" (was für keine Bewegungs-Richtung steht)

direction="stop"

es folgt die Definition der Nahrung für die Schlange – hier als rote Kreise
später wird die Position zufällig erzeugt, hier zuerst einmal auf eine bestimmte Position fest-
gelegt

shape("circle")

color("red")

penup()

speed(0)

goto(0,100)

jetzt kann man den ersten Prototypen schon mal ausprobieren

dabei stellen wir fest, das zuerst mal kurz das Quadrat erscheint, dann aber schnell vom
Kreis abgelöst wird und als solcher am Ende zu sehen ist
Problem ist, das wir praktische nur eine Schildkröte steuern, die zu Anfang ein Quadrat ist,
dann aber in einen Kreis gewandelt wir und als solcher nach dem programm-Ende immer
noch sichtbar ist
zum getrennten Benutzen von zwei Schildkröten müssen wir Objekt-orientiert arbeiten und
jede Schilldkröte als einzenes (Turtle-)Objekt definieren und benutzen

from turtle import *

kopf=Turtle()

kopf.shape("square")

kopf.color("black")

kopf.penup()

kopf.speed(0)

kopf.goto(0,20)

kopf.direction="stop"

essen=Turtle()

essen.shape("circle")

essen.color("red")

essen.penup()

essen.speed(0)

essen.goto(0,100)

damit sind die graphischen Grund-Elemente definiert
als nächstes Problem nehmen wir uns die Steuerung der Schlangen-Bewegung vor
dies soll über vier grüne Richtungs-Dreiecke in der rechten unteren Ecke des Graphik-Feldes
erfolgen

BK_SekI+II_Python_prof.docx - 206 - (c,p) 2015 - 2026 lsp: dre

jedes Richtungs-Dreieck wird als eigenständiges Turtle-Objekt realisiert

rechts=Turtle()

rechts.shape("triangle")

rechts.color("green")

rechts.speed(0)

rechts.penup()

rechts.goto(180,-160)

unten=Turtle()

unten.shape("triangle")

unten.color("green")

unten.right(90)

unten.speed(0)

unten.penup()

unten.goto(160,-180)

links=Turtle()

links.shape("triangle")

links.color("green")

links.left(90)

links.speed(0)

links.penup()

links.goto(160,-140)

oben=Turtle()

oben.shape("triangle")

oben.color("green")

oben.right(180)

oben.speed(0)

oben.penup()

oben.goto(160,-140)

die Eingaben sollen als Maus-Klicks auf die Dreiecke erfolgen
diese Klicks müssen im Programm selbst ständig ausgewertet werden

def interpretiere_eingabe(x,y):

 if (x>=150 and x<=170):

 if (y>=-190 and y<=-170):

 nach_unten_ausrichten()

 elif (y>=- and y<=-):

 nach_oben_ausrichten()

 elif (y>=-170 and y<=-150):

 if (x>=170 and y<=190):

 nach_rechts_ausrichten()

 elif (x>=- and x<=-):

 nach_links_ausrichten()

 kopf_bewegen() # muss später ergänzt werden

 # und an andere Stelle gesetzt werden (hier nur temp.)

onclick(interpretiere_eingabe) # Reaktion auf Mausklick

bei der neuen Ausrichtung wollen wir verhindern, dass der Schlangen-Kopf sich um 180°
dreht, dies würde bedeuten, die Schlange beißt sich in den Körper / Schwanz, was zum
Spielende führen würde

def nach_unten_ausrichten():

BK_SekI+II_Python_prof.docx - 207 - (c,p) 2015 - 2026 lsp: dre

 if kopf.direction != "up": # dient dem Ausschluß der 180°-Drehung

 kopf.direction="down"

def nach_oben_ausrichten():

 if kopf.direction != "down":

 kopf.direction="up"

def nach_rechts_ausrichten():

 if kopf.direction != "left":

 kopf.direction="right"

def nach_links_ausrichten():

 if kopf.direction != "right":

 kopf.direction="left"

nun können wir die eigentliche Bewegung des Kopfes realisieren

def kopf_bewegen():

 if kopf.direction=="down":

 y=kopf.ycor() # Abfrage der aktuellen y-Position

 kopf.sety(y-20) # Setzen der neuen y-Position

 if kopf.direction=="right":

 x=kopf.xcor() # Abfrage der aktuellen y-Position

 kopf.setx(x+20) # Setzen der neuen y-Position

 if kopf.direction=="up":

 y=kopf.ycor()

 kopf.sety(y+20)

 if kopf.direction=="left":

 x=kopf.xcor()

 kopf.setx(x-20)

an dieser Stelle kann das Ganze als Prototyp ausprobiert werden
vor allem Auffinden von Programmierfehlern, ev. Anpassungen von Koordinaten usw. usf.
vornehmen
Schlange(n-Kopf) sollte sich nun über das Spielfeld bewegen lassen
(für die Analyse von (graphischen) Fehlern kann das Auskommentieren der speed()-Funktion
helfen) es wird jetzt alles sehr langsam gezeichnet, aber (erste) Graphik-Fehler lassen sich
schon hier besser korrigieren, als später in einem fast fertigen Programm

jetzt können wir das Essen-Aufnehmen planen
in einer speziellen Funktion wird geprüft, ob wir mit dem Kopf die Position des Essen's ge-
funden haben, dabei reicht ein seitliches Berühren

def checke_kollision_mit_essen():

 if kopf.distance(essen)<20

 # neues Essen positionieren

 # Start mit ungültiger Position auf Steuerung

 x=160

 y=-160

 # zufällig neue Position erstellen und prüfen, bis sie funktioniert

 while (x>=-140 and y<=-140):

 x=randint(-9,9)*20

 y=randint((-9,9)*20

 essen.penup()

 essen.speed(0)

 essen.goto(

 # Schlange verlängern

 …

BK_SekI+II_Python_prof.docx - 208 - (c,p) 2015 - 2026 lsp: dre

für die obige Funktion benötigen wir für das Wachsen der Schlange eine Liste der Segmente
Diese müssen wir natürlich vorher leer anlegen.
Jedes Segment soll dann ein eigenständiges Turtle-Objekt sein

segmente=[]

die Kollision mit dem Fenster- / Spielfeld-Rand ist ein Abbruch-Kriterium. Der Speiler hat
dann verloren.

def check_kollision_mit_fensterrand():

 if (kopf.xcor()<-190 or kopf.xcor()>190

 or kopf.ycor()<-190 or kopf.ycor>190):

 # Neustart des Programms

 penup()

 speed(0)

 goto(0,0)

 direction="stop"

 segmente_entfernen()

 # ev. Ausgabe über verlorenes Spiel

Da das Neustarten des Programm's auch noch gebraucht wir, wenn man z.B. über den eige-
nen Schwanz läuft, werden die relevaten Befehle in eine eigene Funktion gepackt und diese
in check_kollision_mit_fensterrand() einegbaut.

def spiel_neustarten():

 penup()

 speed(0)

 goto(0,0)

 direction="stop"

def check_kollision_mit_fensterrand():

 if (kopf.xcor()<-190 or kopf.xcor()>190

 or kopf.ycor()<-190 or kopf.ycor>190):

 # Neustart des Programms

 spiel_neustarten()

 segmente_entfernen()

 # ev. Ausgabe über verlorenes Spiel

def check_kollision_mit_segmenten():

 for segment in segmente:

 if segment.distance(kopf)<20:

 spiel_neustarten()

def koerper_bewegen():

 # Segmente bewegen

 for index in range(len(segmente)-1,0,-1): # von hinten nach vorn

 …

 # ? nur Kopf

 if …

 # bewege 1. Segment zum Kopf

BK_SekI+II_Python_prof.docx - 209 - (c,p) 2015 - 2026 lsp: dre

 …

Hauptprogramm

• definitionen

• onclick(interprtiere_eingabe)

• checke_kollision_mit_essen()

• check_kollision_mit_fensterrand()

• koerper_bewegen()

• kopf_bewegen()

• checke_kollision_mit_segmenten()

letzte 5 Spiel-Bausteine wiederholen sich später öfter und werden deshalb als extra Funkti-
on:

def wiederhole_spiellogik():

 checke_kollision_mit_essen()

 check_kollision_mit_fensterrand()

 koerper_bewegen()

 kopf_bewegen()

 checke_kollision_mit_segmenten()

Hauptprogramm

• definitionen

• onclick(interpretiere_eingabe)

• wiederhole
o spiellogik

fertiges Programm (zusammengesammelt)

from turtle import *

from random import randint

def interpretiere_eingabe(x, y):

 if (x >= 150 and x <= 170 and y >= -190 and y <= -170):

 nach_unten_ausrichten()

 elif (x >= 170 and x <= 190 and y >= -170 and y <= -150):

 nach_rechts_ausrichten()

 elif (x >= 150 and x <= 170 and y >= -150 and y <= -130):

 nach_oben_ausrichten()

 elif (x >= 130 and x <= 150 and y >= -170 and y <= -150):

 nach_links_ausrichten()

 # ...

onclick(interpretiere_eingabe)

def kopf_bewegen():

 if kopf.direction == "down":

 y = kopf.ycor()

 kopf.sety(y - 20)

 elif kopf.direction == "right":

 x = kopf.xcor()

 kopf.setx(x + 20)

BK_SekI+II_Python_prof.docx - 210 - (c,p) 2015 - 2026 lsp: dre

 elif kopf.direction == "up":

 y = kopf.ycor()

 kopf.sety(y + 20)

 elif kopf.direction == "left":

 x = kopf.xcor()

 kopf.setx(x - 20)

def checke_kollision_mit_essen():

 if kopf.distance(essen) < 20:

 # Teil 1: Essen an neue Position bewegen

 x=160

 y=-160

 # zufällig neue Position erstellen und prüfen, bis sie funktioniert

 while (x>=-140 and y<=-140):

 x=randint(-9,9)*20

 y=randint(-9,9)*20

 essen.goto(x,y)

 # Teil 2: Schlange wachsen lassen

 neues_segment=Turtle()

 neues_segment.shape("square")

 neues_segment.color("yellow")

 neues_segment.penup()

 neues_segment.speed(0)

 # neues_segment.goto(kopf.xcor(),kopf.ycor())

 neues_segment.goto(0,0)

 neues_segment.direction=kopf.direction

 segmente.append(neues_segment)

def spiel_neustarten():

 # Kopf in der Mitte platzieren

 kopf.goto(0,0)

 # Richtung auf "stop" setzen

 kopf.direction="stop"

 segmente_entfernen()

 # Ausgabe, dass Spielrunde vorbei ist

 print("Leider verloren! Auf ein Neues ...")

###################Hauptprogramm##################

Schlange

kopf=Turtle()

kopf.shape("square")

kopf.color("black")

kopf.penup()

kopf.speed(0)

kopf.goto(0,20)

kopf.direction="stop"

segmente=[]

Essen

essen=Turtle()

essen.shape("circle")

essen.color("red")

essen.penup()

essen.speed(0)

essen.goto(0,100)

Steuer-Region

rechts = Turtle()

rechts.shape("triangle")

rechts.color("green")

BK_SekI+II_Python_prof.docx - 211 - (c,p) 2015 - 2026 lsp: dre

rechts.speed(0)

rechts.penup()

rechts.goto(180, -160)

unten = Turtle()

unten.shape("triangle")

unten.color("green")

unten.right(90)

unten.speed(0)

unten.penup()

unten.goto(160, -180)

links = Turtle()

links.shape("triangle")

links.color("green")

links.right(180)

links.speed(0)

links.penup()

links.goto(140, -160)

oben = Turtle()

oben.shape("triangle")

oben.color("green")

oben.left(90)

oben.speed(0)

oben.penup()

oben.goto(160, -140)

BK_SekI+II_Python_prof.docx - 212 - (c,p) 2015 - 2026 lsp: dre

8.9. Musik mit python

8.9.1. Musik mit Board-Mitteln

siehe dazu im Skript "Muenker-Intro_Python_DSP.pdf"

8.9.2. Musik mit python-sonic

externes Modul

aktuelle Version unter:
https://github.com/gkvoelkl/python-sonic

sehr gut mit dem Raspberry Pi realisierbar, hier ist die Version "sonic pi" schon in mehreren
Betriebssystem-Distributionen vorinstalliert

Kopfhörer können direkt angeschlossen werden

einfacher Einstieg mit einfachen Ergebnissen möglich (wird in diesem Skript auch den we-
sentlichen Teil der Besprechung ausmachen)

relativ komplexes System
sehr Leistungs-fähig
für Anfänger und nicht so Noten-affinen Nutzern schnell zu / sehr kompliziert
Fehler-Findung recht schwierig (Welche Note ist wann und wie falsch?)

BK_SekI+II_Python_prof.docx - 213 - (c,p) 2015 - 2026 lsp: dre

8.10. das Modul "pygame"

Da Python nicht direkt auf die Hardware zugreifen kann, dieses aber eigentlich für viele Pro-
gramme und besonders schnelle Spiele usw. notwendig ist, bietet das Modul pygame indi-
rekte Zugriffe und Funktionen an. So bleiben wir bei Programmieren auf Python-Ebene und
die Programme können diverse Funktionen moderner Multimedia-Hardware nutzen. Pygame
sorgt auch dafür, dass es uns völlig egal ist, welche konkrete Graphik- oder Sound-Karte
(oder entsprechende onboard-Version) auf unserem Rechner installiert ist. Da ist Sache von
pygame und braucht uns nicht zu kümmern.

8.10.0. Quellen und Installation

Als Download-Quellen sind einmal die offizielle pygame-Seite im Internet (www.pygame.org)
und eine inoffizielle – aber scheinbar bestens gepflegte – Quelle für alle möglichen Module
zu Python (http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame) zu nennen.
Eigentlich sollte es mit den Installations-Dateien (msi-Dateien für Windows-Systeme) eine
Installtion gelingen. Bei mir funktionierten das nur mit einem Python-2-System.
Bei der letzteren Quelle sind sogenannte whl-Dateien zu downloaden, die mit dem internen
pip-Progamm zu installieren sind. Das war bei mir der einzige funktionierende Weg.
Je nach Betriebssystem-Type (32- oder 64bit) und Python-Version findet man dort die pas-
sende whl-Datei.
Am einfachsten ist es, diese gleich in den Scripts-Ordner der lokalen Python-Installation zu
downloaden. Wenn die Datei vom Browser woanders hin gespeichert wird, dann kopiert man
sie einfach in das Verzeichnis Scripts.
Nun brauchen wir eine Eingabe-Aufforderung (Konsole) in dem Ordner. Dazu geht man im
Windows-Explorer (od. Arbeitsplatz) zum Python- und dann in den Scripts- Ordner.
Mittels Hochstell-Taste (Shift) und rechter Maustaste kann man sich eine Eingabe-
Aufforderung öffnen.
Nun muss man die Befehle sehr exakt eintippen, da sonst Fehlermeldungen folgen oder gar
nichts passiert.
Zuerst aktualisieren wir das pip-Programm:

 python –m pip install --upgrade pip

Das Ergebnis sollte dann in etwa so aussehen. Die Versionen werden sich sicher schon wie-
der unterscheiden.

Nun können wir die passende whl-Datei installieren:

 pip3 install pygame-……whl

file:///D:/XK_INFO/BK_S.I_Info/www.pygame.org
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame

BK_SekI+II_Python_prof.docx - 214 - (c,p) 2015 - 2026 lsp: dre

Statt der Punkte müssen da die exakten Angaben der whl-Datei verwendet werden. Man
kann sich einen Dateiname im Explorer kopieren und dann über die rechte Maustaste in der
Konsole einfügen.
Kommen Fehler-Meldungen, dann bleibt nur ein erneuter Versuch. Allerdings ist jetzt (meist)
ein upgrade nowendig.

 pip3 install --upgrade pygame-……whl

Wenn alles geklappt hat, dann sollte eine Bestätigungs-Meldung in der Konsole erscheinen.

Jetzt steht ersten Tests nichts mehr im Weg. Ein Neustart des Rechners ist zu empfehlen,
damit die integrierten DLLs ordnungsgemäß geladen werden.

Bei aktuellen Python-Installationen kann man es zuerst einmal mit:

 pip3 install pygame

probieren.

8.10.1. Ausprobieren / Testen / Grundlagen

Bevor wir uns nun auf die Möglichkeiten von pygame einlassen, testen wir erst einmal die
Installation. Das nochfolgende Programm erzeugt nur ein schwarzes Fenster und warten auf
das reguläre Schließen über den zugehörigen Fenster-Knopf.

import pygame

pygame.init()

screen=pygame.display.set_mode([640,480])

aktiv=True

while aktiv:

 for event in pygame.event.get():

 if event.type==pygame.QUIT:

 aktiv=False

pygame.quit()

Sollte das programm nicht funktionieren, sollte man nochmals pygame installieren / upgra-
den. Bleibt dieses erfolglos, dann bleibt nur die große Suche nach Hilfe im Internet oder ein
Überspringen dieses Kapitels.
Nach meinen ersten anfänglichen Schwierigkeiten mit pygame fand ich das unten folgende
Test-Programm für die pygame-Schnittstellen von der Seite www.spieleprogrammierer.de.
Auf dieser steht auch ein online-Tutorial zur Verfügung.

file:///D:/XK_INFO/BK_S.I_Info/www.spieleprogrammierer.de

BK_SekI+II_Python_prof.docx - 215 - (c,p) 2015 - 2026 lsp: dre

Pygame-Modul importieren.

import pygame

Überprüfen, ob die optionalen Text- und Sound-Module geladen werden konnten.

if not pygame.font: print('Fehler pygame.font Modul konnte nicht geladen werden!')

if not pygame.mixer: print('Fehler pygame.mixer Modul konnte nicht geladen wer-

den!')

def main():

 # Initialisieren aller Pygame-Module und

 # Fenster erstellen (wir bekommen eine Surface, die den Bildschirm repräsen-

tiert).

 pygame.init()

 screen = pygame.display.set_mode((800, 600))

 # Titel des Fensters setzen, Mauszeiger nicht verstecken und Tastendrücke wie-

derholt senden.

 pygame.display.set_caption("Pygame-Tutorial: Grundlagen")

 pygame.mouse.set_visible(1)

 pygame.key.set_repeat(1, 30)

 # Clock-Objekt erstellen, das wir benötigen, um die Framerate zu begrenzen.

 clock = pygame.time.Clock()

 # Die Schleife, und damit unser Spiel, läuft solange running == True.

 running = True

 while running:

 # Framerate auf 30 Frames pro Sekunde beschränken.

 # Pygame wartet, falls das Programm schneller läuft.

 clock.tick(30)

 # screen-Surface mit Schwarz (RGB = 0, 0, 0) füllen.

 screen.fill((0, 0, 0))

 # Alle aufgelaufenen Events holen und abarbeiten.

 for event in pygame.event.get():

 # Spiel beenden, wenn wir ein QUIT-Event finden.

 if event.type == pygame.QUIT:

 running = False

 # Wir interessieren uns auch für "Taste gedrückt"-Events.

 if event.type == pygame.KEYDOWN:

 # Wenn Escape gedrückt wird, posten wir ein QUIT-Event in Pygames

Event-Warteschlange.

 if event.key == pygame.K_ESCAPE:

 pygame.event.post(pygame.event.Event(pygame.QUIT))

 # Inhalt von screen anzeigen.

 pygame.display.flip()

Überprüfen, ob dieses Modul als Programm läuft und nicht in einem anderen Modul

importiert wird.

if __name__ == '__main__':

 # Unsere Main-Funktion aufrufen.

 main()

Q: www.spieleprogrammierer.de

Links:
http://www.spieleprogrammierer.de
www.pygame.org (die offizielle pygame-Seite; offizielle Installations-Dateien für alle Betriebssysteme)
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame (whl-Dateien für die Installation über pip)

http://www.spieleprogrammierer.de/
file:///D:/XK_INFO/BK_S.I_Info/www.pygame.org
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame

BK_SekI+II_Python_prof.docx - 216 - (c,p) 2015 - 2026 lsp: dre

8.10.1. Sound mit pygame

Sound-Dateien erzeugen (bzw. aufnehmen) und abspielen
Python bzw. das Modul pygame kann mit folgenden Sound-Dateien arbeiten:

• WAV Wave-Dateien

•

• MP3

• WMA WindowsMedia

• OGG Ogg Vorbis-Dateien komprimierte Sound-Dateien mit sehr guter Dynamik
und geringen Konvertierungs-Verlusten

Sound erzeugen über einen einfachen integrierten Synthesizer

8.10.1.1. Sound-Dateien abspielen

Initialisierung der Soundverarbeitung

import pygame

pygame.init()

pygame.mixer.init()

…

Auswahl der Datei

dateiname="musik.wav"

eigentliches Abspielen -- Variante 1

soundobjekt1=pygame.mixer.Sound(dateiname)

soundobjekt1.play()

…

erneutes Abspielen –- Variante 1

soundobjekt1.play()

…

…

eigentliches Abspielen –- Variante 2

pygame.mixer.music.load(dateiname)

pygame.mixer.music.play()

…

erneutes Abspielen –- Variante 2

pygame.mixer.music.load(dateiname)

pygame.mixer.music.play()

…

BK_SekI+II_Python_prof.docx - 217 - (c,p) 2015 - 2026 lsp: dre

Initialisierung der Soundverarbeitung

import pygame

pygame.init()

pygame.mixer.init()

…

Auswahl der Datei

dateiname="musik.wav"

eigentliches Abspielen -- Variante 1

soundobjekt1=pygame.mixer.Sound(dateiname)

soundobjekt1.play()

…

erneutes Abspielen –- Variante 1

soundobjekt1.play()

…

…

eigentliches Abspielen –- Variante 2

pygame.mixer.music.load(dateiname)

pygame.mixer.music.play()

…

erneutes Abspielen –- Variante 2

pygame.mixer.music.load(dateiname)

pygame.mixer.music.play()

…

8.10.1.2. Sound-Dateien erzeugen / aufnehmen

8.10.1.3. Musik aus dem Synthesizer

8.10.2. Grafik mit pygame

Haupt-Programm (Starter) – oft main.py genannt:

import pygane, sys, ObjektModul

Definitionen / Konstanten

fensterBreite=800

fensterHoehe=600

Initialisierungen

pygane.init()

BK_SekI+II_Python_prof.docx - 218 - (c,p) 2015 - 2026 lsp: dre

fenster=pygame.display.set_mode(fensterBreite,fensterHoehe)

spites=pygame.sprite.Group()

anzeigeObjekt= … # aus ObjektModul

sprites.add(anzeigeObjekt)

zeit=pygame.time.Clock()

Hauptschleife

while True:

 for event in pygame.event.get():

 if event.type==pygame.QUIT:

 pygame.quit()

 sys.exit()

 # ev. noch andere Events / Eingaben abfragen

 fenster.fill((255,255,255))

 sprites.aktualisieren()

 sprites.draw(fenster)

 pygame.display.flip()

 zeit.tick(30)

Ein dazu gehörendes Objekt-Modul könnte dann so aussehen:

class AktionObjekt(pygame.sprite.Sprite) # erbt von pygame…

 # Initialisierung

 def __init__(self, fensterBreite, fensterHoehe):

 super().__init__()

 self.fensterB=fensterBreite

 self.fensterH=fensterHoehe

 self.bild=pygame.image.load("???.png")

 self.bildFlaeche=self.image.rect()

 self.rect.center=(self.fensterB/2,self.fensterH/2)

 # Funktionen (Bewegungen, …)

 def aktualisieren(self):

 eingabeTaste=pygame.key.get_pressed()

 # Eingabe-Auswertung und Aktionen, Funktionen, …

 if eingabeTaste[pygame.K_RIGHT]:

 self.rect.x+=10

 if eingabeTaste[pygame.K_LEFT]:

 self.rect.x-=10

 if eingabeTaste[pygame.K_UP]:

 self.rect.y+=10

 if eingabeTaste[pygame.K_DOWN]:

 self.rect.y-=10

 # Ojekt einfangen

 self.rect.clamp_fp(pygame.Rect(0,0,self.fensterB,self.fensterH))

Dieses Modul muss dann natürlich im Haupt-Programm (statt: ObjektModul) importiert wer-
den. Bei mehreren unterschiedlichen Objekten – die andere Funktionen usw. gebrauchen –
sind auch mehrere Objekt-Module notwendig.

…

BK_SekI+II_Python_prof.docx - 219 - (c,p) 2015 - 2026 lsp: dre

8.11. Objekt-orientierte Programmierung

Die Objekt-orientierte Programmierung ist neben der imperativen und der deklarativen ein
weiteres Programmier-Paradigma. Paradigmen beschreiben grundsätzliche Denk- und Ar-
beitsweisen. In der Informatik verstehen wir darunter vor allem den Programmier-Stil. Insge-
samt haben sich schon viele verschiedene Programmier-Paradigmen herauskristallisiert.
Praktisch kann man mit jeder Herangehensweise ein Programm für ein spezielles Problem
erstellen. Dabei sind Aufwand und die Qualität des Programm's oft sehr unterschiedlich. Ziel
ist aber immer ein Fehler-freies, effektives, gut lesbares, Redundanz-freies, modulares und
Nebenwirkungs-freies Programm zu entwickeln. Gute Programmierer wählen immer eine
spezielle Programmiersprache – die meist unterschiedlichen Paradigmen zugehören – um
ein Problem zu lösen.
Viele Programmier-Sprachen lassen sich mit mehreren Herangehensweisen benutzen. So
können wir Python imperativ und Objekt-orientiert verwenden.
In der letzten Jahren sind viele völlig neuartige Paradigmen entwickelt worden. Hier seien
einige kurz genannt:

neuartige Programmier-Paradigmen

• Komponenten-orientierte Programmierung

• Agenten-orientierte Programmierung

• Aspekt-orientierte Programmierung

• generative Programmierung

• generische Programmierung

• Subjekt-orientierte Programmierung

• Datenstrom-orientierte Programmierung

• Graphen-ersetzende Programmierung

• konkatenative Programmierung

• multi-paradigmatische Programmierung

• …

Bei der Objekt-orientierten Programmierung beschreibt man komplexe Systeme / Problem-
Stellungen mittels den Namens-gebenden Objekten. Eine Menge von zusammen-
gehörenden / ähnlichen Objekten werden als eine Klasse betrachtet. In komplexen Syste-
men werden meist mehrere Klassen von Objekten in einem Programm bearbeitet.
Beim Objekt-orientierten Ansatz geht es darum Eigenschaften (Attribute) und Prozeduren
(Methoden), die zu einem Ding (Objekt) dazugehören, gemeinsam zu verwalten und zu pro-
grammieren.
bei Modulen ist die Zusammenfassung eher inhaltlich gemein z.B. mathematische Funktio-
nen oder Funktionen zur Zeit (Berechnungen, Umrechnungen, …)

hier nur grobe Verwendung und Nutzung

HelloWorld
mit 2 Texten Begrüßung und Verabschiedung

Bevor wir uns in die Objektwelt von Python begeben, wollen wir erst einmal klären mit was
wir es hier zu tun haben.
Objekte sind in der Realität irgendwelche konkreten Dinge, wie z.B. der Mitschüler Friedrich,
der Lehrer Müller, der Porsche von Frau Geizig oder die gelbe Blume auf dem Küchentisch.

BK_SekI+II_Python_prof.docx - 220 - (c,p) 2015 - 2026 lsp: dre

In der Informatik werden ebenfalls Objekte der Realität modelliert. Wir schaffen uns also ein
informatisches Objekt, um Informationen rund um das Real-Objekt herum elektronisch / in-
formatisch bearbeiten zu können.

Die Modellierung für die Objekt-orientierte Programmierung erfolgt heute zumeist über soge-
nannte UML-Diagramme (Unified Modeling Language = universelle Modellierungs-Sprache).
Bei modernen Systemen erstellt das UML-Modellierungs-Programm gleich den Quelltext-
Grundrahmen für die modellierten Klassen.

Praktisch jedes Objekt kann man einer oder mehrerer Gruppen zuordnen. In der Informatik
heißen die Gruppen Klassen. Objekte mit gleichen gemeinsamen Merkmalen werden in einer
Klasse bearbeitet. Im Prinzip kann man zu einer Klasse immer spezielle Mengen / Arten von
Informationen verarbeiten. Gerade deshalb lohnt es sich nicht für jedes Objekt die einzelnen
Informations-verarbeitenden Vorgänge einzeln zu programmieren, sondern es ist effektiver,
sie irgendwie gemeinsam zu erstellen. Eine Möglichkeit so etwas zu machen, haben wir mit
den Funktionen kennengelernt. Sie liefern aufgrund bestimmter übergebener Argumente
einen oder mehrere Werte (Ergebnisse) zurück, egal für welche konkreten Variable oder
Wert dies erfolgt.

Definition(en): Objekt (allg.)
Ein Objekt ist etwas, das Eigenschaften (Attribute) hat und bestimmte Dinge kann (→ Me-
thoden; Funktionen).

Objekte sind Dinge der Realität, die miteinander Informationen austauschen (kommunizie-
ren).

Definition(en): Objekt (informatisch)

Informatische Objekte sind Abbildungen real-existierender Dinge in einem Computer-Modell.

Wenn wir ein Objekt einer Klasse zugeordnet haben oder aus ihr heraus entwickeln, dann
nennen wir das Objekt eine Instanz (der Klasse).
Jedes Objekt hat eine bestimmte Menge von Eigenschaften, wie z.B. einen Namen oder eine
Farbe usw. usf. In Klassen werden die gemeinsamen Arten von Eigenschaften Attribute ge-
nannt. Bei der Notierung hat sich punktierte Schreibung durchgesetzt. So wird der Name von
dem Lehrer-Objekt Müller über die Notierung Müller.Name erreicht.
Da alle Instanzen z.B. der Lehrer-Objekte – also der Klasse Lehrer – über einen Namen ver-
fügen, wird der Klasse das Attribut Name zugeordnet. Geschrieben wird dann Lehrer.Name.
Neben den charakterisierenden Eigenschaften eines Objektes (eben die Attribute) brauchen
wir noch Verfahren z.B. zum Abfragen oder Ändern des Lehrer.Name's. Die Verfahren wer-
den Methoden genannt. Praktisch gehört fast immer zu jedem Attribut einer Klasse eine set-
zende und eine abfragende Methode. Die beiden heißen fast immer SET und GET.
Die Notierung würde dann Lehrer.Name.set(…) bzw. Lehrer.Name.get(…) lauten. GET und
SET sind also praktisch Funktionen.

BK_SekI+II_Python_prof.docx - 221 - (c,p) 2015 - 2026 lsp: dre

Definition(en): Klassen
Klassen sind die allgemeinen Beschreibungen / Bildungs-Vorlagen für (informatische) Ob-
jekte.

Eine Klasse ist ein Bildungsschema für ähnliche / vergleichbare Objekte.

Definition(en): Attribute
Attribute sind die individuellen Eigenschaften von Objekten.

Definition(en): Methoden
Methoden sind die Funktionen / Fähigkeiten / Arbeitsmöglichkeiten / … von Objekten und /
oder Klassen.

Methoden lassen durch das sogenannte chaining kombinieren / aneinanderhängen.

z.B.:
text = "Alle a's zählen."

text.lower().count("a")

Definition(en): Klassen-Attribute
Klassen-Attribute sind gemeinsame oder übergreifende Eigenschaften von Objekten einer
Klasse (z.B. die Anzahl der Objekte einer Klasse).

Zum besseren Verständnis und für eine genauere Übersicht wer-
den Objekte und Klassen in verschiedenen Schemata dargestellt.

BK_SekI+II_Python_prof.docx - 222 - (c,p) 2015 - 2026 lsp: dre

Wie das Objekt intern funktio-
niert, also wie es z.B. den Namen
abspeichert oder beim Konto den
aktuellen Konto-Stand berechnet
bleibt für die Umgebung uninte-
ressant und (meist) auch un-
sichtbar.

beim Objekt-orientierten Ansatz geht es darum Eigenschaften (Attribute) und Prozeduren
(Methoden), die zu einem Ding (Objekt) gehören, gemeinsam zu verwalten und zu program-
mieren
bei Modulen ist die Zusammenfassung eher inhaltlich gemein z.B. mathematische Funktio-
nen oder Funktionen zurzeit (Berechnungen, Umrechnungen, …)

Instanz-Variablen sind die Attribute eines Objektes

Objekt-orientierte Programmierung (OOP)

BK_SekI+II_Python_prof.docx - 223 - (c,p) 2015 - 2026 lsp: dre

Konzepte der OOP

• Abstraktion

• (Daten-)Kapselung

• Feedback

• Persistenz

• Polymorphie

• Vererbung

Definition(en): Objekt-orientierte Programmierung (OOP)
Die Objekt-orientierte Programmierung ist eine Form der Software-Erstellung auf der Basis
von reelen Grund-Strukturen und deren Umsetzung in informatische Modelle.

Unter Objekt-orientierter Programmierung versteht man das Programmier-Paradigma, das
Daten und Programm-Code in übersichtlichen Einheiten – Klassen genannt – kapselt / be-
handelt.

Objekt-orientierte Programmierung ist eine Methode der Modularisierung von Programmen,
bei der in Anlehnung an Gruppen von realen Sachverhalten informatische Modelle erzeugt
und verarbeitet werden.

Unter der Objekt-orientierten Programmierung versteht man das Programmieren von kom-
plexen Software-Systemen, bei dem Objekte und deren Kommunikation untereinander im
Vordergrund steht.

 UML
MVC-

Konzept

Auftrag
Problem

Objekt-
orientierte
Analyse
(OOA)

Objekt-
orientiertes

Design
(OOD)

Objekt-
orientiere
Program-
mierung
(OOP)

Programm

BK_SekI+II_Python_prof.docx - 224 - (c,p) 2015 - 2026 lsp: dre

GUI-Schicht

Sicht des Nutzers auf die Daten (Daten-Eingabe und
–Anzeige; Bedienung)

↑↓

Fachkonzept-Schicht

Datenverarbeitung; Fach-Modell;

↑↓

Daten-Speicherung z.B in einer Datenbank
Datenhaltungs-Schicht

Design pattern – Entwurfsmuster

Analyse-Situation Lösung / UML-Diagramm

Gemeinsame Attribute und
Methoden

abstrakte Oberklasse

mehrere Klassen haben eini-
ge gemeinsame Attribute in
der Oberklasse
klassische Vererbungs-
Situation der Verallgemei-
nerung

spezielle Unterklasse konkrete Oberklasse

zu einer (konkreten) Klasse
kommt eine Unterklasse mit

Daten einer Beziehung
festhalten
Koordination von Objekten

Assoziation über eine vermittelnde
Klasse

Container / Kollektion und
ihr Inhalt

Aggregation in einer Sammlung

Beschreibung
Registrierung von Ereig-
nissen

Aggregation Beschreibungen

Attribut-Werte weitergeben Aggregation zur Zuordnung gleicher
Attribut-Werte

nach Q: http://www.oszhdl.be.schule.de/gymnasium/faecher/informatik/ooa-ood/designpattern.htm

BK_SekI+II_Python_prof.docx - 225 - (c,p) 2015 - 2026 lsp: dre

8.11.x. Objekt-orientierte Programmierung mittels Turtle-Grafik

Das Modul turtle ermöglicht auch die Objekt-orientierte Programmierung von zeichnenden
Schildkröten. Der Umgang mit Objekten gehört heute für eigentlich alle Module zum Stan-
dard. Moderne Programme für grafische Bedienoberflächen – wie Windows, iOS, Android
oder Linux-KDE bzw. Linux-gnome – lassen sich anders gar nicht mehr benutzen. In unseren
ersten Turtle-Übungen haben wir nur unterschwellig mit einem Turtle-Objekt gearbeitet (→
8.8. Turtle-Graphik – ein Bild sagt mehr als tausend Worte). Es wurde gleich für uns automa-
tisch angelegt und wir konnten es benutzen, ohne dass wir uns um irgendwelche "Objekte"
einen Kopf machen mussten. Das war zu diesem Zeitpunkt auch sinnvoll, da wir uns einfach
(und unkompliziert) die grafische Seite der Programmierung ansehen wollten.
Nun gehen wir aber einen deutlichen Schritt in Richtung moderne Programmierung.
Übrigens werden Sie merken, dass die meisten Programme aus dem Internet auch immer Objekt-orientiert pro-
grammiert sind.

Wir wollen zuerst einmal zwei Schildkröten auf dem Bildschirm erzeugen. Diese sollen dann
eigenständig Bewegungen ausführen.
Zuerst brauchen wir – wie üblich – das
Modul turtle, welches wir hier importie-
ren.
Nun erstellen wir uns zwei (unabhängi-
ge) Turtle-Objekte. Üblich ist die Notie-
rung der Klassen-Namen mit einem
Großbuchstaben beginnend.

 from turtle import *

t1=Turtle()

t2=Turtle()

Lassen wir das Programm an dieser Stelle laufen, sehen wir allerdings nur eine Schildkröte.
Das liegt daran, dass beim Erstellen die gleichen Vorgaben benutzt wurden. Beide Schildkrö-
ten haben die gleiche Farbe und liegen an der gleichen Position. Der Konstruktor – der aus
der Klassen-Vorgabe ein konkretes Objekt erzeugt hat, hatte nur diese Vorgaben.
Um nun zu zeigen, dass wir es mit zwei eigenständigen Objekten zu tun haben, können wir
die eine Schildkröte mit unseren typischen Funktionen bewegen.Die Klasse Turtle wird also
zweimal bemüht und die beiden Objekte t1 und t2 zu erstellen.
Allerdings müssen wir jetzt immer sagen,
welche Schildkröte wir bewegen wollen.
In der Objekt-orientierten Programmie-
rung wird dazu üblicherweise die Punkt-
Notierung genutzt. Wir geben zuerst das
benutzte Objekt an und dann hinter ei-
nem Punkt die auszuführende Aktion.
Zuerst lassen wir die Schildkröte t1 an
eine andere Position wandern.

 from turtle import *

t1=Turtle()

t2=Turtle()

t1.goto(0,100)

t1.forward(200)

Danach bewegen wir sie ein Stück vor-
wärts. Die Aktionen, Funktionen usw.
werden Methoden genannt. Es ergibt
sich also die allgemeine Notierungs-
Vorschrift objekt.methode. Man sieht
sehr schön, dass eine Schildkröte am
Koordinaten-Ursprung zurückbleibt.
Beide Schildkröten haben jetzt unter-
schiedliche Positionen. Diese Objekt-
Eigenschaften werden unabhängig für
jedes Objekt verwaltet und heißen Attri-
bute. Jede Schildkröte hat zwar die glei-
chen Attribute, aber jeweils unterschied-
liche gespeicherte Attribut-Werte.

BK_SekI+II_Python_prof.docx - 226 - (c,p) 2015 - 2026 lsp: dre

Die "zurückgebliebene" Schildkröte wollen
wir nun auch testweise bewegen. Lassen
wir sie z.B. ein Rechteck mit einer unserer
getesteten Funktionen (→ 8.8.5. Funktio-
nen) zeichnen.
Zum deutlichen Abgrenzen setzen wir sie
auch noch auf einen anderen Startplatz.
Fraglich ist ja eigentlich schon, welche
Schildkröte bewegt wird. Ist es die letzte
angesprochene?
Die Überraschung ist perfekt, mit einem
Mal haben wir drei Schildkröten.
Die Schildkröte t2 wurde zwar schräg
nach unten bewegt, aber das Rechteck
ging nicht von dieser Position und nicht
von dieser Schildkröte aus.
Ganz offensichtlich fuktioniert zwar unsere
Rechteck-Funktion, aber nicht Objekt-
bezogen.
Um einen Objekt-Bezug hinzubekommen,
müssen unsere Funktionen speziell defi-
niert werden. Als ersten Parameter über-
geben wir einen Objekt-Bezug (rot her-
vorgehoben). Der wird üblicherweise self
genannt. Mit diesem self-Objekt (blau
hervorgehoben) werden dann alle Aufga-
ben innerhalb der Funktion – besser jetzt
Methode genannt – erledigt.
Nun befriedigt uns das Ergebnis auch
hinsicht des erwarteten Ergebnisses.

 from turtle import *

def rechteck(a,b):

 for _ in range(2):

 forward(a)

 left(90)

 forward(b)

 left(90)

t1=Turtle()

t2=Turtle()

t1.goto(0,100)

t1.forward(200)

t2.goto(-50,-50)

t2.rechteck(70,110)

 ...

def rechteck(self,a,b):

 for _ in range(2):

 self.forward(a)

 self.left(90)

 self.forward(b)

 self.left(90)

...

Tippt man langsam genug – bzw. wartet man einen kleinen
Augenblick nach der Eingabe des Punktes, dann zeigt uns
IDLE aufeinmal ein kleines Auswahlwahl-Fensterchen an. Hier
können wir die verfügbaren Methoden

BK_SekI+II_Python_prof.docx - 227 - (c,p) 2015 - 2026 lsp: dre

Informatisch betrachtet haben wir es bei der Objekt-orientierten Pro-
grammierung ja immer mit Klassen und Objekten zu tun. Mit dem Mo-
dul turtle bekommen wir eine Klasse Turtle zur Verfügung gestellt, die
alle Attribute (Eigenschaften) und Methoden (Funktionen) enthält.
Von der Klasse Turtle können wir uns nun beliebig viele Schildkröten
zum Zeichnen ableiten. Jede Schildkröte hat nun quasi einen Namen,
da beim Ableiten eines Turtle-Objektes immer ein Variablen-Name an-
gegeben werden musste. Über diesen Namen ist das Objekt im folgen-
den Programm ansprechbar. Der Varibalen- bzw. Objekt-Name steht
immer vor dem Punkt in einer Objekt-Anweisung.
Jedes Objekt bekommt einen Satz eigener Attribute. Das sind z.B. die
x- und y-Position oder auch die Farbe. Schließlich soll sich ja auch gje-
des Objekt frei auf der Zeichenfläche bewegen können.

Die abgeleiteten turtle-Objekte haben Zugriff auf
den gesamten Methoden-Satz. Jedes Turtle-Objekt
kann sich unabhängig von den anderen vorwärts
oder rückwärts bewegen oder auch drehen. Die für
das jeweilige Objekte gewünschte Methode wird
immer hinter dem Punkt der Objekt-Anweisung
notiert.

BK_SekI+II_Python_prof.docx - 228 - (c,p) 2015 - 2026 lsp: dre

8.11.x. Klassen – selbst erstellen

Beispiel Klasse "Konto":

Wenn man zuerst einmal sehr stark vereinfacht,
dann haben wir nur wenige Aktionen, die wir mit
einem Konto machen wollen / können wollen.
Mit den Pfeilen kennzeichnen wir Aktionen. Startet
ein Pfeil bei einer Klasse, dann wird diese für die
Aktion gebraucht.
Am Ende des Pfeil's steht die resultierende Klasse.

eine leere Klasse lässt sich mit:

class Konto:

 pass

definieren

im Hauptprogramm muss dann eine Instanz abgeleitet werden:

konto1 = Konto()

und kann mit (neuen) Attributen gefüttert werden:

konto1.stand = 1000

konto1.inhaber = "Mustermann"

die aktuelle Instanz lässt sich mit

konto1.__dict__

anzeigen / weiterverwenden

Je konkreter man wird, umso
mehr Klassen werden in das
Modell einbezogen.

Beim Umsetzen in ein Pro-
grammiersprache macht man
dann oft einen Zwischenschritt
und formuliert in einer Pseu-
dosprache.

So könnte das Einzahlen etwa so formuliert werden:

(neuer)Kontostand  einzahlen((aktueller)Kontostand; Betrag)

Die Aktion einzahlen benötigt zum Funktionieren einen (aktuellen) Kontostand und einen
(einzuzahlenden) Betrag. Als Ergebnis erhalten wir einen (neuen) Kontostand zurück. Die

BK_SekI+II_Python_prof.docx - 229 - (c,p) 2015 - 2026 lsp: dre

Zuweisung (Ergibt-Anweisung) wird hier als gerichtete Handlung durch einen Pfeil gekenn-
zeichnet.
Etwas Python-typischer ist die folgende Formulierung:

(neuer)Kontostand = einzahlen((aktueller)Kontostand; Betrag)

Die PASCALer würden es so notieren:

(neuer)Kontostand := einzahlen((aktueller)Kontostand; Betrag)

In jedem Fall meinen wir eine Zuweisung des rechten Teils zum linken.
Natürlich benutzen wir dann auch die in der Objekt-Orientierung festgelegten Begriffe Me-
thoden und Attribute. Die Methoden sind eben die vorgestellten Aktionen. Attribute sind die
einzelnen Eigenschaften, welche die Objekte / Instanzen dann besitzen. Zu den Objekten
kommen wir dann später. Bis jetzt erstellen wir "nur" allgemeine Beschreibungen – eben die
Klassen.

BK_SekI+II_Python_prof.docx - 230 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Verbessern Sie das Klassen-Methoden-Diagramm so, dass ein Konto nur

angelegt werden kann, wenn ein Besitzer vorhanden ist und und eine Ein-

zahlung vorgenommen wird!

2. Erstellen Sie ein Klassen-Diagramm mit zugehörenden Methoden für die

folgenden Klassen:

a) Briefmarken-Sammlung b) Adressbuch c) Bibliothek

3. Geben Sie für die einzelnen Methoden an, ob sie etwas benötigen (z.B. ein-

zahlen(Betrag)), etwas zurückliefern (z.B. Kontostand = anzeigenKonto-

stand()) oder ev. auch beides!

am Besten vor der praktischen Umsetzung in eine Programmiersprache jeweils das Klas-
sen-Diagramme erstellen bzw. ein vorhandenes nutzen
gute Vorplanung spart Arbeit und schützt zumindestens teilweise vor bösen Überraschungen

geeignete Form UML-Diagramme

UML steht dabei für Unified Modeling Language
(dt: einheitliche Modellierungs-Sprache).

stellen standardisiert Klassen mit ihren Attributen
und Methoden sowie die Beziehungen zu anderen
Klassen dar

BK_SekI+II_Python_prof.docx - 231 - (c,p) 2015 - 2026 lsp: dre

nebenstehend für eine minimalistische
Konto-Klasse

die üblichen Alternativen sind die pri-
vate oder globale Nutzung / Freigabe
der Variable
private (interne) Variablen erhalten ein
Minus-Zeichen (-)
mit einem Plus-Zeichen (+) kennzeich-
net man globale (public) Variablen

 Konto Klassenname

 - Kontostand Attribute

 +C
+?
+!
+!
+D

neu
zeigeKontostand(Kontostand)
einzahlen(Betrag)
auszahlen(Betrag)
löschen

Methoden

C steht für Constructor (Konstrukteur) und ist die Methode, mit der neue Objekte (Instanzen)
erzeugt werden. In Python heißt diese init().
Mit D wird der Destructor (Zerstörer) gekennzeichnet. Mit ihm werden vorhandene Objekte /
Instanzen gelöscht (sauber entfernt).
Python verwendet nur selten Destructoren. Dies ist nur notwendig, wenn Attribut-Werte ge-
rettet werden müssen. Das könnte z.B. ein Rest-Kontostand sein, der notwendigerweise
beim Auflösen des Konto ausgezahlt oder einem anderen Konto zugeordnet werden muss.
Die Benennung ist freigestellt, meist nutz man del(). In anderen Sprachen sind Destruktoren
zwingend vorgeschrieben, um eine sauberes Objekt-Handling zu realisieren.
Steht vor der Methode ein Fragezeichen (?), dann gibt diese einen oder mehrere Werte zu-
rück. Die Methode hat (an-)fragenden Charakter.
Mit einem Ausrufe-Zeichen (!) werden solche Methoden gekennzeichnet, die schreibend auf
die (lokalen) Attribute wirken. Die Methode ist anweisend / befehlend.

verbesserte bzw. erweiterte Konto-
Klasse

Verwendung sehr elementarer Metho-
den

z.B. wird einzahlen() auf das Einbrin-
gen eines Betrag's reduziert. Will man
den Kontostand vorher oder hinterher
wissen, dann muss man zeigeKonto-
stand() benutzen.

 Konto Klassenname

 +
-
+
-
-

Kontenzähler
Kontostand
Dispo
Inhaber
Berechtige

Attribute

 +C
+?
+!
+!
+?
+!
+!
+D

neu
zeigeKontostand(Kontostand)
zeigeInhaber(Inhaber)
ändereInhaber(neuerInhaber)
berechtigt(Akteur)
einzahlen(Betrag)
auszahlen(Betrag)
löschen

Methoden

Aufgaben:

1. Erstellen Sie ein UML-Klassen-Diagramm für die Klasse "Adressbuch"!

2. Überlegen Sie sich ein Klassen-Methoden- und ein UML-Diagramm für eine

Klasse "DVD-Ausleihe"!

für die gehobene Anspruchsebene:

3. Erstellen Sie Klassen-Methoden- und UML-Diagramm für einen Streaming-

Dienst mit Einzel-Abrechnung (Kein Abo!)!

BK_SekI+II_Python_prof.docx - 232 - (c,p) 2015 - 2026 lsp: dre

Klasse-Objekt-Beziehung

Aus einer Klasse können wir Objekte generieren. Die Informatiker spre-
chen auch von Instanzen (d(ies)er Klasse). Dies sind die ganz konkreten
Dinge / Sachverhalte, die wir verarbeiten wollen. Also z.B. die Kuh "Else",
der Ziegenhirt "Peter" oder das Auto "Speedi 3000". Sie werden nach dem
Muster erstellt, was in der Klasse vordefiniert ist.
Wenn man einzelne Objekte (vielleicht als Beispiel) in ein UML-Diagramm
bringen will, dann werden die Rechte dafür mit abgerundeten Ecken ge-
zeichnet. Die Beziehung wird als einfacher Pfeil mit gestrichelter Linie
dargestellt.
Die Attribute werden dann meist auch mit konkreten Werten geführt. Die
Methoden werden ohne Veränderungen von der Klasse übernommen.

"ist"-Beziehung (Vererbung)

Bei den "ist"-Beziehungen handelt es sich um klassische Über- und Unter-
Ordnungen von Klasse als Hierrarchie. Die untergeordnete Klasse ist eine
Verfeinerung der oberen Klasse. Sie erbt von der übergeordneten Klasse
viele Attribute und Methoden, kann diese aber in sich überschreiben oder
erweitern.
In der Informatik gehören alle Klassen automatisch zur Klasse "Objekt".
Sie erben von dieser Klasse bestimmte minimale Attribute und Methoden,
die minimal notwendig sind. Das könnten z.B. eine Speicher-Adresse und
die minimalste init()-Methode sein. Diese Methode würde dann vielleicht
nur eine Speicher-Adresse festlegen.
Die Klasse "Objekt" darf nicht mit einem konkreten Objekt – besser einer
Instanz – verwechselt werden. Die Klasse "Objekt" ist die allgemeine (mi-
nimalste) Ableitungs-Vorschrift für jedes spätere Objekt (- jede Instanz).

"besteht_aus"-Beziehung (Aggregation)

Hier beinhaltet eine Klasse eine oder mehrere andere Klassen, die für sich
eigenständig sind und keine Verfeinerung darstellen. Die Instanzen der
Unterklasse können auch weiter existieren, wenn das übergeordnete Ob-
jekt gelöscht wird. Diese Objekte müssen nicht zwangsläufig mit einem
übergeordneten Objekt gemeinsam gelöscht werden.
Karteikarte ist eine Klasse mit eigenständigen Objekten.
Man kann sich später beliebig viele einzelne Karteikarten als Objekte vor-
stellen, ohne dass diese eine Kartei bilden.
Eine Kartei ist nur dann vorhanden, wenn mindestens ein Karteikarten-
Objekt vorhanden ist.
Ein anderes klassisches Beispiel ist die Klasse "Auto", die wiederum aus
vielen Bauteil-Klassen besteht. Sie könnte z.B. die Klassen "Motor", "Rad"
und "Sitz" enthalten. Jede der später erstellten Instanzen – z.B. von "Mo-
tor" – kann unabhängig von einem konkreten "Auto" für sich existieren und
auch für ganz andere Objekte (vielleicht ein Motor-Boot) verwendet wer-
den.
In einigen UML-Diagrammen findet man auch die Umschreibung "ge-
hört_zu". Hier wird dann die "Pfeil"-Richtung getauscht.

BK_SekI+II_Python_prof.docx - 233 - (c,p) 2015 - 2026 lsp: dre

"hat"-Beziehung (Komposition)

Bei einer "hat"-Beziehung beinhaltet eine Klasse ebenfalls eine oder meh-
rere andere Klasse. Nur hier existieren diese Klassen nur im Zusammen-
hang mit der Oberklasse.
Ein klassisches Beispiel ist die Klasse "Raum" zur Klasse "Gebäude".
Räume existieren nur im Zusammenhang mit dem Gebäude.
Werden später Instanzen von "Gebäude" gelöscht, dann existieren die
darin angelegten Räume (Instanzen der Klasse "Raum") nicht mehr. Sie
werden mit gelöscht. Eine Existenz ohne ein Gebäude ist nicht denkbar.

Im Zusammenhang von "hat"-Beziehungen spricht man bei der übergerdneten Klasse auch
gerne von einer Besitzer-Klasse. Wenn der Besitzer nicht mehr existiert, dann existieren die
zugeordnten Instanzen anderer Klassen auch nicht mehr.

"kennt"-Beziehung

Mit dieser Beziehung werden kommunikative Bezie-
hungen charakterisiert. Zwischen den Objekten der
Klassen sollen dann später Nachrichten ausgetauscht
werden. "Kennt"-Beziehungen werden meist zwischen
Klassen der gleichen oder benachbarten (direkt über-
oder unter-geordneten) Klasse(n) aufgebaut.
Im nebenstehenden Beispiel sind "Schüler" und "Leh-
rer" Klassen auf der gleichen Hierrarchie-Ebene (nicht
abhängig von der Darstellung!). Später müssen Lehrer
und Schüler dann zu Schul-Klassen zusammengefasst
werden, was dann über die "kennt"-Beziehung einfach
realisierbar ist.

ein etwas größeres UML-Klassen-
Diagramm könnte dann nebenstehen-
den Aufbau haben

BK_SekI+II_Python_prof.docx - 234 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen Sie ein realistisches Klassen-Diagramm (UML) aus den folgenden

Klassen und geben Sie auch immer ein passendes Objekt an! Im Klassen-

Symbol nennen Sie immer mindestens ein Attribut und eine Methode (außer

init() bzw. del())!

 (LKW, Fahrrad, Fahrzeug, motorisiertesFahrzeug, PKW, Mercedes, nicht-

motorisiertesFahrzeug)

2. Erstellen Sie ein Klassen-Diagramm für "Fahrrad"! Es reichen die wesentli-

chen Attribute und Methoden.

3. Erstellen Sie ein realistisches Klassen-Diagramm (UML) aus den folgenden

Klassen und geben Sie auch immer ein passendes Objekt an! Im Klassen-

Symbol nennen Sie immer mindestens ein Attribut und eine Methode (zu-

sätzlich zu init() und del())!

(Schüler, Schule, Klassenraum, Lehrer, Gebäude, Tisch, Schulleiter,

Hausmeister, Inventar)

für die gehobene Anspruchsebene:

4. Ein Bauer will seine Wirtschaft vollständig digitalisieren. Erstellen Sie ein

UML-Diagramm. dass die von Ihnen als digital zu verwaltenden Klassen mit

wichtigen (den wichtigsten!) Attributen und Methoden vorstellt!

BK_SekI+II_Python_prof.docx - 235 - (c,p) 2015 - 2026 lsp: dre

Übersicht / Legende zu UML-(Klassen-)Diagrammen:

BK_SekI+II_Python_prof.docx - 236 - (c,p) 2015 - 2026 lsp: dre

8.11.x.1. Erstellen einer Klasse

Erzeugen einer Instanz / eines Objektes im Programm dann mit

instanzname = klassenname(initialattribute)

mit pass wird für die Phase der Programm-Entwicklung temporär die Notwendigkeit von in-
haltlichen Quellcode ausgeschaltet
das gilt für Klassen und Methoden

Normalerweise sind in Python die Attribute und Methoden einer Klasse von außen sichtbar
bzw. nutzbar. Zugriff immer über den Namen der Instanz und dem Punkt-getrennten ent-
sprechenden Attribut bzw. dem Methodennamen.

Das ist aber in der Objekt-orientierten Programmierung nicht gewollt. Die Attribute sollen
immer nur über geeignete Methoden verändert oder gelesen werden. Die Methoden werden
meist als get(Attributname() und set(Attributname) definiert.
Wir sprechen auch vom get-set-Paar oder bei vielen von den Gettern und Settern.

Unsichtbare Klassen-Bestandteile werden mit private deklariert.
Gibt man direkt vor dem Namen einen Unterstrich an, dann ist der Klassenbestandteil als
protected gekennzeichnet. Dieses gilt nur für Programmierer (als Konvention / Empfehlung),
dem Interpreter ist dies egal. Für ihn sind die Attribute und Methoden immer (über die In-
stanz) sichtbar

Die Quellcode-Texte für ein spezielles Beispiel – hier eine Konto-Klasse sind grün umrahmt.

Konto-Beispiel (Schritt 1)

class Konto:

 pass

Die allgemeinen Quellcode's sind ohne diesen Rahmen und müssen immer für ein konkretes
Beispiel angepasst werden.

class Klassenname():

 pass

BK_SekI+II_Python_prof.docx - 237 - (c,p) 2015 - 2026 lsp: dre

8.11.x.1.1. der Konstruktor

class Klassenname():

 def __init__(self):

 pass

hat eine Klasse keinen Konstruktor, dann wird der Konstruktor der Oberklasse aufgerufen
man kann aber auch den Konstruktor der Oberklasse explizit aufrufen und ausgewählte Ei-
genschaften etc. verändern / überschreiben

class Klassenname(Objekt):

 def __init__(self):

 Objekt.__init__(self)

der Aufruf – und damit das Erzeugen eines (konkreten) Objektes erfolgt dann im Programm
mit:

objektname = Klassenname()

Wenn man sich schon auf der Ebene des Konstruktors über die unbedingt zu definierenden
(initialen) Variablen und ev. auch Werte schon klar ist, dann kann man diese gleich mit in die
Vordefinition des Konstruktors einfließen lassen.
Grundlage dafür könnte z.B. ein gut ausgearbeitetes UML-Diagramm sein.

Konto-Beispiel (Schritt 2)

class Konto:

 def __init__(self,inhaber,betrag,autorisiert=["Banker"]):

 pass

Diese Vordefinition – immer gut am pass zu erkennen, muss dann später unbedingt mit Le-
ben – sprich: Programm-Text – ausgefüllt werden.
Dazu müssen wir aber erst mal klären, wo diese Werte hin gehören.

BK_SekI+II_Python_prof.docx - 238 - (c,p) 2015 - 2026 lsp: dre

8.11.x.2. Attribute einer Klasse

es wird zwischen Klassen-Attributen und Instanz-Attributen unterschieden
Klassen-Attribute werden für eine Klasse nur einmal angelegt und gelten für die Klasse all-
gemein bzw. für alle Instanzen gemeinsam
eine typische Verwendung ist das Zählen der Instanzen, die gerade von einer Klasse erzeugt
/ gehändelt werden
Klassenattribute folgen direkt im class-Block einschließlich der Zuweisung eines Initial-
Wertes

Instanz-Attribute sind nur innerhalb der Instanz gültig,
ein Attribut der einen Instanz eines Klassenobjektes ist unabhängig vom gleichnamigen At-
tribut einer anderen Instanz der selben Klasse

public-Attribute sind von außen über die Punkt-Schreibung benutzbar

private-Attribute sind nur innerhalb einer Instanz benutzbar / sichtbar; ein Zugriff von Außen
muss über darauf abgestimmte Methoden (z.B. GET- und SET-Funktionen) realisiert werden
in Python wird ein Attribut private, wenn man vor den Namen zwei Unterstriche schreibt

Attribute mit nur einem Unterstrich sind protected, sie sind praktisch public, aber Program-
mierer sollten nicht auf diese Zugreifen; die protected-Klassifizierung ist also nur eine Emp-
fehlung, kein echtes Statement

ev. als Beispiel dummer und schlauer Melder aus "Python für Kids" S. 387 ff.

Schreibung
der Variable

Status-
Bezeichnung

Bedeutung / Eigenschaften

name public von außen sichtbar (lesbar und schreibar)
innerhalb der Klasse lesbar und schreibbar

_name protected von außen sicht (lesbar und schreibar), ABER
Zugriff durch Programmierer der Klasse nicht gewollt
innerhalb der Klasse lesbar und schreibbar

__name private von außen nicht sichtbar (nicht lesbar und nicht schreib-
bar)
innerhalb der Klasse lesbar und schreibbar

ev. Objekt-Hierarchie BlackBox mit verschiedenen inneren (nach außen) unsichtbaren Funk-
tionen / Reaktionen
ähnlich Skalierungs-Objekt / -Klasse aus "Raspberry Pi programmieren" S.85 ff.

Konto-Beispiel (Schritt 2)

class Konto:

 kontenzaehler=0

 def __init__(self,inhaber,betrag,autorisiert=["Banker"]):

 self.__inhaber=inhaber

 self.__kontostand=betrag

 self.__autorisiert=autorisiert

 Konto.kontenzaehler+=1

 self.__kontonummer=Konto.kontenzaehler

BK_SekI+II_Python_prof.docx - 239 - (c,p) 2015 - 2026 lsp: dre

8.11.x.3. Methoden einer Klasse

Methoden sind nichts anderes als Funktionen innerhalb einer Klasse. Sie sind auch nur in-
nerhalb der Klasse sichtbar und nutzbar.
Will man eine Klassen-Methode nutzen, dann geht das immer nur über die erzeugte Instanz
(das erstellte Objekt).
Ein Zugriff von außen kann verhindert werden, wenn die Methode als privat deklariert wur-
de. Eine private Methode kann nur innerhalb einer Klasse benutzt werden.
Alle Methoden müssen mindestens und damit als ersten Parameter eine Referenz auf sich
selbst als aufrufendes Objekt enthalten.

def methode(self{, parameter})

def methode(self{, parameter=wert})

Konto-Beispiel (Schritt 3)

class Konto:

 kontenzaehler=0

 kontennummer=0

 def __init__(self,inhaber,betrag,autorisiert=["Banker"]):

 self.__inhaber=inhaber

 self.__kontostand=betrag

 self.__autorisiert=autorisiert+inhaber

 Konto.kontenzaehler+=1

 Konto.kontennummer+=1

 self.__kontonummer=Konto.kontennummer

 def abfragen(self):

 pass

 def einzahlen(self):

 pass

 def auszahlen(self):

 pass

Nun werden die einzelnen Methoden durch Quelltext untersetzt. Ev. sollten auch noch durch
Fluß- oder UML-Diagramme die notwendigen Parameter geklärt werden. Einmal program-
mierte Funktionen sollten dann später auf der Ebene der Parameter-Listen nicht mehr geän-
dert werden. Bei kleinen Projekten überschaut man die verschiedenen Stellen mit den zu
ändernden Parameter-Listen in Methoden-Aufrufen noch, aber bei großen Projekten wird
schnell mal eins übersehen.

…

 def abfragen(self):

 print("===> Kontostand: ",self.__kontostand

…

Hier ist quasi auch eine wesentliche Entscheidung über das Ausgabe-Prinzip gefallen. Wir
geben in diesem Beispiel immer gleich in den Methoden aus. Praktisch kann das auch im

BK_SekI+II_Python_prof.docx - 240 - (c,p) 2015 - 2026 lsp: dre

Haupt-Programm erledigt werden. Dann hätte die abfragen()-Methode z.B. so aussehen
können:

…

 def abfragen(self):

 return self.__kontostand

…

Konto-Beispiel (Schritt 4)

…

 def einzahlen(self,betrag):

 if betrag > 0:

 self.__kontostand+=betrag

 print("===> Kontostand: ",self.__kontostand)

 else

 print("===> Fehler! (Kein gültiger Betrag!)")

…

Konsequenterweise sollten wir hier auch gleich unsere abfragen-Methode benutzen, statt die
Ausgabe hier wieder zu organisieren.

…

 def einzahlen(self,betrag):

 if betrag > 0:

 self.__kontostand+=betrag

 self.abfragen

 else

 print("===> Fehler! (Kein gültiger Betrag!)")

…

…

 def auszahlen(self,betrag,initiator):

 if initiator in self.__autorisiert:

 if betrag <= self.__kontostand:

 self.__kontostand-=betrag

 print("===> AUSZAHLUNG: ",betrag)

 else

 print("===> Fehler! (Kein gültiger Betrag!)")

 print("===> Kontostand: ",self.__kontostand)

…

BK_SekI+II_Python_prof.docx - 241 - (c,p) 2015 - 2026 lsp: dre

8.11.x.4. Speicher-Bereinigung

8.11.x.4.1. der Destruktor

def __del__()

in den Rumpf werden die Anweisungen geschrieben, die vor / beim Löschen des Objektes
(der Instanz / Referenz) erledigt werden sollen / müssen

del(instanz)

Konto-Beispiel (Schritt 5)

…

 def __del__(self):

 if betrag > 0:

 self.auszahlen(self)

 else

 print("===> Fehler! (Kontenausgleich notwendig!)")

…

BK_SekI+II_Python_prof.docx - 242 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Verbessern Sie das Konten-Beispiel so, dass mehrfache (gleiche) Fehler-

Meldungen in eine eigene Methode ausgelagert werden!

2. Erweitern Sie das Konto-Programm so, dass alle Fehler-Meldungen über

eine Methode ausgegeben werden!

3. Überlegen Sie sich, wie man alle Fehler-Meldungen in einer (neuen) Me-

thode unterbringen könnte! Die Methode soll immer den gerade passenden

Fehler ausgeben!

4. Regionaliseren Sie das Programm für den englischen Sprachraum!

5. Erstellen Sie eine Klasse "Auto" unter Beachtung der folgenden Vorgaben

und geforderten Methoden! Testen Sie alle Methoden in einem kleinen Test-

Programm! Nach einem erfolgreichen Test können einzelne Methoden aus

dem Test-Programm auskommentiert werden – müssen aber wieder nutzbar

gemacht werden können!

Ein Auto hat die Merkmale Kennzeichen, Verbrauch (gemeint pro 100 km),

TachoStand, TankMaxVol (maximales Tank-Volumen) sowie TankAktVol

(aktuelles Tank-Volumen).

Beim Erstellen eines Auto's gehen wir davon aus, dass es ungefahren und

unbetankt ist.

Die Klassen-Definition soll alle (sinnvollen) Geter und Seter (Gib- und Setz-

Methoden) enthalten.

Als spezielle Möglichkeiten sollen einem späteren Hauptprogramm die fol-

genden Funktionen zur Verfügung stehen: StatusAnzeige() (als Nutzer-

freundliche Anzeige aller Attribute in einer zweizeiligen Ausgabe), tan-

ken(volumen) und fahren(kilometer).

Für die Maximal-Bewertung werden auch Fehler-Meldungen in den Metho-

den erwartet, z.B. wenn versucht wird, zuviel Treibstoff einzufüllen usw.

usf.! Eine erste Klassen-Definition kann auch noch mit z.B. negativen Tank-

Volumen usw. arbeiten! Das Haupt-Programm liefert kontrollierte Werte für

Eingaben / Parameter!

Extra-Bewertung: die Tanken-Methode so gestalten, dass nicht gebrauchter

Treibstoff an das Hauptprogramm zurückgegeben wird! Die Anzeige soll

über das Haupt- bzw. Test-Programm erfolgen!

für die gehobene Anspruchsebene:

6. Regionaliseren Sie Ihr Konto-Programm für den französischen oder spani-

schen oder … Sprachraum (mit lateinischen Buchstaben)! (Lassen Sie sich

ev. von einem anderen Kursteilnehmer die Texte und / oder Stichworte) ge-

ben!

BK_SekI+II_Python_prof.docx - 243 - (c,p) 2015 - 2026 lsp: dre

Projekt-Aufgaben:

1. Erstellen Sie ein Menü-gesteuertes Programm nach unten aufgezeigten Bei-

spiel mit einer eigenen / geänderten Klassen-Konstruktion!

2. Gebraucht wird eine praktisch nutzbare Klassen-Definition (einschließlich

Attributen, Methoden etc.) für ein Adressbuch! Im Adressbuch sollen Name,

Vorname, Geburtsdatum, eMail und Telefonnummer gespeichert werden.

Weiterhin soll die Klasse die Anzahl der Kontakte ausgeben können und ei-

ne Anzeige machen, wenn de Kontakt heute Geburtstag hat!

3. Erstellen Sie ein kleines Testprogramm, um die Klasse mit ausgedachten

Daten auszuprobieren!

für die gehobene Anspruchsebene:

4. Erweitern Sie das Adressbuch um eine Vorwarnung, wenn jemand morgen

bzw. übermorgen Geburtstag hat!

5. Erstellen Sie ein Menü-gesteuertes Haupt-Programm für die Adressbuch-

Klasse!

BK_SekI+II_Python_prof.docx - 244 - (c,p) 2015 - 2026 lsp: dre

bank.py
class Bankkonto:

 """Einfache Bankkonto-Klasse"""

 def __init__(self,startbetrag):

 """Konstruktor: erzeugt Bankkonto"""

 self.kontostand = startbetrag

 def einzahlung(self, betrag):

 self.kontostand = self.kontostand + betrag

 def auszahlung(self, betrag):

 self.kontostand = self.kontostand - betrag

 def anzeigen(self):

 print self.kontostand

ausprobieren

konto1 = Bankkonto(100)

konto1.anzeigen()

konto1.einzahlung(200)

konto1.anzeigen()

konto1.auszahlung(125)

konto1.anzeigen()

print konto1.__doc__

Q: http://www.wspiegel.de/pykurs/kurs_index.htm

Beispiel 1

"""

direkter Dialog zwischen zwei Instanzen unterschiedlicher Klassen über deren Methoden

Nur client ist hier wirklich aktiv, server reagiert nur

Die melde-funktion von server dient hier nur zur Kontrolle

"""

class server:

 def __init__(self, wert=0):

 self.data = wert

def neu(self, wert):

 self.data = wert

def melde(self):

 return self.data

"""

server macht hier das Einfachste vom Einfachen

er merkt sich nur eine Zahl

"""

class client:

 def __init__(self, wert):

 self.wert = wert

 def setze(self):

 s.neu(self.wert)

BK_SekI+II_Python_prof.docx - 245 - (c,p) 2015 - 2026 lsp: dre

 def frage(self):

 print s.melde()

s = server()

print s.melde() # server in Grundstellung (wert = default)

c1 = client(123)

nun sind zwei Instanzen geschaffen, die miteinander reden können

c1.setze()

jetzt hat c1 wert von server neu gesetzt

s.melde()

Beispiel 2

"""

direkter Dialog zwischen Instanzen unterschiedlicher Klassen über deren Methoden

Auch hier ist nur client wirklich aktiv, server reagiert nur

Die melde-funktion von server dient nur zur Kontrolle

"""

class server:

 def __init__(self):

 self.data = []

 def hinzu(self, wert):

 self.data.append(wert)

 def melde(self):

 return self.data

"""

server macht hier schon mehr, als im Beispiel 1, er merkt sich die Zahlenwerte aller ange-

schlossenen client

aus Vereinfachungsgründen können diese Zahlenwerte durch client nach der Erstmeldung

nicht nochmal geändert werden

"""

class client:

 def __init__(self, wert):

 self.wert = wert

 s.hinzu(wert)

 def melde(self):

 return self.wert

s = server()

print "Wertesammlung in server vorher: ", s.melde() # server - Liste noch leer

clients = []

for i in (6, 5, 100, 19, 27):

 c = client(i)

BK_SekI+II_Python_prof.docx - 246 - (c,p) 2015 - 2026 lsp: dre

 clients.append(c)

print "Wertesammlung in server nachher:", s.melde()

"""

wo sind eigentlich die 5 clients geblieben, die wir in der for - Schleife erzeugt haben? Sie

liegen als Feld von Adresszeigern in der Liste clients und könnten dort jederzeit weiterver-

wendet werden. Das ginge dann so:

"""

for i in range(0, 5):

 print str(i+1) + ". client hat den Wert:", clients[i].melde()

"""

Und eben dies könnte doch auch die server - Klasse verwalten!

"""

Q: http://www.way2python.de/

Beispiel 3

"""

direkter Dialog zwischen Instanzen unterschiedlicher Klassen über deren Methoden

Hier werden sowohl client als auch server aktiv

die clients hinterlegen im Server ihre Adresse und werden durch server auf ihren Zustand

befragt.

"""

class server:

 def __init__(self):

 self.data = []

 def hinzu(self, adr):

 self.data.append(adr)

 def abfrage(self):

 werte = []

 for i in self.data:

 werte.append(i.melde())

 return werte

"""

server macht hier noch mehr, als im Beispiel 2, er merkt sich die Adressen aller angeschlos-

senen client

Zur Abfrage holt er sich die aktuellen Werte der clients, wenn es soweit ist.

Hier können die Zahlenwerte der clients nach der Erstmeldung jederzeit geändert werden

"""

class client:

 def __init__(self, wert):

 self.wert = wert

 s.hinzu(self)

 # jetzt ist es passiert, hier geht die client-adr in die Liste und nicht der Wert

 def melde(self):

BK_SekI+II_Python_prof.docx - 247 - (c,p) 2015 - 2026 lsp: dre

 return self.wert

 def setzneu(self, wert):

 self.wert = wert

s = server()

print "Wertesammlung in server vorher: ", s.abfrage() # server - Liste noch leer

clients = []

for i in (6, 5, 100, 19, 27):

 c = client(i)

 clients.append(c)

print "Wertesammlung in server nachher:", s.abfrage()

clients[3].setzneu(4000)

print "Wertesammlung in server, nach einer Änderung:", s.abfrage()

Q: http://www.way2python.de/

Dateiname: konto.py

Modul mit Implementierung der Klasse Konto. Sie wird von

der Klasse Geld abgeleitet und modelliert ein Bankkonto

Objektorientierte Programmierung mit Python

Kap. 10

Michael Weigend 20.9.2009

#--

import time

from geld2 import Geld

class Konto(Geld):

 """ Spezialisierung der Klasse Geld zur Verwaltung eines Kontos

 Öffentliche Attribute:

 geerbt: waehrung, betrag, wechselkurs

 Öffentliche Methoden und Überladungen:

 geerbt: __add__(), __cmp__(), getEuro()

 ueberschrieben: __str__()

 Erweiterungen:

 einzahlen(), auszahlen(), druckeKontoauszug()

 """

 def __init__(self, waehrung, inhaber):

 Geld.__init__(self,waehrung, 0) #1

 self.__inhaber = inhaber #2

 self.__kontoauszug = [str(self)] #3

 def einzahlen(self,waehrung, betrag): #4

 einzahlung = Geld(waehrung,betrag)

 self.betrag =(self+einzahlung).betrag #5

 eintrag = time.asctime()+ ' ' + str(einzahlung)+ \

 ' neuer Kontostand: ' + self.waehrung + \

 format (self.betrag, '.2f')

 self.__kontoauszug += [eintrag] #6

 def auszahlen(self, waehrung, betrag):

 self.einzahlen(waehrung,-betrag)

 def druckeKontoauszug(self): #7

 for i in self.__kontoauszug:

 print(i)

BK_SekI+II_Python_prof.docx - 248 - (c,p) 2015 - 2026 lsp: dre

 self.__kontoauszug = [str(self)]

 def __str__(self): #8

 return 'Konto von ' + self.__inhaber + \

 ':\nKontostand am ' + \

 time.asctime()+ ': '+ self.waehrung + ' ' +\

 format (self.betrag, '.2f')

Dateiname: geld2.py

Klasse Geld mit Überladung der Operatoren +, <, >, ==

Objektorientierte Programmierung mit Python

Kap. 10

Michael Weigend 20.9.2009

#--

class Geld(object):

 wechselkurs={'USD':0.84998,

 'GBP':1.39480,

 'EUR':1.0,

 'JPY':0.007168}

 def _berechneEuro(self): #1

 return self.betrag*self.wechselkurs[self.waehrung]

 def __init__(self, waehrung, betrag):

 self.waehrung=waehrung

 self.betrag=float(betrag)

 def __add__ (self, geld): #2

 a = self._berechneEuro()

 b = geld._berechneEuro()

 faktor=1.0/self.wechselkurs[self.waehrung]

 summe = Geld (self.waehrung, (a+b)*faktor)

 return summe

 def __lt__(self, other):

 a = self.getEuro ()

 b = other.getEuro ()

 return a < b

 def __le__(self, other):

 a = self.getEuro ()

 b = other.getEuro ()

 return a <= b

 def __eq__(self, other):

 a = self.getEuro ()

 b = other.getEuro ()

 return a == b

 def __str__(self):

 return self.waehrung + ' ' + format(self.betrag, '.2f')

BK_SekI+II_Python_prof.docx - 249 - (c,p) 2015 - 2026 lsp: dre

8.11.x.6. eine "Auto"-Klasse

class Auto:

Konstruktor

 def __init__(self,):

 self.Name=name

 self.Kennzeichen=kennzeichen

 self.TankVolumen=tankvolumen

 self.Verbrauch=

…

8.11.x.6.1. Erweiterung der "Auto"-Klasse um LKW's

BK_SekI+II_Python_prof.docx - 250 - (c,p) 2015 - 2026 lsp: dre

8.11.x.7. eine "Personen"-Klasse

Für eine Personen-Datenbank wird eine Klasse "Person" gebraucht. Diese soll dann später
in einer Verwaltung für Familien-Betreuung genutzt werden.
Wir gehen dieses Mal in etwas größeren Schritten vor und erläutern die einzelnen Schritte
nicht mehr zu ausführlich.
Zuerst erstellen wir uns die klassische Struktur aus Klassen-Defintion, Konstruktor und ei-
nem einfachen Test-Programm. Das Test-Programm wir immer nur schnell erweitert, um die
neuen Attribute und Methoden unserer neuen Klasse gleich testen zu können. Sinn muss
dieser Test-Teil nicht unbedingt ergeben.

class Person:

Konstruktor

 def __init__(self, name, vorname):

 self.Name=name

 self.Vorname=vorname

#Test-MAIN

P1=Person("Muster","Oleg")

P2=Person("Schulz","Franka")

P3=Person("Bauer","Kim")

Beim Laufen-Lassen unseres kleinen Programm erhalten wir keine Fehler-Meldung, aber
auch keine Anzeige.
Unsere nächste Aufgabe soll also eine Anzeige der gespeichert Personen-Daten sein. Die
Klassen-Definition wir entsprechend um die Methode zeigePersonDaten() erweitert. Den
Test der Methode hängen wir dann auch gleich im Test-Teil an.

…

 def zeigePersonDaten(self):

 print("Name: ",self.Name," Vorname: ",self.Vorname)

#Test-MAIN

…

P3.zeigePersonDaten()

P1.zeigePersonDaten()

Jetzt erzeugen wir bei Ausprobieren auch
tatsächlich Ausgaben auf dem Bildschirm.

BK_SekI+II_Python_prof.docx - 251 - (c,p) 2015 - 2026 lsp: dre

8.11.x.7.1. Erweiterung der "Personen"-Klasse auf eine Familie

BK_SekI+II_Python_prof.docx - 252 - (c,p) 2015 - 2026 lsp: dre

8.11.x.7. eine "Nachrichten"-Klasse

Klasse Nachrichten mit den Attributen Sender, Empfänger und Text (ev. ++)
Methoden senden, antworten und weiterleiten

8.11.x.y. eine Klasse zu "Dreiecken"

class Dreieck

 def __init__(self, a, b, c)

 self.a = a

 self.a = a

 self.a = a

 if not(a+b > c and a+c > b and b+c > a):

 raise ValueError("ungültig Daten: eine Seite ist zu lang")

 def flaeche(self) # nach HERON

 s = (self.a + self.b + self.c) / 2

 flaeche = (s + (s – self.a) * (s – self.b) * (s -self.c))**0.5)

 return flaeche

BK_SekI+II_Python_prof.docx - 253 - (c,p) 2015 - 2026 lsp: dre

8.11.x.y. eine Graphik-Beispiel-Klasse

→ http://www.b.shuttle.de/b/humboldt-os/python/kapitel4/index.html
Die Grafik-Klassen in graph.py

#! /usr/bin/python

import Tkinter

from Tkconstants import *

import Canvas

class Image:

 """

 /* Bildklasse

 """

 def __init__(self,Name):

 """

 /* Name: string : Dateiname des Bildes

 """

 self.Bild=Tkinter.PhotoImage(file=Name)

 self.Breite=self.Bild.width()

 self.Hoehe=self.Bild.height()

 def get_Bild(self):

 """

 /* liefert das Bildobjekt für 'image' in Canvas.ImageItem

 /* (Darstellung des Bildes auf einer Zeichenfläche)

 """

 return self.Bild

 def get_Breite(self):

 """

 /* liefert die Bildbreite in Pixeln

 """

 return self.Breite

 def get_Hoehe(self):

 """

 /* liefert die Bildhoehe in Pixeln

 """

 return self.Hoehe

class TColor:

 """

 /* erste primitive Version mit nur wenigen Farben

 /* Die Farben können über die deutschen Namen oder über

 /* Zahlen abgerufen werden

 /* Hinweis: "#fff" entspricht "weiss",

 /* statt "#xxx" kann auch "red", "green" usw. benutzt werden

 /* andere Lösungen mit true-colors sind denkbar

 """

 def __init__(self):

 """

 /* transparent, schwarz, blau, gruen, tuerkis, rot, gelb, grau, weiss

 """

 self.Fnamen = { \

 0:"transparent", \

 1:"schwarz" , \

 2:"blau" , \

 3:"gruen" , \

 4:"tuerkis" , \

 5:"rot" , \

 6:"gelb" , \

 7:"grau" , \

 8:"weiss" \

 }

 self.Farbe={ \

 "transparent":"", \

 "schwarz" :"#000", \

 "blau" :"#00f", \

 "gruen" :"#0f0", \

 "tuerkis" :"#0ee", \

 "rot" :"#f00", \

 "gelb" :"#ff0", \

 "grau" :"#ccc", \

http://www.b.shuttle.de/b/humboldt-os/python/kapitel4/index.html

BK_SekI+II_Python_prof.docx - 254 - (c,p) 2015 - 2026 lsp: dre

 "weiss" :"#fff" \

 }

 def getColor(self,nr):

 """

 /* nr : int : 0 .. 8 für die oben angegebenen Farben

 /* liefert die Farbdarstellung für X

 """

 return self.Farbe[self.getFarbnamen(nr)]

 def getFarbnamen(self,nr):

 """

 /* nr : int : 0 .. 8 für die oben angegebenen Farben

 /* liefert den (deutschen) Bezeichner der Farbnummer (s.o.)

 """

 return self.Fnamen[nr]

 def getFarbe(self,wort):

 """

 /* wort : string : ein Element aus den oben angegebenen Farben

 /* liefert die Farbdarstellung fuer X

 """

 return self.Farbe[wort]

class TFigur:

 """

 /* interne Hinweise:

 /* ZF ist Referenz auf Zeichenfläche, wird später gesetzt

 /* grafObj ist das aktuelle Grafikobjekt

 """

 def __init__(self):

 """

 /* Alle Grafik-Klassen erben von TFigur. TFigur wird beschrieben durch

 /* folgende Attribute:

 /* X1,Y1 (linke obere Ecke)

 /* X2,Y2 (rechte untere Ecke)

 /* Farbe

 /* Fuellfarbe

 """

 self.X1=20

 self.Y1=20

 self.X2=100

 self.Y2=100

 self.Farben=TColor()

 self.Farbe=self.Farben.getColor(0)

 self.Fuellfarbe=self.Farben.getColor(0)

 def setPos(self,ax1,ay1,ax2,ay2):

 """

 /* ax1,ay1 : int :(linke obere Ecke)

 /* ax2,ay2 : int :(rechte untere Ecke)

 """

 self.X1=ax1

 self.Y1=ay1

 self.X2=ax2

 self.Y2=ay2

 def getXPos(self):

 """

 /* liefert x-Wert der Position der linken oberen Ecke

 """

 return self.X1

 def getYPos(self):

 """

 /* liefert y-Wert der Position der linken oberen Ecke

 """

 return self.Y1

 def setFarbe(self,F):

 """

 /* F : string : deutscher Bezeichner (s.o.)

 """

 self.Farbe=self.Farben.getFarbe(F)

 def getFarbe(self):

 """

 /* gibt akt. Farbe zurück : string : Farbrepr. für X

 """

 return self.Farbe

BK_SekI+II_Python_prof.docx - 255 - (c,p) 2015 - 2026 lsp: dre

 def setFuellfarbe(self,F):

 """

 /* F : string : deutscher Bezeichner (s.o.)

 """

 self.Fuellfarbe=self.Farben.getFarbe(F)

 def getFuellfarbe(self):

 """

 /* gibt akt. Füllfarbe zurück : string : Farbrepr. für X

 """

 return self.Fuellfarbe

 def pos_versetzen_um(self,dx,dy):

 """

 /* versetzt die Position des heweiligen Grafikobjektes um dx und dy

 """

 self.X1=self.X1+dx

 self.X2=self.X2+dx

 self.Y1=self.Y1+dy

 self.Y2=self.Y2+dy

 def zeigen(self):

 """

 /* zeigt das Grafikobjekt auf dem Schirm an

 """

 pass

 def loeschen(self):

 """

 /* löscht das Grafikobjekt auf dem Schirm

 """

 self.grafObj.move(1000,1000)

 def entfernen(self):

 """

 /* entfernt das Grafikobjekt aus dem Speicher

 """

 self.grafObj.delete()

class TLinie(TFigur):

 """

 /* Klasse Linie

 """

 def __init__(self):

 TFigur.__init__(self)

 x = self.getFarbe()

 self.grafObj=Canvas.Line(TFigur.ZF,(self.X1, self.Y1),(self.X2, self.Y2)\

 , {"fill": x})

 def zeigen(self):

 self.grafObj.config(fill=self.getFarbe())

 self.grafObj.coords(((self.X1,self.Y1),(self.X2,self.Y2)))

class TEllipse(TFigur):

 """

 /* Klasse Ellipse

 """

 def __init__(self):

 TFigur.__init__(self)

 x = self.getFarbe()

 y = self.getFuellfarbe()

 self.grafObj=Canvas.Oval(TFigur.ZF, (self.X1, self.Y1), \

 (self.X2, self.Y2), {"outline": x, "fill": y})

 def zeigen(self):

 self.grafObj.config(fill=self.getFuellfarbe(),outline=self.getFarbe())

 self.grafObj.coords(((self.X1,self.Y1),(self.X2,self.Y2)))

class TKreis(TFigur):

 """

 /* Klasse Kreis

 """

 def __init__(self):

 """

 /* zus. Attribute sind hier: Radus, x-Mittelpunkt, y-Mittelpunkt

 """

 TFigur.__init__(self)

 self.R=0

BK_SekI+II_Python_prof.docx - 256 - (c,p) 2015 - 2026 lsp: dre

 self.Mx=0

 self.My=0

 x = self.getFarbe()

 y = self.getFuellfarbe()

 self.grafObj=Canvas.Oval(TFigur.ZF, (self.X1, self.Y1), \

 (self.X2, self.Y2), {"outline": x, "fill": y})

 def __berechne_Standard(self):

 self.X1=self.Mx-self.R

 self.X2=self.Mx+self.R

 self.Y1=self.My-self.R

 self.Y2=self.My+self.R

 def setRadius(self,r):

 """

 /* r : int : Radius

 """

 self.R=r

 self.__berechne_Standard()

 def getRadius(self):

 """

 /* liefert aktuelle Radiuslänge

 """

 return self.R

 def setMPos(self,ax,ay):

 """

 /* ax, ay : int

 /* setzt Mittelpunktskoordinaten

 """

 self.Mx=ax

 self.My=ay

 self.__berechne_Standard()

 def zeigen(self):

 self.grafObj.config(fill=self.getFuellfarbe(),outline=self.getFarbe())

 self.grafObj.coords(((self.X1,self.Y1),(self.X2,self.Y2)))

class TRechteck(TFigur):

 """

 /* Klasse Rechteck

 """

 def __init__(self):

 TFigur.__init__(self)

 x = self.getFarbe()

 y = self.getFuellfarbe()

 self.grafObj=Canvas.Rectangle(TFigur.ZF, (self.X1, self.Y1), \

 (self.X2, self.Y2), {"outline": x, "fill": y})

 def zeigen(self):

 self.grafObj.config(fill=self.getFuellfarbe(),outline=self.getFarbe())

 self.grafObj.coords(((self.X1,self.Y1),(self.X2,self.Y2)))

class TText(TFigur):

 """

 /* Klasse Text zur Beschriftung der Zeichenfläche

 """

 def __init__(self):

 """

 /* Attribute sind

 /* Text : string

 /* Schriftart : String (X-Fonts-Bezeichner)

 /* Zeichen-Hoehe : int : default = 10

 """

 TFigur.__init__(self)

 self.Text=""

 self.Schriftart="*"

 self.Hoehe=10

 def setPos(self,ax,ay):

 """

 /* ax, ay : int : Position des ersten Zeichens

 """

 self.X1=ax

 self.Y1=ay

 def setText(self,Text):

BK_SekI+II_Python_prof.docx - 257 - (c,p) 2015 - 2026 lsp: dre

 """

 /* Text : string : auszugebender Text

 """

 self.Text=Text

 def setFont(self,Art="*",Grad=10):

 """

 /* Art : string : Font-Name

 /* Grad : int : Zeichengröße

 """

 self.Schriftart=Art

 self.Hoehe=Grad

 def zeigen(self):

 self.grafObj=Canvas.CanvasText(TFigur.ZF, self.X1, self.Y1, \

 anchor="w", fill=self.Farbe, font=(self.Schriftart, self.Hoehe))

 self.grafObj.insert(0,self.Text)

class TZeichenblatt:

 """

 /* Zeichenblatt entspricht Canvas. Mit Init wird ein Bild unterlegt

 /* Zeichenblatt vom Typ TZeichenplatt wird erzeugt und steht zur

 /* Verfügung.

 """

 def __init__(self):

 pass

 def Init(self,Name):

 """

 /* Init hinterlegt das Bild

 /* Name : string : Dateiname (gif)

 """

 self.oWindow=Tkinter.Tk()

 self.oWindow.title("Zeichenfläche - nach S. Spolwig ----- Kokavecz")

 self.oBild=Image(Name)

 self.X1=0

 self.Y1=0

 self.X2=self.oBild.get_Breite()

 self.Y2=self.oBild.get_Hoehe()

 Geometrie=str(self.X2)+"x"+str(self.Y2)+"+0+0"

 self.oWindow.geometry(Geometrie)

 self.oEbene=Tkinter.Canvas(self.oWindow,relief=SUNKEN, bd=5, \

 width=self.X2, height=self.Y2)

 bild=Canvas.ImageItem(self.oEbene,(0,0),anchor="nw", \

 image=self.oBild.get_Bild())

 self.oEbene.pack()

 TFigur.ZF=self.oEbene

 def get_Breite(self):

 """

 /* liefert die Bildbreite in Pixeln

 """

 return self.oBild.get_Breite()

 def get_Hoehe(self):

 """

 /* liefert die Bildhoehe in Pixeln

 """

 return self.oBild.get_Hoehe()

 def refresh(self):

 TFigur.ZF.update()

sollte oZeichenblatt oder mein_Zeichenblatt heißen:

Zeichenblatt = TZeichenblatt()

Klassen-Dokumentation → http://www.b.shuttle.de/b/humboldt-os/python/kapitel4/grafik.py.html

http://www.b.shuttle.de/b/humboldt-os/python/kapitel4/grafik.py.html

BK_SekI+II_Python_prof.docx - 258 - (c,p) 2015 - 2026 lsp: dre

8.11.x.2. Polymophismus und Vererbung

class erbendeKlasse(vererbendeKlassenListe):

z.B. an erweiterter Konten-Klasse jetzt auch mit Zinsen und Schulden

Aufgaben:

1. Erweitern Sie das Konten-Programm so, dass für jede Minute der Zins für

einen Monat angesetzt wird!

alle Attribute und Methoden der in der vererbenden Klassenliste aufgeführten Klassen sind
nun auch in der erbenden Klasse verfügbar (diese können hier aber auch überschrieben
werden!)
die originalen Methoden werden über vererbendeKlasse.Methode und die überschriebenen
über erbendeKlasse.Methode
Aufrufe ohne Klassen-Angabe verbleiben erst einmal in der aktuellen Klasse

BK_SekI+II_Python_prof.docx - 259 - (c,p) 2015 - 2026 lsp: dre

Beispiel: Bücher-Klasse

class Buch:

 BuecherZahl=0

 def __init__(self,titel,autor,verlag,isbn,preis):

 self.Titel=titel

 self.Autor=autor

 self.Verlag=verlag

 self.ISBN=isbn

 self.Preis=preis

 Buch.BuecherZahl+=1

 def zeigeBuchInfo(self):

 print("Buch-Info:")

 print("Autor: ",self.Autor," Titel: ",self.Titel)

 print("Verlag: ",self.Verlag," ISBN: ",self.ISBN)

 def pruefeISBN(self):

 pass

 def __del__(self):

 Buch.BuecherZahl-=1

Main

buch1=Buch("Das Leben der Z","Silp","Universal","1234567890X",24)

buch1.zeigeBuchInfo()

print("Preis= ",buch1.Preis, "Euro")

print("--> akt. Buchbestand: ",Buch.BuecherZahl)

print()

print()

print("Entfernen Buch1")

del(buch1)

print("--> akt. Buchbestand: ",Buch.BuecherZahl)

print("Ende")

>>>

Buch-Info:

Autor: Silp Titel: Das Leben der Z

Verlag: Universal ISBN: 1234567890X

Preis= 24 Euro

--> akt. Buchbestand: 1

Entfernen Buch1

--> akt. Buchbestand: 0

Ende

>>>

nun braucht man z.B. für Fachbücher neben den üblichen Angaben vielleicht auch noch In-
formationen zu Fachgebieten und Themen oder Stich
Natürlich möchten – wir faulen Programmierer – nicht wieder alles neu programmieren. Wir
haben ja schon eine super programmierte und getestete Klasse für normale Bücher.
Auf der Basis dieser Bücher-Klasse erstellen wir nun die Fachbuch-Klasse.

BK_SekI+II_Python_prof.docx - 260 - (c,p) 2015 - 2026 lsp: dre

…

 Buch.BuecherZahl-=1

class FachBuch(Buch):

 BuecherZahl=0

 def

__init__(self,titel,autor,verlag,isbn,preis,fachbereich,stichwort):

 # Buch.__init__(self,titel,autor,verlag,isbn,preis)

 super().__init__(titel,autor,verlag,isbn,preis)

 self.Fachbereich=fachbereich

 self.Stichwort=stichwort

 FachBuch.BuecherZahl+=1

 def zeigeBuchInfo(self):

 print("Fach-",end='')

 # Buch.zeigeBuchInfo(self)

 super().zeigeBuchInfo()

 print("Fachbereich: ",self.Fachbereich," Stichwort:

",self.Stichwort)

 def __del__(self):

 FachBuch.BuecherZahl-=1

 Buch.BuecherZahl-=1

Main

buch1=Buch("Das Leben der Z","Silp","Universal","1234567890X",24)

buch1.zeigeBuchInfo()

print("Preis= ",buch1.Preis, "Euro")

print("--> akt. Buchbestand: ",Buch.BuecherZahl," davon: ",

 FachBuch.BuecherZahl," Fachbücher")

print()

print()

buch2=FachBuch("LB Informatik","Meier","Fachbuchverlag",

 "1234567890X",30,"Progammierung","Python")

buch2.zeigeBuchInfo()

print("Preis= ",buch2.Preis, "Euro")

print("--> akt. Buchbestand: ",Buch.BuecherZahl," davon:

",FachBuch.BuecherZahl," Fachbücher")

print()

print()

print("Entfernen Buch2 (Fachbuch)")

del(buch2)

print("--> akt. Buchbestand: ",Buch.BuecherZahl," davon:

",FachBuch.BuecherZahl," Fachbücher")

print()

print("Entfernen Buch1")

…

BK_SekI+II_Python_prof.docx - 261 - (c,p) 2015 - 2026 lsp: dre

>>>

Buch-Info:

Autor: Silp Titel: Das Leben der Z

Verlag. Universal ISBN: 1234567890X

Preis= 24 Euro

--> akt. Buchbestand: 1 davon: 0 Fachbücher

Fach-Buch-Info:

Autor: Meier Titel: LB Informatik

Verlag. Fachbuchverlag ISBN: 1234567890X

Fachbereich: Progammierung Stichwort: Python

Preis= 30 Euro

--> akt. Buchbestand: 2 davon: 1 Fachbücher

Entfernen Buch2 (Fachbuch)

--> akt. Buchbestand: 1 davon: 0 Fachbücher

Entfernen Buch1

--> akt. Buchbestand: 0 davon: 0 Fachbücher

Ende

>>>

Beim genauen Betrachten des Quelltextes kann man einige Spezialitäten erkennen. Zum
Ersten kann man innerhalb jeder Objekt-Ebene gleich namige Attribute / Variablen-Namen
nutzen (hier: BuecherZahl). Sie beziehen sich immer auf die jeweilige Ebene, die als Objekt-
namens-Teil (vor dem Punkt) mit angegeben werden muss.
Dann können wir mit dem allgemeinen Namen super für die übergeordnete Klasse zurück-
greifen. Das ist z.B. dann praktisch, wenn sich solche Namen öfter ändern oder der Quelltext
mehrfach genutzt werden soll. Super ist somit strukturell dem self äquivalent.
In Python lässt sich auch über die Methoden hinweg z.B. eine spezielle Ausgabe realisieren.
Im Fall eines Fachbuches wird nur das Wörtchen "Fach-" zur Anzeige (zeigeBuchInfo()) ge-
bracht und dann direkt die Anzeige-Methode von Buch aufgerufen Die Anzeige-Methode von
Fachbuch ergänzt dann noch die speziellen Attribute von Fachbuch.
Interessant ist auch, dass die Methoden den Objekten entsprechend ihrer Klasse zugeordnet
werden. In beiden Bücherklassen gibt es die gleichlautende Methode zeigeBuchInfo(). Beim
Aufruf von einem Fachbuch aus wird zuerst die Fachbuch-Methode genutzt. Diese verwen-
det dann – in unserem Beispiel – die gleichnamige Methode aus der Buch-Klasse.
Gibt es keine zeigeBuchInfo()-Methode in der Fachbuch-Klasse, dann wird dies aus der
öbergeordneten Klasse genutzt. Natürlich fehlen dann die zusätzlichen Fachbuch-
Informationen.

BK_SekI+II_Python_prof.docx - 262 - (c,p) 2015 - 2026 lsp: dre

8.11.x.y. Tips und Tricks zu Objekt-orientierten Programmen / Klassen-Definitionen

um eine Klassen-Defintion mit einem kleinen Test-Programm auch als Modul benutzen zu
können, gibt es den folgenden Konstrukt, der nur dann den THEN-Zweig ausführt, wenn der
Quelltext als Haupt-Programm (MAIN) ausgeführt wird. Ist der Quelltext ein Modul wird die-
ser Zweig nicht ausgeführt.

in __name__ == "__main__":

 # hier stehen die Anweisungen für die Nutzung als (Haupt-)Programm

BK_SekI+II_Python_prof.docx - 263 - (c,p) 2015 - 2026 lsp: dre

8.11.x. OOP-Programmbeispiele

-*- coding: utf8 -*-

 # Klasse zur Verwaltung von Personen

 class Person(object):

 # Konstruktor/Initialisierer

 def __init__(self, alter, groesse, name = None):

 self.alter = alter

 self.groesse = groesse

 self.name = name

 # String-Repräsentation einer Person erstellen

 def __repr__(self):

 return repr((self.alter, self.groesse, self.name))

 # einfache String-Repräsentation einer Person erstellen

 def __str__(self):

 return '%s/%s/%s' % (self.alter, self.groesse, self.name)

 # Person altern lassen, also Alter um n Jahre erhöhen

 def altern(self, n = 1):

 self.alter += n

 # mittels eines Dekorators eine Property mytuple erzeugen

 @property

 def mytuple(self):

 # das ist der Getter; den Namen lassen wir hier aus

 return self.alter, self.groesse

 # alternativ:

 # def mytuple(self): return self.alter, self.groesse

 # mytuple = property(mytuple)

 # einen Setter für die Property definieren

 @mytuple.setter

 def mytuple(self, t):

 if t[0] > 10 and t[1] > 150:

 self.alter, self.groesse = t[:2]

 if len(t) > 2:

 # wenn t einen Namen enthält, dann diesen auch setzen

 self.name = t[2]

 # Personenliste erstellen

 personen = [Person(39, 172, 'ABC'), Person(88, 165), Person(15, 181),

Person(88, 175)]

 # Ausgabe der Personenliste

 print personen

 print '==='

 # Iteration über der Personenliste und Ausgabe der einzelnen Personen

 for pers in personen:

 print pers, '==>', repr(pers)

 print '==='

 # alle Personen altern lassen

 for pers in personen:

 pers.altern(3)

 # nochmal ausgeben

BK_SekI+II_Python_prof.docx - 264 - (c,p) 2015 - 2026 lsp: dre

 print 'nach dem Altern'

 print personen

 print '==='

 # nochmal altern lassen, diesmal funktional

 map(lambda x: x.altern(3), personen)

 print 'nach dem 2. Altern'

 print personen

 print '==='

 # nochmal funktional altern lassen, diesmal mit Vorzugswert n

 map(Person.altern, personen)

 print 'nach dem 3. Altern'

 print personen

 print '==='

 # Ausgabe der sortierten Personenliste

 print sorted(personen, key = lambda pers: (pers.alter, pers.groesse))

 print '==='

 # dito mit benannter Funktion statt einer anonymen lambda-Funktion

 def pers_key(pers):

 return pers.alter, pers.groesse

 print sorted(personen, key = pers_key)

 # Attribute sind public, man kann von außen zugreifen

 print personen[0].alter

 print personen[0].groesse

 print personen[0].name

 p = personen[0]

 print p.alter + p.groesse

 # Nutzung der Property mit Getter

 print p.mytuple

 p.alter += 100

 print p.mytuple

 # Nutzung des Setters der Property

 p.mytuple = 1, 2 # wird vom Setter stillschweigend ignoriert

 print repr(p.mytuple)

 p.mytuple = 11, 155

 print repr(p.mytuple)

 # nochmal, aber mit Name

 p.mytuple = 11, 155, 'Pumuckl'

 print repr(p.mytuple)

 for p in personen:

 print p

 print 'maximales Element einer Personen-Liste bestimmen'

 print max((person.alter, person.groesse) for person in personen)

 # alternativ nutzbar wären

 print max(map(lambda elem: (elem.alter, elem.groesse), personen))

 print max(personen, key = lambda elem: (elem.alter, elem.groesse))

 print

 # Größe von außen ändern

 personen[1].groesse += 5

BK_SekI+II_Python_prof.docx - 265 - (c,p) 2015 - 2026 lsp: dre

 for p in personen:

 print p

 print

 # neues Attribut setzen

 personen[1].name2 = 'XYZ'

 for p in personen:

 print p # __str__() wird für die String-Darstellung gerufen

 print

 # hier sieht man das neue Attribut

 for p in personen:

 print vars(p)

 print

 print 'Maximum der Property mytuple'

 print max(person.mytuple for person in personen)

 # das Tupel der letzten Person der Liste ändern

 personen[-1].mytuple = 110, 190

 # Maximum erneut ausgeben

 print 'Maximum der Property mytuple nach Zuweisung'

 print max(person.mytuple for person in personen)

 # nochmal alle Attribute mit vars()

 print

 for p in personen:

 print vars(p)

Q: https://www-user.tu-chemnitz.de/~hot/PYTHON/

BK_SekI+II_Python_prof.docx - 266 - (c,p) 2015 - 2026 lsp: dre

8.12. GUI-Programme mit Tkinter

Tkinter ist nicht etwa eine Fortsetzung ode Erweiterung der Turtle-Graphik. Nein, es ist ge-
nau anders herum – die Turtle-Graphik basiert auf dem mächtigen Graphik-Modul Tkinter.
Aber die Turtle-Graphik ist einfach der bessere Einstieg in die graphische Programmierung.
Es macht richtig Laune, der Schildkröte zuzusehen.
Echte graphische Aufgaben löst man dann eher mit Tkinter.
Tkinter ist die Python-Schnittstelle zur Graphik-GUI "Tcl/Tk" (GUI … Graphical User Interface)

Tk ist das GUI-Erweiterung für Tcl
Tcl ist eine Scriptsprache die 1991 von John OUSTERHOUT entwickelt wurde
zu Tk und Tcl gobt es Schnittstellen für die verschiedensten Programmiersprachen (z.B.
Perl, Ruby, Common LISP, Ada, R , …)

Tk stellte Widgets (Steuerelemente, Bedienelemente) für die Erstellung / Zusammenstellung und
Funktionalisierung von graphischen Programmen zur Verfügung

Für die in graphischen Oberflächen weniger bewanderten folgt hier eine Vorstellung / Zu-
sammenstellung von Objekten, die eben Tk – wie andere Programmier-Systeme eben auch
– bereitstellt.

Tk-Widgets

• button Schaltfläche

• canvas Graphik-Fläche

• checkbutton Options-Feld

• combobox Auswahl-Box

• entry Eingabefeld

• frame Fenster-Bereich; Contai-
ner für andere Objekte

• label Beschriftung(sfeld)

• labelframe

• listbox Listen-Feld

• menu Menü

• menubutton Menü-Eintrag

• message Text-Feld

• notebook

• panedwindow

• progressbar

• radiobutton Auswahl-Feld

• scale Gleiter

• scrollbar (Bild-)Laufleiste

• separator Fenster-Teiler

• sizegrip

• spinbox

• text Text-Feld

• treeview

• tk_optionMenu

Für die Integration in das Windows-System werden die klassischen System-Fenster bereit-
gestellt. Dazu gehören:

BK_SekI+II_Python_prof.docx - 267 - (c,p) 2015 - 2026 lsp: dre

Tk-System-Fenster:

• tk_chooseColor

• tk_chooseDirectory

• tk_dialog

• tk_getOpenFile

• tk_getSaveFile

• tk_messageBox

• tk_popup

• toplevel

Geometrie-Manager organisieren die Anordnung der Bedien-Elemente im Fenster / auf der
Fensterfläche

Tk-Geometrie-Manager

• pack einfache Geometrie, Objekte werden vorrangig untereinander angeordnet

• grid Gitter- bzw. Tabellen-orientierte Geometrie; Objekte werden an Gitter-
Plätzen innerhalb des Fensters angeordnet (Spalten: 0 bis x; Zeilen: 1 .. y)

• place genaue (absolute) oder relative Platzierung der Objekte

Mit Tkinter kann man auch auf der Konsolen-Ebene arbeiten. Bei manchen Aktionen ist so-
gar sehr sinnvoll. In der Praxis sind abe eher nachnutzbare Programme interessant. Deshalb
werden wir hier fast ausschließlich zusammenhängende Quell-Texte schreiben und diese
dann ausprobieren.

BK_SekI+II_Python_prof.docx - 268 - (c,p) 2015 - 2026 lsp: dre

8.12.1. … und der erste Programmierer sprach: "Hallo Welt!"

Wir gehen mal ganz klassisch vor. Also …

Aufgabe:

Geben Sie das folgende Programm ein! Die vielen Leerzeilen sind nicht wirk-

lich notwendig, sie dienen nur der Strukturierung für die Erläuterungen rechts

neben dem Quelltext.

from tkinter import *

fenster=Tk()

elem=Label(fenster,text="Hallo Welt!")

elem.pack()

fenster.mainloop()

import des Tkinter-Moduls

Erzeugen eines Root-Objektes namens
fenster vom Typ Tk

Erzeugen eines untergeordneten Label-
Objektes namens elem und einem Text

mit der Pack-Methode wird das untergeod-
nete Objekt integriert

realisiert die Anzeige der Objekte und er-
zeugt die Ereignis-Abfrage-Schleife

Die etwas ungewöhnliche Notierung ist ein typisches Beiwerk der sogenannten Objekt-
orientierten Programmierung. Das irgnorieren wir hier einfach und zwingen uns zu dieser
Schreibweise. Später werden wir sie verstehen, hier ist sie erst mal als gegeben / notwendig
zu akzeptieren.
Das Ergebnis sieht natürlich richtig Windows-like aus, aber provoziert
sofort die Fragen:
Geht der Text auch in farbig?
Kann man den Text größer oder in einer anderen Schriftart darstellen?

Bevor aber dazu kommen, schnell ein paar Hinweise zur Notierung der Import-Anweisung
und er sich daraus ergebenen Notierung im weiteren Quell-Text.
Das gleiche "Hallo Welt!-Programm kann auch mit der Import-Zeile:

 import tkinter as tk

beginnen. Das Programm würde dann so aussehen:

import tkinter as tk

fenster=tk.Tk()

elem=tk.Label(fenster, text="Hallo Welt!")

elem.pack()

fenster.mainloop()

Diese Notierung wird man gegegebenfalls auch in verschiedenen Beispielen aus Büchern
oder dem Internet finden. Man muss allerdings jetzt vor jedem benutztem Objekt noch die
Herkunft von tk (als solches haben wir das Modul Tkinter ja jetzt importiert) mit angeben. Das bedeutet
nur deutlich mehr Schreibaufwand. Nur bei Kombinationen und Überschneidungen mit ande-
ren Objekten / Modulen ist diese Schreibung sinnig.
Ebenfalls funktioniert die vereinfachte Import-Anweisung:

BK_SekI+II_Python_prof.docx - 269 - (c,p) 2015 - 2026 lsp: dre

 import tkinter

Kommen wir zu Gestaltung / Formatierung eines Label zurück. Natürlich können wir Farben
und Schriften verändern und es auch nicht wirklich schwer. Wegen der ungewöhnlich Text-
aufwändigen Notierung, sollten wir uns gleich an eine übersichtlichere Strukturierung des
Quell-Textes gewöhnen. Hier sit es allerdings nicht so, dass diese – wie bei Verzweigungen
Schleifen und Funktionen – notwendig ist.

from tkinter import *

fenster=Tk()

elem=Label(fenster,

 text="Hallo Welt!",

 fg="blue",

 bg="yellow",

 font="Times 12 bold"

).pack()

fenster.mainloop()

auch möglich:
font=('Times','12','bold')

Schaut man sich nebenstehendes Resultat des obigen Quelltextes an,
dann werden die einzelnen Eigenschaften(-Kürzel) schnell klar.
Typische Schriftarten sind "Courier", "Arial", "Comic Sans MS",
"Verdana", "System", "Fixedsys", "MS Sans Serif", "Symbol",
"Helvetica" und "ansi".

Die anderen Schriftstil-Bezeichnungen sind "normal", "italic" für kursiv, "roman" für ???,
"underline" für unterstrichen und "overstrike" für durchgestrichen.
Einige Worte noch zu der seltsamen mainloop()-Funktion am Ende der meisten hier gezeig-
ten Programme. Mainloop startet die Ereignis-Abfrageschleife für das gestartete Programm.
Irgenwie soll es ja auf Maus-Klicks oder Tastatur-Befehle reagieren. Genau das realisiert die
mainloop()-Funktion. Die mainloop()-Funktion wird mit dem Zerstören des (Haupt-
)Programm-Fensters durch das destroy-Kommando beendet.
Tkinter-Programme ohne mainloop lassen sich nur in bzw. mit IDLE benutzen. Dort über-
nimmt der Interpreter die Ereignis-Verarbeitung bzw. übergibt sie zeitweilig an das gerade
benutzte Programm.
Programme, die eigenständig funktionieren sollen – also auch direkt aus dem Arbeitsplatz
oder dem Windows-Explorer heraus gestartet und benutzt werden sollen – müssen am
Schluss die mainloop()-Funktion enthalten. Sie können und sollten dann auch als pyw-Datei
gespeichert werden. In diesem Dateityp lassen sich die Programme direkt unter Windows
etc. ausführen

8.12.2. Nutzung verschiedener Bedienelemente

Die Vielfalt der verfügbaren Bedienelemente ist in Windows und in Tk recht groß. Viele sind
für eine moderne Interaktion mit den Programmen toll, aber nur wenige Elemente sind für
rein funktionelle Programme wirklich notwendig. Diese werden wir hier vorstellen.
Wer mit diesen klar kommt, kann sich dann in die höheren Sphären der GUI-Programmie-
rung begeben.

BK_SekI+II_Python_prof.docx - 270 - (c,p) 2015 - 2026 lsp: dre

8.12.2.1. Button's - Schaltflächen

Unser erstes "Hello Welt!"-Programm ließ sich nur über die Fenster-Schaltflächen schließen.
Für einfache Programme ist das auch ok, aber wir wollen ja später doch ein bisschen profes-
sioneller arbeiten. Also müssen Schaltflächen in die Programme rein.
Beginnen wir mit einem Beenden-Button, der natürlich auch die passende Funktion verpasst
bekommen soll.

from tkinter import *

fenster=Tk()

elemLabel=Label(fenster,

 text="Hallo Welt!",

 fg="blue",

 bg="yellow",

 font="Times 12 bold"

).pack()

elemButton=Button(fenster,

 text='Beenden',

 width=30,

 command=fenster.destroy

).pack()

fenster.mainloop()

Die Fenster-Elemente hätte man alle auch nur mit elem
bezeichnen können. Später wollen wir aber doch mal das
eine oder andere Detail eines Bedien-Elementes ändern.
Deshalb bekommt jedes Objekt einen eigenen Namen.
Ein einfaches Durchzählen ist natürlich auch möglich.

Nun soll noch ein kleines Bildchen – ein Icon – mit angezeigt werden. Zuerst einmal soll das
Bildchen rechts nebendem "Hallo Welt!"-Text erscheinen. Dazu muss der verfügbare Raum
verteilt werden. Es gibt ein Label-Objekt links und ein weiteres Label-Objekt – mit der Bild-
chen – rechts. Die Bildchen müssen als (nicht-animierte) GIF-Datei vorliegen (alternativ gehen auch

PGM- bzw. PPM-Dateien).

from tkinter import *

fenster=Tk()

elemLabel1=Label(fenster,

 text="Hallo Welt!",

 fg="blue",

 bg="yellow",

 font="Times 12 bold"

).pack(side="left")

bildchen=PhotoImage(file="erde50.gif")

elemLabel2=Label(fenster,

 image=bildchen

).pack(side="right")

elemButton=Button(fenster,

 text='Beenden',

 width=30,

 command=fenster.destroy

).pack(side="bottom")

fenster.mainloop()

BK_SekI+II_Python_prof.docx - 271 - (c,p) 2015 - 2026 lsp: dre

Wer ein bisschen mit den side-
Parametern in der Pack-Methode
rumspielt, wird schnell merken,
dass das Positionieren der Widgets
(Bedienelemente) nicht so ganz
ohne ist.

Ein Label kann nun auch dafür benutzt werden, um Daten auszugeben. Für einen ersten
Versuch soll im Hintergrund ein Zähler laufen, der nach einer Sekunde den Text des Labels
ändert. Als Text wird der aktuelle Zähler-Stand genutzt.

from tkinter import *

fenster=Tk()

zaehler=0

def zaehlerLabel(label):

 def zaehlen():

 global zaehler

 zaehler+=1

 label.config(text=str(zaehler))

 label.after(1000, zaehlen)

 zaehlen()

fenster.title("Zähler")

elemLabel=Label(fenster, font="Times 20 bold")

elemLabel.pack()

zaehlerLabel(elemLabel)

elemButton=Button(fenster,

 text='Beenden',

 width=20,

 command=fenster.destroy)

elemButton.pack()

fenster.mainloop()

Zähl-Funktion

hier wird der Label-Text neu festge-
legt

Beschriftung / Titel des Fensters

Label, der für die Anzeige des Zäh-
lers genutzt werden soll

starten der Zähler-Funktion

Nach dem Programm-Start beginnt der Zähler zu zählen und nach
jeweils 1000 ms (= 1 s) ändert die Funktion den Text des Labels
mit dem neuen Zähler-Wert.

8.12.2.1.1. eine eigene Button-Aktion erstellen

Wollen wir nun einem Button eine eigene Aktion programmieren. Dabei müssen zwei Dinge
erledigt werden. Einmal müssen wir eine Aktion als Funktion definieren und zum Anderen
muss diese Aktions-Funktion der Betätigung der Schaltfläche zugeordnet werden.
Letzteres passiert in den Optionen des erstellten Button als command-Attribut. Der Name der
Funktion sollte eindeutig sein, damit später bei vielen Aktionen eine klare Zuordnung möglich
ist.
Die Funktion selbst wird ganz klassisch angelegt und in unserem Fall einfach mit einem neu
anzulegenen Label versehen.

BK_SekI+II_Python_prof.docx - 272 - (c,p) 2015 - 2026 lsp: dre

from tkinter import *

def button_aktion():

 elem=Label(fenster,text="Hallo Python-Programmierer!")

 elem.pack()

fenster=Tk()

elem=Button(fenster,

 text="Hier drücken!",

 command=button_aktion)

elem.pack()

fenster.mainloop()

Beim Starten des Programm bekommen wir zuerst das obere
Fenster angezeigt. Sobald die Schaltfläche gedrückt wird, er-
scheint der untere Text.

Rücksetzen des Zählers über einen weiteren Button

BK_SekI+II_Python_prof.docx - 273 - (c,p) 2015 - 2026 lsp: dre

8.12.2.1.2. Button gestalten / formatieren

Neben reinem Text lassen sich Button auch mit verschiedensten an-
deren Details darstellen.
Ersetzt man z.B. das Text-Argument durch ein Bitmap-Argument,
dann erscheinen statt dem Text je nach Option verschiedenen kleine
Icon's.
Nebenstehend sind die wichtigsten Beispiele aufgezeigt. Solche klei-
nen Schaltflächen eignen sich z.B. zum Aufrufen von kleinen Hilfestel-
lungen usw.

bitmap="questhead"

bitmap="error"

bitmap="warning"

bitmap="error"

bitmap="hourglass"

from tkinter import *

def button_aktion():

 elem=Label(fenster,text="Super gemacht!")

 elem.pack()

fenster=Tk()

elem=Button(fenster,

 text="Drücke jetzt!",

 bitmap="warning",

 command=button_aktion)

elem.pack()

fenster.mainloop()

Text und Bild lassen sich aber nicht direkt nebeneinander in einer Schaltfläche anzeigen. Die
Bild-Option hat Vorrang und der Text wird ignoriert.

BK_SekI+II_Python_prof.docx - 274 - (c,p) 2015 - 2026 lsp: dre

8.12.2.2. Nachrichten-Felder / Text-Felder

Label sind doch recht beschränkte Objekte. Für Beschriftungen sind sie völlig ausreichend.
Längere Texte oder Nachrichten lassen sich damit nur sehr aufwändig darstellen. Ein etwas
flexibleres Widget ist die message.
Mit ihr lassen sich längere, mehrzeilige mit zusätzlichen Hervorhebungen realisieren.

ausgewählte Optionen für Message-Widgets

• background
bg

Hintergrundfarbe; wenn keine angegeben wird, dann wird die Syste-
meinstellung genutzt

• font Schrift-Art, -Größe und -Stil; wenn nichts angegeben wird, dann wird
die Systemeinstellung genutzt

• foreground
fg

Vordergrundfarbe / Textfarbe; wenn keine angegeben wird, dann
wird die Systemeinstellung genutzt

• text anzuzeigender Text

• textvariable ist eine spezielle Textvariable, die im Hintergrund geändert werden
kann → die Anzeige ändert sich entsprechend

• takefocus wird dieser auf True gesetzt, dann erhält die Message-Box den Ein-
gabe- / Bedien-Focus; normalerweise ist der Wert: False

Weitere Optionen sind anchor, aspect, borderwidth, cursor, highlightbackground, high-
lightcolor, highlightthickness, justify, padx, pady, relief und width. Wenn für spezielle
Gestaltungen von Message-Boxen Bedarf besteht, dann kann man sich in den üblichen
Quellen informieren. Für Standard-Anwendungen sind sie nicht notwendig.

BK_SekI+II_Python_prof.docx - 275 - (c,p) 2015 - 2026 lsp: dre

8.12.2.3. Eingabe-Felder / Eingabezeilen

Widmen wir uns nun der Eingabe von Texten, Zahlen usw. Dafür sind primär die Entry-
Objekte gedacht. Ein erstes Programm soll die gewaltige Aufgabe lösen, aus eingegebenen
Vor- und Nachnamen eine ordentliche Begrüßung zu erzeugen!

from Tkinter import * ## Tkinter importieren

root=Tk() ## Wurzelfenster!

eingabe = Entry(root) ## Eingabezeile erzeugen

eingabe.pack() ## und anzeigen

.get()
gibt Eingabezeile als Text (!) zurück

.delete(position)
löscht Zeichen an der Position (Zählung beginnt bei 0)

.insert(END, text)

e = Entry(master)

e.pack()

e.delete(0, END)

e.insert(0, "a default value")

s = e.get()

v = StringVar()

e = Entry(master, textvariable=v)

e.pack()

v.set("a default value")

s = v.get()

BK_SekI+II_Python_prof.docx - 276 - (c,p) 2015 - 2026 lsp: dre

from Tkinter import *

master = Tk()

e = Entry(master)

e.pack()

e.focus_set()

def callback():

 print e.get()

b = Button(master, text="get", width=10, command=callback)

b.pack()

mainloop()

e = Entry(master, width=50)

e.pack()

text = e.get()

def makeentry(parent, caption, width=None, **options):

 Label(parent, text=caption).pack(side=LEFT)

 entry = Entry(parent, **options)

 if width:

 entry.config(width=width)

 entry.pack(side=LEFT)

 return entry

user = makeentry(parent, "User name:", 10)

password = makeentry(parent, "Password:", 10, show="*")

content = StringVar()

entry = Entry(parent, text=caption, textvariable=content)

text = content.get()

content.set(text)

mehr: http://www.wspiegel.de/tkinter/tkinter02.htm

BK_SekI+II_Python_prof.docx - 277 - (c,p) 2015 - 2026 lsp: dre

8.12.2.4. Nachrichten-Boxen

Vielfach sollen kleine Informationen, Fehlerhinweise usw. usf. auf dem Bildschirm gebracht
werden. Diese Art der Nutzer-Information wird Message-Box genannt und
Windows – und die meisten anderen graphi-
schen Betriebssysteme – kennen mehrere
Arten von Message-Boxen. Diese unter-
scheiden sich praktisch vor allem hinsichtlich
der eingeblendeten Icon's und / oder der
Farbgebung.
Klassisch unterscheidet man zwischen "Feh-
ler"-, "Warnung"-, "Frage"- und "Information"-
s-Box.

Von der Ebene des Programmierers aus sind alle gleich.
Die Message-Boxen von Python sind etwas breiter aufgestellt. Zumindestens scheint es so.
Die Abfrage- / Frage-Box kann mit unterschiedlichen Schaltflächen (Button's) versehen wer-
den. Aus den verschiedenen Varianten ergeben sich unterschiedliche Box-Typen:

Tk-Message-Boxen

• showinfo Message-Box mit einer Info-Blase als Icon

• showwarning Message-Box mit Warn-Zeichen

• showerror Message-Box mit Fehler-Icon

• askyesno Message-Box mit Frage-Zeichen als Icon und den Schaltflächen [
Ja] und [Nein]

• askokcancel Message-Box mit Frage-Zeichen als Icon und den Schaltflächen [
OK] und [Abbrechen]

• askretrycancel Message-Box mit Frage-Zeichen als Icon und den Schaltflächen [
Fortsetzen] und [Abbrechen]

from tkinter import *

def antwort():

 titel="Nutzer-Information"

 nachricht="Die Aktion wurde gestartet.\n

 (Info-Box schließen mit OK.)"

 messagebox.showinfo(titel,nachricht)

fenster=Tk()

button1=Button(fenster,

 text="Aktion auslösen",

 command=antwort)

button1.pack()

fenster.mainloop()

die Texte für Titel und Nachricht
können natürlich auch direkt in den
Aufruf der MessageBox notiert wer-
den
\n steht für einen Zeilenumbruch

BK_SekI+II_Python_prof.docx - 278 - (c,p) 2015 - 2026 lsp: dre

Wenn bei Ihnen die Message-Box-Fenster anders
aussehen, dann ist das dem benutzten Betriebssys-
tem geschuldet. Diese Message-Boxen werden
nämlich direkt von Windows (oder dem jeweils be-
nutzten Betriebssystem) direkt zur Verfügung ge-
stellt.

Beide Fenster übergeben sich immer gegenseitig
den Focus.
Erst ein "Schließen" des Haupt-Fensters ("tk") be-
endet das Wechselspiel.

Ein Nachteil der Message-Boxen ist sicher, dass sie immer gleichartig aussehen. Dafür kann
man Informationen, Warnungen usw. usf. schnell und effektiv programmieren.
Einfache Message-Boxen (klassischerweise Info-Boxen) lassen sich temporär in Programme
integrieren, um sich Zwischenwerten usw. anzeigen zu lassen. Dann muss man nicht jedes
Mal das Layout des Programm-Fenster bemühen.

BK_SekI+II_Python_prof.docx - 279 - (c,p) 2015 - 2026 lsp: dre

8.12.2.5. Checkbutton-Wdget's – Options-Felder

from Tkinter import *

master = Tk()

var = IntVar()

c = Checkbutton(master, text="Expand", variable=var)

c.pack()

mainloop()

var = StringVar()

 c = Checkbutton(

 master, text="Color image", variable=var,

 onvalue="RGB", offvalue="L"

)

v = IntVar()

 c = Checkbutton(master, text="Don't show this again", variable=v)

 c.var = v

BK_SekI+II_Python_prof.docx - 280 - (c,p) 2015 - 2026 lsp: dre

8.12.2.6. Radiobutton-Widget – Options-Auswahl

from tkinter import *

fenster=Tk()

auswahl=IntVar()

Radiobutton(fenster, text="weiss",

 variable=auswahl, value=1).pack(anchor=W)

Radiobutton(fenster, text="gelb",

 variable=auswahl, value=2).pack(anchor=W)

Radiobutton(fenster, text="rot",

 variable=auswahl, value=3).pack(anchor=W)

Radiobutton(fenster, text="grün",

 variable=auswahl, value=4).pack(anchor=W)

Radiobutton(fenster, text="blau",

 variable=auswahl, value=5).pack(anchor=W)

Radiobutton(fenster, text="schwarz",

 variable=auswahl, value=6).pack(anchor=W)

mainloop()

BK_SekI+II_Python_prof.docx - 281 - (c,p) 2015 - 2026 lsp: dre

from tkinter import *

Ereignisverarbeitung

def gewaehlt():

 if wahl.get()==1:

 anzeige="Sie wählen nur Frühstück"

 elif wahl.get()==2:

 anzeige="Sie wählen Halbpension"

 elif wahl.get()==3:

 anzeige="Sie wählen Vollpension"

 elif wahl.get()==4:

 anzeige="Sie wählen keine Verpflegung"

 else:

 anzeige="Sie haben noch nicht gewählt"

 ergebnis.config(text=anzeige)

Erzeugung des Fensters

tkFenster = Tk()

tkFenster.title('Verpflegung')

tkFenster.geometry('160x175')

Aufforderungslabel

aufforderung=Label(master=tkFenster, text="Wählen Sie aus:", anchor='w')

aufforderung.place(x=5, y=5, width=140, height=20)

Kontrollvariable

wahl=IntVar()

Radiobutton Optionsauswahl

rb1=Radiobutton(master=tkFenster, anchor='w', text='nur Frühstück',

 value=1, variable=wahl, command=gewaehlt)

rb1.place(x=15, y=30, width=140, height=20)

rb2=Radiobutton(master=tkFenster, anchor='w', text='Halbpension',

 value=2, variable=wahl, command=gewaehlt)

rb2.place(x=15, y=55, width=140, height=20)

rb3=Radiobutton(master=tkFenster, anchor='w', text='Vollpension',

 value=3, variable=wahl, command=gewaehlt)

rb3.place(x=15, y=80, width=140, height=20)

rb4=Radiobutton(master=tkFenster, anchor='w', text='keine Verpflegung',

 value=4, variable=wahl, command=gewaehlt)

rb4.place(x=15, y=105, width=140, height=20)

ev. Vorauswahl

radiobutton3.select()

Ergebnislabel

ergebnis=Label(master=tkFenster, bg='white', anchor='w', text=" ??? ")

ergebnis.place(x=5, y=140, width=150, height=20)

Aktivierung des Fensters

tkFenster.mainloop()

BK_SekI+II_Python_prof.docx - 282 - (c,p) 2015 - 2026 lsp: dre

Erzeugen einer Radiobutton-Auswahl aus einer Liste (von Tupeln) heraus:

MODES = [

 ("Monochrome", "1"),

 ("Grayscale", "L"),

 ("True color", "RGB"),

 ("Color separation", "CMYK"),

]

 v = StringVar()

 v.set("L") # initialize

 for text, mode in MODES:

 b = Radiobutton(master, text=text,

 variable=v, value=mode)

 b.pack(anchor=W)

BK_SekI+II_Python_prof.docx - 283 - (c,p) 2015 - 2026 lsp: dre

8.12.2.7. Text-Fenster / Text-Widget

from Tkinter import * ## Tkinter importieren

root=Tk() ## Wurzelfenster!

textfenster = Text(root) ## Ein Textfenster erzeugen

textfenster.pack() ## und anzeigen

Zeilen von 1 bis y durchgezählt; Spalten von 0 bis x

.get('anfangzeile.anfangspalte','endezeile.endespalte')
.get('anfangzeile.anfangspalte','endezeile.end')
.get('anfangzeile.anfangspalte',END)

.insert(END, text)
.insert('einfügezeile.einfügespalte', text)
.insert('einfügezeile.end', text)

.delete('anfangzeile.anfangspalte','endezeile.endespalte')
.delete ('anfangzeile.anfangspalte','endezeile.end')
.delete ('anfangzeile.anfangspalte',END)

.see(indexzeile)
.see(END)
scrollt den Text, bis angegebene Zeile sichtbar ist

.yview(indexzeile)
.yview(END)
scrollt den Text, bis angegebene Zeile sichtbar ist
Index wandert nach oben (???)

.mark(markierungsname, 'zeile.spalte')
erstellt eine Markierung an der Position

.index(markierungsname)
gibt den Index einer Markierung zurück

.names()
liefert die Namen der verfügbaren Markierungen zurück

.search(suchtext, 'endezeile.endespalte')
.search(suchtext, 'endezeile.end')
.search(suchtext, END)

.tag_add(text, 'anfangzeile.anfangspalte','endezeile.end')
.tag_config(text, foreground=farbe)
.tag_names()

BK_SekI+II_Python_prof.docx - 284 - (c,p) 2015 - 2026 lsp: dre

from Tkinter import *

root = Tk()

textfenster = Text(root)

textfenster.pack()

eingabe = Entry(root,width=60)

eingabe.pack(side=LEFT)

def hole():

 textfenster.insert(END, '\n' + eingabe.get())

but = Button(root,text='Hole', command = hole)

but.pack(side = LEFT)

root.mainloop()

weitere Teile für ein Chat-Programm (zusätzlich zu obigen Quelltext, bzw. Änderungen)

…

root = Tk()

def ende():

 root.destroy()

root.title('Chatten mit Python')

…

…

textfenster = ScrolledText(root,width=90)

textfenster.pack()

…

mehr: http://www.wspiegel.de/tkinter/tkinter02.htm

BK_SekI+II_Python_prof.docx - 285 - (c,p) 2015 - 2026 lsp: dre

8.12.2.8. Frames – Group-Box's – Gruppen-Boxen

Frame-Widget
besser Container genannt,
beinhalten andere Bedien-Elemente, können so gruppiert angeordnet oder z.B. ein- und
ausgeschaltet werden

from Tkinter import *

master = Tk()

Label(text="one").pack()

separator = Frame(height=2, bd=1, relief=SUNKEN)

separator.pack(fill=X, padx=5, pady=5)

Label(text="two").pack()

mainloop()

frame = Frame(width=768, height=576, bg="", colormap="new")

frame.pack()

video.attach_window(frame.window_id())

BK_SekI+II_Python_prof.docx - 286 - (c,p) 2015 - 2026 lsp: dre

8.12.2.9. Menüs / Menu-Widget

from Tkinter import *

def callback():

 print "called the callback!"

root = Tk()

create a menu

menu = Menu(root)

root.config(menu=menu)

filemenu = Menu(menu)

menu.add_cascade(label="File", menu=filemenu)

filemenu.add_command(label="New", command=callback)

filemenu.add_command(label="Open...", command=callback)

filemenu.add_separator()

filemenu.add_command(label="Exit", command=callback)

helpmenu = Menu(menu)

menu.add_cascade(label="Help", menu=helpmenu)

helpmenu.add_command(label="About...", command=callback)

mainloop()

root = Tk()

def hello():

 print "hello!"

create a toplevel menu

menubar = Menu(root)

menubar.add_command(label="Hello!", command=hello)

menubar.add_command(label="Quit!", command=root.quit)

display the menu

root.config(menu=menubar)

BK_SekI+II_Python_prof.docx - 287 - (c,p) 2015 - 2026 lsp: dre

root = Tk()

def hello():

 print "hello!"

menubar = Menu(root)

create a pulldown menu, and add it to the menu bar

filemenu = Menu(menubar, tearoff=0)

filemenu.add_command(label="Open", command=hello)

filemenu.add_command(label="Save", command=hello)

filemenu.add_separator()

filemenu.add_command(label="Exit", command=root.quit)

menubar.add_cascade(label="File", menu=filemenu)

create more pulldown menus

editmenu = Menu(menubar, tearoff=0)

editmenu.add_command(label="Cut", command=hello)

editmenu.add_command(label="Copy", command=hello)

editmenu.add_command(label="Paste", command=hello)

menubar.add_cascade(label="Edit", menu=editmenu)

helpmenu = Menu(menubar, tearoff=0)

helpmenu.add_command(label="About", command=hello)

menubar.add_cascade(label="Help", menu=helpmenu)

display the menu

root.config(menu=menubar)

root = Tk()

def hello():

 print "hello!"

create a popup menu

menu = Menu(root, tearoff=0)

menu.add_command(label="Undo", command=hello)

menu.add_command(label="Redo", command=hello)

create a canvas

frame = Frame(root, width=512, height=512)

frame.pack()

def popup(event):

 menu.post(event.x_root, event.y_root)

attach popup to canvas

frame.bind("<Button-3>", popup)

BK_SekI+II_Python_prof.docx - 288 - (c,p) 2015 - 2026 lsp: dre

counter = 0

def update():

 global counter

 counter = counter + 1

 menu.entryconfig(0, label=str(counter))

root = Tk()

menubar = Menu(root)

menu = Menu(menubar, tearoff=0, postcommand=update)

menu.add_command(label=str(counter))

menu.add_command(label="Exit", command=root.quit)

menubar.add_cascade(label="Test", menu=menu)

root.config(menu=menubar)

8.12.2.9.2. eine Tool-Bar einbauen

besteht aus einem Frame und Button's

from Tkinter import *

root = Tk()

def callback():

 print "called the callback!"

create a toolbar

toolbar = Frame(root)

b = Button(toolbar, text="new", width=6, command=callback)

b.pack(side=LEFT, padx=2, pady=2)

b = Button(toolbar, text="open", width=6, command=callback)

b.pack(side=LEFT, padx=2, pady=2)

toolbar.pack(side=TOP, fill=X)

mainloop()

BK_SekI+II_Python_prof.docx - 289 - (c,p) 2015 - 2026 lsp: dre

8.12.2.9.3. eine Status-Zeile (Status-Bar) einbauen

besteht aus einem Frame und Button's

class StatusBar(Frame):

 def __init__(self, master):

 Frame.__init__(self, master)

 self.label = Label(self, bd=1, relief=SUNKEN, an-

chor=W)

 self.label.pack(fill=X)

 def set(self, format, *args):

 self.label.config(text=format % args)

 self.label.update_idletasks()

 def clear(self):

 self.label.config(text="")

 self.label.update_idletasks()

status = StatusBar(root)

status.pack(side=BOTTOM, fill=X)

BK_SekI+II_Python_prof.docx - 290 - (c,p) 2015 - 2026 lsp: dre

8.12.2.10. Umgang mit Standard-Dialogen

kommen direkt aus dem Betriebssystem
eigentlich gehören auch die Message-Boxen (→) mit dazu

Aufruf immer über Fehler-Behandlung empfehlenswert

try:

 fp = open(filename)

 except:

 tkMessageBox.showwarning(

 "Open file",

 "Cannot open this file\n(%s)" % filename

)

 return

BK_SekI+II_Python_prof.docx - 291 - (c,p) 2015 - 2026 lsp: dre

8.12.2.11. Listbox-Widget – Auswahl-Listen – List(en)-Boxen

from Tkinter import *

master = Tk()

listbox = Listbox(master)

listbox.pack()

listbox.insert(END, "a list entry")

for item in ["one", "two", "three", "four"]:

 listbox.insert(END, item)

mainloop()

listbox.delete(0, END)

listbox.insert(END, newitem)

lb = Listbox(master)

b = Button(master, text="Delete",

 command=lambda lb=lb: lb.delete(ANCHOR))

self.lb.delete(0, END) # clear

for key, value in data:

 self.lb.insert(END, key)

self.data = data

items = self.lb.curselection()

items = [self.data[int(item)] for item in items]

BK_SekI+II_Python_prof.docx - 292 - (c,p) 2015 - 2026 lsp: dre

8.12.2.12. Options-Menüs – Auswahl-Schaltflächen

from tkinter import *

fenster=Tk()

auswahl=StringVar(fenster)

auswahl.set("weiss") # Vorgabe

optionsButton=OptionMenu(fenster,

 auswahl,

 "weiss", "gelb", "rot", "grün",

"blau", "schwarz")

optionsButton.pack()

def uebernehmen():

 print("Die Auswahl lautet(e): ", auswahl.get())

 fenster.quit()

buttonOK=Button(fenster, text="OK", command=uebernehmen)

buttonOK.pack()

mainloop()

Die print-Anweisung wird im IDLE-Fenster
realisiert.

BK_SekI+II_Python_prof.docx - 293 - (c,p) 2015 - 2026 lsp: dre

erstellen eines Options-Menüs aus einer Liste von Optionen

from Tkinter import *

the constructor syntax is:

OptionMenu(master, variable, *values)

OPTIONS = [

 "egg",

 "bunny",

 "chicken"

]

master = Tk()

variable = StringVar(master)

variable.set(OPTIONS[0]) # default value

w = apply(OptionMenu, (master, variable) + tuple(OPTIONS))

w.pack()

mainloop()

BK_SekI+II_Python_prof.docx - 294 - (c,p) 2015 - 2026 lsp: dre

8.12.2.13. Scale-Widget – Gleiter / Regler

auch slider gnannt

from tkinter import *

fenster=Tk()

schieber1=Scale(fenster, from_=0, to=100)

schieber1.pack()

schieber2=Scale(fenster, from_=0, to=12,

 resolution=0.5, orient=HORIZONTAL)

schieber2.pack()

mainloop()

BK_SekI+II_Python_prof.docx - 295 - (c,p) 2015 - 2026 lsp: dre

8.12.2.14. Scrollbar-Widget - Bildlaufleisten

from tkinter import *

fenster = Tk()

laufleiste=Scrollbar(fenster)

laufleiste.pack(side=RIGHT, fill=Y)

auswahlListenBox=Listbox(fenster,

 yscrollcommand=laufleiste.set)

for nummer in range(30):

 auswahlListenBox.insert(END, str(nummer))

auswahlListenBox.pack(side=LEFT, fill=BOTH)

laufleiste.config(command=auswahlListenBox.yview)

mainloop()

8.12.2.15. Widget x

BK_SekI+II_Python_prof.docx - 296 - (c,p) 2015 - 2026 lsp: dre

8.12.x. Tkinter – stark, stärker, noch stärker Objekt-orientiert.

Alles was wir bisher mit Tkinter gemacht haben, war schon Objekt-orientiert. Wir benutzten
Objekte, wie z.B. Tkinter selbst oder Labels und Buttun und die dazugehörigen Methoden.
Wenn man es von Anfang an so macht, dann ist es auch irgendwie gar kein Problem. Wird
man aber richtig Objekt-orientiert, dann ist die Welt für den Einsteiger-Programmierer schon
schwerer zu durchschauen. Wer die nachfolgenden Programme und Erklärungen nicht gleich
versteht, kann vielleicht erst einmal die Grundlagen der Objekt-orientierten Programmierung
konsumieren. Ein Rücksprung hierher ist dann gut möglich und macht dann auch wieder
Spaß. Graphische Oberflächen machen eben einfach die schöneren Programme.

8.12.x.1. nochmal "Hello Welt!"

import tkinter as tk

class Application(tk.Frame):

 def __init__(self, master=None):

 tk.Frame.__init__(self, master)

 self.pack()

 self.createWidgets()

 def createWidgets(self):

 self.hi_there = tk.Button(self)

 self.hi_there["text"] = "Hello World\n(click me)"

 self.hi_there["command"] = self.say_hi

 self.hi_there.pack(side="top")

 self.QUIT = tk.Button(self, text="QUIT", fg="red",

 command=root.destroy)

 self.QUIT.pack(side="bottom")

 def say_hi(self):

 print("hi there, everyone!")

root = tk.Tk()

app = Application(master=root)

app.mainloop()

BK_SekI+II_Python_prof.docx - 297 - (c,p) 2015 - 2026 lsp: dre

einfache Dialoge
from Tkinter import *

class MyDialog:

 def __init__(self, parent):

 top = self.top = Toplevel(parent)

 Label(top, text="Value").pack()

 self.e = Entry(top)

 self.e.pack(padx=5)

 b = Button(top, text="OK", command=self.ok)

 b.pack(pady=5)

 def ok(self):

 print "value is", self.e.get()

 self.top.destroy()

root = Tk()

Button(root, text="Hello!").pack()

root.update()

d = MyDialog(root)

root.wait_window(d.top)

import tkSimpleDialog

class MyDialog(tkSimpleDialog.Dialog):

 def body(self, master):

 Label(master, text="First:").grid(row=0)

 Label(master, text="Second:").grid(row=1)

 self.e1 = Entry(master)

 self.e2 = Entry(master)

 self.e1.grid(row=0, column=1)

 self.e2.grid(row=1, column=1)

 return self.e1 # initial focus

 def apply(self):

 first = int(self.e1.get())

 second = int(self.e2.get())

 print first, second # or something

 ...

 def apply(self):

 first = int(self.e1.get())

 second = int(self.e2.get())

 self.result = first, second

d = MyDialog(root)

print d.result

BK_SekI+II_Python_prof.docx - 298 - (c,p) 2015 - 2026 lsp: dre

Überprüfung von Eingaben
...

 def apply(self):

 try:

 first = int(self.e1.get())

 second = int(self.e2.get())

 dosomething((first, second))

 except ValueError:

 tkMessageBox.showwarning(

 "Bad input",

 "Illegal values, please try again"

)

 ...

 def validate(self):

 try:

 first= int(self.e1.get())

 second = int(self.e2.get())

 self.result = first, second

 return 1

 except ValueError:

 tkMessageBox.showwarning(

 "Bad input",

 "Illegal values, please try again"

)

 return 0

 def apply(self):

 dosomething(self.result)

from Tkinter import *

import os

class Dialog(Toplevel):

 def __init__(self, parent, title = None):

 Toplevel.__init__(self, parent)

 self.transient(parent)

 if title:

 self.title(title)

 self.parent = parent

 self.result = None

 body = Frame(self)

 self.initial_focus = self.body(body)

 body.pack(padx=5, pady=5)

 self.buttonbox()

 self.grab_set()

 if not self.initial_focus:

 self.initial_focus = self

 self.protocol("WM_DELETE_WINDOW", self.cancel)

 self.geometry("+%d+%d" % (parent.winfo_rootx()+50,

 parent.winfo_rooty()+50))

BK_SekI+II_Python_prof.docx - 299 - (c,p) 2015 - 2026 lsp: dre

 self.initial_focus.focus_set()

 self.wait_window(self)

 #

 # construction hooks

 def body(self, master):

 # create dialog body. return widget that should have

 # initial focus. this method should be overridden

 pass

 def buttonbox(self):

 # add standard button box. override if you don't want the

 # standard buttons

 box = Frame(self)

 w = Button(box, text="OK", width=10, command=self.ok, default=ACTIVE)

 w.pack(side=LEFT, padx=5, pady=5)

 w = Button(box, text="Cancel", width=10, command=self.cancel)

 w.pack(side=LEFT, padx=5, pady=5)

 self.bind("<Return>", self.ok)

 self.bind("<Escape>", self.cancel)

 box.pack()

 #

 # standard button semantics

 def ok(self, event=None):

 if not self.validate():

 self.initial_focus.focus_set() # put focus back

 return

 self.withdraw()

 self.update_idletasks()

 self.apply()

 self.cancel()

 def cancel(self, event=None):

 # put focus back to the parent window

 self.parent.focus_set()

 self.destroy()

 #

 # command hooks

 def validate(self):

 return 1 # override

 def apply(self):

 pass # override

BK_SekI+II_Python_prof.docx - 300 - (c,p) 2015 - 2026 lsp: dre

Check-Boxen

def __init__(self, master):

 self.var = IntVar()

 c = Checkbutton(

 master, text="Enable Tab",

 variable=self.var,

 command=self.cb)

 c.pack()

 def cb(self, event):

 print "variable is", self.var.get()

weiterführende und Quell-Links:
http://www.python-kurs.eu/python_tkinter.php (tolles Tutorial)
http://www.wspiegel.de/tkinter/tkinter_index.htm (kurzes, aber informatives Tutorial)

Tk-Geometrie-Manager

•

•

•

 >>>

http://www.python-kurs.eu/python_tkinter.php
http://www.wspiegel.de/tkinter/tkinter_index.htm

BK_SekI+II_Python_prof.docx - 301 - (c,p) 2015 - 2026 lsp: dre

8.12.x. diverse Tkinter-Beispiele

aus verschiedenen Quellen:

#grafik1.py

from Tkinter import * #alle Funktionen des Moduls Tkinter werden importiert

fenster = Tk() #Ein Objekt der Klasse Tk mit Namen fenster wird eingerichtet

fenster.mainloop() #Die Methode mainloop aktiviert ein Tk-Fenster

#grafik2.py

from Tkinter import *

fenster= Tk()

fenster.etikett= Label(master=fenster,text= ‘Hallo!’) #Ein Objekt der Klasse Label

 #mit Namen fenster.etikett wird erzeugt.

fenster.etikett.pack() #Mit der Methode pack() wird das neue

 #Objekt etikett in die Darstellung des

 #Anwendungsfensters fenster eingebaut.

fenster.mainloop()

#grafik3.py

from Tkinter import *

fenster= Tk()

fenster.etikett= Label(master=fenster,text= ‘Hallo!’,

font=(’Comic Sans MS’,14),fg=’blue’) #als Schrifttyp wird Comic Sans MS

 #in der Schriftgröße 14;

 #Schriftfarbe ist Blau

fenster.etikett.pack()

fenster.title (’Formen’) #Ueberschrift

leinwand=Canvas(fenster,width=800,height=600,bg=“yellow“) #Mithilfe von Canvas-Objekten

 #werden Kreise, Rechtecke, Linien

 #oder Textobjekte generiert

leinwand.pack()

rechteck=leinwand.create_rectangle(40,20,160,80,fill=“Moccasin“)

kreis=leinwand.create_line(270,290,450,350,width=10,fill=“Lightblue“)

vieleck=leinwand.create_polygon(500,80,500,120,600,120,500,80, fill =“white“)

streckenzug=leinwand.create_line(270,290,450,350,300,200,

arrow = LAST, width =10, fill = “blue“) #andere Werte fuer arrow: #FIRST, BOTH

spruch=leinwand.create_text(300,50,text=“Aller Anfang ist schwer!“),

font=(’Arial’,14), fill=“green“)

fenster.mainloop()

Q: ???

BK_SekI+II_Python_prof.docx - 302 - (c,p) 2015 - 2026 lsp: dre

8.13. Internet

8.13.x. Python und das http-Protokoll

Variante 1

import requests

adresse="http://www.lsp-dre.de"

antwort = requests.get(adresse)

print(antwort.ststus_code)

print(antwort.headers['content-type'])

print(antwort.encoding)

print(antwort.text[:80])

Variante 2

import urllib.request

adresse="http://www.lsp-dre.de"

seite=urllib.request.urlopen(adresse)

seiteninhalt=seite.read()

print(seiteninhalt)

seite.close()

Wichtig ist es, zumindestens für das erste Ausprobieren, eine einfache Internetseite abzufra-
gen. Ansonsten kann die Antwort etlige Seiten lang sein. Im Beispiel-Fall ist das eine ganz
einfach gestrickte Umleitung auf eine andere Internetseite.

 >>>

b'\xef\xbb\xbf<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitio-

nal//EN" "http://www.w3.org/TR/html4/loose.dtd">\n<HTML>\n<HEAD>\n

<TITLE>lern-soft-projekt: drews</TITLE>\n</HEAD>\n\n<BODY BGCo-

lor=#3333FF Text=#FFFF99 Link=#FFFFFF VLink=#FFFF66>\n<H2>Homepage

lern-soft-projekt: drews</H2><HR>\n<P>Derzeit wird diese Domain nicht

bedient. Nutzen Sie bitte:<P>\n<DIV align="center"><H2>www.lern-soft-

projekt.de</H2></DIV>\n</BODY>\n</HTML>'

>>>

BK_SekI+II_Python_prof.docx - 303 - (c,p) 2015 - 2026 lsp: dre

Natürlich können wir nun den zurückgelieferten HTML-Text auch weiterverwenden.
Wollten wir einen Browser programmieren,
müssten wir jetzt nach und nach alle Tags
auswerten und in eine Seiten-Darstellung
umsetzen. Dabei sollte dann das heraus-
kommen, was uns ein anderer Browser
(Internet-Explorer, Firefox, Opera, Chrome,
Safari, …) uns auch liefern würde.
Mit Text wird das vielleicht noch recht ein-
fach gehen, aber spätestens bei Bildern,
Videos usw. usf. sind dann schon erweiter-
te Programmierkenntnisse notwendig.
Wir wollen den HTML-Text einfach nach
dem Seiten-Titel durchsuchen. Darüber
sollte eigentlich jede Internet-Seite verfü-
gen.

die Beispiel-Seite im Browser Firefox

Wer sich schon mit HTML beschäftigt hat, der weiss, dass der Seiten-Titel zwischen den
Tags <TITLE> und </TITLE> zu finden ist. Genau danach wollen wir jetzt suchen.

…

startpos=0

while True:

 startpos=seiteninhalt.find("<TITLE>",startpos)

 if startpos == -1:

 break

 endepos=seiteninhalt.find("</TITLE>",startpos)

 if endepos == -1:

 break

 print("gefundener Text:

",seiteninhalt[(startpos+7):endepos])

 startpos=endepos

print("Suche beendet!")

 >>>

gefundener Text: lern-soft-projekt: drews

Suche beendet!

>>>

BK_SekI+II_Python_prof.docx - 304 - (c,p) 2015 - 2026 lsp: dre

Wenn wir das Programm ein wenig umgestalten, dann kann auch nach jedem anderen be-
liebigen Begriffspaar gesucht werden. Ob das Tags sind oder andere Begriffe, ist dabei egal.

…

print("-----------")

print("Suche:")

print("")startpos=0

starttag="<H2>"

endetag="</H2>"

while True:

 startpos=seiteninhalt.find(starttag,startpos)

 if startpos == -1:

 break

 endepos=seiteninhalt.find(endetag,startpos)

 if endepos == -1:

 break

 print("Text zwischen ",starttag," und ",endetag,":

",seiteninhalt[(startpos+len(starttag)):endepos])

 startpos=endepos

print("Suche beendet!")

 …

Suche:

gesuchter Text zwischen <H2> und </H2> : Homepage lern-soft-projekt: drews

gesuchter Text zwischen <H2> und </H2> : <A href="http://www.lern-soft-

projekt.de/">www.lern-soft-projekt.de

Suche beendet!

>>>

8.13.x. einfacher Web-Server

from http.server import HTTPServer, CGIHTTPRequestHandler

import os

os.chdir("/tmp")

CGIHTTP-Server auf Port 8080 starten

server = HTTPServer(("",8080), CGIHTTPRequestHandler)

server.serve_forever()

passendes CGI-script "cgi_test" unter /tmp abgespeichert
echo 'Content-Type: text/plain; charset=UTF-8'

echo

echo 'Hallo Welt!'

oder als Python-script "cgi_test.py" unter /tmp abgespeichert
print('''Content-Type: text/plain; charset=UTF-8

Hallo Welt!'''

BK_SekI+II_Python_prof.docx - 305 - (c,p) 2015 - 2026 lsp: dre

8.13.x. Python und die eMail-Protokolle (smtp, pop3, imap)

-*- coding: utf8 -*-

 # Mail-Versand mit dem Standard-Modul smtplib

 # Module smtplib und sys importieren

 import smtplib, sys

 # MIMEText aus dem Modul text des Sub-Pakets email.mime des Pakets email

 # importieren;

 # im Dateisystem z.B. unter /usr/lib64/python2.6/email/mime/text.py

 from email.mime.text import MIMEText

 # unser ASCII-Mailtext

 mail_text = '''

 Hello friends,

 this is a simple ASCII mail.

 '''

 # eine MIMEText-Nachricht erstellen

 msg = MIMEText(mail_text)

 # Header setzen

 msg['Subject'] = 'test mail'

 me = msg['From'] = 'otto@hrz.tu-chemnitz.de'

 you = msg['To'] = 'hot@hrz.tu-chemnitz.de'

 # Mail senden

 s = smtplib.SMTP()

 if len(sys.argv) > 1 and sys.argv[1] == 'd':

 # Kommandozeilenargument 1 lautet "d", daher Debug einschalten

 s.set_debuglevel(1)

 #s.connect(host = 'mailbox.hrz.tu-chemnitz.de')

 s.connect()

 s.sendmail(me, [you], msg.as_string())

 s.close()

Q: https://www-user.tu-chemnitz.de/~hot/PYTHON/

8.13.x. Zugriffe über die REST-API

Viele Web-Datenbanken oder Web-Seiten bieten eine oder mehrere Möglichkeiten an, um
auf ihre Daten und Fähigkeiten zuzugreifen.

8.13.x.y. SOAP

BK_SekI+II_Python_prof.docx - 306 - (c,p) 2015 - 2026 lsp: dre

8.13.x.y. REST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

import requests

url = "https://api.agify.io"

eingabe = input("Geben Sie Ihren Namen ein!: ")

//REST-Abfrage

abfrage = requests.get(url + "?name" + eingabe)

if abfrage.ok:

 print("Agify schätzt Dein Alter auf ")

 print(abfrage.json()["age"])

 println(" Jahre")

else:

 abfrage.raise_for_status()

Verbesserung des Ergebnisses u.U. durch Erweiterung der Abfrage um die Länder-
Zugehörigkeit:

abfrage = requests.get(url + "?name" + eingabe + "&country_id=de")

weitere einfache API's für Test-Zwecke
https://genderize.io (errät das Geschlecht zu einem Namen)
https://nationalize.io (errät die Nationalität aus einem Namen)

für die gehobene / erweiterte Anspruchs-Ebene:
https://dwd.api.bund.dev/ (WarnWetter.de)
https://developer.accuweather.com/

http://htc2.accu-weather.com/widget/htc2/weather-

data.asp?location=cityId%3A<ORTSID>&metric=1&langId=9

https://wttr.in/:Rostock (für Orte mit Leerzeichen Anführungszeichen nutzen)

https://api.agify.io/
https://genderize.io/
https://nationalize.io/
https://dwd.api.bund.dev/
https://developer.accuweather.com/
http://htc2.accu-weather.com/widget/htc2/weather-data.asp?location=cityId%3A%3cORTSID%3e&metric=1&langId=9
http://htc2.accu-weather.com/widget/htc2/weather-data.asp?location=cityId%3A%3cORTSID%3e&metric=1&langId=9
https://wttr.in/:Rostock

BK_SekI+II_Python_prof.docx - 307 - (c,p) 2015 - 2026 lsp: dre

8.14. besondere mathematische Möglichkeiten in Python

8.14.1. imaginäre Zahlen

Notierung
2 + 3j
(2 + 3j)
complex(2,3)

jede Variable kann auch eine imaginäre Zahl beinhalten:
img_zahl = 2.5 - 1.5j
img-zahl.real liefert den Real-Teil, also hier 2,5
img_zahl.imag liefert den Imaginär-Teil, also hier -1,5 ➔ -1,5i

8.14.2. Matrizen (Matrixes)

Ob es nun Matrizen oder Matrixes heißt, wollen wir hier nicht vertiefen. Ich benutze Matrix für
die Einzahl und Matritzen für die Mehrzahl. Das liesst sich aus meiner Sicht einfacher und
jeder halbwegs (mathematisch) Eingeweihte, weiss, worum es geht.

Realisierung und Bearbeitung z.B. über geschachtelte Listen (s.a. kurze Einführung: → 8.4.
Listen, die I. – einfache Listen)

 def transponiere(matrix, bisIndex):

 for i in range(bisIndex):

 for j in range(i+1, bisIndex):

 matrix[i][j],matrix[j][i] = matrix[j][i],matrix[i][j]

 return matrix

def testeTransponieren(n):

 matrix= range(n)

 for i in range(n):

 matrix[i]=range(n)

 print("(Original-)Matrix")

 for i in range(n):

 print(matrix[i])

 transpoMatrix=transponiere(matrix)

 print("")

 print("transponierte Matrix")

 for i in range(n):

 print(transpoMatrix[i])

BK_SekI+II_Python_prof.docx - 308 - (c,p) 2015 - 2026 lsp: dre

 def multipliziere(matrix1, matrix2):

 laengeM1=len(matrix1)

 multMatrix=range(laengeM1)

 for i in range(laengeM1):

 multMatrix[i]=range(laengeM1)

 for j in range(laengeM1):

 multMatrix[i][j]=0

 for i in range(laengeM1):

 for j in range(laengeM1):

 summme=0

 for k in range(laengeM1):

 summe+=matrix1[i][k]*matrix2[k][j]

 multMatrix[i][j]=sum

 return multMatrix

def testeMultipizieren(laengeMatrix):

 matrixA=range(laengeMatrix)

 matrixB=range(laengeMatrix)

 print(matrixA)

 print(matrixB)

 for i in range(laengeMatrix):

 matrixA[i]=range(laengeMatrix)

 matrixB[i]=range(laengeMatrix)

 for j in range(laengeMatrix):

 matrixA[i][j]=i

 matrixB[i][j]=i

 print(matrixA)

 print(matrixB)

 matrixC=multipliziere(matrixA,matrixB)

 print(matrixC)

 def berechneDeterminante(matrix):

 laengeM=len(matrix)

 if laengeM<=0:

 return 1

 else:

 if laengeM==1:

 return matrix[0][0]

 else:

 summe=0

 neg=-1

 for i in range(laengeM):

 neg=(-1)*neg

 matrixH=matrixcopy(matrix)

 for j in range(laengeM):

 matrixH.pop(0)

 matrixH-pop(i)

 sum+=neg*matrix[i][0]*berechneDeterminante(matrixH)

 return summe

dieser Algorithmus hat eine Laufzeit von O(2n), es existiert aber auch einer mit O(n3)

BK_SekI+II_Python_prof.docx - 309 - (c,p) 2015 - 2026 lsp: dre

8.14.3. Python numerisch, Python für Big Data

auch für Data science, Maschinelles Lernen, Künstliche Intelligenz, …

numerisches Programmieren umfasst einen breiten Teil der Mathematik und meint das Ar-
beiten mit stetigen Variablen, numerische Analysen, Approximations-Algorithmen, …

in vielen Punkten Ersatz für das kostenpflichtige Matlab
hier genannte Module alle kostenfrei
keine Einschränken durch prohibitive / proprietäre Lizenzen bei der Weiterverwendung

 Pandas

 Mathplotlib

 Scipy

 Numpy

 Python

Numpy

stellt die grundlegenden Daten-Typen für numerische Arbeiten und das Händling von Big
Data zur Verfügung
dazu gehören mehrdimensionale Array's und Matrizen

Scipy

benutzt die Daten-Typen aus Numpy
bietet vor allem Funktionalitäten für Analysen usw. usf. an, wie z.B. Regression, FOURIER-
Transformation, …

Matplotlib

bietet Möglichkeiten der graphischen Darstellung von Daten an

1

2

3

4

5

6

7

import mathplotlib.pyplot as zeichnung

x = [1,2,3,4,5,6]

y = [1,4,9,16,25,36]

zeichnung.plot(x,y)

zeichnung.title("quadratische Funktion")

zeichnung.show()

BK_SekI+II_Python_prof.docx - 310 - (c,p) 2015 - 2026 lsp: dre

Pandas

nutzt alle genannten Module
erweitert diese für Tabellen und Zeit-Reihen

BK_SekI+II_Python_prof.docx - 311 - (c,p) 2015 - 2026 lsp: dre

8.15. Behandlung von Laufzeitfehlern – Exception's

try … except … else

Bsp: Zahlenraten
Computer wählt zufällig eine Zahl aus einem Zahlenbereich aus, hier 1 bis 100
der Nutzer soll die Zahl raten; der Computer gibt bein nicht-zutreffen zurück, ob die Zahl zu
groß ode zu klein ist; Ziel sind besonders wenige Rate-Vorgänge zu brauchen.

 from random import randint

geraten=False

SuchZahl=randint(1,100)

print("Der Computer hat eine Zahl erwürfelt?")

print()

zaehler=0

while not geraten:

 # Eingabe

 try:

 eing=int(input("Welche Zahl vermutest Du?: "))

 except ValueError:

 print("")

 continue # --> Eingabe wiederholen

 # Auswertung

 zaehler+=1

 if eing > Suchzahl:

 print("vermutete Zahl ist zu groß!")

 elif ein < Suchzahl:

 print("vermutete Zahl ist zu klein!")

 else:

 geraten=True

print("Richtig! ",zaehler," Versuche gebraucht")

print("Spiel-Ende")

Die Auswertung könnte auch im optionalen ELSE-Zweig stehen können.

 >>>

>>>

BK_SekI+II_Python_prof.docx - 312 - (c,p) 2015 - 2026 lsp: dre

try … except … finally

der finally-Zweig wird immer ausgeführt

Bsp: Zahlenraten
Computer wählt zufällig eine Zahl aus einem Zahlenbereich aus, hier 1 bis 100
der Nutzer soll die Zahl raten; der Computer gibt beim Nicht-Zutreffen zurück, ob die Zahl zu
groß ode zu klein ist; Ziel sind besonders wenige Rate-Vorgänge zu brauchen.

 from random import randint

geraten=False

SuchZahl=randint(1,100)

print("Der Computer hat eine Zahl erwürfelt?")

print()

zaehler=0

while not geraten:

 # Eingabe

 try:

 eing=int(input("Welche Zahl vermutest Du?: "))

 except ValueError:

 print("")

 continue # --> Eingabe wiederholen

 # Auswertung

 zaehler+=1

 if eing > Suchzahl:

 print("vermutete Zahl ist zu groß!")

 elif ein < Suchzahl:

 print("vermutete Zahl ist zu klein!")

 else:

 geraten=True

print("Richtig! ",zaehler," Versuche gebraucht")

print("Spiel-Ende")

 >>>

>>>

try … finally

raise

pass

leere Anweisung; z.B. als Platzhalter in definierten, aber noch nicht implementierten Funktio-
nen / Klassen / …

BK_SekI+II_Python_prof.docx - 313 - (c,p) 2015 - 2026 lsp: dre

traceback

lässt eine Nachverfolgung zu, woher ein Fehler gekommen ist
z.B. wenn dieser aus externen Modulen usw. stammt
auch die IDE und der Debugger stellen traceback-Informationen bereit

import traceback

try

 kritischeOperation

except:

 print(("Fehler aufgetreten:", traceback.format_exc())

die Gesamt-Struktur (Syntax) sieht so aus:

try

 code

except FehlerType:

 alternativerCode

{ except FehlerType:

 alternativerCode }

except: # bei allen anderen FehlerTypen

 alternativerCode

else:

 weitererCode # wenn oben kein Fehler aufgetreten ist

finally:

 immerAuszufuehrenderCode # CleanUp-Code

typische FehlerTypen:
ValueError
TypeError
KeyError

8.15.1. Exception – das Exception-Objekt

ermöglicht es die Exception (mit einem Benutzer-definierten Präfix) zu protokollieren

def test(x)

 try

 return operationMitX

 except Exception as info:

 print("Fehler aufgetreten:", info, sep='\n')

den FehlerTyp-Namen ausgeben:
 print(f"Ein {type(info).__name__} ist aufgetreten: \n {info}")

für Protokolle ist es auch sinnvoll, Zeit-Informationen mit zu verarbeiten

BK_SekI+II_Python_prof.docx - 314 - (c,p) 2015 - 2026 lsp: dre

dazu kann gut auf das Modul time (→ 8.6.2.x. Verschiedenes zum Modul: time) zurückge-
griffen werden

BK_SekI+II_Python_prof.docx - 315 - (c,p) 2015 - 2026 lsp: dre

8.16. Sortieren – eine Wissenschaft für sich

Dieses Kapitel könnte genauso gut unter dem Abschnitt (→) eingeordnet werden. Was
durch den Anfänger vielleicht als überzogene, abgehobene, akademische Auseinanderset-
zung abgetan wird, ist in der Informatik ein Kernproblem: Wie bekommt man schnell und mit
möglichst wenig Speicher-Aufwand eine Liste / ein Feld von Daten sortiert.
Die Algorithmik liefert viele Lösungen mit unterschiedlichen Vor- und Nachteilen. Einige Sor-
tier-Verfahren wollen wir hier vorstellen und unter bestimmten Kriterien bewerten.
Für Anfänger-Listen-Größen von vielleicht maximal einigen hundert Werten machen die Un-
terschiede meist nicht viel aus. Bei großen - ev. sogar mehrdimensionalen Daten-Strukturen
– bekommen die Kriterien dann schon eine ganz andere Bedeutung.
Wir wollen hier versuchen die einzelnen Algorithmen nicht nur zu nennen, sondern auch zu
erklären und an einer Beispiel-Datenreihe anzuwenden.
Wenn es geht und wenn es sinnvoll ist, dann werden wir auch die Zwischen-Zustände mittels
eines abgewandelten Programm anzuzeigen, um das Verfahren auch in der Praxis zu erle-
ben. Solche Zwischen-Anzeigen bieten sich auch an, wenn man einen Algorithmus auf die
eigenen Daten-Strukturen anpasst. Selten geht alles beim ersten Mal glatt.
Anfängern sei empfohlen, sich zuerst einmal den Algorithmus herauszusuchen, bei dem man
den Eindruck hat, man versteht ihn und die Umsetzung ins Programm. Dadurch wird die
Fehlersuche vereinfacht. Später kann man sich dann den höheren Verfahren zuwenden.

weiterführende Links:
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html (Visualisierung von Algorithmen)

8.16.x. Bubble-Sort

1

2

3

4

5

6

7

8

9

10

11

def bubblesort(liste):

 laenge = len(liste)

 for i in range(laenge):

 geaendert = False

 for j in range(laenge-i-1):

 if liste[j] > liste[j+1]:

 liste[j],liste[j+1] = liste[j+1],liste[j]

 geaendert = True

 if not geaendert:

 break

 return liste

8.16.x. Selection-Sort

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

BK_SekI+II_Python_prof.docx - 316 - (c,p) 2015 - 2026 lsp: dre

8.16.x. Quick-Sort

Anwendung des "Teile und herrsche"-Prinzips ("divide and conquer")
algemeines Prinzip zum Lösen von Problemen: Zerteile das Problem in kleinere und löse
diese. Dabei darf das prinzip immer wieder angewendet werden, wir arbeiten also rekursiv
irgendwann sind die Teil-Probleme so klein, dass sie schon gelöst sind (Rekursions-
Abbruch) oder einfach zu lösen sind

Quicksort besteht aus drei Elementen (noch nicht perfekt!)

• Herrsche / Beauftragen /
Befehlen

wenn die Liste länger als ein Element ist, dann wird sie
nach Teilen-Prinzip bearbeitet, ansonsten ist die Liste
sortiert
es kann das Zusammenfügen / Ausgeben erfolgen

• Teilen aus der Liste wird (zufällig) ein Element elem ausgewählt
und die Liste in zwei Teillisten zerlegt, wobei Liste1 alle
kleineren Elemente als elem enthält und Liste 2 alle grö-
ßeren oder gleichgroßen (/ anderen)
die Teillisten werden dem Herrsche-Prinzip zur Prüfung
übergeben

• Zusammenfügen die sortierte Liste wird nun zusammengesetzt aus der
sortierten Liste der kleineren Elemente, dem Element
elem und der sortierten Liste der größeren Elemente

der Algorithmus stammt von HOARE 1962 ist einer der effektiven Sortier-Verfahren
besonders herausragend ist die Zeit-Effektivität

es werden durchschnittlich n log n Vergleiche benötigt

BK_SekI+II_Python_prof.docx - 317 - (c,p) 2015 - 2026 lsp: dre

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

def quicksort(liste):

 def teile(links, rechts):

 i = links

 j = rechts – 1

 pivot = liste[rechts]

 while True:

 while liste[i] <= pivot and i < rechts:

 i+=1

 while liste[j] >= pivot and j > links

 j-=1

 if i < j:

 liste[i], liste[j] = liste[j], liste[i]

 else:

 break

 if liste[i] > pivot:

 liste[i], liste[rechts] = liste[rechts], liste[i]

 return i

 def sortieren(links,rechts):

 if links < rechts:

 teiler = teile(links,rechts)

 sortieren(links, teiler-1)

 sortieren(teiler+1, rechts)

 sortieren(0, laenge-1)

 return liste

ein Quick-Sort mit Anzeige
def quicksort(liste):

 if len(liste)>0:

 print("es wird sortiert: ", liste')

 if len(liste)<=1:

 return liste

 else:

 return quicksort([i for i in liste[1:] if i < liste[0])\

 + [liste[0]]\

 + quicksort([j for j in liste[1:] if j >= s[0]])

etwas kryptisch , aber auch so geht es:
def quicksort(liste):

 if len(liste) <= 1:

 return liste

 wahlelement = liste.pop()

 links = [element for element in liste if element < wahlelement]

 rechts = [element for element in liste if element >= wahlelement]

 return quicksort(links) + [wahlelement] + quicksort(rechts)

BK_SekI+II_Python_prof.docx - 318 - (c,p) 2015 - 2026 lsp: dre

8.16.x. Tree-Sort

8.16.x. Merge-Sort

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

def mergesort(liste):

 def mische(links, rechts):

 gemischt = []

 laengeLinks = len(links)

 laengeRechts = len(rechts)

 while laengeLinks != 0 and laengeRechts != 0:

 if links[0] <= rechts[0]:

 gemischt.append(links[0])

 links = links[1:]

 else:

 gemischt.append(rechts[0])

 rechts = rechts[1:]

 while laengeLinks !=0:

 gemischt.append(links[0])

 links = links[1:]

 while laengeRechts !=0:

 gemischt.append(rechts[0])

 rechts = rechts[1:]

 return gemischt

 def sortieren(liste):

 laenge = len(liste)

 if laenge<=1:

 return liste

 else:

 haelfte=laenge/2

 links = liste[0:haelfte]

 rechts = liste[haelfte:]

 links = sortieren(links)

 rechts = sortieren(rechts)

 return mische(links, rechts)

 return sortieren(liste)

BK_SekI+II_Python_prof.docx - 319 - (c,p) 2015 - 2026 lsp: dre

8.16.x. Selection-Sort

1

2

3

4

5

6

7

8

9

def selectionsort(liste):

 laenge = len(liste)

 for i in range(laenge-1):

 minimum = i

 for j in range(i,laenge):

 if liste[j] < liste[minimum]:

 minimum = j

 liste[minimum],liste[i] = liste[i],liste[minimum]

 return liste

8.16.x. Insertion-Sort

1

2

3

4

5

6

7

8

9

10

11

def insertionsort(liste):

 laenge = len(liste)

 for i in range(1,laenge):

 wert = liste[i]

 j = i

 while j > 0 and liste[j-1] > wert:

 liste[j] = liste[j-1]

 j-=1

 liste[j] = wert

 return liste

BK_SekI+II_Python_prof.docx - 320 - (c,p) 2015 - 2026 lsp: dre

8.16.x. Gnome-Sort

1

2

3

4

5

6

7

8

9

10

11

12

13

14

def gnomesort(liste):

 pos = 0

 laenge = len(liste)

 while pos < laenge-1:

 i = pos

 if liste[i] <= liste[i+1]:

 pos+=1

 else:

 liste[i], liste[i+1] = liste[i+1], liste[i]

 if pos !=0:

 pos-=1

 else:

 pos+=1

 return liste

8.16.x. Counting-Sort

1

2

3

4

5

6

7

8

9

10

11

12

13

14

def countingsort(liste):

 laenge = len(liste)

 if laenge == 0:

 return []

 listeA = [0] * (max(liste)+1)

 listeB = [""] * laenge

 for elem in liste:

 listeB[elem]+=1

 for i in range(1,len(listeB)):

 listeB[i]+=listeB[i-1]

 for elem in liste[::-1]:

 listeA[listeB[elem]-1] = elem

 listeB[elem]-=1

 return listeA

BK_SekI+II_Python_prof.docx - 321 - (c,p) 2015 - 2026 lsp: dre

8.16.x. Radix-Sort

1

2

3

4

5

6

7

8

9

10

11

12

13

14

def radixsort(liste, k=10, d=0):

 laenge = len(liste)

 if laenge == 0:

 return []

 elif d == 0:

 d = max(map(lambda x: len(str(abs(x))), liste)

 for x in range(d):

 listeA = [[] for i in range(k)]

 for elem in liste:

 listeA[(elem / 10**x) % k].append(elem)

 liste = []

 for bereich in listeA:

 liste.extend(bereich)

 return liste

8.16.x. Tim-Sort

8.16.x. Heap-Sort

1

2

3

4

5

6

7

8

9

10

11

def heapsort(liste):

 return liste

BK_SekI+II_Python_prof.docx - 322 - (c,p) 2015 - 2026 lsp: dre

8.16.x. Bucket-Sort

8.16.x. -Sort

BK_SekI+II_Python_prof.docx (c,p) 2015 - 2026 lern-soft-projekt: drews

8.16.x. Vergleich ausgewählter Sortier-Algorithmen

Algorithmus in place stabil Laufzeit-Verhalten
/ Name B

Best-Case

AVG
durchschnittlich

W
Worst-Case

Selection-Sort ja nein (n2) (n2) (n2)

Bubble-Sort ja ja (n) (n2) (n2)

Insertion-Sort ja ja (n) (n2) (n2)

Quick-Sort ja nein (n * log(n)) (n * log(n)) (n2)

Heap-Sort ja nein (n * log(n)) (n * log(n)) (n * log(n))

Merge-Sort nein, (ja) ja (n * log(n)) (n * log(n)) (n * log(n))

Tim-Sort nein ja (n) (n * log(n)) (n * log(n))

Radix-Sort nein ja (d * (n+k))

Counting-Sort nein ja (n+k)

Bucket-Sort

interessante Links:
https://www.toptal.com/developers/sorting-algorithms (Animationen zu den verschiedenen Sortier-Algorithmen)
https://www.youtube.com/watch?v=t8g-iYGHpEA (Sortierungen optisch und akustisch veranschaulicht)

https://www.toptal.com/developers/sorting-algorithms
https://www.youtube.com/watch?v=t8g-iYGHpEA

BK_SekI+II_Python_prof.docx (c,p) 2015 - 2026 lern-soft-projekt: drews

8.16.x. das Häufigste Element finden – der Modus

def mode(L):

 for i in range(0,100):

 for i in L:

 frequency[i] += 1

 return i

 if frequency[i] == max(frequency):

 frequency=[0]*10

 >>>

interessante Links:
http://www.sortierkino.de (zum Zuschauen beim Sortieren; viele Algorithmen im Vergleich)

http://www.sortierkino.de/

BK_SekI+II_Python_prof.docx - 325 - (c,p) 2015 - 2026 lsp: dre

Beispiel-Implementierung

Q: https://github.com/MartinThoma/algorithms/blob/master/sorting.py

BK_SekI+II_Python_prof.docx - 326 - (c,p) 2015 - 2026 lsp: dre

8.17. Nutzung weiterer (/ besonderer) graphischer Benutzer-

Oberflächen

BK_SekI+II_Python_prof.docx - 327 - (c,p) 2015 - 2026 lsp: dre

8.18. (die hohe Kunst der) Spiele-Programmierung

Nachdem wir einiges dazu schon beim Modul "pygame" besprochen haben (→ 8.9. das Mo-
dul "pygame") dringen wir nun noch etwas tiefer in den Sachvehalt ein.

interessante Links:
http://inventwithpython.com/inventwithpython_3rd.pdf (online-Version des Buches: AL SWEIGART: In-
vert Your Own Computer Games with Python 3rd Edition)
http://inventwithpython.com/makinggames.pdf (online-Version des Buches: AL SWEIGART: Making
Games with Python & Pygame)

8.19. Python im Geheimen - Kryptologie

Begeben wir uns in die Welt von Alice und Bob, den beiden Haupt-Agenten in der Kryptolo-
gie.

8.19.0. Grundlagen

8.19.0.1. Codierung

"geheime" Codierungen

8.19.0.2. Chiffrierung

In den folgenden Kapiteln werden wir die Klartexte (unverschlüsselte Texte) grün oder grün-
lich hinterlegt darstellen. Wenn die Buchstaben-Art keine Rolle spielt, dann werden die
Klatrtexte mit Groß-Buchstaben geschrieben.
Die verschlüsselten Texte (Geheimtexte) werden dagegen in Klein-Buchstaben in rot oder
rötlich hinterlegt notiert.
Das Standard-Alphabet sind die 26 deutschen Buchstaben ohne Umlaute und ß. Oft wird
auch auf das Leerzeichen verzichtet und die Wörter einfach hintereinander geschrieben.
Erweiterte Alphabete nutzen Leerzeichen und / oder Ziffern und / oder Satz-Zeichen mit da-
zu. So etwas definieren wir dann bei den einzelnen Verfahren. Viele Algorithmen sind so
ausgelegt, dass sie Nicht-Alphabet-Zeichen einfach ignorieren oder direkt übernehmen.

http://inventwithpython.com/inventwithpython_3rd.pdf
http://inventwithpython.com/makinggames.pdf

BK_SekI+II_Python_prof.docx - 328 - (c,p) 2015 - 2026 lsp: dre

I.A. geht es vor allem um das Demonstrieren des Verfahren's. Der wichtigste Grund für die
Wahl der standardisierten Alphabete ist aber die Vergleichbarkeit der verschiedenen Verfah-
ren. Dabei interessiert uns immer das Agieren der Gegenseite. Kann Sie das Verfahren kna-
cken?
Nicht's ist unangenehmer als eine Ge-
heimschrift, von der man glaubt, sie sein
Bomben-sicher und jeder kann aber in
der Praxis mit wenig Aufwand mitlesen.
Die Einteilung von Geheim-Schriften / -
Verfahren ist ein unendliches Thema.
Wir beschränkn uns hier auf zwei ele-
mentare Möglichkeiten.
Für die erste Einteilung betrachtet man
die Anzahl der verwendeten Schlüssel
und das benutzte Verfahren. Wird nur
ein Schlüssel und praktisch das gleiche
verfahren für Ver- und Ent-Schlüsselung
benutzt, dann sprechen wir von sym-
metrischer Verschlüsselung. Klassi-
sche Vertreter sind die CÄSAR-Chiffre (→
) und (→).
Kommen dagegen zwei (zueinander
gekoppelte) Schlüssel und praktisch
auch zwei Verfahren zum Einsatz, dann
handelt es sich um die asymmetrische
Verschlüsselung.
Beispiele hierfür sind das RSA-
Verfahren oder der DES-Algorithmus.

symmetrische Verschlüsselung

asymmetrische Verschlüsselung

Die zweite Einteilung bezieht sich auf die Art und Weise, wie der Geheimtext erzeugt wird.So
kann man z.B. Geheimtexte durch Austauschen der Symbole erzeugen. Wir sprechen hier
von Substitution. Typische Umsetzungen sind (→) und (→).
Eine weitere weitere Möglichkeit – Texte unleserlich zu machen – sind Transpositionen.
Hierbei bleiben die Symbole des Klartextes erhalten, aber ihre Positionen innerhalb des Tex-
tes werden verändert. (→) und (→) sind hier viel zitierte Chiffren.
Die dritte Art verändert die Klartext durch Hinzufügen von Symbolen. Dabei geht es zum Ei-
nen darum die Texte unleserlich (oder schwer leserlich) zu machen und zu Anderen sollen
Häufigkeits-Analysen ausgetrickst werden. Kryptographen nennen diese Art der Geheimtext-
Erzeugung Erweiterung. Als typische Vertreter dieser Gruppe können (→) und (→) ge-
nannt werden.

Aufgaben:

1. Vergleichen Sie symmetrrische und asymmetrische Verschlüsselung! Nutzen

Sie auch das Internet, um weitere typische Merkmale, Vor- und Nachteile zu

erkunden!

2. Vergleichen Sie die Erzeugung von Geheimtexten durch Substitution,

Transposition und Erweiterung anhand von jeweils mindestens 6 selbstge-

wählten Kriterien! Versuchen Sie gleichrangig Gemeinsamkeiten und Unter-

schiede zu finden!

3. Informieren Sie sich über weitere Einteilungs-Möglichkeiten und stellen Sie

eine in Form eines kurzen Vortrages vor!

Aufgaben:

4. Erstellen Sie ein Stammbaum von Geheimsprachen und stellen Sie diese

vor!

BK_SekI+II_Python_prof.docx - 329 - (c,p) 2015 - 2026 lsp: dre

8.19.1. symmetrische Verschlüsselung

Symmetrische Verschlüsselungen benutzen für die Ver- und Ent-Schlüsselung (Chiffrierung /
Dechiffrierung) immer den gleichen Schlüssel. In praktischallen Fällen kann das gleiche –
oder auch das umgekehrte (reverse) – Verfahren genutzt werden.
Das macht symmetrische Verfahren sehr effektiv. Mit Computern können sie sehr einfach
umgesetzt werden. Das große Problem sind die Schlüssel. Sie müssen irgendwann ausge-
tauscht werden. Dieser Vorgang kann von Unbefugten mitgehört / manipuliert / … werden.
Viele der älteren symmetrischen Verfahren bieten durch eine recht geringe Schlüssel-Anzahl
auch keine ausreichende Sicherheit mehr. Mit modernen Rechnern sind sie oft innerhalb
weniger (milli-)Sekunden durch Brute-Force-Angriffe oder Häufigkeits-Analysen angreifbar.

8.19.1.x. CÄSAR-Verschlüsselung

Das Verfahren geht der Legende nach auf Gaius Julius CÄSAR (100 – 44 v.u.Z) zurück. Zu
jener Zeit soll die Chiffre auch nicht gebrochen worden sein. Dazu gab es wahrscheinlich
auch zu wenige Menschen, die sich mit Schrift und Alphabet auskannten.
CÄSAR's Verschlüsselung war einfach und effektiv. Er setzte dem Klartext-Alphabet ein zwei-
tes gegenüber, dass um 3 Positionen verschoben war. Buchstaben, die keine Entsprechung
hatten, wurde an der anderen Seite angelegt.
Wahrscheinlich benutzte CÄSAR auch nur eine Möglichkeit – und zwar eben diese CÄSAR3-
Verschiebung.

Beispiel: CÄSAR3
Symbole lfd. Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Klaralphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Geheimalph. y z a b c d e f g h i j k l m n o p q r s t u v w x

Dadurch entsteht ein Buchstaben-Ring. Für andere CÄSAR-Verschlüsselungen wird der Ring
einfach weitergeschoben.

Beispiel: CÄSAR7
Symbole lfd. Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Klaralphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Geheimalph. u v w x y z a b c d e f g h i j k l m n o p q r s t

Auch der Nachfolger von CÄSAR – der Kaiser AUGUSTUS – benutzte eine ähnliche Chiffre. Er
benutzte die Verschiebung um einen Buchstaben und verwendete für das X (damals letzter
Buchstabe im Alphabet) ein AA als Substituenten.
Die konkrete Umsetzung in Python schauen wir uns etwas später an. Zuerst diskutieren wir
einige Programmier-Varianten bei einem speziellen Fall der CÄSAR-Verschlüsselung.

BK_SekI+II_Python_prof.docx - 330 - (c,p) 2015 - 2026 lsp: dre

8.19.1.x. ROT13

ROT13 ist eine spezielle Variante der CÄSAR-Verschlüsselung. Genaugesagt handelt es sich
um eine CÄSAR13-Chiffre.

Beispiel: CÄSAR13
Symbole lfd. Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Klaralphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Geheimalph. n o p q r s t u v w x y z a b c d e f g h i j k l m

Durch die symmetrische Teilung des Alphabet's ergeben sich einige praktische Besonderhei-
ten.
Es kommt zu einer festen Zu-
ordnung der Buchstaben von
Klar- und Geheimtext-
Alphabet. Dadurch funktionie-
ren Ver- und Ent-Schlüsselung

 A B C D E F G H I J K L M

 ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

 N O P Q R S T U V W X Y Z

mit dem exakt gleichen Algorithmus bzw. der gleichen Funktion.
Ursprünglich wurde die ROT13 auch nicht wirklich als Verschlüsselung eingesetzt, sondern
als Mittel der sehr einfach und effektiven Verschleierung von Texten. Ursprünglich sollte da-
mit im usenet zweideutige Witze und Texte auf den ersten Blick versteckt werden.
Dabei zielte man auch auf den Ef-
fekt hin, dass ein Leser einen
ROT13-Text bewußt entschlüsselt.
Damit ist er auch für sich verant-
wortlich, wenn er mit bestimmten
Obzönigkeiten, sexuellen Anspie-
lungen usw. usf. nicht klar kommt.

Er hätte es lassen können.
ROT13-Verschlüsselungen sind, wie alle klassischen CÄSAR-Chiffren sehr leicht durch Brute-
Force- Angriffe oder Häufigkeits-Analysen knackbar. Mittlerweise sind sie ein Sinnbild für
sehr schlechte kryptographische Verfahren.
In den folgenden Programmier-Beispielen zu den verschiedenen Chiffren wollen wir ein
grundlegendes Schema benutzen.

1. Eingabe des Klartextes
2. Umwandlung des Klartextes in die notwendige Form (Groß-Buchstaben, ev. ohne Leerzei-

chen)
3. Erstellen einer Häufigkeits-Analalyse (zu Vergleichszwecken)
4. Verschlüsseln der Klartextes

a) ev. Anzeige von Zwischenschritten
b) Anzeige des verschlüsselten Textes

5. Erstellen einer Häufigkeits-Analyse vom Geheimtext
6. Entschlüsseln des Geheimtextes

BK_SekI+II_Python_prof.docx - 331 - (c,p) 2015 - 2026 lsp: dre

Entwickeln wir ein
solches Programm
nun schrittweise für
die ROT13-Ver-
schlüsselung.
Zuerst bauen wir uns
ein einfaches Pro-
gramm ohne Funktio-
nen. Diese führen wir
dann in einer zweiten
Entwicklungs-Reihe
ein.
Starten wir mit einem
einfachen Eingabe-
Ausgabe-Rahmen, in
den wir dann als
nächstes die Um-
wandlung der Einga-
be in Groß-Buch-
staben integrieren.
Die beiden Alphabete
legen wir als feste
Listen an. Gerade
beim ROT13-Ver-
fahren ist dies ja eine
der Basis-Vereinba-
rungen.

 # ROT13 Ver- und Ent-Schlüsselung

L. Drews; 2020

Definitionen

klarAlpha=["A","B","C","D","E","F","G","H","I",

 "J","K","L","M","N","O","P","Q","R",

 "S","T","U","V","W","X","Y","Z"]

geheimAlpha=["n","o","p","q","r","s","t","u","v",

 "w","x","y","z","a","b","c","d","e",

 "f","g","h","i","j","k","l","m"]

laengeKlarAlpha=26

Eingabe

klarText=input("Klartext : ")

Verschlüsselung

geheimText=klarText

print("Geheimtext: ",geheimText)

Entschlüsselung

dechiffKlarText=geheimText

Ausgabe

print("Klartext : ", dechiffKlarText)

input()

Mit der Funktion up-
per() erhalten wir ei-
nen Groß-Buchsta-
ben-Text von einem
Text-Objekt. (s.a.
8.1.1. Objekt-orientier
te Nutzung von
Strings)

 …

Eingabe

klarText=input("Klartext : ")

klarText=klarText.upper()

print("KLARTEXT : ",klarText)

Verschlüsselung

…

In der Verschlüsse-
lung selbst bestim-
men wir zuerst die
Länge des Klartextes.
Desweiteren wird ein
leerer Geheimtext
angelegt, denn wird
dann mit der i-
Schleife Zeichen für
Zeichen auffüllen
wollen.
Bei jedem Schleifen-
durchlauf separieren
wir ein KlarSymbol.
Dieses wird mittel j-
Schleife im Klar-
Alphabet gesucht und
sich die Position ge-
merkt.

 …

Verschlüsselung

print("=========> Verschlüsselung ==========>")

laengeKlarText=len(klarText)

geheimText=""

for i in range(laengeKlarText):

 klarSymbol=klarText[i]

 pos=-1

 for j in range(laengeKlarAlpha):

 if klarSymbol==klarAlpha[j]:

 pos=j

 break

 geheimSymbol=geheimAlpha[pos]

 if pos>=0:

 geheimText+=geheimSymbol

 else:

 geheimText+=klarSymbol

print("Geheimtext: ",geheimText)

Entschlüsselung

…

BK_SekI+II_Python_prof.docx - 332 - (c,p) 2015 - 2026 lsp: dre

Mit Hilfe der Position holen wir aus das passende GeheimSymbol aus dem geheim-Alphabet
und hängen es an den bisher bearbeiteten Geheimtext an. Für den Fall, dass wir kein pas-
sende Symbol gefunden haben (pos ist dann immer noch -1), übernehmen wir das Nicht-
Alphabet-Symbol.
Für die Entschlüsselung
benutzen wir genau den
gleichen Algorithmus,
nur umgetauschten
klar- und geheim-
Variablen. Hier macht
sich eine sprechende
Benennung wieder
einmal bezahlt.

 # Entschlüsselung

print("=========> Entschlüsselung ========>")

laengeGeheimText=len(geheimText)

dechiffKlarText=""

for i in range(laengeGeheimText):

 geheimSymbol=geheimText[i]

 pos=-1

 for j in range(laengeKlarAlpha):

 if geheimSymbol==geheimAlpha[j]:

 pos=j

 break

 klarSymbol=klarAlpha[pos]

 if pos>=0:

 dechiffKlarText+=klarSymbol

 else:

 dechiffKlarText+=geheimSymbol

Ausgabe

Aufgaben:

1. Übernehmen Sie das Programm und die ergänzenden Programm-

Abschnitte! Testen Sie das Programm mit verschieden Eingaben!

2. Erweitern Sie das Programm um die Möglichkeit weitere Klartexte einzuge-

ben! Ein Abbruch soll mit der Eingabe eines leeren Textes erfolgen!

3. Verändern Sie die Ausgabe "======> Verschlüsselung …" so, dass für jedes

chiffrierte Symbol ein Gleichheitszeichen angezeigt wird! Übernehmen Sie

dieses dann auch für die Entschlüsselung"

Natürlich gibt es weitaus schönere und effektivere Daten-Strukturen für die Alphabete.
So kann man zwei ein-
hache Strings benutzen
und dann durch sie
durch interieren.

 klarAlpha="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

geheimAlpha="nopqrstuvwxyzabcdefghijklm"

…

Diese Variante erscheint mir z.B. sehr gut für die flexible Erzeugung von Klar- und Geheim-
Text-Symbolen zu sein.
Eine weitere Möglich-
keit ist die Verwendung
von einer strukturierten
/ geschachtelten Liste
aus Symbol-Paaren.

 rot13=[["A","n"], ["B","o"], ["C","p"], …

 …

]

…

Auch Tupel in Form von
Dictonary's sind denk-
bar. Besonders wenn
man Alphabete aus
einer (JSON-)Datei ein-

 rot13=[["A","n"], ["B","o"], ["C","p"], …

 …

]

…

lesen möchte, spricht einiges für diese Variante.

BK_SekI+II_Python_prof.docx - 333 - (c,p) 2015 - 2026 lsp: dre

Es geht aber auch ohne
Vordefinition der Alphabete.
Man kann ja auch die
ASCII-Tabelle der Rechner
selbst nutzen.
Natürlich muss man dann
die neuen ASCII-Symbole
immer berechnen. Der Al-
gorithmus ändert sich also
entscheident.

 Klar-Alphabet Geheim-Alph..

 Symbol ASCII Symbol ASCII Symbol ASCII

 A 065 a 097 n 110

 B 066 b 098 o 111

 C 067 c 099 p 112

 … … … …

 L 076 l 108 y 121

 M 077 m 109 z 122

 N 078 n 110 a 097

 O 079 o 111 b 098

 … … … …

 X 088 x 120 k 107

 Y 089 y 121 l 108

 Z 090 z 122 m 109

Aufgaben:

1. Entscheiden Sie sich für eine neue Art der Alphabet-Darstellung bzw. die

"Alphabet"-frei Version und erstellen Sie ein neues ROT13-Programm!

2. Drucken Sie Ihr Programm aus und veröffentlichen Sie es für eine Diskus-

sion an der Tafel oder einem schwarzen Brett od.ä.!

3. Ein Mitschüler vertritt die Auffassung, man durch mehrfache Anwendung

von Verschlüsselungen aufeinander die Sicherheit deutlich erhöhen kann.

Auch beim ROT13-verfahren soll dies so sein. Setzen Sie sich mit dieser

These auseinander!

für die gehobene Anspruchsebene:

4. Verändern Sie eine Programm-Version so, dass eine Text-Datei mit einem

längeren Klartext eingelesen und angezeigt werden kann! Dieser Text soll

dann verschlüsselt und danach wieder entschlüsselt angezeigt werden!

In der Registry sollen in bestimmten Schlüsseln die Verläufe (des Internet-Browsing) gespei-
chert sein, die mit ROT13 verschlüsselt sind und wohl auch nicht gelöscht werden, wenn
man den Verlauf löscht!
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAs

sist\ [Unterverzeichnisse]

Dieses Logging lässt sich abschalten, wenn man in dem Verzeichnis einen neuen Schlüssel
(DWORD) "NoLog" anlegt und diesem den Wert auf 1 setzt. Mit einem weiteren Schlüssel
"NoEncrypt" mit dem Wert 1 kann die "Verschlüsselung" ausgeschaltet werden (mit 0 eben
wieder einegschaltet)

8.19.1.x.1. ROT13 mit einer Funktion

Die zwei praktisch identischen Algorithmen für die Ver- und Entschlüsselung sind natürlich
ein Dorn im Auge eine ("faulen") Programmierer's. Findet man irgendwann einen Fehler oder
will man den Algorithmus berändern, dann muss man immer an zwei Stellen im Programm
korrigieren. Erfahrungs.gemäß geht das schief. Irgend eine Stelle vergißt man oder ändert
diese anders. Da sind dann Folge-Probleme schon vorprogrammiert.

BK_SekI+II_Python_prof.docx - 334 - (c,p) 2015 - 2026 lsp: dre

So etwas schreit ja förmlich nach der Benutzung einer Funktion, die den einen Text in den
anderen umwandelt. Was dabei Klar- und was Geheim-Text ist, ist ja egal, weil das Verfah-
ren so schön symmetisch ist.
Wir bleiben hier mal bei
der oben besprochenen
Form der Alphabet-
Darstellung in zwei Lis-
ten. Die Variabalen, die
sich auf den Klartext
bezogen, werden in der
Funktion nun in rein-
gehende Variablen um-
benannt. Dementspre-
chend die geheim-
Variablen auf raus.
Nun müssen wir aber
auch noch beachten,
dass wir aus kosmeti-
schen Gründen die

 def rot13(textRein):

 laengeTextRein=len(textRein)

 textRaus=""

 for i in range(laengeTextRein):

 reinSymbol=textRein[i]

 pos=-1

 for j in range(laengeKlarAlpha):

 if reinSymbol==klarAlpha[j]:

 pos=j

 break

 geheimSymbol=geheimAlpha[pos]

 if pos>=0:

 textRaus+=geheimSymbol

 else:

 textRaus+=reinSymbol

 return textRaus

Klar- und geheim-Texte mit anderen Buchstaben versehen haben.
Das Hauptprogramm
verkürzt sich nun natür-
lich deutlich durch die
Funktions-Aufrufe.
Das Programm wird so
auch deutlich übersicht-
licher und verständli-
cher.
Änderungen und Erwei-
terungen können wir nun
auch sehr gut vorneh-
men.

Aufgaben:

 …

abbruch=False

while not abbruch:

Eingabe

 klarText=input("Klartext : ")

 if klarText>"":

 klarText=klarText.upper()

 print("KLARTEXT : ",klarText)

 # Verschlüsselung

 print("======> Verschlüsselung =====>")

 geheimText=rot13(klarText)

 print("ROT13-Fkt.: ",geheimText)

 geheimText=geheimText.upper()

 # Entschlüsselung

 print("======> Entschlüsselung =====>")

 # Ausgabe

 print("ROT13-Fkt.: ",

 rot13(geheimText))

 print("------------------------------")

 print()

 else:

 abbruch=True

print("Programm-Ende")

1. Der Aufbau der Verschlüsselungs-Zeile mit den Gleichheits-Zeichen ent-

sprechend der umgewandelten Symbole hat einem Kunden sehr gut gefallen.

Bekommen Sie das auch mit rot13-Funktion hin? Realisieren Sie die Funk-

tion entsprechend ODER begründen Sie, warum das so nicht geht!

2. Wandeln Sie Ihr 2. ROT13-Programm (mit der geänderten Daten-Struktur

für die Alphabete bzw. mit dem geänderten Algorithmus) in ein Programm

mit einer passenden rot13-Funktion um!

BK_SekI+II_Python_prof.docx - 335 - (c,p) 2015 - 2026 lsp: dre

8.19.1.x.2. Häufigkeits-Analyse

Alle einfachen CÄSAR-Chiffren – und ganz besonders die ROT13-Chiffre – sind für Analysen
der Buchstaben-Häufigkeit empfindlich. Wir wollen die Buchstaben-Häufigkeit vor allem dazu
benutzen, um verschiedene Verfahren miteinander zu vergleichen und zu bewerten.
Hier werden wir eine Funktion erstellen, die sich auf die Zählung und Anzeige der Symbole
beschränkt. Für vergleichende Zwecke müsste man sonst vielleicht auch die Ergebnisse wie-
der zurückgeben.

…

def symbolHaeufigkeit(alphabet, analyseText):

 print(".. Häufigkeits-Analyse ..")

 anzahlSymbole=len(alphabet)

 haeufigkeit=[]

 for i in range(anzahlSymbole):

 haeufigkeit.append(0)

 laengeText=len(analyseText)

 for i in range(anzahlSymbole):

 aktSymbol=alphabet[i]

 for j in range(laengeText):

 if analyseText[j]==aktSymbol:

 haeufigkeit[i]+=1

 for i in range(anzahlSymbole):

 print(" ",format(alphabet[i],"2s"),

 format(haeufigkeit[i],"3d"),

 fomat(haeufigkeit[i]/laengeText*100,"6.2f"),"%")

 #return

…

In der obigen Funktion wird Alphabet-bezogen gearbeitet. Das Ergebnis soll in der Liste
hauefigkeit gespeichert werden. Für jedes Symbol aus dem Alphabet wird zuerst einmal eine
Null als Anfangs-Wert eingespeichert.
Danach wird wieder für jedes Symbol der Text nach allen Vorkommen durchsucht und die
Häufigkeit inkrementiert.
Zum Schluß wird die Häufigkeit für jedes Symbol mit Anzahl und prozentualem Anteil ausge-
geben.

Aufgaben:

1. Vereinfachen Sie die Häufigkeits-Analyse dahingehend, dass nur noch eine

Schleife (for i in range(anzahlSymbole):) benutzt wird!

2. Erweitern Sie die Analyse um die Erfassung der Nicht-Alphabet-Symbole

und einer nahtloschen Ausgabe als "???"!

3. Da die Zeilen für die Symbole nicht wirklich ausgenutzt werden, möchte der

Kunde eine Ausgabe in mehreren Spalten, wobei die Spalten-Anzahl varia-

bel gehalten werden soll!

BK_SekI+II_Python_prof.docx - 336 - (c,p) 2015 - 2026 lsp: dre

Hier eine mögliche Umsetzung einzelner Aspekte in einer erweiterten Funktion.

def symbolHaeufigkeit(alphabet, analyseText):

 print(".. Häufigkeits-Analyse ..")

 anzahlSymbole=len(alphabet)

 haeufigkeit=[]

 anzahlGefunden=0

 laengeText=len(analyseText)

 for i in range(anzahlSymbole):

 haeufigkeit.append(0)

 aktSymbol=alphabet[i]

 for j in range(laengeText):

 if analyseText[j]==aktSymbol:

 haeufigkeit[i]+=1

 anzahlGefunden+=1

 spalten=3

 aktSpalte=0

 for i in range(anzahlSymbole):

 print((8-spalten)*" ",format(alphabet[i],"2s"),

 format(haeufigkeit[i],"3d"),

 format(haeufigkeit[i]/laengeText*100,"6.2f"),"%",end="")

 aktSpalte+=1

 if aktSpalte==spalten:

 aktSpalte=0

 print()

 print((7-spalten)*" ",format("???","3s"),

 format(laengeText-anzahlGefunden,"3d"),

 format((laengeText-anzahlGefunden)/laengeText*100,"6.2f"),"%")

 #return

Aufgaben:

1. Erweitern Sie die Buchstaben-Häufigkeits-Analyse um kleine Histogramme

(in Balken-Form)! Für jeweils gerundete 10 % könnte z.B. eine Raute (#)

und für 5 % ein senkrechter Strich (|) gesetzt werden.

2. Verändern Sie die Funktion so, dass beim Funktions-Aufruf auch mit ange-

geben werden kann, in wievielen Spalten die Ausgabe erfolgen soll!

3.

BK_SekI+II_Python_prof.docx - 337 - (c,p) 2015 - 2026 lsp: dre

8.19.1.x. Umsetzung der CÄSAR-Verschlüsselung

Mit den Kenntnissen aus der Umsetzung der ROT13-Verschlüsselung können wir nun auch
effektiv eine universelle CÄSAR-Ver- und Entschlüsselung programmieren.
Will man das Konzept der zwei Alphabete, wie vorne beschrieben, weiter benutzen. Dann
muss man sich nach der Festlegung der Verschiebung das Geheim-Alphabet (neu) zusam-
menstellen. Dann kann man viele Funktionen mit wenigen Veränderungen übernehmen. Da-
für spricht z.B., dass man diese Funktionen z.B. für CÄSAR13 ja schon getestet hat. Wie wir
später bei der Umsetzung einer CÄSAR-Verschlüsselung mit einem Schlüssel noch sehen
werden, ist diese zuerst etwas altbacken wirkende Methode, dann doch wieder sehr prak-
tisch.
Aus meiner Sicht spricht hier aber mehr für eine flexible Umsetzung auf der Basis der ASCII-
Zeichen.
Geht man von einem Ring-förmigen Alphabet aus, dann beschreiben die Funktionen:

 chiffriertS(K) = (K + S) mod 26 = G

 dechiffriertS(G) = (G - S) mod 26 = K

K .. Position Klar-Alphabet-Symbol
S .. Schlüssel-(Nummer) / Verschiebung
G .. Position Geheim-Alphabet-Symbol

das grundsätzliche Vorgehen.
Bei den ASCII-Zeichen haben wir aber kein geschlossenes Alphabet. Leider sind auch die
Kleinbuchstaben nicht direkt an die Groß-Buchstaben angeschlossen, was uns hier super
helfen würde.
So bleibt nur eine Entscheidungs-bezogene Umsetzung entsprechend der Lage des / der
Buchstaben zum Geheim-Buchstaben, welcher der CÄSAR-Chiffre entspricht.

 # CÄSAR-Verschlüsselung

01.2020

Eingabe Klartext

klarText=input("Klartext: ")

verschiebung=eval(input("CÄSAR-Code (-26 .. 26): "))

Vorbereitung

klarText=klarText.upper()

print("KLARTEXT: ",klarText)

obenGeheimCodeGrenze=90-verschiebung

geheimText=""

Verschlüsselung

laengeKlarText=len(klarText)

for i in range(laengeKlarText):

 aktKlarSymbol=ord(klarText[i]) #ASCII-Code

 if aktKlarSymbol>=65 and aktKlarSymbol<=90: # Großbuchstabe

 aktGeheimSymbol=aktKlarSymbol+verschiebung

 if aktGeheimSymbol>90: # zu großer ASCII-Code

 aktGeheimSymbol-=26

 if aktGeheimSymbol<65: # zu kleiner ASCII-Code

 aktGeheimSymbol+=26

 geheimText+=chr(aktGeheimSymbol) # Symbol aus Code

 else: # Nicht-Alphabet-Symbol

 geheimText+=chr(aktKlarSymbol)

print("Geheimtext: ",geheimText.lower())

Nach der Prüfung, ob es sich um ein Klartext-Symbol (also Großbuchstabe) handelt, wird die
Verschiebung im ASCII-Code vorgenommen. Dabei können auch ASCII-Code's jenseits der
Großbuchstaben entstehen. Hier korrigienen wir dann um die Alpahbet-Länge (hier 26).

BK_SekI+II_Python_prof.docx - 338 - (c,p) 2015 - 2026 lsp: dre

Der aufmerksame Leser wird gleich bemerkt haben, dass ich dieses Mal nicht in die Klein-
buchstaben chiffriert habe. Da steckt einfach schon der Hintergedanke drin, später eine uni-
verselle Funktion aus dem Prototypen zu machen. Die Darstellung mit Klein- und Groß-
Buchstaben ist ja nur Kosmetik und die möchte ich den Python-String-Funktionen überlas-
sen.

Aufgaben:

1. Ergänzen Sie das obige Programm um eine Wiederholungs-Schleife, die

solange chiffriert, bis ein Leertext eingegeben wird!

2. Verändern Sie das Programm so, dass eine direkte Chiffrierung in die

Kleinbuchstaben erfolgt!

3. Planen Sie eine universelle Funktion für die CÄSAR-Chiffrierung und –

Dechiffrierung! Welche Parameter braucht eine solche Funktion?

4. Realisieren Sie eine universelle CÄSAR-Funktion!

5. Erweitern Sie das Programm nun noch um die Dechiffrierung und eine

Buchstaben-Häufigkeits-Analyse!

8.19.1.x. moderne CÄSAR-Verschlüsselung mit Schlüssel

Natürlich ist der Begriff modern nicht wirklich Ernst gemeint. Durch das große Leistungs-
Potential von Computern und vielen sehr cleveren Analyse-Methoden ist die CÄSAR-
Chiffrierung nicht mehr Stand der Zeit. Aber mit ein paar Tricks kann man noch so einiges
aus dieser "einfachen" Verschlüsselung herausholen.

Beispiel: CÄSAR7 mit Schlüsselwort BUCHLISTE
Symbole lfd. Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Klaralphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Geheimalph. r v w x y z b u c h l i s t e a d f g j k m n o p q

Beispiel: CÄSAR7 auf ein Zufalls-Alphabet
Symbole lfd. Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Klaralphabet K T G E P S W Y J Q H Z I A V O R C M N U X B D F L

Geheimalph. u x b d f l k t g e p s w y j q h z i a v o r c m n

BK_SekI+II_Python_prof.docx - 339 - (c,p) 2015 - 2026 lsp: dre

8.19.1.x. POLYBIOS-Verschlüsselung

auch unter Polybius zu finden
beschrieben vom griechischen Geschichtsschreiber POLYB-

IOS VON MEGALOPOLIS etwa um 200 bis 120 v.u.Z.

Basis ist die sogenannte Polybios-Matrix (Polybios-Quadrat),
in der die Klar-Buchstaben Zeilen-weise notiert sind
Die Zeilen und Spalten werden durchnummeriert.

 A B C D E 1

 F G H I K 2

 L M N O P 3

 Q R S T U 4

 V W X Y Z 5

 1 2 3 4 5

Die Zeilen- und Spalten-Nummern (Buchstaben-Koordinaten) werden zur Substitution ge-
nutzt.
Nehmen wir an, unser Klartext lautet:

SEHR GEHEIM

Praktisch wird nun jeder zu verschlüsselnde Buchstabe in
der Matrix gesucht und dann zuerst immer die Zeilen- und
dann die Spalten-Nummer notiert.

 A B C D E 1

 F G H I K 2

 L M N O P 3

 Q R S T U 4

 V W X Y Z 5

 1 2 3 4 5

Aus dem S wird so 43 usw. usf.
Die Nummer konnten dann z.B. über auf dem Burg-Türmen oder –Mauern angeordneten
Fackeln signalisiert werden.
Die Empfänger benutzten die gleiche Tabelle und praktisch
das gleiche Verfahren (nur umgekehrt), um den Klartext aus
den Geheimzeichen zu dechiffrieren.
Aus den Koordinaten 43 erhalten wir dann den entschlüssel-
ten Buchstaben S.

 A B C D E 1

 F G H I K 2

 L M N O P 3

 Q R S T U 4

 V W X Y Z 5

 1 2 3 4 5

In Python können wir für die PO-

LYBIOS-Matrix ein mehr-
dimensionales Feld (Array, Vek-
tor) nutzen (→ 6.6. Vektoren,
Felder und Tabellen).

polybios=array(["A","B","C","D","E"],

 ["F", …],

 …)

Aufgaben:

1. Verschlüsseln Sie den obigen Text bis zum Ende!

2. Überlegen Sie sich, wie das Verfahren verbessert werden! Machen Sie Vor-

schläge und erklären Sie, welche Veränderungen sich ergeben würden!

3. Setzen Sie die POLYBIOS-Verschlüsselung in ein Python-Programm um!

Der zu verschlüsselnde Text soll als Eingabe in das Programm einfließen!

Als Basis-Quadrat verwenden wir eine 6x6-Matrix mit allen Buchstaben und

den Ziffern.

Ein der praktischen Umsetzungen erfolgte als Klopf-Code in Gefängnissen, um z.B. über
Rohrleitungen oder Wände Nachrichten zu übertragen.
Beim bifid-Verfahren (→) wird an eine POLYBIOS-Verschlüsselung noch eine Transposition
angehängt, um die Koordinaten zu trennen.
Eine noch weitere Verbesserung erfolgte durch das ADFGX-Verfahren (→). Dieses wurde
noch bis in den 1. Weltkrieg hinein verwendet.

BK_SekI+II_Python_prof.docx - 340 - (c,p) 2015 - 2026 lsp: dre

8.19.1.x. VIGENÈRE-Verschlüsselung

Das große Problem der einfachen Substitutions-Verfahren ist immer die mögliche Krypto-
Analyse über die Buchstaben-Häufigkeit.
Johannes TRITHEMIUS (1462 – 1516) erstellte für sein Verschlüsselungs-Verfahren eine
sogeannte Transpositions-Tabelle – diese nannte er Recta transpositionis tabula oder kurz
auch Tabula recta. In der originalen Tabelle fehlen die Buchstaben j und v, da im Mittelalter
in der deutschen Sprachen u und v sowie i und j nicht unterschieden wurden. Wir nehmen
hier eine an unser heutiges Alphabet angepasste Tabelle:

 G E H E I M B L E I B T G E H E I M X X X A B C D

A 1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B 2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C 3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D 4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E 5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F 6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G 7 H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H 8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I 9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J 10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K 11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L 12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M 13 N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N 14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O 15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P 16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q 17 R S T U V W X Y Z A B C D E F G H I J K L M N O P

R 18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S 19 T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T 20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U 21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V 22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W 23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X 24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y 25 Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z 26 A B C D E F G H I J K L M N O P Q R S T U V W X Y

 h g k i n s i t n s m f t s w u z e q r s w y a c

Man kann gut erkennen, dass ein Buchstabe jedes Mal ein neues Geheim-Zeichen be-
kommt. Obwohl wir fünfmal ein E im Klartext hatten, ergibt sich jedes Mal ein anderes eheim-
Symbol. Anders herum kann man aus dem mehrfachen Auftreten eines Geheim-Symbol's
nicht auf den Klartext-Buchstaben zurückschließen. Wir haben im Geheimtext z.B. zweimal
ein i. Jedes Mal war es aber ein anderer Klartext-Buchstabe, der verschlüsselt wurde.
Im Prinzip benutzte TRITHEMIUS als Schlüssel den Klartext. Mit anderen Worten: er ver-
schlüsselte einen Text mit sich selbst.
Daraus ergibt sich ein Problem: ein Buchstabe wird niemals durch sich selbst kodiert. Dies
bietet eine Chance, den Code zu knacken.
Die Verwendung von Füllzeichen ist bei TRITHEMIUS eher ungünstig. Benutzt man das glei-
che Füllzeichen (s. oben: XXX), dann ergibt sich eine alphabetische Symbolfolge. Die Verwen-
dung von fortlaufenden Buchstaben (s. oben: ABCD) erzeugt auch eine charakteristische
(springende) Symbol-Folge.
Der Franzose Blaise DE VIGINÉRE (sprich: de wischineer,) entwickelte eine ähnliche Chiffre.
Er ordnete den Buchstaben in Abhängigkeit von ihrer Position im Klartext unterschiedliche
Chiffren zu. Nehmen wir z.B. das Schlüsselwort: geheim, dann wird der erste Buchstabe des

BK_SekI+II_Python_prof.docx - 341 - (c,p) 2015 - 2026 lsp: dre

Klartextes mit CÄSAR7 verschlüsselt, weil g an der 7. Position im Alphabet steht. Der zweite
Buchstabe wird dann mit CÄSAR5 (e ist an der 5. Position) usw. verschlüsselt. Am Ende des
Schlüsselwortes beginnt man wieder von vorn.

 K R Y P T O G A F I I S T S C H O N T O L L X X X

A 1 G E H E I M G E H E I M G E H E I M G E H E I M G

B 2 H F I F J N H F I F J N H F I F J N H F I F J N H

C 3 I G J G K O I G J G K O I G J G K O I G J G K O I

D 4 J H K H L P J H K H L P J H K H L P J H K H L P J

E 5 K I L I M Q K I L I M Q K I L I M Q K I L I M Q K

F 6 L J M J N R L J M J N R L J M J N R L J M J N R L

G 7 M K N K O S M K N K O S M K N K O S M K N K O S M

H 8 N L O L P T N L O L P T N L O L P T N L O L P T N

I 9 O M P M Q U O M P M Q U O M P M Q U O M P M Q U O

J 10 P N Q N R V P N Q N R V P N Q N R V P N Q N R V P

K 11 Q O R O S W Q O R O S W Q O R O S W Q O R O S W Q

L 12 R P S P T X R P S P T X R P S P T X R P S P T X R

M 13 S Q T Q U Y S Q T Q U Y S Q T Q U Y S Q T Q U Y S

N 14 T R U R V Z T R U R V Z T R U R V Z T R U R V Z T

O 15 U S V S W A U S V S W A U S V S W A U S V S W A U

P 16 V T W T X B V T W T X B V T W T X B V T W T X B V

Q 17 W U X U Y C W U X U Y C W U X U Y C W U X U Y C W

R 18 X V Y V Z D X V Y V Z D X V Y V Z D X V Y V Z D X

S 19 Y W Z W A E Y W Z W A E Y W Z W A E Y W Z W A E Y

T 20 Z X A X B F Z X A X B F Z X A X B F Z X A X B F Z

U 21 A Y B Y C G A Y B Y C G A Y B Y C G A Y B Y C G A

V 22 B Z C Z D H B Z C Z D H B Z C Z D H B Z C Z D H B

W 23 C A D A E I C A D A E I C A D A E I C A D A E I C

X 24 D B E B F J D B E B F J D B E B F J D B E B F J D

Y 25 E C F C G K E C F C G K E C F C G K E C F C G K E

Z 26 F D G D H L F D G D H L F D G D H L F D G D H L F

 q v f t b a m e m m q e z w j l w z z s s p f j d

Die Stärke dieses Verfahrens wird schon bei den Füllzeichen am Ende sichtbar. Kein X wur-
de gleichartig oder mit einer Buchstabenfolge verschlüsselt. Noch besser wäre es natürlich,
ganz auf die Füllzeichen zu verzichten, da sie ein guter Angriffs-Punkt für eine Krypto-
Analyse sind. Wenn man weiss, dass am Ende sehr wahrscheinlich Xe stehen, dann kann
bei genügend Geheimtexten das Passwort teilweise geknackt werden.
Heute wissen wir, wenn man einen zum Klartext gleichlangen Schlüssel verwendet und die-
sen nur ein einziges Mal benutzt, dann ist die VIGINÉRE-Chiffre unknackbar. Außer natürlich
man versucht es mit einem Brute-Force-Angriff.
Man braucht also auch heute keine komplizierte Technik oder gar Computer, um absolut
sicher Texte zu verschlüsseln. Das einzige Problem ist der Transport der Schlüssel und die
Absprache, welcher Schüssel genau benutzt werden soll.
Werden allerdings kürze Schlüsselwörter benutzt, dann kann der Geheimtext ev. entschlüs-
selt werden. Dabei ermittelt man zuerst mit dem KASISKI-Test die wahrscheinliche Schlüssel-
länge. Dann zerlegt man den Text in die Teile, die mit dem gleichen Schlüssel-Zeichen co-
diert wurden. Sie werden einer Häufigkeits-Analyse unterzogen. Ab hier ist es dann nur noch
Rechen- oder Such-Aufwand. Gute Code-Knacker erschließen daneben noch das verwende-
ten Schüsselwort.

BK_SekI+II_Python_prof.docx - 342 - (c,p) 2015 - 2026 lsp: dre

(!Aufgabe für die händische Arbeit!)

Aufgaben:

1. Verschlüssele den folgenden Text mittels VIGENÉRE-Verfahren und dem

Schlüsselwort "DAMENSCHUH"!

 Mein Geheimnis ist: Ich mag gerne Tee.

2. Denke Dir nun ein neues Schlüsselwort mit mindestens 8 Zeichen aus und

verschlüssele damit einen Text von maximal 25 Zeichen! Die nicht benötig-

ten Zeichen werden mit X aufgefüllt.

3. Gebe den Geheimtext und den Schlüssel an Deinen Nachbarn weiter! De-

chiffriere den Geheimtext Deines Nachbarn!

für Experten und zum Knobeln:

4. Der folgende Text wurde mittels VIGENÉRE-Verfahren verschlüsselt. Die

letzten – nicht gebrauchten – Zeichen wurden mit X aufgefüllt. Wie lautet das

Passwort und wie der Klartext?

Verbesserungen

Giovan Battista BELLASO (~ 1505 ~ 1568/81) benutzte statt der klassischen (sortierten Al-
phabete z.T. gewürfelte Symbol-Listen (1555). So z.B. für die Buchstaben A und R die fol-
gende Liste.

A R → r m d a c n e u p s b t d f g e h l x o y z

(!Aufgabe für die händische Arbeit!)

Aufgaben:

1. Erstelle Dir eine eigene Liste von 5 gewürfelten deutschen Alphabeten!

Ordne Sie den möglichen Schlüssel-Buchstaben zu, so dass eine private

Verschlüsselungs-Tabelle entsteht!

2. Verschlüssele nun mit Deiner Tabelle und einem Schlüsselwort einen kur-

zen Text!

3. Tausche den Geheimtext und das Schlüsselwort auf zwei verschiedenen

Wegen (schriftlich, mündlich, per eMail, …) mit einem Kursteilnehmer!

4. Entschlüssele die getauschte Nachricht!

8.19.1.x.y. Krypto-Analyse der VIGENÈRE-Verschlüsselung

praktisch Positions-bezogene CÄSAR-Verschlüsselung
das sich die Verschiebung mit der Länge des Schlüssel's wiederholt kann man auf gleiche
Verschlüsselung für gleiche Buchstaben-Folgen setzen
Zuerst versucht man die Länge des Schlüssel's zu ermitteln

KASISKI-Test

BK_SekI+II_Python_prof.docx - 343 - (c,p) 2015 - 2026 lsp: dre

Suche nach gleichen Buchstaben-Folgen und Ermittlung des Abstände zwischen den Wie-
derholungen
Schlüssel-Länge könnte nun einer dieser Abstand oder einer der (gemeinsamen) Teiler sein
(→ Prim-Faktoren-Zerlegung)

je länger die untersuchten Buchstaben-Folgen sind, umso größer ist die Wahrscheinlichkeit
für die richtige Schlüssel-Länge

Analyse mittels Auto-Korrelation
Zuerst wird der Text 2x hintereinander notiert und gegenseitig verschoben (? wie)
für jede Verschiebung die Anzahl gleicher Buchstaben ermitteln
Suche nach Verschiebungen mit möglichst vielen Übereinstimmungen

Nun für jede Buchstaben-Gruppe des Schlüssel's (?woher bekannt) die Buchstaben-
Häufigkeit ermitteln und ev. ein Diagramm erstellen
typische Häufigkeits-Analyse → Prüfen ob Verschiebung der ermittelten Häufigkeit zur typi-
schen Verteilung in der Sprache stimmt

8.19.1.x. bifid-Verschlüsselung

Bei der bifid-Chiffrierung wird die klassische POLYBIOS-Chiffrierung (Substitution) durch eine
Faktionierung und eine Rück-Chiffrierung ergänzt.
Dazu werden die Koordinaten nicht hintereinander weg geschrieben, sondern in zwei Zeilen:
Nehmen wir an, unser Klartext lautet:

SEHR GEHEIM

Praktisch wird nun jeder zu verschlüsselnde Buchstabe in
der Matrix gesucht und dann zuerst immer die Zeilen- und
dann die Spalten-Nummer notiert.

 A B C D E 1

 F G H I K 2

 L M N O P 3

 Q R S T U 4

 V W X Y Z 5

 1 2 3 4 5

Aus dem S wird so:

4
3

usw. usf.
Die beiden Zeilen:

4124 212123
3532 253542

wird dann die Symbolfolge:

41242121233532253542

Mit dieser Zifferfolge wird nun eine Rück-Verschlüsselung vorgenommen. D.h. die ersten
zwei Ziffern sind die Koordninaten

41 24 21 21 23 35 32 25 35 42

für den ersten Geheim-Buchstaben:

BK_SekI+II_Python_prof.docx - 344 - (c,p) 2015 - 2026 lsp: dre

Daraus ergibt sich ein Geheimtext, der auch Häufigkeits-
Analysen stand hält:

qiffhpmkpr

 a b c d e 1

 f g h i k 2

 l m n o p 3

 q r s t u 4

 v w x y z 5

 1 2 3 4 5

Wie in symmetrischen verfahren üblich läßt sich die Entschlüsselung durch das Umkehren
des Verfahrens erreichen.
Zuerst wandeln wir den Geheimtext wieder in die Koordina-
ten um:

41 24 21 21 23 35 32 25 35 42

Dann wird die reine Ziffernkette

41242121233532253542

 a b c d e 1

 f g h i k 2

 l m n o p 3

 q r s t u 4

 v w x y z 5

 1 2 3 4 5

in der Mitte getrennt, um de Fraktionierung rückgängig zu machen:

4124 212123
3532 253542

Die Koordinaten oben und unten in den zwei Zeilen sind nun
wieder die Basis für die Rück-Verschlüsselung in den Klar-
text.
Aus 43 wird so wieder der ursprüngliche Klartext-Buchstabe
S.
In dieser Form gehen wir die nächsten Paare durch und er-
halten den vollständigen Klartext zurück:

 A B C D E 1

 F G H I K 2

 L M N O P 3

 Q R S T U 4

 V W X Y Z 5

 1 2 3 4 5

SEHR GEHEIM

Bei der Umsetzung in Python sollten wir jetzt deutlich planvoller vorgehen.
Da wir nun für Chiffrieren
und Dechiffrieren immer
jeweils eine POLYBIOS-
Chiffrierung und –
Dechiffrierung brauchen,
ist die Nutzung von Funk-
tion fast nicht mehr zu
umgehen.

function chiffPolybios(polybios, zeichen):

 …

 return koord

function dechiffPolybios(koord, polybios):

 …

 return zeichen

Aufgaben:

1. Planen Sie ein Programm zur Chiffrierung und Dechiffrierung nach dem

bifed-Verfahren als Grob-Struktogramm!

2. Leiten Sie aus dem Grob-Struktogramm ein Funktions-orientiertes Python-

Programm ab, in dem Sie dann Schritt-weise die Funktionen mit Leben fül-

len!

3.

BK_SekI+II_Python_prof.docx - 345 - (c,p) 2015 - 2026 lsp: dre

BK_SekI+II_Python_prof.docx - 346 - (c,p) 2015 - 2026 lsp: dre

8.19.1.x. ADFGX-Verschlüsselung

in einer erweiterten 6x6-Form auch ADFGVX
basiert auf der POLYBIOS-Chiffre

der offizielle Name war "Geheimschrift der Funker 1918" oder kurz
"GedeFu 18"

der Name ADFGX stammt von den Allierten, die die auffälligen
Funksprüche nach den verwendeten Buchstaben charakterisierten
damals natürlich immer manuell durchgeführt
die Auswahl der Buchstaben wurde so gewählt, dass die MORSE-
Zeichen sich besonders gut voneinander unterscheiden ließen

 Bst. MORSE-
Zeichen

 A ▪ ▬

 D ▬ ▪ ▪

 F ▪ ▪ ▬ ▪

 G ▬ ▬ ▪

 V ▪ ▪ ▪ ▬

 X ▬ ▪ ▪ ▬

entwickelt vom deutschen Nachrichten-Offizier Fritz NEBEL (1891 - 1977)

verwendet wird als Basis das POLYBIOS-Quadrat
wieder ohne das J
auch die Reihenfolge der Buchstaben wird gedreht

 Z Y X W V a

 U T S R Q d

 P O N M L f

 K I H G F g

 E D C B A x

 a d f g x

desweiteren wird ein Schlüsselwort verwendet
als Beispiel hier: Verschlüsselung

dieses sollte optimaler-weise schön lang sein und alle Buch-
staben nur einfach enthalten
sollten Buchstaben doppelt vorkomm,en werden sie im Ein-
satz einfach weggelassen
damit bleibt VERSCHLUNG übrig
das restliche Alphabet wird dann dahinter geschrieben

 V E R S C a

 H L U N G d

 Z Y X W T f

 Q P O M K g

 I F D B A x

 a d f g x

als Nächstes erfolgt die POLYBIOS-typische Substitution
durch Beschriftung der Zeilen und Spalten (Koordinaten in
der Matrix)
Soll z.B. der Klartext:

SEHR GEHEIM

verschlüsselt werden, dann wird aus dem S der Zwischen-
Code ag.

 V E R S C a

 H L U N G d

 Z Y X W T f

 Q P O M K g

 I F D B A x

 a d f g x

Nachdem der Klartext so codiert wurde, erhalten wir:

ag ad da af dx ad da ad xa gg

Um die Angreifbarkeit gegen Häufigkeits-Analyse zu verbessern wird nun noch eine zweite
Stufe der Verschlüsselung genutzt.
Dazu wird ein zweites Schlüsselwort (hier: Krypto) verwendet. Dieses Mal wird üblicher-
weise auf das Weglassen doppelter Buchstaben verzichtet. Das Verfahren funktioniert aber
auch mit dem Weglassen. Wir verwenden hier jetzt nur ein kurzes Wort, da ja auch unser
Zwischtext relativ kurz ist. Übliche Schlüsselwortlängen sind hier 15 bis 22 Zeichen.

BK_SekI+II_Python_prof.docx - 347 - (c,p) 2015 - 2026 lsp: dre

Den Schlüsselwort-Buchstaben wird nun ihrer Position im
klassischen Alphabet entsprechent eine Reihenfolge zuge-
ordnet. Da im Alphabet das K aus Krypto der erste Buchsta-
be ist, erhalt es die Spalten-Nummer 1 usw. usf.
In die neue Tabelle wird nun der Zwischen-Code Zeilen-
weise notiert.
Die fehlenden Zeichen werden ausgefüllt. Hier die Buchsta-
ben des Geheim-Alphabetes in umgekehrter Reihenfolge.

 K R Y P T O

 1 4 6 3 5 2

 a g a d d a

 a f d x a d

 d a a d x a

 g g x g f d

Das Erzeugen des zu sendenden Geheimtextes erfolgt nun durch Auslesen der Spalten ent-
sprechend der (aus dem 2. Schlüsselwort) abgeleiteten Reihenfolge.
Also wird zuerst die Spalte K und dann O usw. usf. hintereinander notiert.

aadg adad dxdg gfag daxf adax

In typischer Funker-Manier werden die Buchstaben in Fünfer-Gruppen übertragen, was feh-
lende oder falsch erkannte Zeichen leichter erkennen läßt.

aadga daddx dggfa gdaxf adax

Auch hier können die fehlenden Buchstaben beliebig ergänzt werden. Z.B. kännten wir noch
ein a ranhängen. Damit sendet der Funken dann 25 Zeichen:

aadga daddx dggfa gdaxf adaxa

Zur Dechiffrierung geht man den umgekehrten Weg durch das Verfahren.
Zuerst werden die Fünfer-Gruppen aufgelöst und die Zeilen-Anzahl für die Transpositions-
Tabelle aus der Buchstaben-Anzahl und der Schlüsselwort-Länge berechnet. Bei 25 Zeichen
Geheimtext und der Schlüsselwort-Länge von 6 Zeichen ergeben sich 4 Zeilen (6 x 4 = 24 <
25).
Somit wird aus dem ungruppierten Geheimtext jetzt einer, der 4er Gruppen enthält:

aadg adad dxdg gfag daxf adax a

Das Schlüsselwort muss jetzt natürlich bekannt sein, damit die richtige Spalten-Reihenfolge
ermittelt werden kann.
Die
Dabei bleiben die überzähligen Buchstaben in der letzten
Spalte hängen und werden einfach ignoriert.

Im zweiten Schritt werden wieder die Koordinaten rekonstru-
iert. Dazu wird die Hilfs-Tabelle wieder Zeilen-weise in 2er
Gruppen ausgelesen:

ag ad da af dx ad da ad xa gg xg fd

 K R Y P T O

 1 4 6 3 5 2

 a g a d d a

 a f d x a d

 d a a d x a

 g g x g f d

 a

Zum Schluß rekonstruieren wir aus den Koordinaten wieder
die ursprünglichen Buchstaben. Aus dem ag wird so wieder
das S usw. usf.

 V E R S C a

 H L U N G d

 Z Y X W T f

 Q P O M K g

 I F D B A x

 a d f g x

gebrochen durch die Krypto-Analyse des fanzösischen Georges PAINVIN (1918)

BK_SekI+II_Python_prof.docx - 348 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Verändern Sie die Verschlüsselung so, dass mit einem 6x6-Quadrat für alle

Buchstaben und Ziffern gearbeitet werden kann! Probieren Sie es einmal mit

einem Partner un gegenseitiger Nachrichten-Übertragung aus!

2. Entwickeln Sie ein Python-Programm, welches das ADFGVX-Verfahren

umsetzt! Der Klartext und die beiden Schlüsselwörter sollen eingebbar sein!

Alle Zwischen-Schritte bzw. –Tabellen sollen anzeigbar sein. Im fertigen

Programm sollten diese dann abschaltbar sein oder auskommentiert werden!

3.

8.19.1.x. trifid-Verschlüsselung

von Franzosen Felix DELASTELLE (1840 - 1902) entwickelt
1902 beschrieben

arbeitet mit drei kleineren Polybios-ähnlichen Tabellen
dadurch ergeben sich für jeden Buchstaben 3 Koordinaten (Matrix, Zeile, Spalte)
diese Trigramme
Das Klartext-Alphabet kann
hier schon mit einem Schlüs-
selwort verteilt eingetragen
werden. Der Übersichtlichkeit
verwe hier ein unverschlüssel-
tes Alphabet.

 Matrix 1 Matrix 2 Matrix 3

 1 2 3 1 2 3 1 2 3

 1 A B C 1 J K L 1 S T U

 2 D E F 2 M N O 2 V W X

 3 G H I 3 P Q R 3 Y Z +

Durch die drei 3x3 Tabellen kommen wir nun auch auf 27 mögliche Symbole. Da verwenden
wir das vollständige Alphabet und ein Sonderzeichen, was z.B. als Leerzeichen dienen könn-
te.
Das Vorgehen ist wieder äquivalent zur POLYBIOS-Chiffre. Nur erhalten wir außer den beiden
Koordinaten auch noch die Matrix-Nummer.
Verschlüsseln wir dieses Mal:

RICHTIG GEHEIM

Nun wird das R durch das
Trigramm 233 codiert. Dieses
wird wieder gleich auf drei
Zeilen verteilt:

2
3
3

 Matrix 1 Matrix 2 Matrix 3

 1 2 3 1 2 3 1 2 3

 1 A B C 1 J K L 1 S T U

 2 D E F 2 M N O 2 V W X

 3 G H I 3 P Q R 3 Y Z +

Mit den anderen Symbolen gehen wir genauso vor. Das Leerzeichen ersetzen wir durch ein
+. Insgesamt ergibt sich dann:

21113131111212
33131333232132
33322131222331

BK_SekI+II_Python_prof.docx - 349 - (c,p) 2015 - 2026 lsp: dre

Als nächstes sollen Blöcke erstellt werden. Üblich sind 5 bis 7 Spalten als ein Block. Wir
wählen hier die 5 als Block-Größe. Damit ergibt die folgende Struktur:

21113 13111 1212
33131 33323 2132
33322 13122 2331

Der letzte Block wird durch ein beliebiges Zeichen erweitert. Ich wähle hier das – eigentlich
ungüstige – Leerzeichen.

21113 13111 12123
33131 33323 21323
33322 13122 23313

Der nächste Schritt ist spezifisch für das trifed-Verfahren. Die Blöcke werden – jeder für sich
– Zeilen-weise in neue Trigramme zerlegt. Im ersten Block habe ich das durch unterschiedli-
che Farben gekennzeichnet:

21113 13111 12123
33131 33323 21323
33322 13122 23313

Diese neuen Trigramme verteilen wir wieder auf 3 Zeilen:

21313 11331 12133
13132 31312 23321
13332 13232 12233

und verschlüsseln mit den
ursprünglichen Tabellen zu-
rück:

jiuiw gczue dqhxu

 Matrix 1 Matrix 2 Matrix 3

 1 2 3 1 2 3 1 2 3

 1 a b c 1 j k l 1 s t u

 2 d e f 2 m n o 2 v w x

 3 g h i 3 p q r 3 y z +

Dieser Geheimtext hält einer Häufigkeits-Analyse gut stand.

Die Dechiffrierung dreht das
Verfahren einfach um.
Zuerst ermitteln wir die Koor-
dinaten der Geheimtext-
Buchstaben, sortieren sie in-
nerhalb von Blöcken wieder
um und verschlüsseln zurück.

 Matrix 1 Matrix 2 Matrix 3

 1 2 3 1 2 3 1 2 3

 1 a b c 1 j k l 1 s t u

 2 d e f 2 m n o 2 v w x

 3 g h i 3 p q r 3 y z +

21313 11331 12133
13132 31312 23321
13332 13232 12233

21113 13111 12123
33131 33323 21323
33322 13122 23313

21113 13111 12123
33131 33323 21323
33322 13122 23313

211131311112123
331313332321323
333221312223313

BK_SekI+II_Python_prof.docx - 350 - (c,p) 2015 - 2026 lsp: dre

Am Schluß folgt nun die Rück-
Verschlüsselung mittels der
Matrizen zum Klartext:
Aus dem Trigramm 233 wird
so wieder der Klartext-Buch-
stabe R.

 Matrix 1 Matrix 2 Matrix 3

 1 2 3 1 2 3 1 2 3

 1 A B C 1 J K L 1 S T U

 2 D E F 2 M N O 2 V W X

 3 G H I 3 P Q R 3 Y Z +

Der so rekonstruierte Klartext:

RICHTIG GEHEIM+

unterscheidet sich nur durch zusätzlich angefügte Plus-/Leer-Zeichen.

Für ein Python-Programm könnte
man sicher wieder mehr-
dimensionale Felder benutzen
(→ 6.6. Vektoren, Felder und
Tabellen).
Hier scheint mir eine Chiffren-
Tabelle – bzw. zwei – auf der
Basis von Dictonary's vielleicht
günstiger.

 trifedChiff={

 "A": 111,

 "B": 112,

 …

 }

trifedDechiff={

 111: "A",

 112: "B",

 …

 }

alternativ mit Tupeln der drei Ko-
ordinaten

 trifedChiff={

 "A": [1,1,1],

Eine strukturierte Liste wäre
ebenfalls möglich. Hier spart man
sich dann auch die doppelte Dar-
stellung in zwei Dictonary's.
Hier sind mehrere Varianten
denkbar.

 trifed={

 {"A",[1,1,1]},

 {"B",[1,1,2]},

 …

 }

 trifed={

 {"A",111},

 {"B",112},

 …

 }

 trifed={

 {"A",1,1,1},

 {"B",1,1,2},

 …

 }

BK_SekI+II_Python_prof.docx - 351 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Vereinbaren Sie im Kurs ein reichlich langes Schlüsselwort für die Dictory-

Struktur!

2. Erstellen Sie nun ein Programm, dass die trifed-Ver- und Entschlüsselung

zeigt! Als Block-Größe verwenden wir die 3, um auch Zahlen-Operationen

für die Transposition zu ermöglich!

3.

für das gehobene Anspruchsniveau:

4. Setzen Sie das trifed-Verfahren ohne Einschränkungen um! Es sollen so-

wohl das Schlüsselwort für die drei Matrizen sowie die Block-Größe frei

gewählt werden können!

BK_SekI+II_Python_prof.docx - 352 - (c,p) 2015 - 2026 lsp: dre

8.19.1.x. Four-Square-Verschlüsselung

von Franzosen Felix DELASTELLE (1840 - 1902) entwickelt
benutzt als Basis-Alphabet Buchstaben-Paare (Digraphen, Bigramme)
Substitutions-Chiffre
damit werden aus den 26 Monographen (Monogramme) 676 Digraphen, die nun deutlich
schwierger durch Häufigkeits-Analysen angreifbar sind
hierfür wären auch sehr lange Texte notwendig

Zur Ver- und Entschlüsselung werden 4
Quadrate (daher der Name) verwendet. Je-
weils diagonal sind die Klartext- sowie die
Geheimtext-Alphabete notiert. Im Beispiel
wird, wie bei DELASTELLE auf das Q verzich-
tet. Alternativ wäre ein Verzicht auf das J
möglich.
Modernere Verfahren nutzen 6x6-Felder.
Dann passen auch noch die Ziffern mit hin-
ein.
Zur Erhöhung der Verschlüsselung werden
zwei Schlüsselwörter an den Anfang der Ge-
heimtext-Alphabete gesetzt.

 A B C D E v e r s c

 F G H I J h u l n g

 K L M N O a b d f i

 P R S T U j k m o p

 V W X Y Z t w x y z

 f o u r s A B C D E

 a e b c d F G H I J

 g h i j k K L M N O

 l m n p t P R S T U

 v w x y z V W X Y Z

Doppelte Buchstaben werden weggelassen. Hinter den Schlüsselwörtern folgt das restliche
Alphabet.
Der zu verschlüsselnde Klartext

z.B.: SEHR GEHEIM

wird zuerst in Digraphen zerlegt:

 SE HR GE HE IM

Nun wird der erste Buchstabe im oberen
Klartext-Quadrat gesucht und der zweite aus
dem unteren. Nun werden Waagerechten
und Senkrechten in die Geheimtext-Quadrate
gezogen und dort die Geheimtext-Zeichen
abgelesen.

 A B C D E v e r s c

 F G H I J h u l n g

 K L M N O a b d f i

 P R S T U j k m o p

 V W X Y Z t w x y z

 f o u r s A B C D E

 a e b c d F G H I J

 g h i j k K L M N O

 l m n p t P R S T U

 v w x y z V W X Y Z

Aus SE wird so pu.
Das Verfahren wird nun Digraph für Diagraph fortgesetzt.

Aufgaben:

1. Verschlüsseln Sie den Resttext!

2. Vereinbaren Sie mt einem Partner aus dem Kurs ein Schlüsselwort-Paar

und verschlüsseln Sie damit eine kurze Nachricht!

3.

BK_SekI+II_Python_prof.docx - 353 - (c,p) 2015 - 2026 lsp: dre

Da es sich um ein symmetrisches Verfahren
handelt verwenden wir die gleichen Schlüs-
selwörter und das inverse Verfahren für die
Dechiffrierung.
Der empfangene Geheimtext wird wieder in
Digraphen zerlegt:

z.B.: pu …

und dann der erste Buchstabe im oberen und
der zweite im untereb Geheim-Alphabet ge-
sucht. Die Klartext-Buchstaben ergeben sich
wieder über die Waagerechten und Senk-
rechten.

 A B C D E v e r s c

 F G H I J h u l n g

 K L M N O a b d f i

 P R S T U j k m o p

 V W X Y Z t w x y z

 f o u r s A B C D E

 a e b c d F G H I J

 g h i j k K L M N O

 l m n p t P R S T U

 v w x y z V W X Y Z

So bekommen wir SE aus dem Klartext zurück.
In Python können wir hier mehr-
dimensionale Felder (Array's,
Vektoren) nutzen (→ 6.6. Vekto-
ren, Felder und Tabellen).
Die Geheimtext-Felder können
natürlich erst nach Eingabe der
Schlüsselwörter belegt werden.

klaroben=array(["A","B","C","D","E"],

 ["F", …],

 …)

geheimoben=array(["v","e","r","s","c"],

 ["", …],

 …)

…

Aufgaben:

1. Tauschen Sie die verschlüsselten Nachrichten (vom ersten Aufgabenblock)

und entschlüsseln Sie diese!

2. Schreiben Sie ein Programm, das einen einzgebenen Text ver- bzw. ent-

schlüsselt! Die Schlüsselwörter sollen ebenfalls jeweils einzugeben sein! Als

Alphabet benutzen wir alle Buchstaben und die Ziffern.

3.

Aber auch Lösungen über verket-
tete Liste oder Tupel sind denk-
bar.

mögliche Listen

klaroben={ {"A","B","C","D","E"},

 {"F", …},

 …

 }

geheimoben={ {"v","e","r","s","c"},

 {"", …},

 …

 }

…

eine andere Listen-Variante mit
weniger Such-Aufwand könnte so
aufgebaut sein

klaroben={ {"A",0,0}, {"B",0,1}, …

geheimoben= { {"v",0,0}, {"e",0,1}, …

BK_SekI+II_Python_prof.docx - 354 - (c,p) 2015 - 2026 lsp: dre

8.19.2. asymmetrische Verschlüsselung

interessante Links:

http://inventwithpython.com/hackingciphers.pdf (online-Version des Buches: AL SWEIGART: Hacking
Secret Ciphers with Python)

http://inventwithpython.com/hackingciphers.pdf

BK_SekI+II_Python_prof.docx - 355 - (c,p) 2015 - 2026 lsp: dre

8.20. Code verbessern und optimieren

Laufzeit wird durch viele Faktoren beeinflusst

Leistungs-Parameter des Computers / der ausführenden Maschine

Datenmenge
im Allgemeinen steigt der Berechnings-Aufwand nicht linear, meist expotentiell, selten über-
exportentiell

Lade-Technik
Laden und Arbeiten mit Daten im Speicher schneller als auf Fetsplatte
lokales Netzwerk ist noch langsamer
am langsamsten ist das Internet

Programmier-Stil / -Paradigmen
unnötige / ungünstige Befehle

Algorithmen / Algorithmen-Analyse
ungünstige Lage von nicht gebrauchten Funktions-Aufrufen inSchleifen
stattdessen speichern des Wertes in einer Variable und dann Nutzung der Variable in der
Schleife

BK_SekI+II_Python_prof.docx - 356 - (c,p) 2015 - 2026 lsp: dre

8.21. Test-gestütztes Programmieren mit Python

Vorteile:

•

Nachteile:

•

statische Test's
ohne Code-Ausführung, z.B. über ein CodeReview (andere Programmierer oder eine KI se-
hen sich den Code an) oder Quell-Code-Analyse (mittels Linter)

dynamische Test's

• Unit-Test's
o z.B. PyUnit
o führt abgeschlossene Einheiten, wie Funktionen oder Unit's mit Testdaten aus

und vergleicht die Ergebnisse (Wert und Zielwert)

• Integrations-Test's
o z.B. PyUnit
o testet das Zusammenspiel zwischen Funktionen, Unit's usw.

• System-Test's
o z.B. Selenium für Webanwendungen

• Akzeptanz-Test's
o z.B. Selenium, Robot Framework
o Test's durch Auftraggeber

Grund-Gerüst für ein Test mit PyUnit

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

BK_SekI+II_Python_prof.docx - 357 - (c,p) 2015 - 2026 lsp: dre

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

def test(algorithmus, testBedingung = True):

 assert algorithmus([]) == []

 assert algorithmus([2]) == [2]

 assert algorithmus([4,2,2]) == [2,2,4]

 assert algorithmus([1,2,4,6,7,9]) == [1,2,4,6,7,9]

 assert algorithmus([9,8,5,5,3,2,1]) == [1,2,3,5,5,8,9]

 if testBedingung:

 assert algorithmus([0,-3,5,-9,13] == [-9,-3,0,5,13]

if __name__ == "__main__":

 test(bubblesort, False)

 test(bubblesort)

 test(quicksort)

1

2

3

4

5

6

7

8

9

10

11

12

13

BK_SekI+II_Python_prof.docx - 358 - (c,p) 2015 - 2026 lsp: dre

8.22. Konsolen-Dialoge und Dokumentation mit Jupyter-

Notebook

8.22.1. Jupyter-Notebook unter Anaconda

8.22.2. Jupyter-Erweiterung in microsoft Visual Studio Code

BK_SekI+II_Python_prof.docx - 359 - (c,p) 2015 - 2026 lsp: dre

8.23. online programmieren eines Spiel's mit Replit
Q: nach einem Workshop auf OpenHPI: "Python-games in replit" Feb. 2025 (Lasse Medla, Alexander Junger)

anmelden oder registrieren bei replit.org

Sign in

8.23.1. ein neues Projekt (repl) anlegen

siehe dazu die Video's zum HPI-Kurs ""

"+ Create App"

"Choose a Template" → "Python"

"Title" vergeben

"+ Create App"

typische Python-Konsolen-Programmierung
Starten des Programm's mit [Run]

Autovervollständigung: Vorschlag akzeptieren mit [Tab]-Taste

8.23.2. Erstellen eines Fenster's und Initialisierung der pygame-
Umgebung

Import der Pygame-Bibliothek

import pygame

Initialisierung von Pygame

pygame.init()

Initialisierung des Fensters

screen_width = 800

screen_height = 600

screen = pygame.display.set_mode([screen_width, screen_height])

Farbe des Spielfelds setzen

screen.fill((100, 0, 100))

Die gesamte Spieloberfläche aktualisieren

pygame.display.flip()

BK_SekI+II_Python_prof.docx - 360 - (c,p) 2015 - 2026 lsp: dre

8.23.3. Erstellen der Spiel-Schleife (Aktualisierungs-Schleife)

auch Game-Loop genannt

Import der Pygame-Bibliothek

import pygame

Initialisierung von Pygame

pygame.init()

Initialisierung des Fensters

screen_width = 800

screen_height = 600

screen = pygame.display.set_mode([screen_width, screen_height])

Farbe des Spielfelds setzen

screen.fill((100, 0, 100))

Definition der Variable für die Spielschleife

running = True

Spielschleife

while running:

 for event in pygame.event.get(): //Abfrage der aktuellen Event-Liste

 # Überprüfen, ob das Kreuz geklickt wurde

 if event.type == pygame.QUIT:

 running = False

 # Die gesamte Spieloberfläche aktualisieren

 pygame.display.flip()

8.23.4. Hintergrund und Spielfigur einbauen

notwendige Bilder über "Files" hochladen (in den aktuellen Arbeitsbereich (Workspace)

Import der Pygame-Bibliothek

import pygame

Initialisierung von Pygame

pygame.init()

Initialisierung des Fensters

screen_width = 800

screen_height = 600

screen = pygame.display.set_mode([screen_width, screen_height])

Farbe des Spielfelds setzen

#screen.fill((100, 0, 100))

Definition der Variablen für die Spielschleife

running = True

Laden des Hintergrundbildes

background_image = pygame.image.load('background.png')

Laden des Spielfigurbildes (mit Anpassung der Groesse)

player_image = pygame.image.load('player.png')

BK_SekI+II_Python_prof.docx - 361 - (c,p) 2015 - 2026 lsp: dre

player_image = pygame.transform.scale_by(player_image, 0.25)

Anzeigen des Hintergrundbildes

screen.blit(background_image, (0, 0)) //Position obere linke Ecke

Anzeigen der Spielfigur an der Position (300,100)

screen.blit(player_image, (300, 100)) //neue Position der Spielfigur

Spielschleife

while running:

 for event in pygame.event.get():

 # Überprüfen, ob das Kreuz geklickt wurde

 if event.type == pygame.QUIT:

 running = False

 # Die gesamte Spieloberfläche aktualisieren

 pygame.display.flip()

8.23.5. Spiel-Figur bewegen

Import der Pygame-Bibliothek

import pygame

Initialisierung von Pygame

pygame.init()

Initialisierung des Fensters

screen_width = 800

screen_height = 600

screen = pygame.display.set_mode([screen_width, screen_height])

Definition der Variablen für die Spielschleife

running = True

Laden des Hintergrundbildes

background_image = pygame.image.load('background.png')

Laden des Spielfigurbildes

player_image = pygame.image.load('player.png')

player_image = pygame.transform.scale(player_image, (200, 200))

Definition der Variablen für die x- und y-Koordinate der Spielfigur

player_x = 300

player_y = 100

Spielschleife

while running:

 # Anzeigen des Hintergrundbildes

 screen.blit(background_image, (0, 0))

 # Anzeigen der Spielfigur

 screen.blit(player_image, (player_x, player_y))

 for event in pygame.event.get():

 # Überprüfen, ob das Kreuz geklickt wurde

 if event.type == pygame.QUIT:

 running = False

BK_SekI+II_Python_prof.docx - 362 - (c,p) 2015 - 2026 lsp: dre

 # Alle möglichen gedrückten Tasten bekommen

 keys = pygame.key.get_pressed()

 # Prüfen, ob die linke Pfeiltaste gedrückt wird und die Spielfigur in-

nerhalb des Spielfelds ist

 if keys[pygame.K_LEFT] and player_x > 0:

 # Die Spielfigur nach links bewegen

 player_x -= 1

 # Prüfen, ob die rechte Pfeiltaste gedrückt wird

 if keys[pygame.K_RIGHT]:

 print("Die rechte Pfeiltaste wurde gedrückt.")

 # Die gesamte Spieloberfläche aktualisieren

 pygame.display.flip()

8.23.6. Verbessern / Erweitern der Bewegung + Kollisionen behandeln

Import der Pygame-Bibliothek

import pygame

Import der random-Bibliothek für Zufall

import random

Initialisierung von Pygame

pygame.init()

Initialisierung des Fensters

screen_width = 800

screen_height = 600

screen = pygame.display.set_mode([screen_width, screen_height])

Definition der Variablen für die Spielschleife

running = True

Laden des Hintergrundbildes

background_image = pygame.image.load('background.png')

Laden des Spielfigurbildes

player_image = pygame.image.load('player.png')

player_image = pygame.transform.scale_by(player_image, 0.5)

Laden des Apfelbildes

apple_image = pygame.image.load('apple.png')

apple_image = pygame.transform.scale_by(apple_image, 0.15)

Erstellen von Rechtecken für die Bilder der Spielfigur und des Apfels

player_rect = player_image.get_rect()

apple_rect = apple_image.get_rect()

Definition der Variablen für die x- und y-Koordinate der Spielfigur

player_x = screen_width / 2 - player_image.get_width() / 2

player_y = screen_height - player_image.get_height()

Definition der Koordinaten des Apfels

apple_x = random.randint(0, screen_width - apple_image.get_width())

apple_y = 0

BK_SekI+II_Python_prof.docx - 363 - (c,p) 2015 - 2026 lsp: dre

Spielschleife

while running:

 # Anzeigen des Hintergrundbildes

 screen.blit(background_image, (0, 0))

 # Anzeigen der Spielfigur

 screen.blit(player_image, (player_x, player_y))

 player_rect.topleft = (player_x, player_y)

 # Anzeigen des Apfels

 screen.blit(apple_image, (apple_x, apple_y))

 apple_rect.topleft = (apple_x, apple_y)

 # Auf Kollision prüfen

 collision = player_rect.colliderect(apple_rect)

 if collision:

 apple_x = random.randint(0, screen_width - apple_image.get_width())

 apple_y = 0

 print("Die Bilder kollidieren!")

 for event in pygame.event.get():

 # Überprüfen, ob das Kreuz geklickt wurde

 if event.type == pygame.QUIT:

 running = False

 # Alle möglichen gedrückten Tasten bekommen

 keys = pygame.key.get_pressed()

 # Prüfen, ob die linke Pfeiltaste gedrückt wird und die Spielfigur in-

nerhalb des Spielfelds ist

 if keys[pygame.K_LEFT] and player_x > 0:

 # Die Spielfigur nach links bewegen

 player_x -= 1

 # Prüfen, ob die rechte Pfeiltaste gedrückt wird und die Spielfigur in-

nerhalb des Spielfelds ist

 if keys[pygame.K_RIGHT] and player_x < screen_width - play-

er_image.get_width():

 # Die Spielfigur nach rechts bewegen

 player_x += 1

 # Den Apfel abwärts bewegen

 apple_y += 1

 # Die gesamte Spieloberfläche aktualisieren

 pygame.display.flip()

8.23.7. mehrere Spiel-Figuren

Import der Pygame-Bibliothek

import pygame

Import der random-Bibliothek für Zufall

import random

Initialisierung von Pygame

pygame.init()

BK_SekI+II_Python_prof.docx - 364 - (c,p) 2015 - 2026 lsp: dre

Initialisierung des Fensters

screen_width = 800

screen_height = 600

screen = pygame.display.set_mode([screen_width, screen_height])

Definition der Variablen für die Spielschleife

running = True

Laden des Hintergrundbildes

background_image = pygame.image.load('background.png')

Laden des Spielfigurbildes

player_image = pygame.image.load('player.png')

player_image = pygame.transform.scale_by(player_image, 0.5)

Laden des Apfelbildes

apple_image = pygame.image.load('apple.png')

apple_image = pygame.transform.scale_by(apple_image, 0.15)

Erstellen eines Rechtecks für das Bild der Spielfigur

player_rect = player_image.get_rect()

Definition der Variablen für die x- und y-Koordinate der Spielfigur

player_x = screen_width / 2 - player_image.get_width() / 2

player_y = screen_height - player_image.get_height()

Apfelrechtecke definieren

apples = []

for i in range(5):

 apple_rect = apple_image.get_rect()

 apple_x = random.randint(0, screen_width - apple_image.get_width())

 apple_y = random.randint(-500, -100)

 apple_rect.topleft = (apple_x, apple_y)

 apples.append(apple_rect)

Spielschleife

while running:

 # Anzeigen des Hintergrundbildes

 screen.blit(background_image, (0, 0))

 # Anzeigen der Spielfigur

 screen.blit(player_image, (player_x, player_y))

 player_rect.topleft = (player_x, player_y)

 # Über alle Apfelrechtecke iterieren

 for apple_rect in apples:

 # Anzeigen eines Apfels für jedes Rechteck

 screen.blit(apple_image, apple_rect)

 # Den Apfel abwärts bewegen

 apple_rect.y += 1

 # Auf Kollision prüfen

 collision = player_rect.colliderect(apple_rect)

 # Wenn sie miteinander kollidieren, sollen die x- und y-Koordinaten

jedes Apfels neu gesetzt werden

 if collision:

 apple_rect.x = random.randint(0, screen_width - app-

le_image.get_width())

 apple_rect.y = random.randint(-500, -100)

 for event in pygame.event.get():

BK_SekI+II_Python_prof.docx - 365 - (c,p) 2015 - 2026 lsp: dre

 # Überprüfen, ob das Kreuz geklickt wurde

 if event.type == pygame.QUIT:

 running = False

 # Alle möglichen gedrückten Tasten bekommen

 keys = pygame.key.get_pressed()

 # Prüfen, ob die linke Pfeiltaste gedrückt wird und die Spielfigur in-

nerhalb des Spielfelds ist

 if keys[pygame.K_LEFT] and player_x > 0:

 # Die Spielfigur nach links bewegen

 player_x -= 1

 # Prüfen, ob die rechte Pfeiltaste gedrückt wird und die Spielfigur in-

nerhalb des Spielfelds ist

 if keys[pygame.K_RIGHT] and player_x < screen_width - play-

er_image.get_width():

 # Die Spielfigur nach rechts bewegen

 player_x += 1

 # Die gesamte Spieloberfläche aktualisieren

 pygame.display.flip()

8.23.8. Spielstand (Score) und Spielende

Import der Pygame-Bibliothek

import pygame

Import der random-Bibliothek für Zufall

import random

Initialisierung von Pygame

pygame.init()

Initialisierung des Fensters

screen_width = 800

screen_height = 600

screen = pygame.display.set_mode([screen_width, screen_height])

Definition der Variablen für die Spielschleife

running = True

game_active = True

Laden des Hintergrundbildes

background_image = pygame.image.load('background.png')

Laden des Spielfigurbildes

player_image = pygame.image.load('player.png')

player_image = pygame.transform.scale_by(player_image, 0.5)

Laden des Apfelbildes

apple_image = pygame.image.load('apple.png')

apple_image = pygame.transform.scale_by(apple_image, 0.15)

Erstellen eines Rechtecks für das Bild der Spielfigur

player_rect = player_image.get_rect()

BK_SekI+II_Python_prof.docx - 366 - (c,p) 2015 - 2026 lsp: dre

Definition der Variablen für die x- und y-Koordinate der Spielfigur

player_x = screen_width / 2 - player_image.get_width() / 2

player_y = screen_height - player_image.get_height()

Apfelrechtecke definieren

apples = []

for i in range(5):

 apple_rect = apple_image.get_rect()

 apple_x = random.randint(0, screen_width - apple_image.get_width())

 apple_y = random.randint(-500, -100)

 apple_rect.topleft = (apple_x, apple_y)

 apples.append(apple_rect)

score = 0

font = pygame.font.SysFont(None, 40)

Spielschleife

while running and game_active:

 # Schleife für die Spielmechanik/-logik

 while game_active:

 # Anzeigen des Hintergrundbildes

 screen.blit(background_image, (0, 0))

 # Anzeigen der Spielfigur

 screen.blit(player_image, (player_x, player_y))

 player_rect.topleft = (player_x, player_y)

 # Über alle Apfelrechtecke iterieren

 for apple_rect in apples:

 # Anzeigen eines Apfels für jedes Rechteck

 screen.blit(apple_image, apple_rect)

 # Den Apfel abwärts bewegen

 apple_rect.y += 1

 # Auf Kollision prüfen

 collision = player_rect.colliderect(apple_rect)

 # Wenn sie miteinander kollidieren, sollen die x- und y-

Koordinaten jedes Apfels neu gesetzt werden

 if collision:

 score += 1

 apple_rect.x = random.randint(0, screen_width - app-

le_image.get_width())

 apple_rect.y = random.randint(-500, -100)

 if apple_rect.y > screen_height:

 game_active = False

 for event in pygame.event.get():

 # Überprüfen, ob das Kreuz geklickt wurde

 if event.type == pygame.QUIT:

 running = False

 game_active = False

 # Alle möglichen gedrückten Tasten bekommen

 keys = pygame.key.get_pressed()

 # Prüfen, ob die linke Pfeiltaste gedrückt wird und die Spielfigur

innerhalb des Spielfelds ist

 if keys[pygame.K_LEFT] and player_x > 0:

 # Die Spielfigur nach links bewegen

 player_x -= 1

BK_SekI+II_Python_prof.docx - 367 - (c,p) 2015 - 2026 lsp: dre

 # Prüfen, ob die rechte Pfeiltaste gedrückt wird und die Spielfigur

innerhalb des Spielfelds ist

 if keys[pygame.K_RIGHT] and player_x < screen_width - play-

er_image.get_width():

 # Die Spielfigur nach rechts bewegen

 player_x += 1

 # Score anzeigen

 score_text = font.render(f"Score: {score}", True, "white")

 screen.blit(score_text, (10, 10))

 # Die gesamte Spieloberfläche aktualisieren

 pygame.display.flip()

 # Schleife für das Spielende

 while running and not game_active:

 # Text für Game Over

 game_over_text = font.render("Game Over", True, "red")

 # Die Mitte des Bildschirms berechnen

 game_over_text_mid_x = screen_width / 2 - ga-

me_over_text.get_width() / 2

 game_over_text_mid_y = screen_height / 2 - ga-

me_over_text.get_height() / 2

 # Game Over mittig anzeigen

 screen.blit(game_over_text, (game_over_text_mid_x, ga-

me_over_text_mid_y))

 # Abfragen ob das X gedrückt wurde und sonst die gesamte Spielober-

fläche aktualisieren

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 running = False

 # Die gesamte Spieloberfläche aktualisieren

 pygame.display.flip()

noch notw. Arbeiten:
Korb mit Äpfel füllen

mögliche Erweiterungen:
falsches Obst
schnellere Level
ganz andere Settings
 z.B. den Äpfeln ausweichen
 andere Dinge sammeln oder nicht sammeln

9

BK_SekI+II_Python_prof.docx - 368 - (c,p) 2015 - 2026 lsp: dre

9. Python, informatisch – Datenstrukturen, Klassen,
Automaten, …

Ähnlich wie Mathematiker leben Informatiker in einer eigenen Modell-Welt. Nicht umsonst
gelten sie als Nerds oder Guru's oder was es sonst auch noch für (böse) Bezeichnungen für
die liebsten Menschen der Welt gibt (;-).
Beim genauen Hinschauen sind die Modell-Objekte genau so clever, wie die unzähligen ma-
thematischen Operationen und Techniken. Wenn man irgendwelche Dinge am Computer tut,
dann werden uns viele benutzte Informatik-Modelle gar nicht so recht bewusst. Kaum einer
weiss, dass die Druck-Aufträge in einer Warteschlange verwaltet werden. Der Druck-Auftrag,
der zuerst kommt, wird auch zuerst ausgedruckt. Erst wenn einer der Aufträge den Drucker
blockiert, dann werden wir uns vielleicht die Warteschlange ansehen (Doppelklicken auf das Dru-

cker-Symbol in der Task-Leiste) und den störenden Auftrag dort löschen.
Mit der Datenstruktur Baum haben wir dagegen alle schon zu tun gehabt, zumindestens,
wenn wir einen Computer mehr als einmal praktisch genutzt und Daten gespeichert haben.
Die Ordner in einem Laufwerk sind genau so eine Baum-Struktur. Aber auch die Laufwerke
selbst sind wieder eine Baum-Struktur. Sie haben die gemeinsame Wurzel "Computer".
Keller und Ringe sind wieder eher verborgene Objekte. Aber auch sie werden für das ord-
nungsgemäße bzw. gewohnte Funktionieren eines PC gebraucht.

Definition(en): Datenstruktur
Eine Datenstruktur ist der Informatik eine Vereinbarung zur Organisation und Speicherung
von Daten.

Definition(en): Datenstruktur
Eine Datenstruktur ist der Informatik eine Vereinbarung zur Organisation und Speicherung
von Daten.

Einteilung nach (maximalen) Anzahl der Nachfolger auf ein Objekt möglich

maximal ein Nachfolger:
Liste

maximal zwei Nachfolger:
Binär-Baum

beliebig viele Nachfolger:
(allgemeiner) Baum
Netz

BK_SekI+II_Python_prof.docx - 369 - (c,p) 2015 - 2026 lsp: dre

Zuerst werden wir allerdings etwas genauer auf die sogenannten Tupel eingehen. Sie sind
keine klassische Datenstruktur oder gar ein Informatiker-Modell. Sie sind eher eine Speziali-
tät von Python.

BK_SekI+II_Python_prof.docx - 370 - (c,p) 2015 - 2026 lsp: dre

9.1. Keller

auch Stack (engl. = Stapel, Haufen)

was auf dem Stapel als letztes abgeladen wird, muss als erstes wieder entnommen werden,
um z.B. an tiefer liegende / früher eingespeicherte Daten zu erreichen

bekannt z.B. aus der Rekursion (→ 8.4.2. Rekursion) dort ist Kellerspeicher zwingend not-
wendig, allerdings vom Nutzer unbemerkt

Größe einer KELLER_Datenstruktur wird im Wesentlichen vom verfügbaren / hierfür reser-
vierten Speicher bestimmt
ansonsten Anzahl der Einträge beliebig

nur wenn Speicher des Rechners nicht mehr für die Größe des Kellerspeichers ausreicht (bei
zu vielen Rekursionen), dann kommt es zum Fehler

LIFO-Speicher (Last-In-First-Out) oder Stack

alternatives Speicher-Prinzip ist die (Warte-)Schlange (→ 9.9. Warteschlangen) oder der
FIFO-Speicher (First-In-First-Out)

Definition(en): Stack / Keller
Ein Keller- oder Stack-Datenstruktur ist eine lineare Anordnung von gleichartig zu bearbei-
tenden Daten-Obbjekten (Daten-Einträgen), die nach dem LIFO-Prinzip verwaltet werden.

zum Keller gehörenden Grund-Operationen:
nachsehen (top) → obersten Eintrag ansehen / auslesen ohne es zu entfernen
einlagern / einspeichern (push) → neues Element (oben) auf den alten Stapel legen
wegnehmen / ausspeichern (pop) → obersten Eintrag entnehmen

 Stack Typ / Klasse

 liste: Liste (von Objekt) Objekt

 gibListe(): Liste
setzListe(liste: Liste)
istLeer(): Wahrheitswert
einspeichern(eintrag: Objekt)
ausspeichern(): Objekt
lesen(): Objekt

Methoden

eine sehr einfache Implementierung eines Kellers (Stack's) über eine interne Liste:

BK_SekI+II_Python_prof.docx - 371 - (c,p) 2015 - 2026 lsp: dre

def keller():

 liste = []

 def raus():

 if not istleer():

 return liste.pop()

 def rein(element):

 liste.append(element)

 def istleer():

 return len(liste)==0

 return raus, rein, istleer

REIN, RAUS, ISTLEER = keller()

Q und Fkt.W: ???; angelehnt an Objekt-orientierter Prog.

BK_SekI+II_Python_prof.docx - 372 - (c,p) 2015 - 2026 lsp: dre

Listen-basiert
push = kellerliste.append
pop = kellerliste.pop

Menü-System + Keller-Speicher mit Listen-Opp's

def anzeigenListe(Liste):

 for elem in Liste:

 print("[",elem,"]",end=' ')

 print("|<=")

def elementeZaehlen(Liste):

 anzahl=0

 for _ in Liste:

 anzahl+=1

 return anzahl

def istLeereListe(Liste):

 anzahl=elementeZaehlen(Liste)

 if anzahl==0:

 return True

 else: return False

def leerenListe(Liste):

 while not istLeereListe(Liste):

 Liste.pop()

Main

KellerSpeicher=[]

maxMenuePunkte=3

auswahl=1

while auswahl>0 and auswahl<=maxMenuePunkte:

 print("")

 print("aktueller Keller-Speicher:")

 anzeigenListe(KellerSpeicher)

 print("")

 print("Auswahl-Menü")

 print("============")

 print("<1> .. Einspeichern (Push)")

 print("<2> .. Ausspeichern (Pop)")

 print("<3> .. Speicher leeren")

 print(".. ")

 print("<0> .. Programmende")

 auswahl=-1

 while auswahl<0 or auswahl>maxMenuePunkte:

 auswahl=eval(input("Ihre Wahl: "))

 if auswahl==1:

 eingabe=input("Was soll eingespeichert werden?: ")

 KellerSpeicher.append(eingabe)

 elif auswahl==2:

 if istLeereListe(KellerSpeicher):

 print("Keller-Speicher ist LEER.")

 else:

 ausgabe=KellerSpeicher.pop()

 print("Element: [", ausgabe, "] aus dem Speicher gelesen

und entfernt.")

 elif auswahl==3:

 leerenListe(KellerSpeicher)

 else:

 break

print("Ende...")

BK_SekI+II_Python_prof.docx - 373 - (c,p) 2015 - 2026 lsp: dre

 aktueller Keller-Speicher:

|<=

Auswahl-Menü

============

<1> .. Einspeichern (Push)

<2> .. Ausspeichern (Pop)

<3> .. Speicher leeren

<4> ..

<1> ..

..

<0> .. Programmende

Ihre Wahl: 1

Was soll eingespeichert werden?: 3

aktueller Keller-Speicher:

[3] |<=

etwas aufwändigere Implementierung (Q: de.wikipedia.org)
class Stack(object):

 def __init__(self):

 self.maxindex=5

 self.topindex=0

 self.speicher = [0,0,0,0,0,0,0,0,0,0,0]

 def isEmpty(self):

 return self.topindex==0

 def isFull(self):

 return self.topindex==self.maxindex

 def push(self,element):

 if not self.isFull():

 self.topindex+=1

 self.speicher[self.topindex]=element

 def pop(self):

 if not self.isEmpty():

 self.topindex-=1

 def top(self):

 if not self.isEmpty():

 return self.speicher[self.topindex]

 def DisplayStack(self):

 M=self.topindex

 while M>0 :

 print("| ",self.speicher[M]," |")

 M-=1

 print("------------------|")

if __name__== "__main__": #Beispiel

 myStack=Stack()

 print(myStack.isFull())

 print(myStack.isEmpty())

 myStack.push(5)

 myStack.push(3)

 myStack.DisplayStack()

 print(myStack.isEmpty())

 myStack.push(13)

 myStack.DisplayStack()

BK_SekI+II_Python_prof.docx - 374 - (c,p) 2015 - 2026 lsp: dre

import random

max operation on a stack

class Node:

 def __init__(self):

 self.data = None # contains the data

class StackNode:

 def __init__(self):

 self.maxNode = None # contains the data

 self.nextNode = None

class Stack:

 def __init__(self):

 self.head = None

 def push(self, node):

 toAdd = StackNode()

 if self.head:

 toAdd.nextNode = self.head

 if node.data > self.head.maxNode.data:

 toAdd.maxNode = node

 else:

 toAdd.maxNode = self.head.maxNode

 else:

 toAdd.maxNode = node

 self.head = toAdd

 def pop(self):

 toReturn = None

 if self.head:

 toReturn = self.head

 if self.head.nextNode:

 self.head = self.head.nextNode

 else:

 self.head = None

 return toReturn

 def max(self):

 return self.head.maxNode.data

stack = Stack()

for i in range (0,10):

 node = Node()

 node.data = random.randint(1,20)

 print "Pushing: " + str(node.data)

 stack.push(node)

print stack.max()

Q: http://pythonfiddle.com/max-operator-to-stack/

http://pythonfiddle.com/max-operator-to-stack/

BK_SekI+II_Python_prof.docx - 375 - (c,p) 2015 - 2026 lsp: dre

9.2. Warteschlangen

FIFO-Prinzip (First In First Out)

Queue (sprich: kju)

Beispiele:
Kasse im Supermarkt
Warten beim Frisör / Arzt / …
Abarbeitung von Überweisungen bei einer Bank

Definition(en): Warteschlange / Queue
Eine Warteschlangen- bzw. Queue-Datenstruktur ist eine lineare Anordnung von gleichartig
zu bearbeitenden Daten-Objekten (Daten-Einträgen), die nach dem FIFO-Prinzip verwaltet
werden.

zum Keller gehörenden Grund-Operationen:
nachsehen (front) → ersten Eintrag ansehen / auslesen ohne ihn zu entfernen
anhängen / einspeichern (enqueue) → neues Element (hinten) auf die alten Schlange an-
hängen / kontatenieren
entfernen / ausspeichern (dequeue) → ersten / vordersten Eintrag entnehmen

alternatives Speicher-Prinzip ist der Keller (→ 9.8. Keller) bzw. der Stack (Stapel) oder der
LIFO-Speicher

 Queue Typ / Klasse

 liste: Liste (von Objekt) Objekt

 gibListe(): Liste
setzListe(liste: Liste)
istLeer(): Wahrheitswert
einspeichern(eintrag: Objekt)
ausspeichern(): Objekt
lesen(): Objekt

Methoden

für eine Implementierung über eine einfache Liste:

links-orientiertes Arbeiten:
insert(0,x) zum Einspeichern (neue Liste ::= x, alte Liste) (Erweiterung links)
pop() Ausspeichern / Entnehmen des letzten Element's (Verkürzung rechts)

BK_SekI+II_Python_prof.docx - 376 - (c,p) 2015 - 2026 lsp: dre

rechts-orientiertes Arbeiten:
append(x) anhängen eines Eintrags an die Liste (einspeichern) (Erweiterung rechts)
pop(0) Ausspeichern / Entnehmen des 1. Element's (Verkürzung links)

Menü-System + Warteschlangen-Speicher mit Listen-Opp's

def anzeigenListe(Liste):

 print("->|",end=' ')

 for elem in Liste:

 print("[",elem,"]",end=' ')

 print("|=>>")

def elementeZaehlen(Liste):

 anzahl=0

 for _ in Liste:

 anzahl+=1

 return anzahl

 # Alternative

 # return len(Liste)

def istLeereListe(Liste):

 anzahl=elementeZaehlen(Liste)

 if anzahl==0:

 return True

 else: return False

 # Alternative

 # if len(Liste)==0: return True

 # return False

def leerenListe(Liste):

 while not istLeereListe(Liste):

 Liste.pop()

Main

WarteschlangenSpeicher=[]

maxMenuePunkte=3

auswahl=1

while auswahl>0 and auswahl<=maxMenuePunkte:

 print("")

 print("aktueller FIFO-Speicher (Warteschlange):")

 anzeigenListe(WarteschlangenSpeicher)

 print("")

 print("Auswahl-Menü")

 print("============")

 print("<1> .. Einspeichern (Push)")

 print("<2> .. Ausspeichern (Pop)")

 print("<3> .. Speicher leeren")

 print(".. ")

 print("<0> .. Programmende")

 auswahl=-1

 while auswahl<0 or auswahl>maxMenuePunkte:

 auswahl=eval(input("Ihre Wahl: "))

 if auswahl==1: # Einspeichern

 eingabe=input("Was soll eingespeichert werden?: ")

 WarteschlangenSpeicher.insert(0,eingabe)

BK_SekI+II_Python_prof.docx - 377 - (c,p) 2015 - 2026 lsp: dre

 elif auswahl==2: # Ausspeichern

 if istLeereListe(WarteschlangenSpeicher):

 print("Keller-Speicher ist LEER.")

 else:

 ausgabe=WarteschlangenSpeicher.pop()

 print("Element: [", ausgabe, "] aus dem Speicher gelesen

und entfernt.")

 elif auswahl==3: # Speicher leeren

 leerenListe(WarteschlangenSpeicher)

 else: # Ende

 break

print("Ende...")

BK_SekI+II_Python_prof.docx - 378 - (c,p) 2015 - 2026 lsp: dre

9.3. Bäume

BK_SekI+II_Python_prof.docx - 379 - (c,p) 2015 - 2026 lsp: dre

9.4. Graphen

siehe auch bei Listen II
siehe auch bei Mengen → 8.3.2.4.1. ein bißchen Graphen

BK_SekI+II_Python_prof.docx - 380 - (c,p) 2015 - 2026 lsp: dre

9.5. endliche Automaten

class DFA:

 current_state = None;

 def __init__(self, states, alphabet, transition_function, start_state,

accept_states):

 self.states = states;

 self.alphabet = alphabet;

 self.transition_function = transition_function;

 self.start_state = start_state;

 self.accept_states = accept_states;

 self.current_state = start_state;

 return;

 def transition_to_state_with_input(self, input_value):

 if ((self.current_state, input_value) not in

self.transition_function.keys()):

 self.current_state = None;

 return;

 self.current_state = self.transition_function[(self.current_state,

input_value)];

 return;

 def in_accept_state(self):

 return self.current_state in accept_states;

 def go_to_initial_state(self):

 self.current_state = self.start_state;

 return;

 def run_with_input_list(self, input_list):

 self.go_to_initial_state();

 for inp in input_list:

 self.transition_to_state_with_input(inp);

 continue;

 return self.in_accept_state();

 pass;

states = {0, 1, 2, 3};

alphabet = {'a', 'b', 'c', 'd'};

tf = dict();

tf[(0, 'a')] = 1;

tf[(0, 'b')] = 2;

tf[(0, 'c')] = 3;

tf[(0, 'd')] = 0;

tf[(1, 'a')] = 1;

tf[(1, 'b')] = 2;

tf[(1, 'c')] = 3;

tf[(1, 'd')] = 0;

tf[(2, 'a')] = 1;

tf[(2, 'b')] = 2;

tf[(2, 'c')] = 3;

tf[(2, 'd')] = 0;

tf[(3, 'a')] = 1;

BK_SekI+II_Python_prof.docx - 381 - (c,p) 2015 - 2026 lsp: dre

tf[(3, 'b')] = 2;

tf[(3, 'c')] = 3;

tf[(3, 'd')] = 0;

start_state = 0;

accept_states = {2, 3};

d = DFA(states, alphabet, tf, start_state, accept_states);

inp_program = list('abcdabcdabcd');

print d.run_with_input_list(inp_program);

Q: http://pythonfiddle.com/dfa-simple-implementation/

http://pythonfiddle.com/dfa-simple-implementation/

BK_SekI+II_Python_prof.docx - 382 - (c,p) 2015 - 2026 lsp: dre

9.6. Keller-Automaten

9.7. TURING-Automaten

BK_SekI+II_Python_prof.docx - 383 - (c,p) 2015 - 2026 lsp: dre

Abbildungen und Skizzen entstammen den folgende ClipArt-Sammlungen:

/A/

andere Quellen sind direkt angegeben.

Alle anderen Abbildungen sind geistiges Eigentum:

 lern-soft-projekt: drews (c,p) 1997 – 2026 lsp: dre
 für die Verwendung außerhalb dieses Skriptes gilt für sie die Lizenz:

 CC-BY-NC-SA
 Lizenz-Erklärungen und –Bedingungen: http://de.creativecommons.org/was-ist-cc/
 andere Verwendungen nur mit schriftlicher Vereinbarung!!!

verwendete freie Software:

• Inkscape von: inkscape.org (www.inkscape.org)

• CmapTools von: Institute for Human and Maschine Cognition (www.ihmc.us)

 - (c,p) 2015 - 2026 lern-soft-projekt: drews -
 - drews@lern-soft-projekt.de -
 - http://www.lern-soft-projekt.de -
 - 18069 Rostock; Luise-Otto-Peters-Ring 25 -
 - Tel/AB (0381) 760 12 18 FAX 760 12 11 -

http://de.creativecommons.org/was-ist-cc/
http://www.inkscape.org/
http://www.ihmc.us/
mailto:drews@lern-soft-projekt.de
http://www.lern-soft-projekt.de/

