Informalik

fitr die Sekundarstufe I + I

- Programmieren mil Pylthon —
Teil 2: fur Forlgeschriffene

Aulor: 1.. Drews

Baum

Eintrag Eintrag
Eintrag
N
ent)
ausi

tfernen
5

peichern

7
i

einspei

A - o 3
> > > Griner Baum-Python
(s) Morelia viridis

Q: de.wikipedia.org (Mwx)

eval (input("?:")) !'= 0:
print("Stoppen" ,end="")

ETE o)X

Eingabe
Verarbeitung(sschriit) Hallo Welt!
Ausgabe |> Beenden |

teilredigierte Version 0.11h (2026)

BK_Sekl+II_Python_prof.docx (c,p) 2015 - 2026 lern-soft-projekt: drews

Legende:

mit diesem Symbol werden zusatz-
liche Hinweise, Tips und weiterfiih-
rende Ideen gekennzeichnet

/ Nutzungsbestimmungen / Bemerkungen zur Verwendung durch Dritte:

(1) Dieses Skript (Werk) ist zur freien Nutzung in der angebotenen Form durch den
Anbieter (lern-soft-projekt) bereitgestellt. Es kann unter Angabe der Quelle und /
oder des Verfassers gedruckt, vervielfaltigt oder in elektronischer Form verof-
fentlicht werden.

(2) Das Weglassen von Abschnitten oder Teilen (z.B. Aufgaben und Lésungen) in
Teildrucken ist moglich und sinnvoll (Konzentration auf die eigenen Unterrichts-
ziele, -inhalte und -methoden). Bei angemessen groen Ausziigen gehort das
vollstandige Inhaltsverzeichnis und die Angabe einer Bezugsquelle fiir das Ori-
ginalwerk zum Pflichtteil.

(3) Ein Verkauf in jedweder Form ist ausgeschlossen. Der Aufwand fiir Kopierleistungen, Datentrager
oder den (einfachen) Download usw. ist davon unbertihrt.

(4) Anderungswiinsche werden gerne entgegen genommen. Erganzungen, Arbeitsblatter, Aufgaben
und Lésungen mit eigener Autorenschaft sind mdglich und werden bei konzeptioneller Passung
eingearbeitet. Die Teile sind entsprechend der Autorenschaft zu kennzeichnen. Jedes Teil behalt
die Urheberrechte seiner Autorenschaft bei.

(5) Zusammenstellungen, die von diesem Skript - Gber Zitate hinausgehende - Bestandteile enthalten,
mussen verpflichtend wieder gleichwertigen Nutzungsbestimmungen unterliegen.

(6) Diese Nutzungsbestimmungen gehoéren zu diesem Werk.

(7) Der Autor behalt sich das Recht vor, diese Bestimmungen zu &ndern.

(8) Andere Urheberrechte bleiben von diesen Bestimmungen unberihrt.

Rechte Anderer:

Viele der verwendeten Bilder unterliegen verschiedensten freien Lizenzen. Nach meinen Recherchen
sollten alle genutzten Bilder zu einer der nachfolgenden freien Lizenzen gehdren. Unabhangig von
den Vorgaben der einzelnen Lizenzen sind zu jedem extern entstandenen Objekt die Quelle, und
wenn bekannt, der Autor / Rechteinhaber angegeben.

public domain (pd) Zum Gemeingut erklarte Graphiken oder Fotos (u.a.). Viele der verwen-
deten Bilder entstammen Webseiten / Quellen US-amerikanischer Ein-
richtungen, die im Regierungsauftrag mit offentlichen Mitteln finanziert
wurden und dariber rechtlich (USA) zum Gemeingut wurden. Andere
kreative Leistungen wurden ohne Einschrankungen von den Urhebern
freigegeben.

gnu free document li-
cence (GFDL; gnu fdl)

creative commens (cc)
@Cl‘eative od. neu ® ... Namensnennung
commons

... hichtkommerziell

... in der gleichen Form

... unter gleichen Bedingungen

Die meisten verwendeten Lizenzen schlielen eine kommerzielle (Weiter-)Nutzung aus!

Bemerkungen zur Rechtschreibung:

Dieses Skript folgt nicht zwangslaufig der neuen ODER alten deutschen Recht-
schreibung. Vielmehr wird vom Recht auf kinstlerische Freiheit, der Freiheit der
Sprache und von der Autokorrektur des Textverarbeitungsprogramms microsoft ®
WORD ® Gebrauch gemacht.

Fir Hinweise auf echte Fehler ist der Autor immer dankbar.

BK_SekI+lI_Python_prof.docx -2- (c,p) 2015 - 2026 Isp: dre

Inhaltsverzeichnis:

Seite

7. Problem-Losen mit Python......... s 9
7.0. Aufgaben versus Probleme..........ccci s 9
7.0.1. Programm-Entwicklungs-Strategien ... 11
7.0.2. Strategien zur Losung von (echten) Problemen............cc.ooooiiiiieiiiiieiiein, 14
kleine Programm-Beispi€le..............couuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee 20
7.0.3,14 Python am Pi-Dayooommiiiiii e 21
Pi-Berechnung durch Monte Carlo Simulation..............ccceeeeiiiiiiiiiee e 21
Pi-Berechnung Uber Verhaltnis der Flachen von duferen und inneren Vieleck................... 21
(einfache) besondere Zahlen ... e 22

Uber Teilersummen definierte besondere Zahlen ... 22
sonstige (ganz) besondere Zahlen ... 23

seltene oder ungewdhnliche Zahlen und Zahlensysteme (in der Schule)...........cccccceeneee. 23

8. Python fiir Fortgeschritteneooo e 24
8.1. Strings — Zeichenketten....... ..o 24
8.1.1. einzelne Symbole / Zeichen / Charakterecccooeiiiiiiiiiiiiii e 24
8.1.2. Sequenzen von Zeichen - Zeichenketten / Strings..........ccovvvvviiiiiiiiiiiiiiiiiiiiiineee. 25
81 2 oSG S e 27
8.1.3. Objekt-orientierte Nutzung von StringS.........coooiiiii i, 28
8.1.4. besondere Moglichkeiten flr Strings in Python ... 29
8.2. Datentypen und TypumwandlUnNgen............ceciiiieeciimirecnr e s s s s esmnn e 31
8.2, ZANIEN ... e 33
8.2.1.1..9aANZE ZANIEN.......eei e 33
Zahlendarstellung Uber spezielle LIterale ... 33
8.2.1.2. FlieBRkommazahlen / Gleitkommzahlencccccooiiiiiiiiiiines 33
8.2.1.3. WahrheitSWEIEoovieiiiii e 35
8.2.1.4. KOMPIEXE ZANIENveeiii e 35
8.2.2. Strings und Co als Datentypenoooveiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 36
8.2.2.1. €einzelNe ZEIChENi e 36
8.2.2.2. Sequenzen von Zeichen - Zeichenketten.............cccoovviiiiiii e, 36
8.2.3. Listen, die |. — €iNfache LiSteNooeiee e 38
8.2.3.0. theortische Vorbetrachtungen.............oo oo, 39
8.2.3.0.1. Listen — eine Form der DatensammIung...........coooruiiiiiiiiiieiniiie e 39
8.2.3.0.2. Daten-StruKtUr: LIiSteccccii i e e e e e e e 41
8.2.3.1. Definition und Zuweisung von Listen in Python.............ccccooiiiiiie 46
8.2.3.2. Listen-Operationen (Built-in-Operatoren)............ccccccoeiiiiimiininniiennns 48
8.2.3.3. Listen-INdeXi€rUNQuuuuiiiiiiiiiiii e 50
8.2.3.4. Listen-Bearbeitunguuuuuiiiii e 52
8.2.3.5. Listen-Abschnitte (SICING)vvviiiiiiiiiiiiie e 56
8.2.3.6. Listen-Erzeugung — fast automatisch...........cccooiii 57
8.2.3.7. Listen - extravagant 58
erweitertes LiSteN-GENEIIEIEN.........coi it e e e e e s st eaaeeeeaans 58
EIWEITEIES SHCING - eeeeiiie it e e e e et e e e e e e e e neneeeeeaaeeeanns 59
8.2.3.8. Ringe — geschlossene Listen............cccciiiiiiiiiiiii 61
8.2.4. Dictionarys - WOrErbUCNErooiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 63
8.3. komplexe DatentyPen ... e 66
TR T O 10T o 7= 66
8.3.2. MeN@EN — Set'S ..coiiiiiiiiiiiiiie e 68
8.3.2.1. Mengen — €iNfach ... 68
8.3.2.1.1. Mengen-ErstellUngc.ooiiiiiii s 68
8.3.2.1.2. Mengen-OperationNeNc.uuiiiiiie et e e e e e e a e e e e 69
€iNfache OPEratiONEN ... e e e e e e e e e e s rn e e aaeeeaans 69
typischen Mengen-OperationNeN............cocuiiiiiie e e e e e e e erraaeeeae s 71
Bearbeitung in Schlifen €fC.viiiiiiiii e 72
8.3.2.1.x. automatische Mengen-GENEIIEIUNGcceieiiiiiciiiiiiieee e e e e e e s e e e e 72

BK_SekI+II_Python_prof.docx -3- (c,p) 2015 - 2026 Isp: dre

8.3.2.2. Mengen — objektorientiert ... 73

8.3.2.4. Anwendung VON MENGENvvuiiii it e e e e e e eeanaes 74
8.3.2.4.1. ein biRchen Graphen....... ... e 74
8.3.3. Dictonary's - WOrterbUCHETuuuiiiiiiiiiiiiiiiiiiiiii e 76
8.3.3.1. Erfassen von unbekannten Objekten und Zahlen der Objekte in einem
WOMEIDUCK ... 81
8.3.3.2. Objekt-orientierte Operationen mit Dictonary's............cccooeeiiiii, 82
8.3.3.3. Dictonary-Comprenensionooooiiiiiiiiieeeeeee e 83
8.3.3.4. eine Datenbank mit Dictonary'seeeii i 83
8.3.4. Listen, die Il. — objektorientierte Listencccccoeeiiiiiiiic 85
8.3.5. List-CompPrenensioNcoii i 89
8.4. Interation oder Rekursion? — das ist hier die Frage!cccccuviiririiiiiinininnnnnnnnnnns 91
S 0 S O 1) (= =1 (oo P 92
8.4.1.1. typische Interations-Anwendungencccoooeiiiiiiiiiiei e 93
8.4.1.1.1. SUMMEN-BilAUNG.....ciiiiiiiiiie e e e e e et e e e e e e e e eanes 93
8.4.1.1.2. Produkt-BilAUNGcoiiiiiiiiiiiiiie et e e e e e ee e e e e e e 95
S o U= U] =] ISR 96
8.4.2.1. Rekursions-Beispiele: Summen- und Produkt-Bildung.............ccccooeeeee. 98
8.4.2.2. weitere typische Anwendungen fur Rekursionencccon 100
8.4.2.2.1. Uberfihrung einer Dezimal-Zahl in eine Dual-Zahl............c.ccccciiiiiiiiiienenn. 100
8.4.2.2.2. die FAKUIRAL ... e e e e e e e e e nanes 100
8.4.2.2.3. die FIBONACCHI-FOIGEutiiiieieeiiieeie ettt e e e e e 101
8.4.2.2.4. das ggT — der Grofdte gemeinsame Teiler.........occveiiiiiiiiieiei e 102
8.4.2.2.5. Erkennung von PalindromMencooiiiiiiiiiiiiie et 104
8.4.2.2 x. weitere klassische Rekursions-Problemecccccoviiiiiiiiiie e 105
8.4.2.3. direkte Gegeniberstellung von interativen und rekursiven Algorithmen...... 114
8.4.2.3.1. GGT — groBter gemeinsamer TeIler...........cooiiiiiiiiii i 114
8.4.2.3.2. Palindrom-PrifUungooo it 115
8.4.2.3.3. POteNZ-Priufungccoiuiiiiiiie et 115
8.4.3. komplexe Programmier-Aufgaben:uuuiiiiiiiiiiiiiiiiiiis 116
8.5. Umgang mit Dat@ien.........ceeeeeeiiiiiiecr 118
8.5.0. Dateien UNA OFANErcouiiiiiii e e e e e e e e 118
8.5.1. DAt@IEN I€SEN ..o 119
8.5.1.1. Lesen von Text-Dateien...........cooi e 119
8.5.1.1.1. Lesen von CSV- bzw. strukturierten TXT-Dateiencccccccveeeiiiiciiieeneeeeees 119
8.5.1.1.2. Lesen vOn XML-Dati€N........cccueeiiiiiiiiiiiee e e e e e e eeaee e e e e e e ennes 120
8.5.1.1.3. Lesen von JSON-DAtEIENcccceiiiiiiiiiiiee e e e e e e e e e 120
8.5.1.2. Lesen von Binar-Dateiencccoooviiiiiiiiiii i 120
8.5.2. Dateien SChreiben ... 121
8.5.2.1. Schreiben von Text-Dateien ... 121
8.5.2.1.1. Schreiben einer NEUEN Dat€i..........ccuviiiiiiiiiiiiiiiie e 121
8.5.2.1.2. anhangendes Schreiben ... 121
8.5.2.1.3. Schreiben von CSV- bzw. strukturierten TXT-Dateien..........ccccccceecvrviveeeeennnnnnns 121
8.5.2.1.4. Schreiben von XML-Dateien ... 122
8.5.2.1.5. Schreiben von JSON-Datienuuiiiiiiiiiie e 122
8.5.2.2. Schreiben von Binar-Dateien.............ccooe e 122
8.5.3. gepickelte Dateien — Dateien mit gemischten Daten..............ccccccvvviiiiiiiiiinnnnns 122
8.5.3.1. Schreiben von Dateien mit gemischten Datencc. 122
8.5.3.2. Lesen von Dateien mit gemischten Daten.................cccoo, 122
T 1 o T [|- PN 123
8.6.1. "bUIlt-IN"-FUNKLONEN e 125
8.6.2. wichtige interne ModUIE..............uuiiiiiiiiii e 126
8.6.2.1. die Bibliothek math ... 126
ausgewahlte KONSTANTENooi i 126
ausgewahlte FUNKHONENooiii e 126
8.6.2.2. die Bibliothek random 128
8.6.2.3. Verschiedenes zum Modul: statistics ..o, 128
8.6.2.x. Verschiedenes zum Modul: SYSc.ooouiiiiiiiii i 128

BK_SekI+l_Python_prof.docx -4- (c,p) 2015 - 2026 Isp: dre

8.6.2.x. Verschiedenes zum Modul: timMeoon i 129

8.6.2.x. Verschiedenes zum Modul:datetimecccccoiiiiiiie 130
8.6.2.x. Verschiedenes zum MOdUL: OSoiiiiiiiiiiiicie e 133
8.6.2.x. Verschiedenes zum Modul: collectionsc.coovvviiiiiiiiiiiiiciecee e 133
8.6.2.x. Verschiedenes zum Modul: iNSPECtoovviiiiiiiiiiiici e, 134
8.6.2.x. Verschiedenes zu eigenen Modulencccooooiiiiiiiiiiiiiiecceeeee e, 136
8.6.3. externe Module installieren und NUEZEeNoooiiiiii i 137
8.6.3.x. Package-Installer PIP ... 137
8.6.4. Modul / Bibliothek NUMPYooiiiiiiiiiiieiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 138
Importieren der BibliotheK............ooooiiii e 138
Erstellen VON AITAY'Soooiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee ettt 138
Initialisieren €iNes 1€EreN AITAY'Socveiiiiieiiee e 139
Initialisieren eines Array's mit Nullen (NUll-Matrix).........ccceeeeeeiiiiiiiiiieeeee e 139
Initialisieren eines Array's mit Nullen (NUll-Matrix).........cceeeeeeiiiiiiiieieeceee e 139
Initialisieren eines Array's mit Zufalls-Zahlen............ccccooiiiiii e 139
Daten aus Dateien €iNESENoiiiiiiiiice e 139
Zugriff auf Daten-Elemente ... 140
Operationen / Funktionen mit / Zu Array's.......cccccooeiiiiiiiieei e 140
Lineare Algebra (z.B. Losen von Gleichungs-Systemen)...........cccccceeeeiiiiiiiiiiiinnnnnn. 141
8.6.5. Modul / Bibliothek MatPIOtLIbDooviiiiiiiie e 142
8.6.5.1. allgemeines Vorgehen (Workflow)couueiiiiiiiiiiiic e, 144
8.6.5.2. Erstellen und Manipulieren von Diagrammenccccoeevvvviiieeeeiieeeeeennnn. 146
8.6.5.2.1. Entscheidung fUr einen Diagramm-Typcoccciiiiiiiiiiiniee e 146
8.6.5.2.2. Sichern der Diagrammeuiii it 150
8.6.5.2.3. Diagramm gestalten / formatierenccoooeiiiiiiiiini e 151
8.6.5.2.4. weitere Diagramm-TYPEN......c.uuiii ittt 159
8.6.5.3. ein komplexes Diagramm-Projekt — Erdbeben-Anzeige................ccccuveeeee 163
8.6.6. Modul / Bibliothek Network.............ooovviiiiiiiiiiiiieeeeeeee 164
8.6.7. Modul / BIibliotheK re........cooeiiii e 165
8.6.8. Modul / Bibliothek pymoNngoccoouiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 166
8.6.9. Modul / Bibliothek ?? (Word Embedding)ccovvvvieiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 167
8.6.99. Cheat Sheet's fur einige Bibliotheken ... 168
ZU NUMPY Lottt e e et e et et e e e e e s e et e e e e e e e e eeaens 168

ZU MAEPIOTIID .. 168

ZU SCIPY (lineare AlGEDIra)e i 168

AU = o F= 13 ST 168
weitere Cheat SNEet'S 169

= 1 - o] 41| SO 170
8.8. Turtle-Graphik — ein Bild sagt mehr als tausend Wortecccooeiiiiiiiiiiiiinnnnee 171
8.8.1. Turtle auf der Shell...........oooiiiiii e 171
8.8.2. Turtle-Programme und SEQUENZENcooiiiiiiiiiiiiiieeeee e 174
8.8.3. SCRICITEN .o 176
8.8.4. VEIrZWEIQUNGEN ...cceeiiiiiiiiiiiiiiieieee ettt ettt ettt et et e e e e et e e e e e e e eeeeeeeeeees 178
8.8.5. FUNKLIONEN ... e e e e as 180
8.8.6. REKUINSION ... e e e e et e e e e e e e eeann s 183
8.8.7. Eingaben mit der MauS...........couiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 184
8.8.8. Und wie geht €S WEILEI?ooviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 185
Windrad aus ReChtECKEN e 185
Parkettierung (mit Rhomben)........ ... 185
Zeichnen €iNeS STrAUCKNESeiiiiiiie e e e 186
Baum mit FrUChIEN e e e e e 187
AL a1] (=T o IS PPSR PRSI 187
8.8.9. Turteln bis zu Umfallen - rekursive Probleme schrittweise Loésen 188
8.8.10. Verandern des SchildKroten-Zeigerscccoevvveiiiiiiiiii e 201
8.8.11. Animationen mittels turtle-Grafik..............ooovviiiiiiiiiiiiieeee 201
8.8.12. Realisierung des Snake-Spiel's mittels turtle-Grafik..............coovvvvvvviiiiiiinnnnn.n. 204
8.9. Musik mit PYtRON........e e ———————— 212
8.9.1. Musik mit Board-Mittelnooooiiiiiiiiiiiieeee 212

BK_SekI+II_Python_prof.docx -5- (c,p) 2015 - 2026 Isp: dre

8.9.2. MuSiK Mit PYtNON-SONICuuuiiiiiiiiiiiiiiiiiiiiieii e 212

8.10. das Modul "pygame™..........cceeeeiimmmmmmmmiinnrrrrrsrr s ——————— 213
8.10.0. Quellen und INStallationeueueiieiiiiiiii e 213
8.10.1. Ausprobieren / Testen / Grundlagen.............couvuieiiiiiiiiiiiiiiiccee e, 214
8.10.1. SOUNA MUt PYGAMIE......uiiiiiiiiiiiiiitiiiieietieeeiee bbb aeeseseeseeensnnnanes 216

8.10.1.1. Sound-Dateien abspielen............ccooieiiiiiiiiii e 216
8.10.1.2. Sound-Dateien erzeugen / aufnehmenccccccieeii i, 217
8.10.1.3. Musik aus dem SynthesSizer ... 217
8.10.2. Grafik Mit PYGAMEuuiiiiiiiiiiiiiiiiii i 217
8.11. Objekt-orientierte Programmierung.........ccccevmmmimmmmmmmmnnnnnnnssssssssssssssssssssssssssnnnn 219
Design pattern — ENtWUIrfSMUSEETuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee 224
8.11.x. Objekt-orientierte Programmierung mittels Turtle-Grafikcccccceeeeeeil 225
8.11.x. Klassen — selbst erstellen ... 228
Klasse-ObjeKt-BEZIENUNGcoouuiiiiiiii e 232
"ist"-Beziehung (Vererbung).........c.uei ittt 232
"besteht_aus"-Beziehung (Aggregation)coouiviiiiiiie i 232
"hat"-Beziehung (KOMPOSItION)ciiiiiiiiiiiiie e e e 233
B G a1 = T= 4= TU o [P PPPPPPPPPPPRt 233
Ubersicht / Legende zu UML-(Klassen-)Diagrammen:..........cccocveeeeeeeeecneeeeeenes 235
8.11.x.1. Erstellen €iner KIasSeucoiiiiiiiiiiiiieee ettt 236
8.11.X.1.1. der KONSITUKLONo eeaeees 237
8.11.x.2. Attribute einer KIasseu i 238
8.11.x.3. Methoden einer Klasseccooooiiiiiiiiiiii e 239
8.11.x.4. Speicher-Bereinigung ... 241
8.11.X.4.1. der DeStruKLOro 241
8.11.X.6. €ine "AULD"-KIASSEcceeiiiiiiie e 249
8.11.x.6.1. Erweiterung der "Auto"-Klasse um LKW'S..........cccciiiiiiiiniie e 249
8.11.x.7. eine "Personen"-KIaSSecccceeiiiiiiiiiiiiii e eeeeeanees 250
8.11.x.7.1. Erweiterung der "Personen"-Klasse auf eine Familiec..cccoiiiiiiiinnis 251
8.11.x.7. eine "Nachrichten"-KIasse. ... 252
8.11.x.y. eine Klasse zu "DreieCKeN"oooiiiiiiii e 252
8.11.x.y. eine Graphik-Beispiel-KIasseouuiiiiiiiiiiicc e 253
8.11.x.2. Polymophismus und Vererbung ... 258
8.11.x.y. Tips und Tricks zu Objekt-orientierten Programmen / Klassen-
DefiNItIONEN ... 262
8.11.X. OOP-ProgrammbeiSPIIe............uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeaee 263

8.12. GUI-Programme mit TKinNter..........ccovviiiiiiiiiiiiieieesss s 266
8.12.1. ... und der erste Programmierer sprach: "Hallo Welt!"ccccooiiiinnnns 268
8.12.2. Nutzung verschiedener Bedienelemente ... 269

8.12.2.1. Button's - SchaltflAChen ..o, 270
8.12.2.1.1. eine eigene Button-Aktion erstellen..............cccco 271
8.12.2.1.2. Button gestalten / formatieren ... 273
8.12.2.2. Nachrichten-Felder / Text-Felderccooeeieiii 274
8.12.2.3. Eingabe-Felder / Eingabezeilen.............ccccooooi 275
8.12.2.4. Nachrichten-BOXeNcoouiiiiii e 277
8.12.2.5. Checkbutton-Wdget's — Options-Felderccooiiiiiiiiiiiiiiieeee, 279
8.12.2.6. Radiobutton-Widget — Options-Auswahl ..., 280
8.12.2.7. Text-Fenster / Text-Widget ..., 283
8.12.2.8. Frames — Group-Box's — Gruppen-Boxen............ccccoeeeiiiiiiiieeeeeee 285
8.12.2.9. Menls / Menu-Widget..........ooooiiiiiiiii 286

8.12.2.9.2. eine TooIl-Bar €iNDAUENoeiiiiiieiiiieee ettt eeeeeeeneenenes 288

8.12.2.9.3. eine Status-Zeile (Status-Bar) einbauen............cccccceeviiiiiiiie e 289
8.12.2.10. Umgang mit Standard-Dialogen............cc.coooiiiiiiiiiiiiiiicee e, 290
8.12.2.11. Listbox-Widget — Auswahl-Listen — List(en)-Boxenccccoccuvvieenneen. 291
8.12.2.12. Options-Menls — Auswahl-Schaltflachen...................cccciiiii s 292
8.12.2.13. Scale-Widget — Gleiter / Regler............cooiiiiiiiiiiiiiiii e, 294
8.12.2.14. Scrollbar-Widget - Bildlaufleisten ... 295

BK_SekI+l_Python_prof.docx -6- (c,p) 2015 - 2026 Isp: dre

8.12.2.15. WIGEE X .. 295

8.12.x. Tkinter — stark, starker, noch starker Objekt-orientiert....................cccoenninnnnnnn. 296
8.12.x.1. nochmal "Hello Welt!" ... 296
8.12.x. diverse TKINter-BeiSPI€lecccoeeeiiiiiiie e 301
L= g R T 11 1= 3 = PP 302
8.13.x. Python und das http-Protokoll................cooiiiiiiiiiiiiiieeeeeeeeeee 302
VANt 1. 302
RV = 1= 0 USSR 302
8.13.X. einfacher Web-Server........ ..o 304
8.13.x. Python und die eMail-Protokolle (smtp, pop3, imap)........ccccvvvieieeiieeeeeeiiiinn. 305
8.13.x. Zugriffe Uber die REST-API ... 305
813Xy, SOAP .. nnnnnnnnnnnnnnnns 305
B3 XY RE ST e 306
8.14. besondere mathematische Maoglichkeiten in Python...........cccoooiiiiiiiiiiiiiinnee. 307
8.14.1. IMaginAre Zahlen...........ooui i 307
8.14.2. Matrizen (MatriXES)........ooviiiiiiei i e e e e 307
8.14.3. Python numerisch, Python fur Big Data ... 309
I [0] o) 309
Yol o) PP PR UOPPPUPRPRRR 309
11/ E= 11 0] (0] {1 PP PPPPT P 309
[0o F= 1 PP PRPPT PP 310
8.15. Behandlung von Laufzeitfehlern — Exception’sccocoviiiiiiiiinsiscccciiicsniinnns 31
Iy oo XCEPL ... BISE i 311
try ...except ... fiNAllY ..o e 312
try o fiNally 312
raise 312
pass 312
traceback 313
8.15.1. Exception — das Exception-Objekt..........cccoooviiiiiiiiiiiiiieee e 313
8.16. Sortieren — eine Wissenschaft flir sich...........cccooommiiicccriirrrecrr s 315
8.16.X. BUDDIE-SOrt ... 315
ST G S T =Y =i o o T T o 315
8.16.X. QUICK=-SOITooiiiiiieieiie ettt e e e e e e e e e e e e e eeeaeeeeees 316
e T L T == T o (PSR 318
S T G /1T o 1= o o R 318
S T G S 1= =i o o T T o 319
8.16.X. INSEIHION-SOMo 319
S T G R €13 o ¢ TS Yo o 320
8.16.X. COUNLING-SOM ...t e e e 320
8.16.X. RAAIX-SONtooiiiiiiiiiiieieeeeeeee ettt 321
T LG N T ¢ B Yo T PRSPPI 321
ST G G o 1= 0 T o P 321
8.16.X. BUCKEE-SOIt.......coiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 322
T LG s o APPSR 322
8.16.x. Vergleich ausgewahlter Sortier-Algorithmencccooiiiiiieee 323
8.16.x. das Haufigste Element finden — der Moduscccoooiiiiiiiiiiiieee 324
Beispiel-Implementierung ... 325
8.17. Nutzung weiterer (/ besonderer) graphischer Benutzer-Oberflachen.............. 326
8.18. (die hohe Kunst der) Spiele-Programmierungccccvviriimmmnnininnccsssseennne 327
8.19. Python im Geheimen - Kryptologie.........ccccooiiiiiimemmniseerr e 327
8.19.0. GruUNAIAGENceiiiiiiteee et e e e e e e e e aaas 327
8.19.0.1. COIBIUNG eeiieeeeicee et e e e e e e e e e e e e e e 327
8.19.0.2. ChiffrIEIUNG e e e 327
8.19.1. symmetrische VerschlUSSelungcoooviiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee 329
8.19.1.X. CASAR-VErsChIUSSEIUNGccoveieeeieieeeeeeee e 329
8101 X, RO T S e 330

BK_SekI+II_Python_prof.docx -7- (c,p) 2015 - 2026 Isp: dre

8.19.1.x.1. ROT13 mit einer FUNKLONcccuiiiiiee e 333
8.19.1.x.2. Héufigkeits-Ana!_yse .. 335
8.19.1.x. Umsetzung der CASAR-VerschlUsSelung ... 337
8.19.1.x. moderne CASAR-Verschlisselung mit Schllsselcccccovveeeeiiiinnninn, 338
8.19.1.x. POLYBIOS-VerschlUsSelungcccoiiiiiiiiiin 339
8.19.1.x. VIGENERE-VerschlUsSelungcouuuuiiiiiiiiiiiciiee e 340
8.19.1.x.y. Krypto-Analyse der VIGENERE-Verschlisselung...........c.cocueevereereeeeseeseenn. 342
8.19.1.x. bifid-VerschlUsSElUNG...........uuoiiiiiiiicee e 343
8.19.1.X. ADFGX-VerschlUsSSelungcooooiiiiiiiiiieeeeeeee e 346
8.19.1.x. trifid-VerschllUsSElUNg.............coiiiiiiiiice e, 348
8.19.1.x. Four-Square-VerschllsSeluNngcceiiiiiiiiiiiiiiiie e 352
8.19.2. asymmetrische VerschlUSSEIUNGuuuuuiiiiiiiiiiiiiiiiiiiiiiee 354
8.20. Code verbessern und optimieren.........ccccuveeemmmmmnsssssssssssssssssssssssssssssssssssssnn 355
8.21. Test-gestiitztes Programmieren mit Python...........cccceviiiiiiiiiiniisinscnnssnnsssennnnnnn 356
8.22. Konsolen-Dialoge und Dokumentation mit Jupyter-Notebook 358
8.22.1. Jupyter-Notebook unter Anacondaooouiiiiiiiiiii 358
8.22.2. Jupyter-Erweiterung in microsoft Visual Studio Codecccceevvvviiiiiiiiinnnen.n. 358
8.23. online programmieren eines Spiel's mit Replitccooveecciiiiicccccneeeens 359
8.23.1. ein neues Projekt (repl) anlegenuueuiuiiiiiiiiiiiiiiiiii e 359
8.23.2. Erstellen eines Fenster's und Initialisierung der pygame-Umgebung.............. 359
8.23.3. Erstellen der Spiel-Schleife (Aktualisierungs-Schleife)............ccoovviiiieennnin. 360
8.23.4. Hintergrund und Spielfigur @iNbauenuuuuiiiiiiiiiiiiiiiiiiees 360
8.23.5. SpPIel-FigUr DEWEGEN......uuiiiiiiiiiiiiiiiiiiiiiiiieii bbb 361
8.23.6. Verbessern / Erweitern der Bewegung + Kollisionen behandelin..................... 362
8.23.7. mehrere Spiel-FiQUIreNcooi i 363
8.23.8. Spielstand (Score) und Spielendeuuuuiiiiiiiiiiiiiiiiii s 365
9. Python, informatisch — Datenstrukturen, Klassen, Automaten, 368
L2 it T (= | = 370
9.2. Warteschlangen ... s 375
L2 TG TR = - 11 1 o - P 378
L2 I B] 3 -1 o 379
9.5. endliche AutomaAaten ... 380
9.6. Keller-Automaten ... s s s s s s e s e s s e s s s r e s e e nmn s nees 382
9.7. TURING-AULOMALEN.......cceieiiiieiieieee s e s e s s s s s s s s s s s s s s snnnnnnns 382

BK_SekI+l_Python_prof.docx -8- (c,p) 2015 - 2026 Isp: dre

/. Problem-Losen mit Python

7.0. Aufgaben versus Probleme

besser wahrscheinlich Aufgaben-Lésen

Problem-Lésen ist eine Stufe komplizierter und geht im Allgemeinen davon aus, das es noch
keine Lésung / keinen Algorithmus zur Bearbeitung gibt bzw. dieser nicht sofort offensichtlich
ist

meist Umsetzung von Aufgaben-Stellungen / Pflichten-Hefte in Software gemeint

in der Software-Entwicklung wird aber allgemein von einer Problem-Umsetzung gesprochen
das Erledigen von Aufgaben hat so etwas Profanes / Minderanspruchvolles

das Schreiben von Routine-Funktionen ist nicht die Herausforderung, die Software-
Entwickler mit dem Image ihres Berufsstandes verbinden

sie brauchen echte Herausforderungen, welche an die Grenzen der Technik oder der Pro-
grammiersprache herankommen

es ist quasi ein Kampf Mann (oder Frau) gegen Maschine, in dem man auf sich allein gestellt
ist und unbedingt zum groften Helden werden muss

problematisch ist, dass weder die Chef's der Entwicklungs-Abteilungen noch die Nutzer das
honorieren, sie kdnnen die Komplexitat der Programmierung einfach nicht einschatzen
selbst, die im Team mitarbeitenden Programmierer bekommen von der Heldentat nichts mit,
weil sie ihren eigenen einsamen Kampf fihren

also was macht der unbemerkte Held - er programmiert so, dass kein anderer sein Pro-
gramm versteht, so ist ihm vielleicht ein verspateter Ruhm in Aussicht gestellt

ein Mittel dagegen - mit vielen weiteren Vorteilen - ist die Paar-Programmierung (Pair pro-
gramming, Tandem-Programmierung)

zwei Programmierer arbeiten gemeinsam und gleichzeitig an einem Problem

der eine tippt und der andere kontrolliert gleich mit, der eine ist also aktiv, der andere eher
passiv

nach einer aktiven Zeit wechseln die Paar-Mitglieder ihre Rolle

Kombinationen aus Frauen und Mannern haben sich i.A. am Besten bewahrt, sie gehen un-
terschiedlich an Probleme heran, hier erganzen sich diese Vorgehensweisen

da bleibt die Aufmerksambheit langer enthalten, weil sich die Tatigkeiten abwechseln

grofe Aufmerksamkeit wird auch auf die Verstandlichkeit des Code's gelegt

die Paare werden regelmaflig neu zusammengestellt, damit sich keine eingeschworenen
Team's bilden

Vorteile der Paar-Programmierung:

weniger Programm-Fehler

gegenseitiges Lernen und Lehren

mehr Freude an der Arbeit (auch bei Routine-Programmier-Aufgaben)
kleinere / effektivere Programme

héhere Disziplin bezlglich Absprachen, Team-Regeln, ...

besserer Code

Arbeitsablaufe werden belastbarer

geringeres Risiko, das Know how eines Team's zu verlieren, wenn Mitarbeiter Projek-
te / Firmen / ... wechseln

e Paare werden seltener in der Arbeit unterbrochen

BK_SekI+II_Python_prof.docx -9- (c,p) 2015 - 2026 Isp: dre

Paar-Programmierung kann auch verteilt / distanziert (z.B. Uber das Internet) erfolgen

Eine Programmierer-Regel sagt, dass das Finden von Fehlern erst in der Praxis oder bei
ersten Tests ungefahr 10x so teuer / aufwandig ist, wie das sofortige Erkennen in der Ent-
wicklungs-Phase

Aber wo es soviele Vorteile gibt, sind die Schattenseiten nicht weit.

Nachteile / Probleme der Paar-Programmierung:

Paare mussen sich immer wieder aufeinander einstellen, das kostet Arbeitszeit
Leistungs-Niveau beider Programmierer muss ahnlich sein

effektiv verlangsamt sich die Programmierung im Vergleich zur parallelen Arbeit bei-
der Programmierer an jeweils anderen Aufgaben

Urheber-Rechte

Haftung bei Problemen

Vielfach wird natirlich mit der Entwicklung neuartiger Programm auch informatisches Neu-
land betreten.

BK_SekI+l_Python_prof.docx -10 - (c,p) 2015 - 2026 Isp: dre

7.0.1. Programm-Entwicklungs-Strategien

Wie fangt man ein komplexeres Projekt sinnig an? Es einfach von vorne bis hinten in einem
Ritt zu schreiben, birgt viele Risiken. Was passiert, wenn es vielleicht gar nicht in die Spra-
che umsetzbar ist? Oder vielleicht mochte der Auftraggeber auch mal Zwischenergebnisse
sehen?

In der Praxis haben sich Grund-Techniken fur die Pro-

gramm-Entwicklung herauskristallisiert. Bei der einen | (Gesamt-) Programm |
Variante — dem Top-down-Entwurf — beginnt man mit
einem sehr einfachen Programm-Rahmen. Im einfachs-
ten Fall ist es einfach nur der Aufruf eines leeren Haupt-

programms. Eingabe

Nach und nach erganzt man nun einzelne Komponen- Verarbeitung(sschritt)

ten. Z.B. kdnnte man das leere Hauptprogramm in die -

Teile Eingabe, Verarbeitung und Ausgabe strukturieren. Anagabe >

Im nachsten Schritt erweitert, erganzt oder verbessert
man die einzelnen Komponenten bis man schlie3lich ein
fertiges Produkt erzielt.

. Eingabe ok?
Man spricht hier von Deduktion. Die Entwicklung erfolgt -
quasi von oben nach unten, vom Allgemeinen zum Spe- | _|>> _ Eingabe
ziellen. Verarbeitung(sschritt)
Der. grolie V_ortgil diese_r V_ariante ist, dass man praktisch Ausgabe [>
zu jeder Zeit ein funktionierendes Programm hat, dass
nach und nach immer besser / Leistungs-fahiger / Feh-
ler-freier wird.
Hauptprogramm Hauptprogramm Hauptprogramm
Modul Modul
[Funktion [
[Funktion [
- [Funktion - [Funktion |
Modul Modul
| Funktion |
[Funktion |
| Funktion]
Erstellen eines Rah- Erweitern um Modul- Erganzen der
menprogramm's Grundgeruste Arbeitsfunktionen
Nachteilig wirkt sich hier aus, dass der komplizierteste Teil — die spezielle Daten-

verarbeitung — irgendwie fast immer zum Schluss Ubrig bleibt. Wenn jetzt was nicht 1auft,
dann hat Huston ein wirkliches Problem. Die méglichen Konsequenzen sind halbfertige Pro-
gramme, die erst beim Kunden reifen (sogenannte Bananen-Software) oder Verzégerungen beim
Zeitablauf.

Sachlich steckt hinter diesem Programmier-Prinzip die Dekomposition. Sie beinhaltet die
Zerlegung / Auflésung eines Ganzen in immer kleiner werdende Teile / Segmente. In der
Programmierung sind das dann Module, Unterprogramme, Prozeduren oder Funktionen.

BK_SekI+II_Python_prof.docx -11 - (c,p) 2015 - 2026 Isp: dre

Naturlich kann man auch zuerst die spezielle(n) Funkti-

on(en) entwickeln und testen. Schrittweise, werden dann | Ausgabe |>|
zusatzliche Komponenten hinzugefligt, bis schliellich
ein fertiges Programm entstanden ist. Diese Technik
nennt man Bottom-up.

Es handelt sich hier um eine Induktion, also einer Ent-
wicklung von unten nach oben, vom Speziellen zum All-
gemeinen. Ausgabe >
Vorteilhaft ist die friihzeitige Fertigstellung der kritischen

Programmteile.

Als Nachteil kann sich dabei herausstellen, dass man zwar super Leistungs-fahige Funktio-
nen entwickelt hat, denen aber ein verbindendes Gro3es-Ganzes fehlt.

Fehlen dann bestimmte Forderungen aus dem Pflichten-
Heft, dann sind vielleicht auch sehr aufwandige Nachko- Eingabe
rekturen an den Kern-Funktionen notwendig. Das bedeu-
tet dann erneute Tests, Anpassungen usw. usf. Auch bei
dieser Projekt-Losung kann es zu erheblichen Verzoge- Ausgabe |>
rungen der Fertigstellung kommen.

Die Bottom-up-Technik ist praktisch eine Aggregation. Segmente / Teile / Funktionen / ...
werden zu einem GroRen-Ganzen vereint.

(tempordre) Vorgaben
Verarbeitung(sschritt)

Verarbeitung(sschritt)

Hauptprogramm
Modul Modul
| Funktion | [Funktion] [Funktion]
[Funktion | [Funktion | [Funktion]
[Funktion | > . [Funktion |
Modul Modul
| Funktion \ [Funktion | [Funktion |
'Funktion | [Funktion | [Funktion |
' Funktion | [Funktion | Funktion |
Erstellen der Basis- Zusammenfassen Zusammenstellen des
Funktionen zu Modulen Hauptprogramm's

Heute werden haufig Top-down- und Bottom-up-Methoden kombiniert. In vielen Software-
Schmieden gibt es fertige Sammlungen von Funktionen, die in eine Top-down-Entwicklung
nach und nach integriert werden.

Man verlasst sich auf die geprifte Leistung vorgefertigter Funktionen und hat zu jeder Zeit
ein mehr oder weniger gut funktionierendes Programm.

Hauptprogramm Hauptprogramm Hauptprogramm
Modul Modul Modul
| Funktion |
| Funktion ‘
| Funktion - | Funktion | - | Funktion |
Modul Modul
[Funktion | Funktion |
[Funktion | [Funktion |
[Funktion | [Funktion [Funktion [
Prototyp mit ersten Erweitern und Erganzen fehlender
Funktionen Modularisieren Funktionen

Eine weitere Strategie, die in der letzten Zeit viel von sich reden lassen hat, ist "Design
Thinking". Darunter versteht man Methoden, Verfahren und Fahigkeiten, sich in Aufgaben-

BK_SekI+lI_Python_prof.docx -12 - (c,p) 2015 - 2026 Isp: dre

stellungen und / oder Probleme hineinzufiihlen, sie kreativ zu bedenken, Ildeen zu kommuni-
zieren sowie produktiv und kollaborativ zusammenzuarbeiten. Vieles wird vorrangig aus der
Sicht des Nutzers / Endverbrauchers betrachtet und dieser steht auch im Mittelpunkt. Letzt-
endlich muss dieser mit dem Produkt leben und arbeiten.

In die Entwicklung eines Produkt's oder der Losung eines Problem's sollen von Anfang an
moglichst alle beteiligte Personen-Gruppen einbezogen werden. Team-working, selbstkriti-
sches und kollaboratives Arbeiten sind Kern des Arbeitens. Fehler durfen gemacht werden,
sollen aber moglichst frihzeitig erkannt werden, ohne nach "Schuldigen" zu suchen. Es sol-
len schnellsens Korrekturen, Verbesserungen und Erweiterungen umgesetzt werden.

Phasen des Design Thinking

¢ Phase 1: Situations-Analyse Wie ist der aktuelle Stand? Welche Situation ist
unbefriedigend? Welches Problem gibt es?

o Phase 2: Perspektiven entwickeln Was ware das Tollste / Utopischte / ..., was
man sich als Lésung des Problem's oder der
Situation denken kénnte?
Sei kreativ! (Be creative!)
Was gefallt an anderen Lésungen nicht?

¢ l|deen generieren Was kann mit den gegebenen Mitteln realisert
werden? Was soll unbedingt realisiert werden?

o Konzept-Entwicklung Entwickeln erster Prototypen, die einzelne Teil-
Probleme losen, die einen Eindruck von der
Lésung geben bzw. die einen ersten Losungs-
Ansatz umsetzen.

o Testen des Konzept's Ausprobieren der Teil-Losungen sowie des
fertigen Produkt's in der Real-Umgebung.
Solange die Lésung unbefriedigend oder noch
unvollstandig oder erweiterbar ist, wird wieder
mit Phase 1 gestartet.

Aufoaben:

1. Vergleichen Sie die Startegien "Top-down’, "Botfom-up" sowie die gemisch-
le in einer geeignelen Tabelle!
2.

BK_SekI+II_Python_prof.docx -13- (c,p) 2015 - 2026 Isp: dre

7.0.2. Strategien zur Losung von (echten) Problemen

Zerlegen des Problems in kleinere Aufgaben / Probleme
Analogien zu anderen Problemen suchen (und dann deren Lésungen als Grundlage benut-

zen)

Versuch und Irrtum (trial and error)

Lern

Hilfs

en durch Einsicht

mittel / Techniken:
Brainstorming

Mind Mapping
Concept Mapping
Kopfstand-Technik

Umkehr-Technik
Flip-Flop-Technik

Negativ-Konferenz

Provokations-Technik

Superposition
kollektive Notizzettel

(collective Notebook,
CNB)

Pinnwand-Moderation
ahnlich: Clustern

EDISON-Prinzip

progressive Abstraktion

semantische Intuition

1. Aufgabenstellung umdrehen

2. Loésung fir diese Aufgabe suchen
3. Losung auf den Kopf stellen

4. Lésung anpassen / optimieren

Provokation z.B. durch Verallgemeinerung, Pauschalisie-
rung, ... als Inspirations-Quelle / zum Verlassen der ein-
getretenen Denkpfade

Uber einen bestimmten Zeitraum sammeln die Team-
Mitglieder ihre Gedanken, Assoziationen, Geistesblitze

und Ideen auf Notizzetteln zu notieren > 3 Phasen:

1. Vorbereitung (Problemstellung formulieren; Teilnehmer auswahlen;
Notizblocke bereitstellen)

2. Durchfiihrung (Notizen machen (spontan und taglich); personl.
Zusammenfassung erstellen)

3. Auswertung (Zusammenfassungen abgleichen; Notizen durchge-
hen; Basis-Vorschlage fir Losung heraussuchen / ableiten; Konzept-
Erstellung)

Sammeln von Ideen- wie beim Brainstorming — allerdings auf Kartchen
| Post-ist; wiederholte Gruppierung der Kartchen und Gruppen-
Benennung; Zusammenfassung des Ergebnisses in moglichst neutra-
ler Form

1. Erfolgs-Chancen erkennen

2. eingetretene Pfade verlassen
3. Inspirationen suchen

4. Spannung erzeugen

5.1deen und Erkenntnisse ordnen
6. Nutzen herausziehen

Finden von Zusammenhangen zwischen Problem und
erwarteter Losung; Festlegen von Malitnahmen(-Ebenen)
die am Erfolg-versprechendsten erscheinen

BK_Se

kl+11_Python_prof.docx

-14 -

(c,p) 2015 - 2026 Isp: dre

fur klassische (sofort I6sbare) Aufgaben ("einfache Probleme") bietet sich die folgende Vor-
gehensweise an:

1. Erfassen des IST-Zustandes (IST-Ananlyse, Ist-Aufnahme, ...)

2. Erkennen / Aufzeigen des Unterschiedes / Widerspruchs zum SOLL-Zustand

3. Suchen nach geeigneten Losungs-Verfahren / Algorithmen

3. Anwendung eines Lésungs-Verfahrens (/ Algorithmus)

4. Priifen des erreichten Standes bis IST und SOLL gar nicht mehr nur noch im akzep-
tablen MaR abweichen (ansonsten quasi Zurucksprung zu 1.)

BK_SekI+II_Python_prof.docx -15- (c,p) 2015 - 2026 Isp: dre

Beispiel fiir Top-down-Strategie: Erfragung einer Karte aus dem franzésischen Blatt

1. Prototyp — Test des Verfahrens

Erfragen einer Karte aus dem franzdsischen Skat-Blatt (1. Versuch: nur Farbe bestimmen):

eingabe <- "Ist es rote Karte?"

?:ist eingabe ="j|"?
JA NEIN

Farbe = rot I Farbe = schwarz
Karte ist: Farbe [:>

Die Umsetzung des Struktogramm wird ganz schematisch erledigt. Fir den ersten Versuchs-
Prototypen verzichten wir auf fast jeden Schnickschnack. Wir wollen lediglich sehen, ob es
funktioniert.

eingabe = input("Ist es eine rote Karte? (j)") Eingabe-Block
if eingabe == "j": Verzweigungs-Block
farbe = "rot" Ja-Zweig
alse@s
farbe = "schwarz" Nein-Zweig
print ("Die Karte ist: ", farbe) Ausgabe-Block
>>>

Neben der reinen Funktionalitat, sollte man auch gleich die Handhabbarkeit prifen. Wie kann
man die Eingaben flr den Nutzer am Einfachsten machen, was macht ein Nutzer intuitiv?
Nichts ist nerviger, als eine umstandliche Bedienung. Wird der Nutzer z.B. auf deutsch ge-
fragt und muss er dann aber mit "y" fir "ja" antworten, da geht das spatestens bei der zwei-
ten Fragen machtig auf den Docht. Grundsatzlich muss man sich da von seiner egomani-
schen, selbstbezogenen Zufriedenheit trennen. Es gibt fir den Programmierer nur einen
"Gott" / eine Werte-Instanz und der sitzt vor dem Computer und versucht das Programm zu
bedienen.

Fir unsere Ja-Nein-Fragen werden wir nur die Abfrage auf "j" programmieren, das ist ver-
standlich und auch gut zu programmieren. Um vielleicht noch etwas flexibler zu sein, fragen
wir auch den GroR-Buchstaben ab. Die notwendige Erweioterung des Programms ist leicht
gemacht und wenn wir dann ein Grundgerust flir das Fragestellen und —auswerten haben,
dann kénnen wir die restlichen "paar" Fragen mit copy-and-paste dazuprogrammieren.

eingabe = input ("Ist es eine rote Karte? (j)")

if eingabe == "j" or eingabe == "J": Erweiterung um "J"
farbe = "rot"

alses
farbe = "schwarz"

print ("Die Karte ist: ", farbe)

BK_SekI+lI_Python_prof.docx -16 - (c,p) 2015 - 2026 Isp: dre

2. Schritt — Austausch eines allgemeinen Blockes gegen differenzierte Blécke

Erfragen einer Karte aus dem franzésischen Skat-Blatt (1. Versuch: nur Farbe bestimmen):
eingabe <- "Ist es rote Karte?"

?: ist eingabe = "j"? /——
JA NEIN

Farbe = rot | Farbe = schwarz
Karte ist: Farbe |>

Erfragen einer Karte aus dem franzésischen Skat-Blatt (1. Teil: Farbe bestimmen; Teilldsung rote Karte):
eingabe <- "Ist es rote Karte?"
7. ist eingabe = "j"?

JA NEIN
eingabe <- "Ist es Herz?"

?: Ist eingabe = "|"?

hier folgt spéter Erfragung des schwarzen Symbols

JA NEIN
Farbe = Herz | Farbe = Karo
Karte ist: Farbe

>>>

BK_SekI+II_Python_prof.docx -17 - (c,p) 2015 - 2026 Isp: dre

3. Schritt — Erweiterung / Vervollstandigung

Erfragen einer Karte aus dem franzdsischen Skat-Blatt (1. Teil: Farbe bestimmen):
eingabe <- "Ist es rote Karte?"

?: ist eingabe ="j"? //
JA NEIN

eingabe <- "Ist es Herz?"
?: ist eingabe ="j"?

Erfragung des schwarzen Symbols
JA NEIN
Farbe = Herz Farbe = Karo
hier folgt spéter Erfragung des Wertes
Karte ist: Farbe |>

Erfragen einer Karte aus dem franzdsischen Skat-Blatt (1. Teil: Farbe bestimmen):

eingabe <- "Ist es rote Karte?"
?: ist eingabe ="j"? //

JA NEIN

eingabe <-"Ist es Herz?" eingabe <- "Ist Kreuz?"

?: ist eingabe ="j"? ?: ist eingabe = "|"?
JA NEIN JA NEIN
Farbe = Herz Farbe = Karo Farbe = Kreuz Farbe = Pik
hier folgt spéter Erfragung des Werltes
Karte ist: Farbe |>
>>>

BK_SekI+lI_Python_prof.docx -18 - (c,p) 2015 - 2026 Isp: dre

4. Schritt — ndchster Abschnitt

Erfragen einer Karte aus dem franzésischen Skat-Blatt (1. Teil: Farbe bestimmen):

eingabe <- "Ist es rote Karte?"
= Eingabe = "j"? //

JA — NEIN

eingabe <- "Ist es Herz?" eingabe <- "Ist Kreuz?"

?: ist eingabe = "|"? ?: ist eingabe = "|"?
| JA NEIN JA NEIN
Farbe = Herz I Farbe = Karo Farbe = Kreuz Farbe = Pik
Erfragung des Wertes

Karte ist: Farbe [>

Erfragen einer Karte aus dem franzésischen Skat-Blatt:

eingabe <- "Ist es rote Karte?"
7: ist eingabe = "T'?

l/;m

JA
eingabe <- "Ist es Herz?" eingabe <- "Ist Kreuz?"
7: st eingabe = |7 ?: ist eingabe = "j"?
JA NEIN JA NEIN
Farbe = Herz Farbe = Karo Farbe = Kreuz | Farbe = Pik

eingabe <- "Ist es ein Bild-Wert?"

7?: ist eingabe = ""? //—
JA NEIN

eingabe <- "Ist Bild ein Mann?" eingabe <- "Ist Wert kleiner gleich 87"
7: ist eingabe = T? ?: ist eingabe ="j"?
JA NEIN JA NEIN
eingabe <-"Ist es Kdnig?" ingabe<-"Ist es Dame?" eingabe <-"Ist Wert eine 77" ingabe<-"Ist Wert eine 107"

?: ist eingabe ="|"7 7. ist eingabe = "j"? ?: Ist eingabe = "JT"

?: ist eingabe = "j"? 7
NEIN{JA NEIN|

JA NEIN].JA NEIN|JA

Wert = Kénig [Wert=Bube [Wert=Dame [Wert=Ass |wert=7 Wert = 8 Wert=10 |Wert=9

Karte ist: Farbe Wert D
>>>

BK_SekI+II_Python_prof.docx -19 - (c,p) 2015 - 2026 Isp: dre

letzter. Schritt — Verschénerung / Verfeinerung / Benutzerfiihrung optimieren

>>>

kleine Programm-Beispiele

BK_Sekl+Il_Python_prof.docx

-20 -

(c,p) 2015 - 2026 Isp: dre

7.0.3,14 Python am Pi-Day

Am 14. Marz ist der Pi-Day. An diesem Tag beschaftigen sich Mathematiker und Schuler mit
der wohl berGhmtesten Konstante der Kreiszahl n. Das Datum ergibt sich aus der amerikani-
schen Datum-Notation "3/14". Die ganz hart Gesottenen feiern exakt um 01:59:26 Uhr, um Pi
bis auf die 7. Nachkommastelle zu ehren.

Auch der 22. Juli wird gelegentlich als Pi-Annaherungstag zelebriert. Hier ergibt sich das
Datum aus dem Bruch 22/7, der rund 3,14 — also = ergibt.

Hier seien einige Programme vorgestellt, die Pi auf irgendeine Variante berechnen oder er-
mitteln.

Vielleicht geht der eine oder andere Quelltext Gber das gegenwartige verstandnis von Python
hinaus, das soll aber bei einem so spannenden Thema nicht das Abbruch-Kriterium sein.

Pi-Berechnung durch Monte Carlo Simulation

pi-monte carlo.py
pi-Bestimmung mit der Methode von Monte Carlo
from random import random
print "Monte Carlo Methode zur"
print "N&herung fir pi:"
g = input ("Gesamtzahl der Tropfen: ")
v =20
x=0; y=0 # Koordinaten des Punktes P
for i in range(l,g+l):

x = random ()

y = random ()

if x*x+y*y<= 1:

v=v+l1

pi naeh = 4.0*v/g
print g,"Tropfen, davon",v,"Tropfen im Viertelkreis,"
print "pi etwa",pi naeh
Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

Pi-Berechnung liber Verhaltnis der Flachen von duBeren und inneren Vieleck

Interations-Term

_ Sn

Sp41 T T/
2+ ,4—5%

pi-berechn2.py
pi-Berechnung mit reguldren 2n-Ecken
from math import sqrt, pi
n =6 # Start mit reguldrem Sechseck
s = 1 # Seitenlange des reg. Sechsecks
print "Schrittweise Naherung von pi mit Hilfe eines 2n-Ecks"
for i in range(1,21):

pi naeherung = 0.5*n*s

print pi naeherung

s = s/sqrt(2+sqgrt (4-s*s))

n = 2*n # doppelte Eckenzahl
print "Gute Iteration!"
print "pi =",pi

Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

BK_SekI+II_Python_prof.docx -21- (c,p) 2015 - 2026 Isp: dre

Exkurs: besondere Zahlen — Stoff fur viele Python-Programme

(einfache) besondere Zahlen

Dreieckszahlen: - Beispiele / Folge:
Dreieckszahlen lassen sich Uber die Formel x; = % berechnen (mit i dem 1,3,6,10,15, ...
Rang der Zahl).

Die 10 ist nach PYTHAGORAS eine heilige Zahl, weil sie sich aus der Summe

der ersten i Zahlen (also: 1+2+3+4) ergibt. AuBerdem Iasst sich daraus ein vollkom-
men gleichseitiges Dreieck legen.

EULERsche Zahl: Wert:
n []]
Die EULERsche Zahl e berechnet sich als Grenzwert e = lim (1+ %) bzw. 2,718281'828'....

als unendliche Folge e =$+ %+ %+ %+ bzw. in der Summen-
Schreibweise e = Z;i”:o%
Die EULERsche Zahl ist eine der bedeutenden Konstanten in der Naturwis-
senschaft und Mathematik.

goldener Schnitt: Beispiele:
irrationale Zahl
_ 1+45

2
Der Quotient aus zwei aufeinanderfolgenden FIBONACCHI-Zahlen nahert sich
immer mehr dem goldenen Schnitt an.

Kreiszahl x: Wert:

irrationale Zahl 3,141'592'654'...
stellt Verhaltnis von Umfang und Durchmesser eines Kreises dar

Verbindung zum goldenen Schnitt 6/5 2

narzifRtische Zahlen: Beispiele:

Eine narziltische Zahl mit n Stellen ist gleich gro 153 =13 + 53 + 33

der Summe der n.-Potenzen ihrer Ziffern. 54748 = 55+ 45+ 75 + 45 + 85
Vampir-Zahlen: Beispiele:
Vampir-Zahlen haben eine gerade Anzahl von Stellen und lassen sich aus 1260 = 21 * 60
einer beliebigen Multiplikation von Zahlen, die halb soviele Stellen besitzen, 1530 = 30 * 51
wie die Vampir-Zahl selbst hat, keine fuhrende Null beinhalten und insgesamt 2187 = 27 * 81

alle Ziffern der Vampir-Zahl enthalten.

Urantia-Zahlen: Beispiele:
Zahl des heiligen AUGUSTINUS: Beispiele:

Die Zahl des heiligen AUGUSTINUS ist die erste narRistische 153 =11+ 2! + 3! + 4! + 5!
Zahl. Sie lasst sich auch aus der Summe der Fakultaten von 1 bis 153 =13 + 53 + 33

5 berechnen.

2?22 Beispiele:

uiber Teilersummen definierte besondere Zahlen

Teilersumme: Beispiele:

BK_Sekl+II_Python_prof.docx - 22 - (c,p) 2015 - 2026 Isp: dre

die Teiler-Summe o (einer Zahl) ist die Summe aller ihrer Teiler begin-
nend bei 1 und abschlieRend mit der Zahl selbst

echte Teilersumme:
die echte Teiler-Summe &* (einer Zahl) ist die Summe aller ihrer Teiler
beginnend bei 1 und dabei die Zahl selbst ausschliellend

defiziente Zahl:

eine Zahl heit dedizient (oder teiler-arm), wenn die die echte Teiler-
summe kleiner als die Zahl selbst ist

c*(n)<n

abundante Zahl:

eine Zahl heiRt dedizient (oder teiler-reich), wenn die die echte Teiler-
summe groRer als die Zahl selbst ist

c*(n)>n

vollkommene Zahl:

eine Zahl heifl3t vollkommen, wenn die die echte Teilersumme die Zahl
selbst ist

c*(n)=n

befreundete Zahlen:

Befreundete Zahlen sind zwei unterschiedliche natlirliche Zahlen, bei deren

die echte Teilersumme genau der anderen Zahl entspricht.

sonstige (ganz) besondere Zahlen

o(12)
= 1+2+3+4+6+12
=28

Beispiele:
c*(12)

= 1+2+3+4+6
=16

Beispiele:
c*(10)
=1+2+5=8
8<10

Beispiele:

c*(12)

= 1+2+3+4+6 = 16
16> 6

Beispiele:
c*(6)
=1+2+3 =6
6=6

Beispiele:
1184 und 1210
5020 und 5564

2?72 Beispiele:
222 Beispiele:
seltene oder ungewohnliche Zahlen und Zahlensysteme (in der Schule)

komplexe Zahlen: Beispiele:
- in Python intern definiert, dadurch sofort nutzbar

2?2 Beispiele:
Q:

BK_Sekl+ll_Python_prof.docx - 23 -

(c,p) 2015 - 2026 Isp: dre

8. Python fur Fortgeschrittene

Nachdem wir die grundlegenden Elemente von Python besprochen haben, gehen wir jetzt
mehr in die Detail's. Naturlich gibt es keine echte Grenze zwischen Grundlagen und fortge-
schrittener Programmierung. Ab nun schauen wir auch intensiver hinter die Oberflache und
kiimmern uns um spezielle Eigenschaften und Moéglichkeiten.

Auf den folgende Seiten verzichte ich jetzt auch dann und wann mal auf die farbige Darstel-
lung der Quell-Texte. Wer an dieser Stelle einsteigt, sollte genug Grundkenntnisse besitzen,
um mit Python umzugehen. Naturlich kdnnen einzelne Quelltexte und Programme auch im
Blindflug benutzt und ausprobiert werden. Ob das Sinn macht, muss jeder fir sich entschei-
den. Aber ein Blindflug wird auch nicht an der Farbigkeit des Quelltextes im Editor scheitern.

Wegen der besonderen Bedeutung von Texten besprechen wir diese hier in einem geson-
derten Abschnitt. Im Programmier-Jargon heif3en sie Strings (engl. Faden) oder Zeichenket-
ten.

Einige Programmiersprachen betrachten Zeichenketten auch als eigenstandigen / erweiter-
ten Datentyp. Python trennt hier nicht so streng.

8.1. Strings — Zeichenketten

Wie wir schon vilefach gesehen haben, sind Zahlen fur sich nicht sehr informativ. Wir brau-
chen immer Beschreibungen, um die Zahlen in sinnvolle Zusammenhange zu bringen.
Schon die Ausgabe des Namens einer (physikalischen) Grofe oder die Nennung einer Ein-
heit sind mit Text-Symbolen verbunden. Erst so macht z.B. eine "21" Sinn. Wenn denn nam-
lich noch "Temperatur" und die Einheit "°C" dazu angegeben wird, dann verstehen wir die 21
auch im Speziellen.

Heute ist die Verarbeitung von Zeichenketten eine der haufigsten Tatigkeiten / Aufgaben fur
Programmierer. Viele Daten liegen zuerst einmal als Zeichenketten vor. Bevor man sie fir
Berechnungen usw. nutzen kann, mussen sie ersteinmal aufgearbeitet werden (= 8.2. Da-
tentypen und Typumwandlungen).

8.1.1. einzelne Symbole / Zeichen / Charaktere

wir sprechen auch von Charakteren — abgekurzt in vielen Programmiersprachen mit char
oder chr

gemeint ist die Reprasentation von Zeichen im ASCII-Zeichensatz oder in den modernen
Versionen der Programmiersprachen im Unicode-Zeichensatz

Symbole muissen im Programm-Text entweder in einfache Hockkommata oder Anfuhrungs-
zeichen gesetzt werden
immer nur ein giltiges Zeichen

Beispiele:
lal
l1l

I#I

BK_SekI+l_Python_prof.docx -24 - (c,p) 2015 - 2026 Isp: dre

Speicherung in Variablen méglich
Umwandlungen von Symbolen und ASCII-Code

ord()
gibt fur ein Zeichen / Charakter den ASCII-Code zurlick

chr()
wandelt einen ASCII-Code (Ganzzahl!) in ein Symbol / Charakter um

8.1.2. Sequenzen von Zeichen - Zeichenketten / Strings

erste allgemeine und unterschwellige Besprechung schon weiter vorne (u.a. > 6.1. Ausga-
ben und 6.4.2.2. Sammlungs-bedingte Schleifen)
hier noch einmal mit zusammenfassendem Charakter

im Programmierer-Jargon Strings genannt
ist ein nicht-veranderbarer Datentyp (immutable)

Zeichenkette ist eine Symbol-Folge

Im Programm-Text / Listen usw. mussen Strings / Texte entweder in einfache Hockkommata
oder Anflhrungszeichen gesetzt werden

Empfehlung (aber kein Muss!) einzelne Symbole in einfache Hochkommata und Strings in
Anfuhrungszeichen

Zeichenketten sind unveranderlich (immutable), einmal definiert sind sie nur durch direktes
oder indirektes Kopieren / Manipulieren zu verandern
eine Zeichenanderung Uber zeichenkette[3] ='s' ist nicht modglich

Symbole / Zeichenketten lassen sich durch Addition (+) verketten / konkatenieren
ein Symbol / eine Zeichenkette 1aRt sich durch Multiplikation (*) wiederholend verketten /
konkatenieren

Vergleich — wie in Python Ublich — Uber == bzw. I=
fur die andereren Vergleiche gelten die lexikalischen Ordnungen
ein langerer String ist immer groRer

es |alt sich der in-Operator verwenden
also prifen, ob ein Symbol / Teilstring in einem anderen String enthalten ist

in-Statement
prift, ob etwas (Text) in einer Zeichenkette enthalten ist
z.B.

BK_SekI+II_Python_prof.docx -25- (c,p) 2015 - 2026 Isp: dre

enthalten = "aaa" in text

liefert Wahrheits-Wert

len()
Lange der Zeichenkette / Buchstaben-/Zeichen-Anzahl

str()
Umwandlung in einen String

Zugriff auf einzelne Zeichen Uber den Index
Zahlung beginnt mit 0 fir das erste Zeichen

zeichen = zeichenkette[Index]

es ist auch der Zugriff auf Zeichenketten-Abschnitte moglich (Slice-Notation)
zeichenkettenabschnitt = zeichenkette[:3] liefert die ersten drei (3) Zeichen (Quasi bis zum
3. Zeichen)

zeichenkettenabschnitt = zeichenkette[3:] kopiert alle Zeichen ab dem dritten bis zum Zei-
chenkettenende

zeichenkettenabschnitt = zeichenkette[4:7] in der Variable zeichenkettenabschnitt befindet
sich die Zeichen von Position 4 bis 6 (also nicht mehr 7)

die Indizes kénnen auch negative Zahlen sein, dann wird von rechts nach links — also quasi
vom Ende her — gearbeitet (0 und -0 ist aber die gleiche Position!)

[:-3] liefert die Zeichenkette ohne die letzten drei Zeichen

[-4:] liefert die letzten vier Zeichen der Zeichenkette

Ausgaben mit Platzhaltern

print("Hauptzeichenkette %s Restzeichenkette" % "Zeichenkette")
print("Hauptzeichenkette %s Restzeichenkette" % ZeichenkettenVariable)

print("Hauptzeichenkette %s Restzeichenkette %s weitere Zeichenkette" % (Zeichenkette1,
Zeichenkette?2))

typische Fehler beim Bearbeiten von Zeichenketten

IndexError ... beim Versuch auf ein Zeichen hinter dem String zuzugreifen

TypeError ... beim Benutzen eines Indexes, der vom Typ nicht passt (z.B. ein float) oder
wenn man versucht in die Zeichenkette zu schreiben oder eine Zeichenkette soll
mit einer Zahl od.&. Nicht-Texten kombiniert werden

zeichenkette.split() teilt die Zeichenkette in Worte (Trennzeichen ist Leerzeichen (und
andere Ubliche Trenner (z.B. auch \n) auf und erzeugt eine Liste von Worten (es kann mit
sep="?" auch ein anderes Trennzeichen benutzt werden)

zeichenkette.split("?")

BK_SekI+l_Python_prof.docx - 26 - (c,p) 2015 - 2026 Isp: dre

gesplitte Zeichenkette in einer Liste kann mit Angabe des Seperator's zu einer Zeichenkette
zusammengesetzt werden

zeichenkette = " ".join(liste)

8.1.2.1. {-Strings

vor die Zeichenkette wird ein f geschrieben
nun kann man in die Zeichenkette mit geschweiften Klammern Referenzen auf andere Vari-
ablen / Objekte integrieren

nutzer = "Thomas"
zeit = "Tag"

print (f"Hallo {nutzer}, guten {zeit}")

in den geschweiften Klammern kénnen auch Berechnungen usw. stehen, diese werden vor
der Integration berechnet

BK_SekI+II_Python_prof.docx - 27 - (c,p) 2015 - 2026 Isp: dre

8.1.3. Objekt-orientierte Nutzung von Strings

Das hort sich irgendwie gefahrlich an — Objekt-orientierte Nutzung von Strings — ist aber ei-
gentlich gar nicht sowas Neues. Viele der schon besprochenen / genutzten Module realisie-
ren genau das moderne Objekt-Konzept. Wir werden uns spater genauer damit beschafti-

gen. Also keine Angst — einfach ran an die Bouletten.

Zuweisung:
neuerString = String

bringt nur Referenz auf den originalen String; andert man den originalen String, ist der refe-

rierte String mit "geandert"

eine echte Kopie mit der copy()-Funktion

echtneuerString = originalString.copy()

Zeichenkette.strip()
Zeichenkette.strip([zeichen])::

Entfernt Leerzeichen und Zeilenumbriiche von den Enden des Strings
innere Leerzeichen und Zeilenumbriche bleiben erhalten

Zeichenkette.lower()
Umwandlung in Kleinbuchstaben

Zeichenkette.upper()
Umwandlung in Grof3buchstaben

Zeichenkette.append(e)

Zeichenkette.extend(l)

Zeichenkette.count(e)

Zeichenkette.index(e)

Zeichenkette.insert(i,e)

Zeichenkette.pop(i)

Zeichenkette.remove(e)

Zeichenkette.reverse()

BK_Sekl+Il_Python_prof.docx - 28 -

(c,p) 2015 - 2026 Isp: dre

Zeichenkette.sort()
Zeichenkette.sort(reverse=True)

Zeichenkette.find(e)
Zeichenkette.find(e,istart)
Zeichenkette.find(e,istart,iende)

Zeichenkette.rfind(x,istart,iende)

Zeichenkette.rjust()

Zeichenkette.ljust()

Zeichenkette.replace(ealt,eneu)

Zeichenkette.endwith(zeichen,anzahl)

Zeichenkette.split()

Zeichenkette.split(Trennzeichen)

split() teilt eine Zeichenkette in Worter auf. Diese Woérter werden als Liste zurtickgegeben.
Als Ternnzeichen wird das Leerzeichen benutzt.

Soll ein spezielles Trennzeichen verwendet werden, dann kann dieses bei splitt() als Argu-
ment angegeben werden.

Auf diese Art lassen sich z.B. Zeilen aus CSV-Dateien in ihre Elemente Zerlegen, wenn man
das glltige Trennzeichen kennt. Da alle Elemente der Liste Texte sind, muss u.U. noch eine
Umwandlung in Zahlen — wenn es denn solche sind — erfolgen.

Zeichenkette.rsplit()

join(Liste)

erzeugt aus den Elementen der Liste einen verketteten Text

braucht man z.B. Leerzeichen zwischen den Elementen, dann kann man dies so notieren:

" " join(Liste)

Fur die Erzeugung von CSV-Zeilen lasst sich statt dem Leerzeichen natirlich auch ein ande-
res Trennzeichen verwenden.

8.1.4. besondere Moglichkeiten fir Strings in Python

zwei aufeinanderfolgende Literale werden automatisch verknUpft
'Pyt' 'hon' ergibt 'Python'
schoéner naturlich mit +-Operator: 'Pyt' + 'hon'

BK_SekI+II_Python_prof.docx -29 - (c,p) 2015 - 2026 Isp: dre

gilt nicht fur beliebige Kombinationen mit Zeichenketten(-Funktionen)
mit +-Operator aber beliebige Zeichenketten-Kombinationen realisierbar

Zahlen mussen ev. vorher mittels str()-Funktion in eine Zeichenkette umgewandelt werden

BK_SekI+l_Python_prof.docx -30- (c,p) 2015 - 2026 Isp: dre

8.2. Datentypen und Typumwandlungen

Irgendwie hat Python fast immer erkannt, mit was fiir eine Art Daten wir arbeiten. Diese Fle-
xibilitat wird von jungeren Programmierern gelobt und von den alteren / klassischen Pro-
grammierern als deutlicher Mangel von Python hervorgehoben.

Grundsatzlich hatten wir es bis hierher mit zwei Datentypen zu tun, die Zahlen und die Texte.
Weitere Datentypen sind None als leeres Objekt oder eben "Nichts" und

Bei den Zahlen unterscheiden Informatiker mehrere klassische Zahlen-Arten, die sich zwar
an mathematischen Typen orientieren, aber im Wesentlichen unterschiedlich im Prozessor
(CPU) verarbeitet werden.

Die einfachste Art Zahlen sind die ordinaren bzw. ganzen Zahlen. Sie sind die praktische
Darstellung einer Zahl im Dualsystem. Da sie keine Nachkommestellen haben und somit das
Komma immer an der rechten Seite haben, spricht man auch von Festkomma-Zahlen. Fur
das Vorzeichen ist bei einigen (bei Python bei allen) Zahlen-Formaten das hochstwertige Bit
reserviert. Diese Art der Zahlen-Darstellung haben wir prinzipiell schon vorgestellt (=
3.1.2.1. Mathematik fir Informatiker — bindres Rechnen). In Python ist das kleinste Fest-
komma-Zahlenformat der Typ int. Das friher vorhandene und groRer als int definierte Typ
lon ist in int aufgegangen. Somit gibt es nur noch int, was den Umgang mit Festkommazah-
len erleichtert. Die darstellbaren Zahlen sind nicht mehr begrenzt . Fir eine Zahl oder eine
Variable mit diesem Typ werden also immer viele Bytes vom Haupt-Speicher verbraucht.

Typ Beschreibung ev. Grenzen, | Beispiel
None nichts; NULL
Integer Ganzzahl mit fihrender 0 | x =3 int()
wird Wert als | o =0127
Oktalzanhl, mit | h = Ox6f4ea
fihrenden Ox als
Hexadezimalzahl
interpretiert!
Float FlieBkommazahl f=7.85 float()
Gleitkommazahl f1=2e6
f2 = -7.25e-3
Complex komplexe Zahl complex()
Bool Wahrheitswert w = True bool()
w = False
String Zeichenkette
List (veranderbare) Liste (von
Elementen)
Sequenz
Tuple unveranderliche Liste /
Sequenz
Dictionary | Kombinations-Feld
Kombinations-Liste
Lexikon-Eintrag
assoziatives Feld
Set (veranderbare) Menge
(von Elementen)
Frozenset | unveranderliche Menge

Mit der Funktion type() kann der Daten-Typ ermittelt werden.

BK_Sekl+ll_Python_prof.docx

-31-

(c,p) 2015 - 2026 Isp: dre

Eine Uberprifung, ob ein Objekt einen bestimmten Daten-Typ hat, erfolgt mit is-
instance(ausdruck, datentyp)

z.B.: istinstance (4, float) —> False
isinstance ("Hallo", (int, float, str)) =2 True

Wo sind die Variablen abgespeichert und wieviel Platz (Byte) werden fir sie verbraucht?

In Python sind Variablen Referenzen (Verweise / Zeiger) auf bestimmte Speicherzellen. Mitt-
les der id-Anweisung bekommt man die (erste) Speicher-Adresse zurickgeliefert.

Den verbrachten Speicherplatz kann man Uber die Typ-Bestimmung fur die Variable ermit-
teln. Dazu gibt es die type-Anweisung.

>>>

eigener Speicher-Verbrauch des Programms:

BK_SekI+lI_Python_prof.docx -32- (c,p) 2015 - 2026 Isp: dre

8.2.1. Zahlen

8.2.1.1. sanze Zahlen

int mit einem Werte-Bereich von -9'223’372'036’'854'775'808 bis 9'223'372'036°854'775°807
(-9 Trillionen bis 9 Trillionen)
Das entspricht dem Maximum, was in einer 64bit-Variablen maoglich ist

Zahlendarstellung tiber spezielle Literale

oktale Literale
00724

binére Literale
0b01001

hexadezimale Literale
OxA1F31

Umwandlungs-Funktion: bin(), oct() und hex()

arbeiten nur mit int-Zahlen

es handelt sich um Funktionen, die direkt in Python zuganglich sind, ein Modul-Import ist
nicht notwendig

8.2.1.2. Fliefkommazahlen / Gleitkommzahlen

Zahlen mit Kommastellen nennen die Informatiker auch FlieRkomma-Zahlen. Die Zahl be-
steht dabei immer aus einer vorzeichenbehafteten Mantisse. Die Mantisse hat eine Spanne
von 1,0 bis 9,9999... Dazu gehdrt immer ein Exponent der die zugehdrige Zehner-Potenz
charakterisiert. Vielleicht kennen Sie die Zahlen-Darstellung als wissenschaftliches Zahlen-
Format oder .

3,9745* 102 > 3.9745e-20

Die Moglichkeit, dass auch nur ein e schon eine — zumindestens theoretisch — mogliche
FlieRkommazahl ist (0,0 * 10°), kann in einigen Programmen und / oder Programmierspra-
chen zu Problemen fuhren.

float fir Gleitkommazahlen ebenfalls als 64bit-Variable
durch spezielle Verteilung der Bit’s flir Matisse und Exponent kommt man auf einen mogli-
chen Bereich von -1,797'693'134'862'315'7*103%% bis +2,225'073'858'507°201'4*10308

BK_SekI+II_Python_prof.docx -33- (c,p) 2015 - 2026 Isp: dre

In der Mathematik gibt es auch noch eine etwas ungewoéhnlich anmutende Zahlen-Menge —
die imaginaren oder komplexen Zahlen. Sie ergeben sich aus der Lésung des Problems um
die Berechnung der Wurzel aus -1. Im Bereich der "normalen" Zahlen (naturliche, ganze,
reele, rationale Zahlen) gibt es keine Lésung fir die Wurzel aus -1.

Zu diesem Daten-Typ und den zugehérigen Verarbeitungs-Mdglichkeiten kommen wir in ei-
nem spateren Kapitel genauer. Hier ist erst einmal nur wichtig, dass eine komplexe Zahl in
Python vom Typ complex ist und aus zwei Bestandteilen besteht, den reelen und den imagi-
naren Teil. In der Mathematik wird der imginare Teil mit einem i (imaginare Einheit) gekenn-
zeichnet, in Python wir dafur das j verwendet.

komplexe Zahlen lassen sich als Summe (besser auch in Klammern) aus reelen und imagi-
naren Teil zusammensetzen 4+5j

BK_SekI+l_Python_prof.docx -34- (c,p) 2015 - 2026 Isp: dre

8.2.1.3. Wahrheitswerte

Zu den Zahlen- oder nummerischen Formaten zahlen auch die BOoOLEschen Werte flr
WAHR (TRUE) und FALSCH (FALSE). Sie sind gleichfalls durch 1 bzw. 0 und die Ausdricke

True und False reprasentiert.

In Python haben alle Werte und Daten-Strukturen einen bestimmten Wahrheitswert. Das ist
oft sehr praktisch, kann aber auch schwierig fur die Lesbarkeit eines Programm-Codes sein.

Da boolsche Werte zu den
nummerischen Datentypen
zahlen sind neben den ty-
pisch boolschen Operato-
ren auch die arithmetri-
schen Operatoren zugelas-
sen.

Bei der Verwendung unge-
wohnlicher Ausdrucke sollte
man ev. eine offensichtli-
chere Schreibung verwen-
den oder gut kommentie-
ren.

8.2.1.4. komplexe Zahlen

Operator | Beschreibung / Operation
a&b bitweise UND AND
alb bitweise ODER OR
a’b bitweise exklusives ODER XOR
a>>n Bit-Verschiebung um n Stellen | entspricht: /2
nach rechts
a<<n Bit-Verschiebung um n Stellen | entspricht: *2
nach links
not a Negation von a
aand b | UND-Verknupfung
aorb ODER-Verknipfung
a+b
a-=-b
a*b
a**b
a== Gleichheit
al=b Ungleichheit

abweichend zur Gblichen Notierung mit einm i wird in Python ein j verwendet

4+3i > 4 + 39

BK_Sekl+ll_Python_prof.docx

-35.

(c,p) 2015 - 2026 Isp: dre

8.2.2. Strings und Co als Datentypen

Die Zeihenketten haben wir schon wegen vieler Besonderheiten und der grof3en Bedeutung
weiter vorne besprochen (= 8.1. Strings — Zeichenketten).

Hier gehen wir nur noch einmal in Bezug auf Typ-Umwandlungen auf sie ein. Einige Aspekte
kommen hier wiederholend vor.

8.2.2.1. einzelne Zeichen

ord()
gibt fur ein Zeichen / Charakter den ASCII-Code zurtck

chr()
wandelt einen ASCII-Code (Ganzzahl!) in ein Symbol / Charakter um

8.2.2.2. Sequenzen von Zeichen - Zeichenketten

str()
produziert vorrangig fur Menschen lesbare Strings

repr()
erstellt Strings, die optimal fir den Interpreter sind

float()

wandelt eine Zeichenkette in eine FlieRkomma-Zahl um

Achtung! bei Fehler-behafteten Zeichenketten ergibt sich ein Laufzeitfehler

Abfangen von Laufzeitfehlern Gber Exception's mdglich (= 8.14. Behandlung von Laufzeit-
fehlern — Exception's)

int()

wandelt eine Zeichenkette in eine Festkomma-Zahl um

Achtung! bei Fehler-behafteten Zeichenketten ergibt sich ein Laufzeitfehler

Abfangen von Laufzeitfehlern tber Exception's moéglich (= 8.14. Behandlung von Laufzeit-
fehlern — Exception's)

BK_SekI+l_Python_prof.docx -36- (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Schreiben Sie ein Programm, dass einen cinzugebenen Text in eine Lisle
von ASCII-Code's zerlegt und diese Liskte dann ausgibt!

2. Erweilern Sie das Programm von der Aufgabe 1 dahingehend, dass die Lis-
te der ASCII-Code's in eine weilere Liste aus Symbolen umgewandell wird!
Lassen Sie diese Liste dann auf dem Bildschivm erscheinen!

3. Im lelzten Schrilt soll das Programm nochmals um die Rekonstruktion cines
String’s aus der ASCII-Code-Liste (!!]) erweilert werden!

4. Ein (neues) Programm soll eine einzugebene posiltive Ganzzahl (z.B.: 134)
in "gesprochene” Ziffern-Folgen (z.B.: "eins drei vier') zerlegen!

fiir die gehobene Anspruchsebene:

5. Erweitern Sie das Programm um die Ausgabe eines Vorzeichens fiiv negali-
ve Ganzzahlen!

6. Erstellen Sie ein Programm, dass cine einzugebene Fliefkommazahl (z.B.:
183.45) in ecine "deutsche’, "gesprochene” Ziffernfolge zerlegt! (hier: "eins
acht drei Komma vier fiinf’)!

BK_SekI+II_Python_prof.docx - 37 - (c,p) 2015 - 2026 Isp: dre

8.2.3. Listen, die |. — einfache Listen

In den vorderen Kapiteln haben wir schon das eine oder andere Mal unterschwellig Listen
verwendet, ohne genau auf diese Daten-Struktur einzugehen. Hier sollen nun verschiedene
einfache Zugriffs-Moglichkeiten usw. genauer besprochen werden.

Spater betrachten wir die Listen auch noch mal aus der Sicht der Objekt-orientierten Pro-
grammierung (= 9.7. Listen, die Il. — objektorientierte Listen). Listen sind namlich auch ein-
fach nur Objekte, fur die es dann vorgefertigte Attribute und Methoden gibt. Hier bieten sich
dann viele genial-einfache Listen-Nutzungs-Mdglichkeiten an, hinter deren Prinzip man aber
erst einmal steigen muss. Hier helfen uns die Kenntnisse Uber die grundsatzliche Art und
Weise der Objekt-orientierten Programmierung (= 8.11. Objekt-orientierten Programmie-
rung).

Eine Datenstruktur ist der Informatik eine Vereinbarung zur Organisation und Speicherung
von Daten.

i~hti . Liste
W|cht|ge_ Daten-Strukturen:] ausisten_
e lineare Strukturen: Eintrag]| “Peh Baum
o Liste einlisten ~——
?)-JEintrag |
o Keller 7 , .
) [Eintrag | [Eintrag |
o Ring 3oc
i : Keller Einti
e verzweigte Strukturen: cinkellern s auskellern A intrag _
o Baum mspeichern] E!”:'“ﬂg preichers .f./
nira einfugen
O NetZ Il . lg einspeichern gzﬁ;:ﬁ:

ausgewabhlte (bedeutsame) Datenstrukturen

Speicher-Typ: FIFO - First In - First Out, selten auch FCFS (fur: First come, first served.)

Daten, die zuerst in die Struktur auf-
genommen / gespeichert werden,
werden auch zuerst wieder aus ihr
entfernt / entnommen

Wer zuerst kommt, mahlt zuerst.

First come, first served.

bekannteste und auch haufigste Struktur in informatischen Systemen ist die (Warte-
)Schlange

hier auch vielfach Queue oder Pipe genannt

alternativer Speicher-Typ fir lineare Daten-Strukturen ist LIFO fur "Last IN - First out"
z.B. bei Keller (Stapel-Speicher, Stack) realisiert
im englischen auch LCFS fir "Last come - first served."

LIFO und FIFO sind ausschlieBllich Zeit-bedingt. Prioritdten spielen keine Rolle. Daflr wer-
den dann spezielle Versionen dieser Speicher-Typen realisert.

BK_SekI+lI_Python_prof.docx -38 - (c,p) 2015 - 2026 Isp: dre

8.2.3.0. theortische Vorbetrachtungen

8.2.3.0.1. Listen — eine Form der Datensammlung

Wahrscheinlich sind Listen wohl die alteste Form
der strukturierten Daten-Sammlung. Es gibt Hoh-
lenmalerein, in denen die Jagd-Erfolge aufgelistet
sind.

Abei auch in unserem heutigen Leben spielen
Listen immer noch eine grofe Rolle. Vielzitierte
Beispiele sind:

e Einkaufs-Listen

e Stlck-Listen (z.B. am Anfang von Bau-
Anleitungen (- LEGO ®-Bausatze, IKEA
®-Mobel, ...)

e Inventar-Listen

o Arbeits-Auftrage (To do-Listen)

Check-Listen (fir Flugzeugstart's od.a.;

Reinigungs-Arbeiten, ...)

Vokabel-Listen

Anrufer-Liste im Telefon

Mail-Box

empfangene oder gesendete eMail’s

Schiller-Liste im Klassenbuch

Strafakte

Adressliste / Telefon-Liste

Messwerte

Playlist im MP3-Player / Smartphone

Dateien in einem Ordner

Inhalts-Verzeichnis

Handels-Register

Warte-Liste

Chroniken

Wahler-Verzeichnis

Speisekarte / Meni-Liste

Robinson-Liste

Mitglieder-Liste eines Vereins

Lieferschein

Neben den einzelnen Elementen interessieren in Listen oft auch die Anzahl der Eintrage.
Quantitative Aspekte spielen bei Listen also eine wichtige Rolle. Listen haben einen Inventar-
Charakter bezogen auf Objekte, die unter einem Aspekt zusammengestellt wurden.

Eine Liste ist eine Sammlung von thematisch zusammengehdrdnen Informationen / Daten in
einer sich standig wiederholenden Form.

BK_SekI+II_Python_prof.docx -39- (c,p) 2015 - 2026 Isp: dre

Selbst soetwas wie Spick-Zettel kénnte man in die Kategorie Listen einordnen.

Viele der oben erwahnten Anwendungen von Listen gibt es sicher auch schon fir unsere
modernen Smartphone’s als App. Hier ist dann der Bezug zur informatischen Datenstruktur
Liste meist besonders leicht herzustellen. Da hier die Daten (z.B. eMail's, Kontakte usw. usf.)
als Listen bereitgestellt werden.

Aufoaben:

1. Wihlen Sie eine Gruppe von 10 App's auf Threm Smariphone aus (z.B. die
auf einer Seile zusammenstehen) und nolieren Sie deren Namen und Zuge-
horigkeit zu einem App-Typ! Priifen Sie nun, ob und welche Dalen in einer
oder mehrerer Listen verwallelt werden!

2. Was sind eigentlich Blacklist, Whitelist und Graylist?

2
.

Listen sind entweder leer oder bestehen aus einem (Kopf-)Element und einem Verweis auf
eine (Rest-)Liste
die Rest-Liste kann nattrlich auch leer sein

BK_SekI+l_Python_prof.docx -40 - (c,p) 2015 - 2026 Isp: dre

8.2.3.0.2. Daten-Struktur: Liste

Listen sind in Python wohl die Daten- Liste Liste
Struktur. Ob wir sie dabei als vertikal oder Eintrag ||Eiﬂtr39 [Eintrag | = « « [Eintrag ||
horizontal angeordnet betrachten, ist fir uns Eintrag

vollig egal. Meist wird aber eher eine hori- =
zontale betrachtung vorgezogen.
Vielfach sind die Elemente / Eintrage in einer
Liste gleichartig.
In Python muss dies nicht so sein. Man kann in einer Liste Obejekte ganz unterschiedlicher
Typen sammeln. Das kénnen auch wieder Listen sein. Gerade dies macht Listen in Python
so unwahrscheinlich flexibel.
Im Vordergrund stehen die folgenden Griinde fir den Einsatz von Listen:

e (gleichartige zu bearbeitende Elemente

¢ einfache Aufzahlung von Objekten

e unbestimmte Anzahl von Elementen, Anzahl ist mehr oder weniger stark veranderlich

o Reihen-Folge der Listen-Eintrage kann, muss aber keine Rolle spielen

Im informatischen Sinn versteht man unter einer Liste eine Sammlung von (gleichartig zu
bearbeiteten) Elementen in einer Aneinander-Reihung.

Eine Liste ist eine dynamische Datenstruktur von Elementen / Objekten in einer verketteten
Form.

Eine Liste ist eine lineare Datenstruktur,

Einlisten — Eintragen eines Elementes / Listen-Eintrag’s in eine Liste
Auslisten — Entfernen eines Elementes / Listen-Eintrag’s aus einer Liste

GroRRe der Liste wird maRgeblich vom verfligbaren / bereitgestellten / (dafiir) reservierten
Speicher bestimmt
die reine Anzahl an Eintragen kann sehr gro? werden

Attribute von Listen:
Name
(aktuelle Zeiger-Position)

entfernen

| Liste Name

CITCUGEN e |.-.N.IL - istLeer

-Eintrag |I|Einlra5 ... Eintray }-NIL (2 liischen

TZeiger
istLetzter
anhingen

einfiigen
dndern lesen

[Eintrag _|=NIL

Operationen / Methoden zu / auf Listen:

initialisieren (init) > erstellen einer Liste

?leer / istLeer (isEmpty) - ist die Liste leer?

einspeichern / anhangen (append) - anhangen eines Element’s an eine bestehende Liste

BK_SekI+II_Python_prof.docx -41 - (c,p) 2015 - 2026 Isp: dre

lesen / ausspeichern (read) - Lesen eines Eintrags, ohne ihn zu I6schen

geheZumAnfang / (toFirst) > gehe zum ersten bzw. Kopf-Element

tauscheElement / (remove) - ersetze das aktuelle / ausgewahlte Listen-Element durch ein
anderes

einfligen / (insert) - ein Element an der aktuellen Stelle (Zeiger-Position) einfligen und den
Rest der Liste anhangen

vorne einfigen/ ()

entfernen / 16schen () = entfernen / I6schen des aktuellen Element’s (Rest-Liste wird an den

Vorganger angehangt)

istEintrag / suche (search /) - ist ein bestimmter Eintrag in der Liste vorhanden?
finde / gibPosition (find / getPosition) > gibt die Listen-Position eines Eintrag‘s an / zurtick
anzahl / 1ange (length) = gibt die Anzahl an Eintragen in der Liste zurtck

Kopf-bezogenes Arbeiten:

insert bzw. push zum Einspeichern (neue Liste ::= neuer Eintrag, alte Liste)

pop(0) zum Ausspeichern (liefert das Kopf-Element zurtick und entfernt es vom Kopf der
Liste)

Liste wird als Konstrukt aus Kopf und Rest verstanden

Schwanz- / Ende-bezogenes Arbeiten:

append() anhangen eines Eintrags an die Liste (einspeichern)

pop() zum Ausspeichern (liefert das letzte Element zuriick und entfernt es vom Ende der
Liste) (! Fehler bei leerer Liste)

eine Liste wird als Konstrukt aus einer (kleineren) Liste und einem (letzten) Element - dem
Ende - verstanden

Vielfach sind Listen als zwei-
geteilte Objekte in Program- [Eintrag [~{Eintrag_[~[Eintrag [=NIL
miersprachen angelegt. Ne- : e
ben dem eigentlichen Daten-

‘Eintrag T Eintrag'

Objekt enthalt ein Eintrag Listen-

i i Referenz
auch n_QCh eine Referenz _an Variable Daten-Objekt (Zeiger, Link, Daten-Objekt’
den nachsten Eintrag. Eine — Stat- Poinier)

Referenz ist praktisch eine

Adresse im Hauptspeicher.

Beim letzten Eintrag wird die Referenz auf NIL gesetzt. NIL steht dabei fir "Not in List" bzw.
"Not in line". Es reprasentiert einen Null-Wert.

In Python wurde eine abwei-

i ; Listen-
chende Organisations-Form Variable [Referenz T~ Referenz T Referenz [
gewahit. Die Liste besteht — sr—| @iam | @™, | “Rma,
nur aus Referenzen. Diese Referenz
verweisen auf irgendwo ge- / \
speicherte Daten-Objekte.
i i Daten-Objekt_2
Ganz genau |_nform.at|sch Daten-Objekt_0
betrachtet sind Listen in Py-

thon also Felder (Array's) Daten-Obijekt_1
von Zeigern (Pointern). _
Der NIL-Wert kann auch als

Speicher-Adresse verstan-

den werden.

In dieser ist praktisch - wie in einem Miilleimer- ganz viel Platz.

in Python haben wir keinen Zugriff auf den Link-Teil eines Eintrages

BK_SekI+lI_Python_prof.docx -42 - (c,p) 2015 - 2026 Isp: dre

lediglich das soundsovielte Element einer Liste kann angesteuert werden, was dem tempora-
ren Setzen des Zeiger’s (auf ebendiesen Eintrag) entspricht

Listen lassen sich mithilfe von verschiedenen Schleifen durchlaufen

z.B. mit Zahlschleife bei bekannter Anzahl von Eintragen (Index-Zugriffe)

z.B. mit einer bedingten Schleife und einer Erkennung des letzten Eintrag’s (= NIL)
z.B. mit Sammlungs-bedingten Schleifen / (verdeckten) Interatoren

praktische Nutzungen / Abwandlungen in ...:
e Warteschlange

o
o
(©]

Operationen auf Listen (Attribut-Schreibweise)

Drucker-Warteschlange
Ubertragungs-Puffer (z.B. TCP/IP; Tastatur-Eingaben)

Bezeichnung | Operation Resultat
Liste =] erzeugen einer leeren Liste
Liste[i] = Wert i. Eintrag in der Liste (er)setzen / einspei-

chern

Liste[i : j] = Teilliste

in der Liste wird der Abschnitt von Eintrag
i bis j durch die angegebene Teilliste er-
setzt

del Liste[i :]

I6st in der Liste den Abschnitt von Eintrag
i bis j (= Verkurzung der Liste)
aquivalent zu: Liste[i : j] =]

Liste.append(Wert)

hangt Wert als neuen Eintrag an die Liste
an

aquivalent zu: Liste[len(Liste) : len(Liste)]
= [Wert]

Liste.extend(Wert)

aquivalent zu: Liste[len(Liste) : len(Liste)]
= Wert

Liste.count(Wert)

liefert die Anzahl der Eintrage zurtick, die
Wert entsprechen
return: Anzahl der i mit Liste[i] == Wert

Liste.index(Wert)

liefert den ersten Index zurlick, bei dem
der Eintrag dem Wert entspricht
return: Erstes i mit Liste[i] == Wert

Liste.insert(i, Wert)

fugt einen neuen Eintrag mit dem Wert an
Position i ein
aquivalent zu: Liste]i :
>=0

i] = Wert , wenn i

Liste.remove(Wert)

entfernt das erste Auftreten eines Wertes
ohne Kenntnis des Index
aquivalent zu: del Liste[Liste.index(Wert)]

Liste.peek()

liest den obersten Wert der Liste
aquivalent zu: Liste[0]

Liste.pop()

liest und entfernt das oberste Objekt aus
der Liste
aquivalent zu: del Liste[0]

Liste.reverse()

Liste wird intern (in place) umgedreht

BK_Sekl+ll_Python_prof.docx

_43.-

(c,p) 2015 - 2026 Isp: dre

(originale Reihenfolge durch erneutes reverse()
wiederherstellbar)

Liste.sort()

Liste wird intern (in place) sortiert (originale
Reihenfolge der Eintrage geht verloren!)

Liste.sort(VergleichsFunktion)

return -1, 0, +1 ; wenn x<y, X=y, X>y

Liste.()

BK_Sekl+Il_Python_prof.docx - 44 -

(c,p) 2015 - 2026 Isp: dre

Operationen auf Listen (Prafix-Schreibweise)

Bezeichnung | Operation

Resultat

map(Funktion, Liste)

neue (temporare) Liste:
[Funktion(Liste[0], Funktion(Liste[1], ...,
Funktion(Liste[n]]

filter(Bedingung, Liste)

neue (temporare) Liste mit allen Eintragen
aus der Liste, die die Bedingung erfullen

Liste1 + Liste2

neue (temporare) Liste mit allen Eintragen
aus Liste 1 und 2

reduce(Funktion, Liste)

reduce(Funktion, Liste, init)

zip(Liste1, Liste2)

erzeugen einer (temporaren) Paar-Liste mit
zusammengehodrenden Tupeln aus der Ein-
tragen der beiden Listen

[[Liste1[0], Liste2[0Q], [Liste1[1], Liste2[1], ...,
[Liste1[n], Liste2[n]]

BK_Sekl+ll_Python_prof.docx

_45 .

(c,p) 2015 - 2026 Isp: dre

8.2.3.1. Definition und Zuweisung von Listen in Python

Definieren wir uns zuerst einmal eine Liste mit dem Namen originalliste. Sie soll bei den
nachsten Versuchen immer wieder die Ausgangsbasis sein.

>>> originalliste=[1,5,3,4]
>>> print(originalliste)
[1, 5, 3, 4]

Der Name originalliste ist im
Prinzip ein Verweis (bzw. ein originalliste » 1 5 3 4
Zeiger) auf die Speicher-
Zellen, wo sich die Daten
befinden.

Die nachfolgende Shell-Eingabe liest sich so, als wurde man eine neue Liste — sozusagen
eine Kopie vom Original erstellen.

>>> aliasliste=originalliste
>>> print(aliasliste)

[1, 5, 3, 4]

>>>

Praktisch wird aber nur ein
zweiter Verweis auf die Ori- originalliste —— | 5 13| 4
ginalliste gelegt. aliasliste ~—
Das merken wir spatestens,

wenn wir eine der Listen ver-

andern.

Einen Nebenverweis nennt man einen Alias bzw. einen Aliasnamen.

>>> aliasliste=aliasliste+[2]
>>> print(aliasliste)

[1, 5, 3, 4, 2]

>>> print(originalliste)

[1, 5, 3, 4, 2]

>>>

Beide Listen sind langer ge-

worden. Ganz exakt miisste orginalliste — | | 5 13|42
man eigentlich sagen, die aliasliste ~—>

(eine) Liste ist langer gewor-

den

Das Aliasieren erzeugt nur eine sogenannte flache Kopie der Liste. Eine tiefe Kopie — wir
wuirden wohl eher echte Kopie sagen — erhalt man z.B. durch das Slicing (- 8.2.3.5. Listen-
Abschnitte (Slicing)).

>>> kopierteliste=originalliste[:]
>>> kopierteliste=kopierteliste+[7]
>>> print (originalliste)

[1, 5, 3, 4]

>>> print (kopierteliste)

[1, 5, 3, 4, 7]

>>>

BK_SekI+lI_Python_prof.docx -46 - (c,p) 2015 - 2026 Isp: dre

Die Original-Liste bleibt bei

Operationen auf die kopierte orginalliste » 1 5 3 4
Liste unverandert.

Das Loschen der Original-

Liste hat auch keine Auswir- kopierteliste ~—— | 1 5| 31| 4] 2
kungen, da beide Listen vol-

lig eigenstandig sind.

So zumindestens lautet die Theorie bzw. lauten die Aussagen vieler Buchautoren und der
Python-Guru's aus dem Internet.

In meinen Test's mit einem Python-System (V. 3.4.3; 32 bit) sah das alles anders aus. Hier
wird ganz offensichtlich eine echte (tiefe) Kopie der Liste erzeugt und auch durchgehend
verwaltet. Beide Listen (originalliste und aliasliste) lassen sich unabhangig manipulieren und
I6schen.

Die zwei nachfolgenden Shell-Dialoge zeigen dieses ganz klar.

>>> originalliste=[1,5,3,4]
>>> print(originalliste)

[1, 5, 3, 4]

>>> aliasliste=originalliste
>>> print(originalliste)

[1, 5, 3, 4]

>>> print(aliasliste)

[1, 5, 3, 4]

>>> aliasliste=aliasliste+[3]
>>> print(originalliste)

[1, 5, 3, 4]

>>> print(aliasliste)

[x, 5, 3, 4, 3]

>>>

>>> originalliste=[1,5,3,4]

>>> print(originalliste)

(1, 5, 3, 4]

>>> aliasliste=originalliste

>>> print(aliasliste)

[1, 5, 3, 4]

>>> originalliste=originalliste+[3]

>>> print(originalliste)

[1, 5, 3, 4, 3]

>>> print(aliasliste)

[1, 5, 3, 4]

>>> del originalliste[2]

>>> print(originalliste)

[1, 5, 4, 3]

>>> print(aliasliste)

[1, 5, 3, 4]

>>> del originalliste

>>> print(originalliste)

Traceback (most recent call last):

File "<pyshell#l1>", line 1, in <module>

print (originalliste)

NameError: name 'originalliste' is not defined

>>> print(aliasliste)

[1, 5, 3, 4]

>>>

Erweiterung der Aliasliste

... und es wurde auch nur
die Aliasliste erweitert

Erweiterung der Original-
liste ...

und auch nur diese
wurde erweitert

Loschen des 3. Wertes in
der Originalliste ...
was offensichtlich klappt

. aber die Aliasliste da-
von unberihrt Iasst.
... genau so wie das Lo6-
schen der Originalliste

... die wirklich weg ist ...
... aber die Aliasliste noch

vollig im "Original"-
Zustand vorhanden ist

_47 -

BK_Sekl+ll_Python_prof.docx

(c,p) 2015 - 2026 Isp: dre

Erst einmal bleibt uns jeweils wohl nur der Test am eigenem System!
Kehren wir zur offiziellen Version zuriick und nehmen mein System als Ausrutscher!

Wie bekommen wir nun aber eine echte / eigenstandige Kopie einer Liste? Eine kleine Vari-
ante haben wir oben schon gezeigt. Eine weitere Mdglichkeit sind fertige Objekt-orientierte
Funktionen zu Listen. Diese besprechen wir etwas spater (- 9.8. Listen, die Il. — objektorien-
tierte Listen). Eine Mdglichkeit werden wir gleich bei der Listen-Bearbeitung, eine weitere
nochmals genauer bei den Listen-Abschnitten (Slicing), besprechen. Python bietet mehrere
(gut und weniger gut leserliche) Mdglichkeiten — der Programmierer hat hier die freie Wahl.
Man nennt dies auch Klonen von Listen.

8.2.3.2. Listen-Operationen (Built-in-Operatoren)

Fur Listen funktionieren einige "Rechen"-Operationen im intuitiven Sinne. So ergibt sich bei
Verwendung des Multiplikations-Zeichens * eine x-mal erweiterte / verlangerte Liste.

>>> liste=[2]

>>> liste=liste*5
>>> print (liste)
(2, 2, 2, 2, 2]
>>>

Mit + lassen sich Listen addieren, aneinander anhangen bzw. verbinden.

>>> liste=liste + liste

>>> print (liste)

(2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
>>>

Nicht wirklich eine Rechen-Operation steckt hinter dem in-Operator. Mit ihm kdénnen wir
schnell testen, ob Etwas ein Element einer Liste ist. Als Ergebnis erhalt man entweder 1 — fur
ist in der Liste — oder eben 0 (nicht in der Liste).

Der in-Operator lasst sich mit not in Verbindung nutzen

>>> liste=['gelb',6 'grin',6 'rot',6 'weil}', 'gelb', 'braun', 'blau’']
>>> print(liste)

['gelb', 'grin', 'rot', 'weiB', 'gelb', 'braun', 'blau']
>>> 'grun' in liste

True

>>> 'schwarz' in liste

False

>>> 2 in liste

False

>>>

BK_SekI+lI_Python_prof.docx -48 - (c,p) 2015 - 2026 Isp: dre

Der in-Operator lasst sich mit not in Verbindung nutzen

>>> 'blau' not in liste
False

>>> 3 not in liste

True

>>>

Sehr praktisch sind die Funktionen min() und max(). Mit ihnen kann man ohne (eigenen)
Programmieraufwand das kleinste bzw. gréfte Listenelement heraussuchen. Bei Texten gilt
die alphabetische Ordnung, bei Zahlen die normale Rangfolge.

>>> liste=['rot', 'grin', 'gelb']
>>> print (min(listel))

gelb

>>> print (max(listel))

rot

>>>

Bei gemischten Listen gibt es eine Typ-Fehlermeldung.

An dieser Stelle hat die nachfolgende Funktion eigentlich keine Bedeutung. Ich erwahne sie
hier wegen der Vollstandigkeit und einem vielleicht bendtigtem Hinweis. Mit der Funktion
list() lassen sich Tupel (=) in Listen umwandeln. Das spielt immer dann eine Rolle, wenn
die Daten in Tupeln vorliegen und bearbeitet werden sollen, was bei Tupeln eigentlich nicht
geht.

>>> tupell=(23,'gelb', ['rot',2])

>>> print (tupell)

(23, 'gelb', ['rot',6 2])

>>> tupell[0]=24

Traceback (most recent call last):

File "<pyshell#15>", line 1, in <module>

tupell[0]=24

TypeError: 'tuple' object does not support item assignment

>>> listel=list (tupell)

>>> print(listel)

[23, 'gelb',6 ['rot',6 2]]

>>> listel[0]=24

>>> print(listel)

[24, 'gelb',6 ['rot',6 2]]

>>>

cmp(liste1, liste2)
vergleicht Listen (wahrscheinlich nur bis Python2)

Anhangen eines Elemntes bzw. einer Liste an eine andere ist auch Uber den Plus-Operator
(+) moglich. Fir interierende Aufgaben ist auch += mdglich. Bei der Verwendung sollte man
aber beachten, dass diese Opratoren Uber 1'000x langsamer sind als z.B. die append()-
Funktion.

BK_SekI+II_Python_prof.docx -49 - (c,p) 2015 - 2026 Isp: dre

8.2.3.3. Listen-Indexierung

Auf die einzelnen Elemente einer Liste kann man natirlich auch direkt zugreifen. Dazu muss
man aber wissen, dass die Liste mit mit 0 beginnend gezahlt wird. Die Zahlung wird deshalb
auch Indexierung genannt und der Zugriffswert Index. Das erste Listen-Element hat also den

Index O.
Der Zugriff wird in Python denkbar

einfach ermdglicht. Wir missen den liste 3 1
Index nur an den Listennamen in

eckigen Klammern angeben. Der Index: 0
Index kann beliebig berechnet wer-
den.

Wichtig ist dabei nur, dass das Ergebnis immer ganzzahlig sein muss.

>>> liste=[1,5,3,4,2]

>>> print(liste)

[1, 5, 3, 4, 2]

>>> print(liste[2])

3

>>> print(liste[2*2-1])

4

>>> print(liste[5/2])

Traceback (most recent call last):

File "<pyshell#17>", line 1, in <module>

print(liste[5/2])

TypeError: list indices must be integers, not float

>>>

Aber das erscheint wohl logisch, denn z.B. ein 2,5tes Element gibt es eben nicht. Der Zugriff

auf einen fehlerhaften oder zu grof3en Index ergibt eine Fehler-Meldung:

>>> print(liste[13])
Traceback (most recent call last):
File "<pyshell#18>", line 1, in <module>
print(liste[13])
IndexError: list index out of range
>>>

Um hier fehlerfrei agieren zu kdnnen mussen wir natirlich wissen, wieviele Elemente in der
Liste sind. Dafiir gibt es die Funktion len(), die genau diese Aufgabe erfillt.

>>> len(liste)
5
>>>

Wird ein negativer Index angege-

ben, dann wird in der Liste zuriick- liste > 1 5 3 4 2
gezahlt:
Natirlich darf auch hier der Index- Index: -5 -4 -3 -2 -1

Wert nicht gréRer (gemeint ist natiirlich:
kleiner) als die Listenlange werden.

BK_Sekl+Il_Python_prof.docx - 50 -

(c,p) 2015 - 2026 Isp: dre

Das Loschen einer ganzen Liste oder eines Elementes aus der Liste ist mit del moglich.

>>> originalliste=[1,5,3,4]
>>> del originalliste[2]
>>> print(originalliste)
[1, 5, 4]

>>>

where um Indizes anhand einer Bedingung auszuwahlen

>>> 1i=0

>>> while i<len (farbenliste) :
print (farbenliste[i])
i+=1

gelb
grun
rot
blau
braun
>>>

77?7 feld=array([[0,1,2],[3,4,5]])
7?7?77 feld[where(feld > 3)] where(feld > 3)

An die reine Indexierung schliet das sogenannte Slicing von Listen (= 8.2.3.5. Listen-

Abschnitte (Slicing)) an.

Zuweisen von Werten aus einer liste=[1,2,3,4,5,6,7,8,9,10]
Liste auf Positionen, die in einer indizies=[3, 4, 6]
anderen Liste verwaltet werden neueWerte=[100,200,300]
. . . for i in zip(indizies, neueWerte) :
Interieren Uber die Tupel (Paare) liste[1[0]]=1[1]
von Index und Wert
print (liste)
2:hﬂégﬁchkeﬁ . . for index,wert in enumerate (indizies) :
mit der eingebauten Funktion (Build liste [wert]=neueWerte [index]
In Funktion) enumerate Uber Listen
interieren print (liste)
BK_SekI+II_Python_prof.docx -51- (c,p) 2015 - 2026 Isp: dre

3. Moglichkeit import numpy as np
die Liste in ein (NumPy-)Array um-

wandeln und dann eine Zuweisung feld=np.array(liste)
af der Basis der Indizies durchfih- feld[indizies]=neueWert
ren liste=list (feld)

zur Nutzung der Bibliothek Numpy ~ Print(iiste)

gibt es weitere Informationen in ei-
nem gesonderten Kapitel (- 8.14.3.
Python numerisch, Python fir Big
Data)

8.2.3.4. Listen-Bearbeitung

Das Gute zuerst, Listen lassen sich bearbeiten. Das Uberrascht vielleicht etwas, nachdem
wir bei den Strings (= 8.2. Strings — Zeichenketten) und den Feldern (= 6.6. Vektoren, Fel-
der und Tabellen) dahingehend enttduscht worden sind. Listen sind konzeptionell einfach die

priviligierten Daten-Objekt in Python.

An dieser Stelle sei kurz auf eine den Listen sehr ahnliche Daten-Struktur hingewiesen — die Tupel. In Abschnitt
9.1. Tupel werden sie noch genauer besprochen. Prinzipiell &hneln sie den Listen, man kann fast alle Operatio-
nen usw. auf sie anwenden. Allerdings sind Tupel feststehende Objekte. Nach ihrer Erzeugung lassen sie sich
nicht mehr &ndern!

Am Einfachsten lassen sich Listen mittels Schleifen bearbeiten. Dabei bieten sich die for-
Schleifen sofort an.

Wollen wir die Listenelemente einzeln ausgeben, dann reicht schon der folgende — leicht
verstandliche — Konstrukt:

BK_SekI+lI_Python_prof.docx -52- (c,p) 2015 - 2026 Isp: dre

>>> farbenliste=['gelb',6 'grin', 'rot', 'blau', 'braun']
>>> for farbe in farbenliste:
print (farbe)

gelb
grin
rot
blau
braun
>>>

Es geht natlrlich genauso mit einer while-Schleife, aber hier missen wir die Indizierung
selbst verwalten.

Fur die gleiche Beispiel-Aufgabe — also die Element-weise einer Liste — wirde der Quelltext
dann z.B. so aussehen:

>>> i=0

>>> while i<len (farbenliste) :
print (farbenliste[i])
i+=1

gelb

grin

rot

blau

braun

>>>

Naturlich hatte man hier auch z.B. die Lauf-Variable farbe benutzen koénnen, wie in der for-
Schleife z.B. ein einfaches i.

Insgesamt ist der Programmier-Aufwand etwas groRer. Welchen Schleifen-Konstrukt man
dann in seinem Programm spater verwendet, entscheidet sich wahrscheinlich neben der
Vorliebe auch aus praktischen Abwagungen.

Um nun eine Liste zu klonen — also eine echte Kopie zu erzeugen — bietet sich der folgende
Algorithmus an:

>>> neueliste=][]
>>> for f in farbenliste:
neueliste=neueliste+[f]

>>> print (neueliste)
['gelb', 'grin', 'rot', 'blau', 'braun']
>>>

Es wird praktisch jedes einzelne Element aus der Originalliste ausgelesen und in die Kopie
geschrieben.

Nachteilig ist es in vielen Programmiersprachen, wenn man lange Listen oder Felder (=)
mittels Schleifen-Konstrukt durchlaufen muss, um z.B. eine Summe zu berechnen oder das
Minimum herauszusuchen. Da bietet uns Python die map-Funktion, um beliebige mathemati-
sche Funktionen auf die Elemente einer Liste anzuwenden.

BK_SekI+II_Python_prof.docx -53- (c,p) 2015 - 2026 Isp: dre

map(funktion, liste)

Die Funktion kann eine von Python vordefinierte oder eine selbst-definierte Funktion sein. Im
map-Funktions-Aufruf wird die Funktion nur mit ihnrem Namen (also ohne Klammern und Ar-
gumenten) notiert. Die Liste muss eine Sequenz sein, auf deren Elemente die Funktion an-
gewendet werden kann.

Definieren wir zuerst eine Funktion, die den Ubergebenen Wert mit 10 multipliziert und dann
noch inkrementiert. Die Operationen sind mit Absicht in einzelnen Schritten aufgeschrieben
worden. Natirlich kdnnen sie in einer Zeile oder gar hinter return zusammengefasst werden.

>>> def multlOaddl (x) :

x*=10
x+=1
return x
>>>
Die klassische Struktur einer Ele- def multlOaddl (x) :
ment-weisen Anwendung einer Funk- x*=10
tion kann z.B. wie nebenstehend aus- x+=1
sehen. return x

Wir definieren eine nutzbare Funktion.
Alternativ_kann auch jede interne
Funktion genutzt werden.

In einer Schleife wird diese Funktion
dann Element-weise angewendet und
das Ergebnis an die urspriingliche
Listen-Position gespeichert.

liste=[2,3,5,8,11]

for i in range(len(liste)):
liste[i]=multlOaddl (liste[i])

print (liste)

[21, 31, 51, 81, 111]

liste = map(multlOaddl, liste)
print (liste)

Der map-Operator ergibt im Allgemeinen kompaktere Quell-Code's. Auch die Ausflihrung ist
effektiver. Aus meiner Sicht sind die Quell-Texte aber nicht gut lesbar, da geschachtelte
Strukturen entstehen, die immer wieder mit zurlick-denken oder eine Ebene hoher-denken
zu tun haben. Map-Konstrukte sollten immer gut kommentiert werden! Sie sind etwas fur
fortgeschrittene Programmierer / Programmier-Team's. Flr kompexere Funktionen kénnen
vor allem einzeilig notierte map-Funktionen praktisch unlesbar werden und sind deshalb un-
bedingt zu vermeiden.

BK_SekI+lI_Python_prof.docx -54 - (c,p) 2015 - 2026 Isp: dre

List-Comprehension

In der letzten Zeit werden auch sogenannte List-Comprehension's immer mehr in Program-
miersprachen umgesetzt. Das gilt auch fur Python.

Comprehension's kann man als Bedeutungs- oder Anwendungs-Objekte oder -Strukturen
verstehen. Ziel ist eine bessere Lesbarkeit von Quelltexten, verbunden mit einer hohen
Kompaktheit des Quelltextes.

Soll z.B. aus einer Daten-Liste eine Liste mit Quadraten erzeugt werden, dann wirde man
eine Sammlungs-orientierte FOR-Schleife benutzen. Dies ist im oberen Quellcode-Block no-
tiert.

Eine Comprehension-Struktur daten=[1,2,3,4,5]

konnte z.B. so aussehen, wie

es im 2. Block zu sehen ist.

Die Struktur besteht aus der quadrate=[]

Listen-Beginn-Klammer D for wert in daten:

gefolgt von der Operation (auch quadrate.append (wert*wert)

Expression genannt) und der quadrate=[wert*wert for wert in daten]
FOR-Schleife. Die Expression quadrate=[wert*wert for wert in daten ¢+
ist in Beispiel die Multiplikation if wert > 0]

von Wert mit sich selbst. Das
Ende wird durch die schlie-
Rende Listen-Klammer (])ge-
kennzeichnet.

Die Ausfiihrung der Expression / Operation lasst sich noch durch Bedingungen steuern. Eine
ausschlieB8liche IF-Bedingung (einfache Bedingung) wird hinter den Schleifen-Konstrukt ge-
schrieben. Der 3. Quellcode-Block zeigt ein Beispiel, dass hier zum gleichen Ergebnis fuhrt,
wie die beiden oberen Quellcode-Abschnitte.

Bendtigt man auch einen ELSE-Zweig, dann folgt der angepasste IF-ELSE-Konstrukt direkt
hinter der Expression und noch vor dem Schleifen-Teil.

quadrate=[wert*wert if wert > 0 else 0 ¢
for wert in daten]

Mit dem 'LSt [wert for wert in liste if wert>20]
Comprehension

lassen sich auch
Listen filtern.

[wert for wert in liste if (wert>20) and (wert<100)]

[True if wert==1 else False for wert in daten]

BK_SekI+II_Python_prof.docx -55- (c,p) 2015 - 2026 Isp: dre

8.2.3.5. Listen-Abschnitte (Slicing)

Der Zugriff auf Abschnitte einer Liste wird durch die sogenannte Slice-Notation (Doppelpunkt-
Notation) erheblich erleichtert. FUr Python-Einsteiger oder Umsteiger aus anderen "normalen”
Programmiersprachen werden diese Konstrukte aber erst einmal schwer zu verstehen sein.
Zur Verdeutlichung nehmen wir eine etwas langere Liste mit etwas gréReren Zahlen:

lister —= | 111 | 222 | 333 | 444 | 555 | 666 | 777 | 888 | 999 |
Index: 0 1 2 3 4 5 6 7 8
Item: 1 2 3 4 5 6 7 8 9

Bendtigt man nur die Liste bis zu einem bestimmten Index, dann wird der Abschnitt mit [:
endeindex] notiert.

>>> liste=[111,222,333,444,555,666,777,888,999]
>>> sliceliste=liste[:3]

>>> print(sliceliste)

[111, 222, 333]

>>>

Es sind mit [:3] also die ersten 3 Listen-Elemente (Items) gemeint, der Doppelpunkt steht
also hier fur "bis" zum dritten (3.) Element. Da die Indizierung bei Null startet sind es also die
Index-Elemente 0, 1 und 2.

| 111 [222 [333 | 444 | 555 | 666 | 777 | 888 | 999 |
Index: 0 1 2 3
Item: 1 2 3

Wird dagegen nur ein Index vor dem Doppelpunkt (Slice) eingegeben, dann meint man den
Abschnitt nach diesem indizierten Element bis zum Ende der Liste.

>>> sliceliste=liste[5:]
>>> print(sliceliste)
[666, 777, 888, 999]
>>>

Mittels [5:] wird also es sind die Listen-Elemente nach Item 5 (bzw. ab Index = 5) bearbeitet.

liste —== | 111 | 222 | 333 | 444 | 555 | 666 | 777 | 888 | 999 |
Index: 5 6 7 8
Item: 5 6 7 8 9

Natlrlich dirfen zur Auswahl eines Mittelstiicks aus einer Liste auch vordere und hintere
Grenze angegeben werden.

>>> print(liste[2:7])
[333, 444, 555, 666, 777]
>>>

Mit [2:7] meint man dann den Abschnitt ab Index = 2 bis an den 7. Index ran.
es sind die Elemente nach dem 3. (also ab dem zweiten (2.)) bis zum 5. gemeint

lister —s= | 111 | 222 | 333 | 444 | 555 | 666 | 777 | 888 | 999 |
Index: 2 3 4 5 6 7
Item: 2 3 4 5 6 7

BK_SekI+lI_Python_prof.docx -56 - (c,p) 2015 - 2026 Isp: dre

Somit gilt also allgemein: abschnitt = liste[anfangsindex : endeindex].
Interessanterweise funktioniert das Slicen auch zum Einfligen eines Listen-Abschnitts:
Die Notierung ware also: liste[anfangsindex : endeindex] = abschnitt

>>> print(sliceliste)

[666, 777, 888, 999]

>>> liste[6:7]=sliceliste

>>> print(liste)

[111, 222, 333, 444, 555, 666, 666, 777, 888, 999, 888, 999]
>>>

Die eingeslicte Liste wird zuerst noch einmal angezeigt (geprintet) und ist dann in der Ergeb-
nis-Liste farblich unterlegt.

8.2.3.6. Listen-Erzeugung — fast automatisch

mit range() werden Listen automatisch erzeugt

range(ende)
erzeugt Liste von 0 bis (ausschlieBlich) ende

range(anfang, ende)
erzeugt Liste von anfang bis (ausschlieBlich) ende

range(anfang, ende, schrittweite)
erzeugt Liste von anfang bis (ausschliellich) ende mit der schrittweite (also: anfang + n *
schrittweite)

Listen kdnnen auch wieder Listen enthalten (Verschachtelung, Nesting)

so lassen sich Matrizen darstellen und bearbeiten. da das aber eher fir mahematisch Fort-
geschrittene interessant wird, folgen dazu in Kapitel > 8.13.2. Matrizen (Matrixes) mehr In-
formationen

Zugriff fir aneinander-gereihte Index-Operatoren
Hierbei ist besonders auf die Gultigkeit der Indexes zu achten

Eine andere Moglichkeit zum Listen-Klonen (Kopieren einer Liste) ergibt sich aus der Slice-
Notierung. Die neue Liste soll den Namen listenkopie bekommen.

>>> listenkopie=originalliste[:]
>>> print(listenkopie)

[1, 5, 3, 4, 2]

>>>

BK_SekI+II_Python_prof.docx - 57 - (c,p) 2015 - 2026 Isp: dre

Der Doppelpunkt in der Sli-

ce-Notierung zieht eine orginalliste — | |, | £ | 3 | 4 | 5
Grenze. Da aber weder da- aliasliste ——>

vor eine Anzahl Elemente,

noch danach eine Anzahl listenkopie =~ —= 1 5 3 4 2
angegeben wurde, handelt

es sich um die gesamte Lis-

te.

Zum Uberpriifen, dass es sich bei der Kopie wirklich um einen neue / eigensténdige Liste
handelt, verandern wir sie durch Hinzuflgen eines weiteren Elementes:

>>> aliasliste=aliasliste+[6]
>>> print(aliasliste)

[1, 5, 3, 4, 2, 6]

>>> print(listenkopie)

[1, 5, 3, 4, 2]

>>>

Die Situation im Speicher

kann man sich etwa so vor- orginalliste ~ —— 1 503 |al26
stellen: aliasliste —>

listenkopie @~ —» 1 5 3 4 2

8.2.3.7. Listen - extravagant

Der Umgang mit Listen halt noch weitere Besonderheiten / Uberraschungen bereit.

erweitertes Listen-Generieren

liste = [x for x in range(20) if x % 2]
erzeugt eine Liste der ungeraden Zahlen (von 0) bis an 20 ran

liste = [(x,y) for x in range(10) if not x % 3 for y in range(6) if y % 2]
erzeugt eine Liste aus Tupel, bei denen x die durch 3 teilbaren Zahlen (von 0) bis an 10 ran
und y die ungeraden Zahlen (von 0) bis an 6 ran verwendet werden

gemeinsame Elemente zweier Liste in eine neue Liste
liste1=[1,2,3,4]

liste2=[3,4,5,6]

liste=[i for i in liste1 if i in list2]

aus zwei Datenlisten eine Liste aus Tupeln zusammenstellen
liste1=[1,2,3,4]

liste2=['a','b",'c','d"]

tupelliste=[(i,j) for i in liste1 for j in liste2]

BK_SekI+lI_Python_prof.docx -58 - (c,p) 2015 - 2026 Isp: dre

erweitertes Slicing

text = 'abcdefg'

print(text[1:6:2]) = 'bdf

vom ersten bis zum sechsten Element (Achtung es geht immer noch bei 0 los!) jedes zweite
Element

print(text[::-1]) = 'gfedcba’

print(range(10)[::2]) = [0, 2, 4, 6, 8] (entspricht: range(0,10,2) (besser verstandlich)
print(range(10)[::-1]) = [9,8,7,6,5,4, 3,2,1,0] (entspricht: range(9,-1,-1))

Aufoaben:

~. Die chemischen Elemente lassen sich in verschiedene Gruppen einkeilen.
Dazu gehoren die Hauploruppen und die Melalle und Nichlmelalle. Schrei-
ben Sie ein Programm, dass ein einzugebenes chemisches Symbol — z.B. Na
— einer Hauplgruppe (mit Namen) zuordnel!
Erweitern Sie das Programm dann um die Zuordnunyg in die Perioden sowie
zu den Melallen, Nichtmelallen bzw. Halbmelallen!
Zusalz:
Unterscheiden Sie die Elemente auch nach ihrem Aggregalzustand! Versu-
chen Sie moglichst kleine Listen (Dalenbasen) zu verwenden!

Gruppe Vertreter

I. Hauptgruppe, Alkalimetalle H, Li, Na, K, Rb, Cs, Fr
Il. Hauptgruppe, Erdalkalimetalle Be, Mg, Ca, Sr, Ba, Ra
Ill. Hauptgruppe, Bor-Gruppe, Erdmetalle B, Al, Ga, In, Tl

IV. Hauptgruppe, Cohlenstoff-(Silicium-)Gruppe, Tetrele C, Si, Ge, Sn, Pb

V. Hauptgruppe, Stickstoff-(Phosphor-)Gruppe, Pnictogene N, P, As, Sb, Bi

VI. Hauptgruppe, Chalkogene, Erzbildner, Sauerstoff-Gruppe | O, S, Se, Te, Po

VII. Hauptgruppe, Halogene, Fluor-Gruppe, Salzbildner F, Cl, Br, |, At

VIIl. Hauptgruppe, Edelgase, Helium-Gruppe He, Ne, Ar, Kr, Xe, Rn

BK_SekI+II_Python_prof.docx -59.- (c,p) 2015 - 2026 Isp: dre

kleine Zusammenfassung (Indexierung / Slicing)

allgemeine Struk- | Funktion / Leistung Beispiel-Liste:
tur Umschreibung liste=[1,2,3,4,5,10,11,12,13,14,15]
Beispiel | Ergebnis
liste[i] liefert den Eintrag von Index i | liste[2] 3
(Achtung! Zahlung / Index be-
ginnt bei 0) liste[0] 1
Welcher Wert steht an Index-
Position i? liste[6] 11
liste[-1] liefert das letzte Elem. zuriick | liste[-1] 15

Welcher Wert steht an der letzten
Index-Position?

Welcher Wert steht an 1. von
hinten gezéhlten Index-Position?
(Achtung! Zahlung / Index be-
ginnt hier mit -1, da es ein -0 natiir-
lich nicht gibt)

liste[-i] liefert den i-ten Eintrag von | liste[-3] 13
hinten
Welcher Wert steht an der zuriick | liste[-10] | 2
gezéhlten Index-Position i?

liste[:] liefert alle Elemente (ohne Be- | liste[:] [1,2,3,4,5,10,11,12,13,14,15]
grenzungen) einer Liste als neue
Liste

Welche Werte stehen in der Liste
(ohne Begrenzungen durch Indi-

zies)?
liste[nach:] liefert die Elemente nach Posi- | liste[2:] [3.:4,5,10,11,12,13,14,19]

tion bzw. ab Index nach als

Welche Werte folgen ab der In- | |

dex-Position? liste[0:] | [1,2,3,4,5,10,11,12,13,14,15]
liste[:bis] liefert die Elemente bis Positi- | liste[:2] [1,2]

on bzw. kleiner dem Index bis

Welche Werte stehen vor der | .

Index-Position? liste[:-1] | [1,2,3,4,5,10,11,12,13,14]
liste[nach:bis] liefert als neue Liste die Ele- | liste[1:4] | [2,3,4]

mente nach Position bzw. ab
Index nach und bis Position | liste[4:8] | [5,10,11,12,13]
bzw. kleiner dem Index bis
Welcher Wert stehen zwischen
den Index-Positionen?

lis}3:-1] | [4,5,10,11,12,13,14]

liste[::sprung] liefert eine neue Liste der Ein- | liste[::3] | [1,4,12,19]
trage einer originalen Liste, die
nacheinander ~ mit einem | liste[:-2] | [15,13,11,4,2]
sprung erreicht werden (begin-
nend mit Index 0)

Welcher Wert steht an Index-
Position i?

liste[::0] - Fehler

liste[nach::] wie liste[nach:] bzw. liste[2::] [3,4,5,10,11,12,13,14,15]
liste[nach::sprung]

liste[nach::sprung] | liefert die Eintrdge, die nach | liste[4::2] | [5,12,14]
dann nacheinander mit einem
sprung erreicht werden liste[2::4] | [3,12]
Welche Werte folgen ab der In- |
dex-Position in bestimmten Schrit- | liste[0::1] | [1,2,3,4,5,10,11,12,13,14,15]
ten?

BK_SekI+lI_Python_prof.docx -60 - (c,p) 2015 - 2026 Isp: dre

allgemeine Struk- | Funktion / Leistung Beispiel-Liste:
tur Umschreibung listeA=[1,2,3,4,5,10,11,12,13,14,15]
Beispiel | Ergebnis
listeA[nach:]= ersetzt in der A-Liste die Ele- | liste[2:]=
listeB[von:bis] mente ab nach durch die Ele- | liste[2:7]
mente aus der B-Liste (hier ein |
Ausschnitt) liste[4:]=
listeA[:bis]= ersetzt in der A-Liste die Ele- | liste[:2]
listeB[von:bis] mente vor bis durch die Ele-
mente aus der B-Liste (hier ein
Ausschnitt)
listeA[vor:nach]= fugt in die A-Liste in die Positi- | liste[3:4]= | [1,2,3,3,4,5,10,11,12,5,10,
listeB[von:bis] on zwischen vor und nach | liste[2:7] | 11,12,13,14,15]
ersetzend die B-Liste (hier ein |
Ausschnitt) ein :::g[dﬂ]:

Aufoaben:

1. Erstellen Sie sich eine Liste mil den ersten 9 Buchslaben (als Zeichen) unler
dem Namen liste!

2. Uberlegen Sie sich (ohne Python!)) fiir alle Beispiele aus der Zusammenfas-
sungs-Tabelle oben die Ergebnisse!

3. Priifen Sie nun mit Python!

4. Erstellen Sie sich cine Liste aller Grof-Buchstaben als Liste von Zeichen
mit dem Namen buchstaben!

5. Geben Sie fiir diec nachfolgenden Problemstellungen eine Lislen-
Formulierung an!

a)

6. Priifen Sie nun mit Python!

8.2.3.8. Ringe — geschlossene Listen

Ringe sind in Python als solche nicht vorgesehen. Da man aber auch mit negativen Indizies
arbeiten kann, hat man es praktisch bei Listen mit Ringen zu tun. Die Ring-Grofie wird durch
die Lange der Liste bestimmt. Die jeweilige Schreib- oder Lese-Position wird durch den aktu-
ellen Index der innerhalb der Listen-Lange inkrementiert oder dekrementiert werden kann.
Alternativ bietet sich auch eine Uberwachung Uber die Modulo-Operation an.

Aufoaben:

1. Erstellen Sie sich ein Progrvamm, dass in ciner einzugebenen Liste aus Ele-
(=4 (=4
menlen jeweils die Liste und die akluelle Index-Postion (Zeiger) anzeigt
(z.B. als "T" unker der Lisle, s.a. folgendes Beispiel)!

Liste/Ring : 1 2 3 4 5 6 7 8
akt. Zeiger(= 2): I

BK_SekI+II_Python_prof.docx -61- (c,p) 2015 - 2026 Isp: dre

2. Erweitern Sie nun das Programm von 1. so, dass der Nulzer (in ciner
Schleife) angeben kann, um wieviele Posilionen sich der Zeiger verschieben
soll! Die Anzeige soll wieder die Liste und die aktuelle Zeiger-Postionen
sein!

2
2.

BK_SekI+l_Python_prof.docx -62 - (c,p) 2015 - 2026 Isp: dre

8.2.4. Dictionarys - Worterbucher

Wenn man es ganz genau nimmt, dann sind Dictionarys eigentlich eher Vokabel-Listen oder
Daten-Paare. Ein Daten-Paar besteht immer aus einem "Schlussel" — also dem beschrei-
benden Begriff — und einem zugeordneten Daten-Element. Als Daten dirfen die verschiede-
nen schon besprochenen Datentypen fungieren, sowie deren Verknipfungen in Tupel (=),
Mengen (=) und Vektoren (=).

Wir sehen hier schon, dass Dictonary’s auch so einiges mit Listen gemeinsam haben. In der
Informatik werden die Dictonary’s aber eher als sehr lockere Liste besser Sammlung von
Daten-Paaren gesehen.

Dictonary’s werden einfach als eine spezielle Datenstruktur definiert. Wenn man etwas mit
einfachen Listen machen will (= 8.2.3. Listen, die |. — einfache Listen), dann nutzt man auch
die Datenstruktur Liste. Stehen die Daten-Paare im Vordergrund und die Auflistung ist zweit-
rangig, dann sind Dictonary’s eine mogliche Wahl.

Eine etwas ausfiihrlichere Besprechnung erfolgt im Kapitel > 9.3. Dictonary's - Woérterbu-
cher. Hier gehen wir auf einfache Nutzungen ein.

Im informatischen Sinn versteht man unter der Datenstruktur Dictonary eine Listen-artige
Sammlung von Daten-Paaren.

typische Nutzung z.B. Vokabel-Wérterblcher

allerdings keine gleichberechtigten Paare von Wortern, sondern eine einseitig gerichtete Zu-
ordnung von Daten-Elementen.

die linke Seite (quasi das erste Wort) ist der Schlussel (engl. key), dieser muss im Worter-
buch eindeutig sein, d.h. er dar nur ein einziges Mal vorkommen

jedem Schlissel wird dann noch ein Wert zugeordnet. Dieser darf mehrfach im Werte-
Bereich vorkommen.

zusammen sprechen wir von Schlissel-Wert-Paaren (key-value-Paare)

vokabel = {
"Stadt": "City",
"U-Bahn": "subway",
"gelb": "yellow"

}
print (vokabel)

Reihenfolge ist nicht durch Notieren im Quell-Code oder nach einem Einlesen festgelegt
die Reihenfolge kann sich leicht andern

len (vokabel)

gibt die Anzahl der Schlussel-Wert-Paare zurtick
Zugriff ahnlich wie Listen, nur dass hier statt einem Index der Schlissel verwendet wird

print (vokabel["gelb"])

daraus abgeleitet erfolgt der andernde Zugriff mit:

BK_SekI+II_Python_prof.docx -63- (c,p) 2015 - 2026 Isp: dre

vokabel ["U-Bahn"]="tube"

wird mit einem unbekannten Schllssel gearbeitet, dann gibt es keinen Fehler, sondern es
wird ein neuer Eintrag in das Woérterbuch aufgenommen

vokabel ["orange"]="orange"
mit
del (vokabel["gelb"])

wird der gesamte Eintrag zum Schlissel "gelb" geléscht
zum Interieren Uber ein Woérterbuch kann man auf die Schlissel-Liste zugreifen

for schluessel in vokabel.keys():
print (schluessel)

genauso kann man auch Uber die Werte eines Woérterbuch's interieren:

for wert in vokabel.values():
print (wert)

will man Uber die Schliissel-Wert-Paare interieren, dann geht das utber

for eintrag in vokabel.items():
print (eintragqg)
print ("deutsch: ",eintrag([0]," heisst englisch" ",eintrag[l])

die Null steht dabei fir den Schlissel und die Eins fir den Wert eines Eintrag's

auch gut geeignet um einfache Statistiken zu fuhren
z.B. Wort-Haufigkeiten

hier Beispiel zum Zahlen von Farben in einer Liste

arbeitsListe = ["gelb","blau","blau","rot","blau", "gelb", "blau",
"gelb" 0 "blau"]
haeufigkeit={

"gelb": O,
"rot": O,
"blau": 0}

for elem in arbeitsListe:
haeufigkeit (elem) += 1

print ("aktuelle Haufigkeiten:")
print (haeufigkeit)

BK_SekI+l_Python_prof.docx -64- (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Bauen Sie das Programm zur Analyse von Farb-Haufigkeilen in einer Liske
80 um, dass es auch Farben zahll, die nicht im Haufigkeils-Dicfonary enthal-
ten sind erfasst! Hierfiir soll es im Dilonary ein Schliisselwort "Reste” geben.

2. Bauen Sie das Programm zur Analyse von Farb-Haufigkeiten in einer Lisle
80 um, dass es auch Farben zahll, die nicht im Haufigkeils-Diclonary enthal-
ten sind erfasst! Neue Farben sollen als neue Einlrvage in das Dicfonary hin-
zugefiigl werden.

3. Erstellen Sie ein Programm, dass einen Text, der in Listen-Form vorliegl,
hinsichtlich der enthalfenen Worter stalistisch analysiert! Neben der Wori-
Haufigkeit, soll auch die Anzahl der Worter insgesamt sowie die Anzahl un-
terschiedlicher Worte im Diclonary gespeichert werden!

BK_SekI+II_Python_prof.docx -65- (c,p) 2015 - 2026 Isp: dre

8.3. komplexe Datentypen

8.3.1. Tupel

Tupel sind Aufzahlungen von Daten(-Objekten)
kdnnen, mussen aber nicht, den gleichen Typ haben

man kann sie als Paare oder Gruppen verstehen

beim Lesen des Quelltextes erscheinen viele Anweisungen kryptisch oder falsch

Anflug von Trick-Programmierung; meist aber elegante und effektive Lésungen, die in ande-
ren Programmiersprachen viele Anweisungen oder eine etwas aufwandigere Programmie-
rung erfordert hatten.

deshalb sollte die Anweisungen mit Tupel gut kommentiert werden

Tupel-Elemente werden in runde Klammern notiert
im Prinzip fest definierte und unveranderliche Listen
Zugriff aber — wie Ublich bei Indixies — in eckigen Klammern

praktisch fast alle Operationen, wie bei Listen (- 8.2.3. Listen, die |. — einfache Listen und
9.7. Listen, die Il. — objektorientierte Listen) moglich

Tupel lassen sich aber nicht erganzen oder andern, nach ihrer Erzeugung sind sie unveran-
derlich

lassen sich aber aneinanderreihen

ein-elementige Tupel (Singleton) missen nach dem (ersten) Element noch ein Komma auf-
weisen!

Kdnnen auch geschachtelt sein
geschachtTupel = (1,2,3,(4,5,6,(7,8,9))) hier dreifach geschachtelt: 1. Tupel ist (1,2,3 und
ein Tupel (hier der Klammer-Ausdruck), dito fir das nachste / innerste Tupel

ein Zerlegen solcher Tupel ist z.B. so mdglich:
for wertl in geschachTupel:
if type(wertl)== int:
print (wertl)
else:
for wert2 in wertl:
if type(wert2)==int:
print ("M\t”, wert2)
else:
for wert3 in wert2:
print ("M\t\t”, wert3)

Hinweis:
\t erzeugt Tabulator

Vertauschen von Werten
if kleinereZahl > groessereZahl:
kleinereZahl, groessereZahl = groessereZahl, kleinereZahl

BK_SekI+lI_Python_prof.docx - 66 - (c,p) 2015 - 2026 Isp: dre

Fast jede andere Programmiersprache
braucht eine Hilfsvariable oder einen Kel-
lerplatz zum zeitweisen Abspeichern der
einen Zahl, damit diese fiir die Ubernahme
der anderen bereitsteht, erst dann kann die
zweite mit dem Wert aus der Hilfsvariable
versehen werden

//Tauschen in PASCAL
hilfVar:=kleinereZahl;
kleinereZahl :=groessereZahl;
groessereZahl:=hilfVar;

BK_Sekl+ll_Python_prof.docx

-67 -

(c,p) 2015 - 2026 Isp: dre

8.3.2. Mengen — Set's

auch Set's genannt
keine echte Informatik-Daten-Struktur, aber wichtiges Element in Python

Mengen sind Sammlungen von Objekten in denen jedes Objekt nur einmal vorkommt, eine
Reihenfolge oder Ordnungs-Struktur gibt es nicht

in der Mathematik weden Mengen in geschweiften Klammern notiert

eine Menge ohne ein Element ist eine leere Menge

8.3.2.1. Mengen — einfach

8.3.2.1.1. Mengen-Erstellung

in Python gibt es die veranderlichen Mengen, die mit set() erstellt werden und es gibt unver-
anderliche Mengen flr deren Erstellung die Funktion frozenset() zustandig ist

>>> mengel=set([1,3,5,4,2,3])
>>> menge2=set ([2.1, 0.0, 5.3, 7.91)
>>> menge3=set ("Farbenspiel")

(

>>> menged=set
>>> mengel

{1, 2, 3, 4, 5}
>>> print (mengel)

{r, 2, 3, 4, 5}

>>> menge?2

{0.0, 5.3, 7.9, 2.1}

>>> menge3

{vpv, 'l', 'S', 'F', vrv, 'b', vav, 'i', vnv, vev}
>>> menge4

{'rot', 'gelb', 'grin', 'blau'}

>>>

[nglblv, ngﬁnnl "rot", "blau", "blau", "blau"])

Die Ausgabe erfolgt immer schon ordentlich in geschweiften Klammern. Ev. mehrfach auf-
tauchende Objekte werden eliminiert

>>> alphabet=frozenset ("abcdefghijklmnopgrstuvwxyz")

>>> print (alphabet)

frozenset({lll, lkl, lol, 'V', lil, lpl, ltl, lfl, lal, lzl, ljl,
vnv, vgv, vmv, 'S', 'W', 'b', qu, vuv, vxv, vrv, 'h', vyv, 'd', 'C',
'e'})

>>> alphabet

frozenset({'l', lkl, lol, lvl, lil, lpl, ltl, lfl, lal, lzl, ljl,
vnv, vgv, vmv, 'S', 'W', 'b', qu, vuv, vxv, vrv, 'h', vyv, 'd', 'C',
'e'})

>>>

Interessant ist hierbei, dass frozenset's scheinbar anders zusammengestellt werden, als
normale Mengen (set's). Die sind sortiert, wahrend die Elemente im frozenset scheinbar will-
kirlich auftauchen, obwohl sie im Ursprungs-Objekt sortiert vorkamen.

BK_SekI+lI_Python_prof.docx -68 - (c,p) 2015 - 2026 Isp: dre

Die Ausgabe verdeutlicht uns immer, dass wir es hier mit einer feststehenden / unveranderli-
chen Menge zu tun haben.

8.3.2.1.2. Mengen-Operationen

Ein existierendes Frozenset kann in Python niemals das Ergebnis einer Mengen-Operation
werden, da mit ihnen die Unveranderlichkeit verbunden ist. Aber sie kdnnen natirlich Argu-
ment bzw. Operant sein.

einfache Operationen

len(menge)
gibt die Anzahl der Elemente in der Menge zurtick

min(menge)

max(menge)

elem in menge

elem not in menge

teilmenge <= menge
ist True, wenn teilmenge eine Teilmenge von der Menge menge ist

teilmenge < menge
ist True, wenn teilmenge eine echte Teilmenge von der Menge menge ist

menge1 | menge2
erzeugt neue (Vereinigungs-)Menge von menge1 und menge2; die alle Elemente von bei-
den Mengen enthalt

menge1 & menge2
erzeugt neue (Schnitt-)Menge von menge1 und menge2, die nur gemeinsame Elemente
enthalt

menge - teilmenge

erzeugt neue Menge, die alle Elemente von menge enthalt, aul3er sie kommen in teilmenge
vor

Differenz-Bildung

BK_SekI+II_Python_prof.docx -69 - (c,p) 2015 - 2026 Isp: dre

menge1 * menge2

erzeugt neue (Vereinigungs-)Menge von menge1 und menge2, auler den Elementen, die in
beiden mengen enthalten sind

ergibt symmetrische Differenz oder auch Vereinigungs-Menge — Schnitt-Menge

BK_SekI+l_Python_prof.docx -70 - (c,p) 2015 - 2026 Isp: dre

typischen Mengen-Operationen

Zum Veranschaulichen der Mengen-Operationen erstellen wir uns zwei einfache Mengen:

>>> mengel=set ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> menge2=set ([0, 2, 4, 6, 8, 10, 12])

>>> mengel

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> menge?2

{0, 2, 4, 6, 8, 10, 12}

>>>

Aus der Mathematik kennen wir als typische Mengen-Operationen die Vereinigung, den
Durchschnitt und die Differenz.

Vereinigung

Unter der Vereinigung von Mengen versteht man die Gesamt-
Menge aus den Teilmengen. In beiden Mengen mehrfach vorkom-
mende Elemente sind in der Ergebnis-Menge natirlich nur einmal
vorhanden.

>>> mengel | menge2
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}
>>>

Durchschnitt

Der Durchschnitt zweier Mengen beschreibt die Menge der ge-
meinsamen Elemente aus beiden Mengen. In der Ergebnis-Menge
kommen diese Elemente nur einmalig vor.

>>> mengel & menge?2
{0, 8, 2, 4, 6}
>>>

Differenz

Bei der Differenz von Mengen werden aus der ersten Menge, die
Elemente entfernt, die auch in der subtrahierten Menge vorkom-
men, entfernt.

Die Differenzen zweier Mengen sind i.A. nicht symmetrisch bzw.
kommutativ. D.h. normalerweise ist Menge1 — Menge2 ¥ Menge2 —
Menge1 (alternative Notierung: Menge1 \ Menge2 # Menge2 \ Menge1).

>>> mengel - menge?2
{1, 9, 3, 5, 7}
>>> menge2 - mengel
{10, 12}

>>>

Durchschnitt und Vereinigung sind dagegen kommutativ.

BK_SekI+II_Python_prof.docx -71 - (c,p) 2015 - 2026 Isp: dre

Bearbeitung in Schleifen etc.

Mengen lassen sich ebenfalls mit Schleifen durchlaufen. Wir benétigen wieder einen Intera-
tor (eine Laufvariable), um auf die einzelnen Elemente zuzugreifen.

iter(menge)
liefert einen Interator fir die Menge

8.3.2.1.x. automatische Mengen-Generierung

Ahnlich, wie bei den Listen (2 8.4.0.5. Listen-Erzeugung — fast automatisch) lassen sich
auch Mengen automatisch generieren. Die Konstrukte unterscheiden sich praktisch nicht.
Lediglich die Verwendung der Schlisselwortchen set bzw. frozenset kommt hinzu.

>>> quadrate=set(i**2 for i1 in range(16))

>>> quadrate

{0, 1, 64, 225, 4, 36, 100, 196, 9, 169, 16, 49, 81, 144, 25, 121}
>>>

Natlrlich hatte man die Mengen fur die Veranschaulichung der Mengen-Operationen
(s.a.w.v.) auch mittels Generator (i for i in range(10)) erzeugen konnen.

>>> mengel=set(i for i in range(10))
>>> menge’2=set(i*2 for i in range (7))

>>> mengel

{OI 1I 21 31 41 51 61 71 81 9]'
>>> menge?2

{0, 2, 4, 6, 8, 10, 12}

>>>

Weitere Mdglichkeiten konnen gerne in der Listen-Besprechung nachgeschlagen werden (>
8.4.0.5. Listen-Erzeugung — fast automatisch).

BK_SekI+lI_Python_prof.docx -72 - (c,p) 2015 - 2026 Isp: dre

8.3.2.2. Mengen — objektorientiert

menge1.add(element | menge2)
fugt das Element oder eine Menge2 der Menge1 hinzu

menge.clear()
I6dscht alle Elemente aus der Menge
es entsteht eine leere Menge

menge.discard(element)
das Element wird aus der Menge entfernt, wenn es dann dort enthalten ist

menge.pop()
liefert ein zufallig gewahltes Element aus der Menge zuriick. Das Element selbst wird aus
der Menge entfernt!

menge.remove(element)
das Element wird aus der Menge entfernt, wenn es dann dort enthalten ist, wenn es nicht
vorhanden ist, gibt es eine Fehler-Meldung (KeyError)

die aufgezahlten Operationen gelten nur fir normale Mengen (set's), da sie Veranderlichkeit
unterstellen
alle nachfolgenden Operationen gelten fiir set's bzw. frozenset's

menge.copy()
erstellt eine (flache) Kopie der Menge

menge1.difference(menge?2)
berechnet die Differenz von Menge1 und Menge2 (menge1 — menge2 bzw. menge1 \ men-
ge2)

menge.intersection(menge2)
erstellt den Durchschnitt aus beiden Mengen

menge1.union(menge2)(
vereint die beiden Mengen

menge1.issubset(menge?2)
priuft, ob Menge1 eine Teilmenge von Menge?2 ist
liefert True bzw. False zurtick

menge.issuperset(menge?2)
pruft, ob Menge1 die Obermenge von Menge2 ist
liefert True bzw. False zurlick

BK_SekI+II_Python_prof.docx -73- (c,p) 2015 - 2026 Isp: dre

8.3.2.4. Anwendung von Mengen

8.3.2.4.1. ein biBchen Graphen

Graphen sind geometrische Objekte, die durch Kno-

ten und Kanten beschrieben werden. Jeder Knoten O—@—3)

(hier nummeriert) hat mindestens eine Verbindung (/

Kante) zu einem anderen. & ® G—Q—V
®) (9)

Graphen werden z.B. zur Beschreibung von Wege-
oder Raum-Planen benutzt. Die Einmindungen bzw. (7)—(8)
Kreuzungen oder eben die Raume entsprechen den
Knoten. Die méglichen Verbindungen (Wege oder
Tdren) zwischen den Knoten sind die Kanten.

Im nachfolgenden Programm werden neben "norma-
len" Mengen (set's) auch feste Menge (frozenset's)
und Tupel (= 9.1. Tupel) verwendet.

zwei vorgegebene Graphen (oben)
und der gemeinsame Graph (unten)

def findeNachbarKnoten (graph, knoten) :
Funktion zum Durchsuchen des Graphen nach den Nachbarknoten
zu einem vorgegebenem Knoten

alleKnoten, alleKanten = graph

KantenDesKnoten = set(k for k in alleKanten if knoten in k)
NachbarKnoten = set ()
for k in KantenDesKnoten:

NachbarKnoten = NachbarKnoten | k

NachbarKnoten= NachbarKnoten - set ([knoten])

return NachbarKnoten

def vereinigeGraphen (graphl, graph?2):

Funktion zur Verbindung von zweil Graphen (gemeinsame Knoten

miissen gleiche Bezeichnung in beiden Graphen haben (mind. einer notw.!)
return (graphl[0] | graph2[0], graphl[l] | graph2[1l])

=======Beispiel-Graphen (Daten)

GraphlKnoten={1,2,3,4,5,6}
GraphlKanten= set (frozenset (k)

for k in [(1,2), (2,3), (2,4), (3,4), (3,5, (4,6), (5,6)1)
Graphl=(GraphlKnoten, GraphlKanten)

Graph2Knoten={5,6,7,8,9,10,11}
Graph2Kanten= set (frozenset (k)

for k in [(5,6), (5,11), (6,7), (7,8), (8,9), (9,10), (10,11)])
Graph2= (Graph2Knoten, Graph2Kanten)

=======Hauptprogramm (Beispiel)
GesamtGraph=vereinigeGraphen (Graphl, Graph2)
print ("Gesamtgraph: ...")
print (" Knoten: ", end='"")
for i in GesamtGraph[0]:

print(i, end='; ')
print ()

BK_SekI+l_Python_prof.docx -74 - (c,p) 2015 - 2026 Isp: dre

print (" Kanten: ", end='")
for j in GesamtGraph([l]:
print (tuple(j), end='; ")
print ()
T e (e e ey ")
eingabe=1
while eingabe>0:
eingabe=eval (input ("Fir welchen Knoten werden die Nachbarn gesucht?"
+" (Abbruch mit 0) 2: "))
if eingabe>0:
NachbarKnoten=findeNachbarKnoten (GesamtGraph, eingabe)
print ("Der Knoten",eingabe,"hat die / den Nachbarknoten: ",end="'")
for n in NachbarKnoten:
print (n, end=', ')
print ()
print ()
input ()

>>>
Gesamtgraph: ...
Knoten: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

8, 7, (2, 3), (4, 6), (10, 11), (11, 5), (9, 10),

Fir welchen Knoten werden die Nachbarn gesucht? (Abbruch mit 0) ?:
Der Knoten 4 hat die / den Nachbarknoten: 2, 3, 6,

Fir welchen Knoten werden die Nachbarn gesucht? (Abbruch mit 0) ?:
Der Knoten 1 hat die / den Nachbarknoten: 2,

Fir welchen Knoten werden die Nachbarn gesucht? (Abbruch mit 0) ?:

>>>

Kanten: (2, 4), (1, 2), (5, 6), (6, 7), (3, 5), (8, 9), (3, 4),

4

1

0

BK_SekI+II_Python_prof.docx -75- (c,p) 2015 - 2026 Isp: dre

8.3.3. Dictonary's - Worterbuicher

Ubersetzt Verzeichnis, praktisch eine Sammlung von Daten-Paaren, einem Schlusselwert
(Key) und einem Datenwert oder Eintrag (Value)

Schlissel und Wert werden durch einen Doppelpunkt (:) getrennt

entspricht also einem Wérterbuch, deshalb auch gerne fiir direkte Ubersetzungen benutzt. In
der gesprochenen Sprache aber eher nur fur einzelne Worte geeignet.

Angabe in geschweiften Klammern ({ ... })

Schlissel-Wert-Paare werden, Komma-getrennt notiert

prinzipiell Listen-artige Struktur; kann durch eine Liste aus zwei-stelligen Listen ersetzt wer-
den

fur "mehr-sprachige" Worterblcher ist u.U. eine "mehr-spaltige" ("mehr-stellige") Liste besser
geeignet.

(dann bendtigt man auch keine gespiegelten Dictonary's, wobei dass auch nur programm-
technisch interessant ist)

Notierung auch mehrzeilig mdglich, dann muss die erste geschweifte Klammer in der Defin-
tions-Zeile stehen und die abschlieRende Klammer hinter der letzten Zeile.

Die Worterbuch-Eintrage sollten Zeilen-weise notiert werden.

Dictonary's eigenen sich auch gut zum Abspeichern und Einlesen aus einer Text-Datei.

ebenfalls keine typische Daten-Struktur, Mischung aus Daten-Strukturen fir die interne Da-
ten-Verwaltung und -Verarbeitung
besonders auch bei der Speicherung der Daten bedeutsam

Zuweisung eines Dictonary zu einer Variable erzeugt nur Verweise / Pointer / Zeiger auf das
Original

erst mit neuesDictonary = dictonary.copy() wird eine echte Kopie (z.B. intern fir
Funktionen) erstellt

Anhangen eines neuen Eintrags
dictonary_name[neuer_schlissel] = neuer_eintrag

dictonary_name[schlissel]
liefert den zugeordneten Wert zurlick

dictonary_namel[schlUssel] = wert
ordnet dem Schliissel einen neuen Wert zu
wenn der Schlissel nicht existiert, dann wird er ins Dictonary mit seinem Wert Gbernommen

Empfehlung: In Dictonary's sollten die String's (besonders bei Schlisseln) immer mit '' ge-
kennzeichnet werden, dann kénnen die String-Eintrdge auch in f-String's mit " " ausgege-
ben werden

mit der update()-Funktion kann ein Dictonary mit einem anderen aktualisert werden
vorhandene Schlissel werden Uberschrieben und neue Schlissel mit ihrem Wert neu einge-
baut

Bestimmen der Lange / GrolRe / Eintrdgezahl eines Dictonary's

BK_SekI+l_Python_prof.docx -76 - (c,p) 2015 - 2026 Isp: dre

len(dictonary_name)
jedes Paar zahlt als ein Eintrag

Ldschen eines Eintrages durch Angabe des Schlissels
del dictonary_name[schlissel]

ist die Position bekannt, dann kann auch ein Léschen tber den Index erfolgen
del(dictonary_namel[index])

nicht mehr empfohlen wird:
del(dictonary_name[SchlUssel])

das gesamte Dictonary l16sen mit:
dictonary.clear()

weitere Objekt-orientierte Moglichkeit des Loschens eines Eintrages Uber .pop(schliissel)
der gefundene Wert wird zurtickgegeben und entfernt!

mit dictonary_name.pop(Schlissel, "Fehlertext") wird, falls der Schlussel nicht im Dictonary
ist der Fehlertext oder ein Fehler-Wert zurlickgegeben

(verhindert KeyError)

mit dictonary _name.get(Schlissel, "Fehlertext")

damit kann man sowohl den Schlissel abfragen und den Wert zuriickbekommen, als auch
im Fall, dass der SchlUssel nicht existiert einen Fehlertext oder Fehler-/Ersatz-Wert zurtick-
erhalten

dictonary_name.keys()
liefert die Schlissel des Dictonary's als Liste

dictonary_name.values()
liefert die Werte des Dictonary's als Liste
mit dictonary_name.items() interiert man durch die Eintrage

dict = { ..}
for schluessel, wert in dict.items():
print ("Schlissel: ", schluessel," > Wert: ", wert)

mit dem in-Operator kann gepruft werden, ob ein Schlissel oder ein Wert in der Schlussel-
bzw. Werte-Liste enthalten ist
Schlissel in Dictonary.keys ()

oder klrzer:
Schliissel in Dictonary

(diese Operation ist schneller)

Koordinaten = {
"Erlangen": [56,23],

BK_SekI+II_Python_prof.docx -77 - (c,p) 2015 - 2026 Isp: dre

"Berlin": [34,51]

4
"Minchen": [12,23],
"Rostock": [11,45]
}
for key in Koordinaten:

print (key, Koordinaten[key])

>>>

Miinchen [12, 23]
Rostock [11l, 45]
Erlangen [56, 23]
Berlin [34, 51]

Hauptstadte={

for

def

"Baden-Wirttemberg":"Stuttgart",
"Bayern":"Minchen",
"Berlin":"Berlin",
"Brandenburg":"Potsdam",

"Bremen" :"Bremen",
"Hamburg":"Hamburg",
"Hessen":"Wiesbaden",
"Mecklenburg-Vorpommern":"Schwerin",
"Nordrhein-Westfalen":"Disseldorf",
"Niedersachsen" :"Hannover",
"Rheinland-Pfalz":"Mainz",
"Saarland":"Saarbricken",
"Sachsen":"Dresden",
"Sachsen-Anhalt":"Magdeburg",
"Schleswig-Holstein":"Kiel",
"Thiiringen":"Erfurt"

k in hauptstadte.items () :
print (k[0]+ " hat die Hauptstadt " + k[1l])

>>>

Bayern hat die Hauptstadt
Berlin hat die Hauptstadt Berlin

Bremen hat die Hauptstadt Bremen

Sachsen hat die Hauptstadt Dresden

Brandenburg hat die Hauptstadt Potsdam

Hamburg hat die Hauptstadt Hamburg
Mecklenburg-Vorpommern hat die Hauptstadt Schwerin
Nordrhein-Westfalen hat die Hauptstadt Diisseldorf
Niedersachsen hat die Hauptstadt Hannover
Rheinland-Pfalz hat die Hauptstadt Mainz

Saarland hat die Hauptstadt Saarbriicken

Baden-Wirtemberg hat die Hauptstadt Stuttgart

Sachsen-Anhalt hat die Hauptstadt Magdeburg
Schleswig-Holstein hat die Hauptstadt Kiel
Thiringen hat die Hauptstadt Erfurt

Stadtstaaten () :
StadtstaatenlListe=[]
for land in Hauptstadte.items() :
if land[0] == land[1l]:
StadtstaatenListe.append(land[0])
return StadtstaatenListe

BK_Sekl+Il_Python_prof.docx - 78 -

(c,p) 2015 - 2026 Isp: dre

def spiegeln (Dict) :
SpiegelDict={}
for eintrag in Dict.items():
SpiegelDict[eintrag[l]]=eintrag[0]
return SpiegelDict

Schlussel und Werte eines Worterbuch's spiegel

woerterbuch = {
1: "uno"
2: "due"
3: "tres"
'O' : "Zero"

}
print (woerterbuch)

getauschtesWoerterbuch = {}
for schluessel, wert in woerterbuch.items () :
if wert not in getauschtesWoerterbuch:
getauschtesWoerterbuch[wert] = []
getauschtesWoerterbuch[wert] .append (schluessel)

print (getauschtesWoerterbuch)

def spiegeln (woerterbuch) :
gespiegelt={}
for schluessel, wert in woerterbuch.items () :
if wert not in gespiegelt:
gespiegelt[wert]=schluessel
#gespiegelt[wert] .append(schluessel)
return gespiegelt

print (woerterbuch)
print (spiegeln (woerterbuch))

BK_Sekl+ll_Python_prof.docx - 79 -

(c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen ein Worterbuch und ein kleines Anzeige-Programm (fiiv alle Ein-
héage) fiir die nachstkleinere Verwaltungs-Einheit Ihres Bundeslandes /
Stadislaales!

2. Erganzen Sie dann cine — sich wiederholende — Abfrage cines beliebigen
Schliissels aus IThrem Dictonary mil Anzeige des zugehorigen Einlfrages in
Form cines vollstandigen Salzes! Der Abbruch derv Eingabe soll bei der
FEingabe cines leeren Texles erfolgen, fehlerhaffe Eingabe sollen als solche
auf dem Bildschirm vermerkl werden!

3. Erstellen Sie ein Deulsch-Englisch- und Englisch-Deutsch-Worterbuch-
Programm, dass bekannfe Wort-Paare anzeigt und unbekannte lernt! (Wir
gehen von einer immer rvichtigen Eingabe der Vokabeln aus!) Das Anfangs-
Vokabular soll mindestens 30 Wort-Paare bzw. die Vokabeln der letzlen
Untlerrichls-iodule enthalfen.

BK_SekI+l_Python_prof.docx - 80 - (c,p) 2015 - 2026 Isp: dre

8.3.3.1. Erfassen von unbekannten Objekten und Zihlen der Objekte in einem Wor-

terbuch

Da man Dictonary's mit beliebigen Schllisseln
betreiben kann und auch die Aufnahme-Men ge
an unterschiedlichen Objekten nicht begrenzt ist,
bieten sie sich fur das Zahlen von irgendwelchen
Objekten an.

Damit das Dictonary sowohl in der Funktion — als
auch im Haupt-Programm nutzbar ist, definiert
man es vor der Notierung der Funktion (im
Haupt-Programm).

Es gibt allerdings ein Problem: In unserem Anzahl-Worterbuch gibt es gar keine Schlussel-

worter.

Habe ich eine definierte Menge, kann ich sie im
Vorfeld gleich mit definieren. Universeller — aber
auch nicht perfekt — ist die nebenstehende Versi-
on:

Jetzt wird immer dann, wenn kein passendes
Objekt in dem Anzahl-Wérterbuch gefunden wird,
ein neues mit dem Zahl-Wert 1 angelegt.
Uberlegen wir uns nun noch ein kleines Test-
Programm flr unsere Wérterbuch-Struktur.

Dabei wird auch die Effektivitat der Speicherung
deutlich.

Statt in einem Feld von 100 Objekten, werden
jetzt nur die Objekte erfasst und zahlend gespei-
chert, die wirklich bei einem Zufalls-Erzeugungs-
Verfahren entstehen.

Bei einer weiteren Nutzung des Wodrterbuches
muss man ev. beachten, dass es bestimmte Ein-
trage eben nicht gibt. Um hier keinen Laufzeitfeh-
ler zu bekommen, muss man dann vor der Be-
nutzung immer die Existenz abtesten!

Anzahl={}

def zaehle (objekt) :
Anzahl [objekt]+=1

print (Anzahl)
zaehle ("Maus")
print (Anzahl)

Anzahl={}

def zaehle (objekt) :
if objekt in Anzahl:
Anzahl [objekt]+=1
else:
Anzahl [objekt]=1

zaehle ("Maus")
print (Anzahl)

from random import randint
Anzahl={}

def zaehle (objekt) :
if objekt in Anzahl:
Anzahl [objekt]+=1
else:
Anzahl [objekt]=1

for in range (50):
zaehle (randint (1,20))
print (Anzahl)

13:

: 5,

5: 3, 6: 3,
2, 14: 2, 15:

7:
3!

2, 8: 3,
16: 3,

9: 3,
17: 1,

10:
19:

Aufoaben:

1. Verbessern Sie das obige Programm zum Zahlen der Zufallszahlen um eine

verstandliche Ausgabe!

2. Erstellen Sie eine Programm-Version eines Wiirfel-Programms, das 200x
wiirfelt und die Wurf-Anzahl hinterher als Balken-Diagramm aus Raulen

darstelll!

2
.

-81-

BK_Sekl+ll_Python_prof.docx

(c,p) 2015 - 2026 Isp: dre

8.3.3.2. Objekt-orientierte Operationen mit Dictonary's

Loschen eines Eintrages aus dem Dictonary Uber den Index
dictonary_name.pop(index)
die Funktion liefert ein reduziertes Dictonary zurtick

dictonary _name.clear()
I6scht den Inhalt des Dictonary

dictonary _name.copy()
erzeugt eine flache Kopie von dictonary_name
erzeugt Alias-Dictonary

dictonary_name.items()
gibt eine Liste aller gespeicherter Schlissel mit ihren Werten im Dictonary (jeweils Tupel-
weise) zurick

dictonary_name.keys()
gibt eine Liste aller gespeicherter Schliissel im Dictonary zurtick

dictonary_name.key()

dictonary_name.values()
gibt eine Liste aller gespeicherter Werte (Value's) im Dictonary zurlck

dictonary_name.values()
gibt eine Liste aller gespeicherter Werte im Dictonary zurlck

dictonary_name.get(schluessel, alternativwert)
liefert den Wert zum Schlussel zurlick (wenn dieser existiert); sonst den Alternativwert

dictonary_name.setdefault(schluessel, inhalt)

setzt im Schlissel-Eintrag/Inhalt-Paar mit dem angegebenen Schlissel (wenn dieser vor-
handen ist) den Inhalt - dic[schluessel] = inhalt

wenn Eintrag mit Schllssel schon vorhanden ist, dann wird dessen aktueller Inhalt zurtickge-
liefert

dictonary_name.iteritems()
zum Durchlaufen aller Schlissel-Eintrag/Inhalt-Paare in einer for-Schleife

dictonary_name.iterkeys()
zum Durchlaufen aller Schliissel in einer for-Schleife

dictonary _name.itervalues()
zum Durchlaufen aller Eintrage einer for-Schleife

BK_SekI+l_Python_prof.docx -82- (c,p) 2015 - 2026 Isp: dre

8.3.3.3. Dictonary-Comprehension

Kombination von (Ergebnis-)Listen-Erzeugung und Bearbeitung mit einer for-Schleife
gleiches Prinzip, wie bei List-Comprehension (= 9.7.1. List-Comprehension)

Vorteil: sehr kompakter Code

Nachteil: Zwischen -Werte lassen sich kaum sinnvoll ausgeben

statt den eckigen Listen-Klammern werden jetzt geschweifte Dictonary-Klammer eingesetzt

text=".....
ergebnisDict = { wort:len(wort) for wort in text.split() }

weiteres Beispiel
halbiertDict = { schluessel:wert/2 for (schluessel, wert) in einfachDict.items() }

lassen sich auch mit Bedingungen kombinieren
auswahlDict = { schluessel:wert for (schluessel, wert) in original.Dict.items() if bedingung }

Beispiel: Serien-Umwandlung von Messwerten in °F in °C

dictF = { 'messl' : -30, 'mess2' : 20, 'mess3' : 73, 'mess4' : 100, 'messb5' : 0 }
print ("Fahrenheit-Dictonary")

print (dictF)

dictC = { schl:5/9*float (wert-32) for (schl,wert) in dictF.items () }

print ("Celsius-Dictonary")

print (dictC)

dictC = { schl+"C":round(wert) for (schl, wert) in dictC.items () }

print ("Celsius-Dictonary")

print (dictC)

print(" n)

dictC = { schl+"C":round(5/9*float (wert-32)) for (schl, wert) in dictF.items () }
print ("Celsius-Dictonary")

print (dictC)

input ()

8.3.3.4. eine Datenbank mit Dictonary's

personen = { # Tabelle "Personen"
PrimarSchlissel : Attribute
Name, Vorname, Geb.Datum, Geb.Ort, Hobby's

1: ["Schmidt", "Andy", "09.03.2005", "Berlin",
["lesen", "FuBball spielen", "ins Kino gehen"]],

2: ["Bauer", "Cindy", "21.11.2006", "Rostock",
["Videos schauen", "feiern"]],

3: ["Franke", "Tom", "28.02.2005", "Minchen",
["Musik horen", "mit Frenden feiern", "ins Kino gehen"]],

4: ["Mamut", "Cem", "09.03.2005", "Hamburg",
["lesen", "FuBball spielen", "Bergsteigen"]],

5: ["Mamut", "Leihla", "01.08.2004", "Berlin",
["FuBball spielen", "ins Kino gehen", "lesen"]],

6: ["Schmidt", "Berit", "09.03.2005", "Berlin",

["Handball spielen"]],
}

befreundet = {

BK_SekI+II_Python_prof.docx -83- (c,p) 2015 - 2026 Isp: dre

Personl, Person2 aus personen

1: [1, 51,
2: [4, 3],
3: [3, 21,
4: [3, 171,
}
for i in personen.keys(): # iterieren uber die Schliissel der Personen-Tabelle

for eintrag in personen.items():
print (eintrag[0]) # Schlissel
print (eintrag[l]) # Wert

es gibt aber auch noch weitere spezielle Iterations-Funktionen

BK_SekI+lI_Python_prof.docx -84 - (c,p) 2015 - 2026 Isp: dre

8.3.4. Listen, die ll. — objektorientierte Listen

Im Abschnitt "Listen, die I. (= 8.4. Listen, die |. — einfache Listen)haben wir die Listen ganz
einfach betrachtet. Nun gehen wir zur Objekt-orientierten Nutzung Uber. Das hort sich viel-
leicht irgendwie kompliziert an, ist es aber gar nicht. Vom Objekt-orientierten Ansatz merken
wir kaum etwas. Nur die Ubliche Objekt-orientierte Schreibung bzw. der Aufruf der Funktio-
nen Uber die Punkt-Schribweise erinnert an sie. Ach ja, und jetzt heilen die Funktionen Me-
thoden. Da werden wir uns aber schnell eingewohnen.
Wir greifen auf auf das Lis-

ten-Beispiel aus dem ersten orginalliste — | | | £ | 3| 4 | 5 | g
kapitel zurtick. Wer will, kann aliasliste =~ —

ja noch mal schnell nach-

schlagen (> 8.4. Listen, die listenkopie —»= | 1 | 5 | 3 | 4 | 2

|. — einfache Listen).

eine Zuweisung einer Liste zu einer Variablen erzeugt nur einen Verweis (einen Zeiger /
Pointer) auf die urspriingliche Liste

wird die urspriingliche Liste geandert, andert sich auch die "Kopie" (, weil der Zeiger immer
noch auf die Liste zeigt)

eine echte Kopie mit der copy()-Funktion

echtneueListe = originalListe.copy()

einige Methoden auf Listen lassen Operationen zu, die man eher den Keller- bzw. Warte-
schlangen-Datenstrukturen zuordnen wurden

hie wird wieder die herausragende Rolle der Listen als Daten-Objekte (in Python und auch
sonst) sichtbar

Listen lassen sich mit dem +-Operator aneinanderhangen
verketteteListe = liste1 + liste2

len(liste)
liefert die Anzahl der Elemente in der Liste

mit dem *-Operator lassen sich Listen vervielfachen (mehrfach aneinanderhangen)
listenname = liste * anzahl

listenname.remove(element)
I6scht aus der Liste das angegebene Element

del(listenname[index])
[6scht aus der Liste das Element an der Index-Position

BK_SekI+II_Python_prof.docx -85- (c,p) 2015 - 2026 Isp: dre

listenname.count(element)
zahlt, wie haufig ein Elementes in einer Liste ist

listenname.append(element)

hangt ein Element an die Liste mit dem angegebenen Namen an

werden mehrere Elemente angehangt, dann erfolgt dies als ein Element, also als eigene
Liste, das Ergebnis ware eine Liste am Ende der (alten) Liste

Rickgabewert ist None, dieser muss aber nicht entgegengenommen werden

"\n".join(woerterliste)
erzeugt einen String aus den Wortern, die jeweils durch einenZeilenumbruch getrennt sind

bei gemischten Listen muss ein Stern vor die gemeiste Liste gesetzt werden und ein Sepera-
tor (sep= ...) angegeben werden
print(*gemischteListe, sep="\n")

listenname.insert(index, element)
fugt ein Element in eine Liste an der indizierten Position ein

listenname.extend(liste)
hangend ein oder mehrere Elemente (aus liste) einzeln an eine Liste (hier listenname) an

listenname.index(element)
liefert die Index-Position (echte Position-1) von element zurick

element=listenname.pop()
liefert das letzte Element der Liste zuriick, und es wird aus der Liste entfernt!

einige Programmiersprachen kennen neben pop auch noch peek bei peek wird das letzte
Element aber nicht entfernt, sondern nur gelesen; in python lasst sich hierfur liste[-1] benut-
zen

element=listenname.pop(index)
liefert das indizierte Element der Liste zurlick, es wird aus der Liste entfernt!

listenname.sort()

sortiert die Elemente einer Liste aufsteigend (eine (Neu-)Zuweisung ist nicht notwendig)
bietet als Argument noch die Schlisselwdrtchen key und reverse

mit reverse wird die Liste absteigend (also umgekehrt) sortiert

listenname.sort(reverse=True)

BK_SekI+l_Python_prof.docx - 86 - (c,p) 2015 - 2026 Isp: dre

listenname.reverse()

dreht die Reihenfolge der Elemente um

reverse andert die angegebene Liste selbst!

aber Vorsicht:

liste = liste.reverse() |6scht praktisch die urspriingliche Liste und gibt dann None zurtick

mit dem Wortchen key kann man der Sortierfunktion noch eine einargumentige Funktion
Ubergeben, die als Sortierkriterium dienen soll z.B. die Lange der Strings (= len())
listenname.sort(key=len)

die Schlusselwdrtchen lassen sich auch gemeinsam verwenden

element in liste liefert den Wahrheitswert, ob element in der Liste enthalten ist

element not in liste liefert den Wahrheitswert, ob element (noch) nicht in der Liste enthal-
ten ist

>>> a=[3,2,1]
>>> a
[3, 2, 1]
durch den Allias wird lediglich ein weite- >>> b=a
rer Zeiger (genannt Variable) auf die >>> b
gleiche Liste gelegt [3, 2, 1]
>>> a.sort()
beim Verdndern der einen Liste wird die ctes O
“andere” Liste mit gedndert i; f)’ 31
. : : i [1, 2, 3]
nur mit Deep-Kopie kann eine unabhan- S>>

gige Kopie erstellt werden

.)))) >>> a=[3,2,1]
auch bei Ubernahme einer Alias-Liste in >>>

eine andere Liste wird nur der Zeiger [3, ; 1]
Ubernommen >>> b=["A", "B","C"]
>>> b
Veranderungen an der "originalen" Alias- ["a", "B", "C"]
Liste wirken sich auch eine weitere Ali- iii a.append (b)
a

as-Nutzung aus
[1, 2, 3, ["A", "B", "c"]]

>>> b.reverse

>>> b

[(*c*, "B", "A"]

>>> a

[1, 2, 3, ["c" , "B" , "A"]]
>>>

listenname.reverse()
sortiert die Elemente einer Liste absteigend

BK_SekI+II_Python_prof.docx - 87 - (c,p) 2015 - 2026 Isp: dre

listenkopie = copy.deepcopy(originalliste)

listenname.split()
zerlegt einen String in die Teile, die durch Leerzeichen voneinander getrennt sind
element liste = text.split()

Erstellen eines Strings aus den Elementen einer Liste
listenname.join()

liste = ['a', 'b', 'c']]

print (''.join(liste)) = 'abc'
print (' '.join(liste)) 2 'abc'
print (' '.join(liste)) 2 'abc'
Listen:

Vorteile:

o effektive Speichernutzung
e schnelles Einspeichern (Anhangen)
¢ einfache Algorithmen (suchen (, entfernen, einfligen an Position))

Nachteile:
e allgemein Arbeits-aufwandiger
e langsames Suchen

BK_SekI+l_Python_prof.docx - 88 - (c,p) 2015 - 2026 Isp: dre

8.3.5. List-Comprehension

Listen-Erstellung und Listen-Erstellung mit einer For-Schleife in komprimierter Form
ergebnisListe = [funktion(argument) for element in datenListe]

entspricht map-Konstrukt: ergebnisListe = list(map(funktion, datenListe))

lasst sich auch mit if-Konstrukten erweitern:

ergebnisListe = [element for element in datenListe if bedingung]

z.B.:

mitAnfangA = [wort for wort in wortListe if wort[0]="A"]

relativ gut lesbar: mache Wort fir Wort in der Worterliste prife, Anfang mit "A"

Beispiele:

Berechnen der Summe der Quadrate von Werten:
werte = [2,4,0]

erg = sum([wert**2 for wert in wertel])

Auswahlen von Zahlen, die gerade sind:
zahlen = [2,3,4,5]
erg = [zahl for zahl in zahlen if zahl%2 ==]

Ermitteln des Maximum's aus 100 Zufallszahlen (hier exponentiell verteilt (multipliziert mit

0,1))
import random
erg = max([random.expovariante(0.1) for _ in range(100)])

BK_SekI+II_Python_prof.docx -89 - (c,p) 2015 - 2026 Isp: dre

BK_SekI+l_Python_prof.docx -90 - (c,p) 2015 - 2026 Isp: dre

8.4. Interation oder Rekursion? — das ist hier die Frage!

Die Frage, die wir uns hier stellen missen, ist die nach dem besten Vorgehen beim Losen
eines Problems. Eine Variante ware es ein Problem zuerst einmal auf ein oder mehrere ein-
fachere Probleme zurtckzufuhren. Das macht man solange, bis es kein einfacheres Problem
mehr gibt oder die Losung offensichtlich ist. Auf dem Riickweg zum ehemaligen aufrufenden
(groRen) Problem erganzt man die primitive L6sung immer ein Stick weiter.

Glaubt man der Literatur, dann ist dieses Ldsungs-Verfahren, welches von Menschen und
Programmierern (auch das sollen Menschen sein?!), am haufigsten / vorrangig genutzt wird.
Die andere Variante ist das gleichartige Wiederholen einer bekannten / einfachen Lésung
bzw. einer Teil-Tatigkeit, bis die Aufgabe geldst ist.

Meiner Meinung nutzen Menschen eher diese Methode. Bei Personen, die Programmieren
lernten ist es ebenfalls die zuerst gewahlte Losungs-Strategie.

Praktisch ist es wohl eine nicht-entscheidbare Frage — wie die, was denn nun zuerst da war,
das Huhn oder das Ei. Zum Einen lassen sich Probleme fast immer mit beiden Strategien
I6sen. Dabei ist meist die eine Strategie eleganter / effektiver / cleverer / schoner / ..., aber
das steht nicht Disposition.

Zum Anderen gibt es sie nicht — die universell beste Strategie, sonst kdnnten wir sie ja ein-
fach ansagen / lehren / predigen. Vielfach hangt das beste Vorgehen von den Rahmen-
Bedingungen ab, die zur Verfligung stehen. Im Computer-Bereich sind dies z.B. Speicher-
platz oder die Rechen-Zeit.

Meist geht es bei Interation und Rekursion auch begrifflich etwas hin und her. Den die Intera-
tion oder die Rekursion gibt es nicht. Es sind verallgemeinerte Strategien.

Praktisch misste man zwischen der interativen und / oder rekursiven Defintion einer Funkti-
on und der programmiertechnischen Implementierung unterscheiden.

i.A. lassen sich die — wie auch immer definierten — Funktionen auf beide Arten implementie-
ren; allerdings gibt es ohne weiteres Programmier-System, die bestimmte Strategien bevor-
zugen bzw. manche andere gar ausschlie3en.

Vielfach entscheidet der Programmierer, was gunstiger ist.

Da beide Umsetzungen Vor- und Nachteile haben, missen die System-Bedingungen aber
mit beachtet werden

Die Suchmaschine google zeigt nach der Eingabe eines Suchbegriffes gleich unter der Tref-
ferzahl und er Bearbeitungszeit oft auch ein "Meinst du: XYZ". Dabei werden vorrangig kleine
Schreibfehler "korrigiert" oder alternative Begriffe angeboten. Sucht man nun auf der deut-
schen google-Seite nach Rekursion, dann ist das Ergebnis schon etwas Uberraschend. Auch
auf der englischsprachigen Seite passiert mit dem Begriff "recursion" das Gleiche. Ist google
hier ein Fehler unterlaufen? Wie unterscheiden sich die — und weitere alternative - Antwort-
seiten?

BK_SekI+II_Python_prof.docx -91- (c,p) 2015 - 2026 Isp: dre

8.4.1. Interation

Denken wir z.B. an die Aufgabe eine 10 Kisten mit Was-

serflaschen in der dritten Stock zu transportieren. Fir ei- Teilaufgabe
nen echten Body-Builder kein Problem. Er weiss blof3 Teilaufgabe
nicht, was er in die andere Hand nehmen soll (;-). Teilaufgabe

Jeder wirde diese Aufgabe sicher dadurch |6sen, dass er Teilaufgabe
kleinere Mengen (wahrscheinlich immer 2 Kasten) nach Teilaufgabe
oben bringt. Die komplizierte (schwer zu I6sende) Aufgabe
wurde in mehrere gleiche Teil-Aufgaben zerlegt.

Ein solches Problem-Lésen nennen wir interatives Vorgehen.

Aus informatischer Sicht ist das die Wiederholung strukturgleicher Blécke mit Teilaufgaben.
Wenn wir irgendwelche Dinge — z.B. eine Ausgabe x-mal wiederholen wollten, dann haben
wir das in einer Schleife erledigt. Das ist eine klassische interative Losung. Wir hatten auch
ein Programm schreiben kdnnen, dass zumindestens fir eine bekannte Anzahl von Wieder-
holungen, genau die gleiche Ausgabe in einem Stlick erzeugt hatte. Da wirden wir uns ent-
weder die Finger wund tippen oder x-mal die Copy-und-Paste-Strategie anwenden missen.
Alle Schleifen stellen typische Interationen dar. Der Wortstamm kommt auch vom lataini-
schen interare flr wiederholen.

Unter Interation versteht man das mehrfache (abzahlbare / gezahlte) Wiederholen einer
Aktion / Handlung / Anweisung.

Interation ist die Anwendung immer gleicher Prozesse auf bereits gewonnene Zwischen-
Ergebnisse.

Vorteile einer / der Interation

¢ weniger Speicher-Bedarf

¢ intuitiv verstandlich

¢ im direkten Vergleich meist schneller meist sogar deutlich schneller
[]

Nachteile einer / der Interation

o kompliziertere Umsetzung
¢ langere Programmtexte
[]

BK_SekI+lI_Python_prof.docx -92- (c,p) 2015 - 2026 Isp: dre

8.4.1.1. typische Interations-Anwendungen

Eigentlich kénnte ich mir diesen Abschnitt sparen, da die bisher besprochenen Wiederholun-
gen fast ausnahmslos Interationen waren.

Da aber Summen und Produkte und vor allem deren Entwicklung in Schleifen zu den klassi-
schen Programmier-Aufgaben gehdren, seien sie hier noch mal aufgeflihrt, wiederholt und
zum systematischen Verstandnis dargestellt.

Wem die Summen- und Produkt-Bildung schon zur Nase raushangt und die Schwierigkeit
damit nicht verstehen kann, der sollte gleich zu den Rekursionen (= 8.4.2. Rekursion) tber-
gehen. Da erwartet ihn vielleicht Neueres und Spannendes.

8.4.1.1.1. Summen-Bildung

def summe (endzahl) :
sum=0
for i in range(l,endzahl+l) :
sum=sum+i
return sum

main
endzahl=eval (input ("Bis zu welcher Zahl soll summiert werden?: "))
print ("Die Summe lautet: ", summe (endzahl))

Wie sieht die Speicher-Belegung zum Zeit-

punkt des Eintritts in die Zahlschleife aus?

Ein Speicherzelle "endzahl" wurde mit der Ein- summe() i1

gabezeile angelegt und mit der Nutzer-Eingabe summe() sum | 0

(hier: 10) gefiillt. summe() endzahl | 10

Beim Aufruf der Funktion summe wird nun eine endzahl | 10

Kopie dieser Speicherzelle angelegt, die aber Name Speicher

nur innerhalb der summe-Funktion gultig ist.
Gleiches gilt fur die anderen Variablen.

Man kann die Unabhangigkeit von endzahl gut testen, indem man z.B. innerhalb der Funkti-
on die endzahl (vielleicht direkt vor dem return) andert. Eine Ausgabe von endzahl im Haupt-
programm liefert die eingegebene Zahl. Mit dem return werden alle Variablen der Funktion
summe geldscht.

Auch davon kann man sich durch eine ver-

suchte Ausgabe der summe-Funktions-

Variablen im Hauptprogramm Uberzeugen. Es summe() i1
gibt eine Fehlermeldung. summe() sum | 1
Beim ersten Schleifen-Durchlauf ist i gleich 1 summe() endzahl | 10
und wird in der Summierungszeile zuerst ein- endzahl | 10

mal (rechte Seite des Terms) auf den (alten)
Inhalt von sum aufaddiert. Das Berechnungs-
Ergebnis wird dann in der Speicherzelle sum
(quasi als neue Belegung) gespeichert.
Eigentlich wirden wir in Python die Aufsummierung ja eher so schreiben: sum+=i. Das
macht den Ablauf der inneren Speicher-Ablaufe aber nicht nachvollziehbar.

Name Speicher

summe() i1

BK_SekI+II_Python_prof.docx -93- (c,p) 2015 - 2026 Isp: dre

summe() sum | 1
summe() endzahl | 10
endzahl | 10
Name Speicher

BK_SekI+l_Python_prof.docx -94 - (c,p) 2015 - 2026 Isp: dre

Mit dem Erreichen der letzten Schleifen-

Anweisung (hier haben wir ja nur eine) wird i

um Eins erhéht und geprift, ob die Schleife ein summe() i 11
nachstes Mal durchlaufen werden muss (i ist summe() sum | 55
jetzt noch kleiner als endzahl+1). summe() endzahl | 10
Am Ende aller Schleifendurchlaufe ist sum mit endzahl | 10

55 belegt. Dieser Wert wird nun an die print-
Anweisung Ubergeben. Natlrlich hatte man
auch eine andere Variable zur Ubernahme des
Funktionswertes nutzen kdnnen.

Die gesamte Variablen-Struktur der Funktion wird nach dem return geldscht und ist nicht
wieder erreichbar. Nur bei speziellen Generator- Funktionen (= 6.5.3. Generator-Funktionen
— Funktionswerte schrittweise) bleibt die Variablen-Struktur fiir einen erneutetn Funktions-
aufruf erhalten.

Name Speicher

8.4.1.1.2. Produkt-Bildung

Die algorithmischen Anderungen zur Summe-Funktion sind minimal. Natirlich sollten die
Bezeichner usw. angepasst werden. Aber flr ein schnelles Test-Programm wirde es auch
ohne gehen.

def produkt (endzahl) :
prod=1
for i in range(l,endzahl+1):
prod=prod*i
return prod

main

endzahl=eval (input ("Bis zu welcher Zahl soll multipliziert werden?: "))
ergebnis= produkt (endzahl)

print ("Das Produkt lautet: ",ergebnis)

Aufoaben:

1. Erstellen Sie ein Speicher-Schema fiir das Produkt-Programm!

2. Uberlegen Sie sich, was passieren wiirde, wenn man innerhalb der Schleife
ergebnis immer auf 13 selzt! Diskulieren Sie Ihre Voraussage mit anderen
Kursteilnehmern! Probieren Sie es dann aus!

3. Schreiben Sie eine Summe- und eine Produkt-Funkfion in einem Pro-
gramm, welche immer die Zahlen von ciner Start- bis zu ciner Endzahl
(iiber Eingaben feslzulegen) verarbeilen!

BK_SekI+II_Python_prof.docx -95- (c,p) 2015 - 2026 Isp: dre

8.4.2. Rekursion

Kommen wir noch mal auf unser 10-Wasser-Kisten-Beispiel zuriick. Um sie in den drutten
Stock zu bekommen, kdnnen wir selbst mit jeweils 2 Kisten funfmal Treppen steigen und die
Kisten hochschleppen.

Eine andere Strategie ware es, die Aufgabe einfach zu zerlegen. Ich lbergebe das Kisten-
Problem an den nachsten Party-Gast / Wassertrinker, indem ich ihn fur den Transport von 8
Kisten verantwortlich mache. Ich selbst nehme 2 Kisten und bringe sie hoch. Der andere hat
ein deutlich einfacheres Problem, als ich vorher mit 10 Kisten. Der Zweite kann nun genauso
vorgehen. Sich einen "Dummen" suchen, der 6 Kisten als Auftrag bekommt und er selbst
auch 2 Kisten nach oben transportiert. Der "Dumme" wird so weiterverfahren. Wenn es dann
irgendwann nur noch 4 Kisten sind, tbergibt der vorletzte Transporteur die (leichteste / letz-
te) Aufgabe an den letzten Party-Gast / Wassertrinker. Jeder der beiden I6st nun seine
Transport-Aufgabe und bringt jeweils 2 Kisten nach oben. In der Wohnung wird dann alles
wieder zu einem 10-Kisten-Stapel zusammengesetzt.

in der Informatik versteht man darunter die Rickflhrung einer schwierigeren / aufwandigeren
/ komplizierteren / allgemeinen Aufgabe in eine leichtere / weniger aufwandigen / einfacheren
/ speziellen.

vom lat.: recurrere (zurticklaufen, zurtickkehren)

besonders gern benutzt und besonders eindrucksvoll sind Rekursionen in der Grapfik-
Programmierung

nutzt man dann noch die Turtle-Graphik (= 8.8. Turtle-Graphik — ein Bild sagt mehr als tau-
send Worte), dann kann man Rekursion praktisch erleben (- 8.8.6. Rekursion)

— theoretisch unendlich oft — in sich selbst geschachtelte Schleife
wobei hier nicht die Schleife das Struktur-Objekt ist sondern eine sich selbst-aufrufende
Funktion

Ein Problem haben wir allerdings. Man braucht komplizierte Aufgabe
immer eine leichteste / letzte Teilaufgabe. Die- leichtere Teilaufgabe
se nennen wir Rekursions-Abbruch oder aus leichtere Teilaufgabe
der anderen Richtung betrachtet Rekursions- | einfachste Teilaufg. |
Anfang. Die anderen — delegierenden / verein-

fachenden - Schritte werden Rekursions-

Schritt genannt.

In der Mathematik ist die Rekursion ein gangiges Mittel zur Definition von Funktionen
z.B.: Bildung einer Summe

sum(0) =0 Rekursions-Anfang
jede andere Summe lasst sich dann so berechnen:

sum(n) = sum(n-1) + n Rekursions-Schritt

die gesamte Definition lautet dann

sum(n) = 0, fallsn =0 Rekursions-Anfang
sum(n-1) +n, sonst Rekursions-Schritt

BK_SekI+l_Python_prof.docx -96 - (c,p) 2015 - 2026 Isp: dre

Auch wenn es ein bisschen wie eine interative Lésung aussieht, hier ist der entscheidende
Unterschied, dass die Funktion sich selbst wiederaufruft. Bei der Interation wird nur wieder-
holt.

damit ein Problem rekursiv zu l16sen geht, muss es die folgenden Bedingungen erfullen:
e das Problem muss sich in eine einfachere Variante von sich selbst zerlegen lassen
e bei der Zerlegung in eine einfachere Variante muss irgendwann eine Variante erreicht
werden, die sich ohne weitere Zerlegung I6sen lasst
¢ wenn die Teilprobleme gelést sind, dann missen sich die Teil-Lésungen zu einer L6-
sung des Ausgangs-Problems zusammensetzen lassen

Unter Rekursion versteht man das nicht voraussehbare Wiederholen einer Aktion / Funktion
durch Aufruf von sich selbst.

Rekursion ist das Problemlésungs-Konzept, bei dem eine (komplexe) Aufgabe in (kleinere,
leichter I6sbare) Teil-Aufgaben (der gleichen Klassen) zerlegt wird, diese gelést werden und
dann zur Gesamt-Lésung zusammengesetzt werden.

Rekusionen bedirfen einer trivialen Teil-Aufgaben-Lésung, ab der eine weitere Aufgaben-
Zerlegung nicht mehr durchgefiihrt werden kann.

Vorteile einer / der Rekursion

relativ einfache Defintion

dem menschlichen Denken dhnlich
Korrekheit ist i.A. leichter zu priifen
kirzere Formulierung

kiirze Implementierungen

spart Variablen

(i.A.) sehr effektiv

Ob rekursives Arbeiten wirklich dem menschlichen Denken sehr nahe kommt, wage ich zu
bezweifeln. Meine Erfahrungen sagen eher, dass rekursive Prinzipien / Funktionen zumin-
destens sehr einfach erscheinen, beim Umsetzen in ein Programm wird es deutlich schwieri-
ger und problematisch wird es, wenn selbst neuartige Sachverhalte / Probleme rekursiv ge-
I6st werden sollen

Meist erscheint dann irgendwie die interative Losung logischer oder eingangiger. Kommt
man spater auf eine rekursive Lésung, ist sie zwar meist deutlich eleganter, aber auch
schwerer zu verstehen und zu warten.

Nachteile einer / der Rekursion

¢ uniibersichtlicher Programmablauf
¢ schlechtes Laufzeit-Verhalten meist deutlich langsamer
o groRerer Speicher-Bedarf z.B. fur RuUcksprung-Adressen von
(groBer Overhead von Funktions-Aufrufen) noch nicht gelosten Ubergeordneten
Funktions-Aufrufen

BK_SekI+II_Python_prof.docx -97 - (c,p) 2015 - 2026 Isp: dre

einige Programmiersprachen kennen nur Rekursionen, bei ihnen fehlen andere Wiederho-
lungs-Strukturen (z.B. Scheme)
Computer arbeiten intern aber immer interativ, aber das ist nicht unsere Ebene

Wir unterscheiden direkte und indirekte Rekursion. Die direkte ist dadurch gekennzeichnet,
dass die Funktion sich immer wieder selbst aufruft. Bei der indirekten Rekursion rufen sich
mehrere Funktionen gegenseitig auf. Sind es z.B. zwei, dann ruft Funktion1 die Funktion2
auf und diese dann wieder Funktion1.

8.4.2.1. Rekursions-Beispiele: Summen- und Produkt-Bildung

def summe (endzahl) :
sum=0
for i in range(l,endzahl+l):
sum=sum+i
return sum

main
endzahl=eval (input ("Bis zu welcher Zahl soll summiert werden?: "))
print ("Die Summe lautet: ",summe (endzahl))

Betrachten wir hier auch die beiden Funktionen (summe und produkt), die oben bei den Inte-
rationen nochmals besprochen worden.
Uber die Rekursion beschreiben wir die Funktion summe wie oben besprochen:

- 0, fallsn=20 Rekursions-Anfang
summe(n) { summe(n-1) + n, sonst Rekursions-Schritt

def summe (endzahl) :
if endzahl==0:
return 0
else:
return summe (endzahl-1)+endzahl

main
endzahl=eval (input ("Bis zu welcher Zahl soll summiert werden?: "))
print ("Die Summe lautet: ", summe (endzahl))

Typisch ist die umgekehrte Abarbeitung zur

kleinsten Zahl / zum Abbruch-Kriterium hin.

Die Speicher-Belegung ist aber letztendlich summe() endzahl | 10
deutlich verschieden. endzahl | 10

Beim Aufruf der Funktion summe wird wieder
eine Kopie von endzahl angelegt. Nun wird die
Verzeigung passiert und bevor irgenwas getan

Name Speicher

BK_SekI+l_Python_prof.docx -98 - (c,p) 2015 - 2026 Isp: dre

wird, wird die Funktion schon wieder verlassen

allerdings mit einem erneuten Aufruf von sum- summe() endzahl | 9
me. Das Argument wurde aber um Eins verrin- summe() endzahl | 10
gert. endzahl | 10
Zur Kennzeichnung eines untergeordneten

Aufrufs verwende ich unterschiedlich dunkle

Grautdne.

Dieser Vorgang wiederholt sich jetzt einige

Male bis der Aufruf mit dem Argument 0 (fir . ——— 0

die endzahl) erfolgt. 1

Es erfolgt ein Return mit 0 und nun wird der
Speicherstapel abgebaut, indem der Rickga- summe() endzahl | 7

be-Wert des untergeordneten Funktions- summe() endzahl | 8

Aufrufs mit der — auf der jeweiligen Ebene gul- summe() endzahl | 9

tigen — endzahl addiert wird. summe() endzahl | 10
Letztendlich kommen wir so zum 1. Funktions- endzahl | 10
aufruf zurtck und der gibt nun das Ergebnis

(aus der Berechnung summe(9)+endwert) an

den aufrufenden Programmschritt zurlick (hier

die Ausgabe).

Schon bei nur 10 Rekursionen wird also deutlich mehr Speicher gebraucht, als in der intera-
tiven Version.

Typische Rekursionen haben meist eine deutlich groflere Rekursionstiefen und haufig auch
noch interne Variablen. Auch diese bendtigen Platz im sogenannten Kellerspeicher, LIFO-
Speicher oder Stack. Der zuletzt gespeicherte Inhalt wird zuerst wieder herausgeholt (Last In
First Out). Anders herum kann man sich das Speicher-Prinzip auch als Stapel (engl.: stack)
verstellen. Man muss Neues oben auflegen und auch von oben der Stapel wieder abbauen.
Die informatische Datenstruktur "Keller" wird spater nochmals ausflihrlich (Objekt-orientiert)
besprochen (= 9.8. Keller).

Aufoaben:

1. Erstellen Sie die Definilion fiir ein Produkl!

2. Erstellen Sie ein Programm mil einer rekursiven Produkt-Funklion!

3. Zeigen Sie an einem Speicher-Schema, welche Variablen wann angelegt
werden und welche Werte sie beinhalten!

BK_SekI+II_Python_prof.docx -99.- (c,p) 2015 - 2026 Isp: dre

8.4.2.2. weitere typische Anwendungen fiir Rekursionen

8.4.2.2.1. Uberfiihrung einer Dezimal-Zahl in eine Dual-Zahl

def dualzahl (dezimalzahl) :
ganzzahlteiler=dezimalzahl/2
rest=dezimalzahl%2
if rest==0:
stellensymbol="0"
else:
stellensymbol="1"
if ganzzahlteiler==
return stellensymbol
else:
return dualzahl (ganzzahlrest) + stellensymbol

8.4.2.2.2. die Fakultat

faktorielle Funktion
fur die Wahrscheinlichkeitsrechnung / Stochastik haufig gebraucht
in der Mathematik durch das Ausrufe-Zeichen nach der Zahl ausgedrickt:

6! =1*2*3*4*5*6 = 720

oder eben allgemein:

nl=1*..*(n-1)*n = [[iL,i

die meisten Programmierer wirden wohl auch eher interativ an die Implementierung heran-

gegen (> 8.4.1.1.2. Produkt-Bildung)
hier schauen wir uns aber auch mal die rekursive Losung an:

N _ 1, fallsn=1 Rekursions-Anfang
fakultat(n) { fakultat(n-1) + n, sonst Rekursions-Schritt

def fakultaet (x):
if x==1: return 1
else:
return fakultaet (x-1) *x

BK_SekI+l_Python_prof.docx -100 - (c,p) 2015 - 2026 Isp: dre

8.4.2.2.3. die FIBONACCHI-Folge

0,1,1,2,3,5,8, 13, 21, 34, 55, 89, ...

0 fallsn=0 ,
) ’ Rekursions-Anfan
fib(n) = { 1, falls n = 1 I
fib(n-1) + fib(n-2), sonst Rekursions-Schritt

Exkurs: FIBONACCHI ohne die Vorglieder?

Das Berechnen eines bestimmten Gliedes der FIBONACCHI-Folge ist durch Rekursion und
Interation modglich. Beide Losungswege — also die interative bzw. die rekursive — haben
durch die vielen Wiederholungen bzw. Funktionsaufrufe einen recht groRen Rechenaufwand.
Schlielich mussen alle Vorglieder berechnet werden, um dann die letzten beiden Vorglieder
zum Ergebnis zu addieren.

Besonders fur hohergliedrige Werte in der Folge ist der Rechenaufwand dann enorm.

Der franzosische Mathematiker J.-Ph.-M. BINET schlug (1843) eine andere Funktion zur Be-
rechnung der Einzelglieder vor:

= (¢~ ()

Einen solchen Ldsungsweg nennen wir explizit. Explizite Losungen sind meist extrem
schnell — vor allem im Vergleich zu den anderen beiden Lésungs-Strategien. Der Aufwand
fur die Implementierung liegt im Bereich der Interation — also etwas aufwandiger, als fur eine
Rekursion.

Explizte L6sungen von Problemen, die im "normalen" Leben einen gro3en Rechnenaufwand
haben stellen z.B. haufig Sicherheits-Probleme dar. Wenn z.B. eine Sicherheits-Losung da-
rauf aufbaut, dass sie erst mit einem riesigen Rechenaufwand geknackt werden kann, und
es exisiert auf einmal eine explizite Lésung, dann stirzt das Sicherheits-Konzept in sich zu-
sammen.

Aufoaben:

1. Programmieren Sie die nachfolgende "Super’"-FIBONACCHI-Folge als rekur-
sive Funktion mit kleinem Rahmen-Programm zur Anzeige mehrerer Folge-
Glieder!

0, falls n =0

sfib(n) = 1, falls n = 1 Rekursions-Anfang
2, falls n = 2
sfib(n-1) + sfib(n-2) + sfib(n-3), sonst Rekursions-Schritt

zur Kontrolle: erwartete erste Glieder der Folge:
0,1,2,3,6, 11, 20, 37, 68, 125, 230, 423, ...

BK_SekI+II_Python_prof.docx -101 - (c,p) 2015 - 2026 Isp: dre

Aufoaben (fiir Forlgeschrilfene):

2. Erstellen Sie ein Programm, dass fiir die ersten 20 Glieder der FIBONAC-
CHI-Folge die Werle jeweils klassisch interativ und vekursiv und dann noch
einmal mil der BINET-Funkltion berechnel. Priifen Sie, ob es Differenzen
Libt (Anzeigen lassen!)!

3. Die sogenannle PADOVAN-Folge (auch: kleine Schweslker der FIBONACCHI-
Folge) versucht die verzogerte Forltpflanzungs-Fahigkeil der Nachkommen
nachzubilden. Statt mit den beiden unmittelbaren Vorgangern (n-1 und n-2)
zu rechnen, werden die Vorginger n-2 und n-3 addiert. Geslartet wird mit
dem Wert 1 fiir die ersten drei Glieder. Erfellen Sie ein Programm, dass die
PADOVAN-Folge fiir die Glieder 1 bis 20 simuliert!

4. Stellen Sie die Glieder der FIBONACCHI- und der PADOVAN-Folge in einer
labellarischen Form gegeniiber (Glieder 1 bis 30)!

0, falls n =0

pad(n) = 1, falls n =1 Rekursions-Anfang
1, falls n =2
pad(n-2) + pad(n-3), sonst Rekursions-Schritt

zur Kontrolle: erwartete erste Glieder der Folge:
0,1,1,1,2,3,4,6,9, 13,19, 28, ...

Aufoaben fiir das gehobene Anspruchsniveau:

5. Untersuchen Sie, ob es zwischen den Gliedern der FIBONACCHI-Folge ei-
nen Wachstums-Faktor (Quotient des aktuellen und dem vorlaufenden
Glied) gibt! Wie verhalt sich dieser Quotient im Verlauf der Folge?

6. Unlersuchen Sie gleiches fiiv die PADOVAN-Folge!

8.4.2.2.4. das gqT — der GroRte gemeinsame Teiler

Natlrlich misste es der ggT (GGT; eng.: gcd (greatest common divisor)) heifden, aber wer spricht
schon so?

beim ggT mehrerer (mehr als 2) Zahlen muss allerdings auf die Primfaktoren-Zerlegung zu-
rickgegriffen werden

bei zwei Zahlen

10584 = 23 - * T2
40500 = 22 * 3+ 5

ggT: 22 * 33 =108

BK_SekI+l_Python_prof.docx -102 - (c,p) 2015 - 2026 Isp: dre

wird fUr mehr Zahlen

1400= 2° * 52 72
283500 = 2?2 * 3 x5 x 71
20250 = 2! * 3 * 5

ggT: 2° * 52 =50

Primfaktoren-Zerlegung sehr rechen-aufwandig

EuKLIDischer und STEINscher Algoritmus

Grundidee von EUKLID und dann durch STEIN verbessert

40500 : 10584 = 3 Rest: 8748
10584 : 8748 = 1 Rest: 1836
8748 : 1836 = 4 Rest: 1404
1836 : 1404 = 1 Rest: 432
1404 : 432 = 3 Rest: 108
432 : 108 = 4 Rest: 0

ggT(x,y, z) = 9gT(agT(x, y), z) = ggT(x, ggT(y, z))

BK_Sekl+ll_Python_prof.docx - 103 -

(c,p) 2015 - 2026 Isp: dre

8.4.2.2.5. Erkennung von Palindromen

rekursiv:

def ist palindrom(zeichenkette) :
if len(zeichenkette)<=1:
return 1
if zeichenkette[0] !=zeichenkette[-1]:
return 0
return ist palindrom(zeichenkette(s[1l:-11])

interativ:

def ist palindrom(zeichenkette):

links=0

while links<rechts:
if zeichenkette[links] !=zeichenkette[rechts]:

return 0

links+=1
rechts-=1

return 1

mit speziellen Python-Funktionen fur Strings und Listen:

def ist palindrom(zeichenkette) :
buchstabenliste=1list (zeichenkette)
buchstabenliste.reverse ()
return ("".join(1l))

ist bei Zeitvergleichen die schnelleste Variante, weil die Listen- und String-Funktionen in Ma-
schinensprache realisiert sind

BK_SekI+l_Python_prof.docx -104 - (c,p) 2015 - 2026 Isp: dre

8.4.2.2.x. weitere klassische Rekursions-Probleme

Tiirme von Hanoi

rekursive Zerlegung des aktuellen Turm in die grofite / untereste Scheibe und einen kleine-

ren (Rest-)Turm

ACKERMANN-Funktion

1926 von Wilhelm ACKERMANN beschrieben

wird zur Austestung von Speicher- und Computer-Modellen benutzt, da die Funktion extrem

schnell wachst

ack(a, b, 0) = a+b
ack(a, 0, n+1) = ack2(a, n)
ack(a, b+1,n+1) = ack(a, ack(a, b, n+1), n)
0, wenn n=0
ack2(a, n) = 1, wenn n=1
a, wenn n>1

durch PETER 1935 etwas einfacher definiert:

ack(0, m)
ack(n+1, 0)
ack(n+1, m+1)

m+1
ack(n, 1)
ack(n, ack(n+1, m))

rekursiv:
def ackermann (n, m) :
if n==0:

return m+1
elseif m==0:
return ackermann (n-1, 1)
else:
return ackermann (n-1, ackermann (n, m-1)

teilweise interativ:
def ackermann (n, m) :
while n!=0:
if m==0:
m=1
else:
m=ackermann (n, m-1)
n+=1
return m+1

BK_Sekl+ll_Python_prof.docx - 105 -

(c,p) 2015 - 2026 Isp: dre

Quicksort

Beim Quicksort-Verfahren wird eine Liste von Zahlen od.a. Objekten dadurch sortiert, das die
originale Liste in immer kleiner werdende Liste aufgeteilt wird. Dabei wird einfach nur nach
GroRe in die eine oder andere Liste eingeordnet. Als Entscheidungs-Element (Grenzwert)
wird ein zufalliger Wert oder z.B. einfach das erste Element der Liste benutzt. Das Entschei-
dungs-Element wird auch Pivot-Element genannt. Das Wortchen pivot bezeichnet im Fran-
zosischen den Dreh- und Angel-Punkt.

Optimalerweise sollten die Teil-Listen immer die halben Listen der Vorganger-Liste sein,
dann sortiert dieses Verfahren sehr schnell.

Genaueres spater bei der Besprechung verschiedener Sortier-Algorithmen (= 8.15. Sortie-
ren — eine Wissenschaft flr sich).

Mergesort

Eine ahnliche Strategie verfolgt der Sortier-Algorithmus Mergesort. Auch hier wird in klei-
ne(re) Listen zerlegt, die dann flr sich sortiert werden. Am Schluss werden die sortierten
Teil-Listen durch Mischen (merge = engl.: verschmelzen) vereint.

Mergesort folgt dem Teile-und-herrsche-Prinzip (divide and conquer), welches erstmals von
J. VON NEUMANN (1945) beschrieben wurde und praktisch auch in seinen Rotor-
Maschinen zum Knacken des Enigma-Code's verwendet wurde.

Genaueres spater bei der Besprechung verschiedener Sortier-Algorithmen (- 8.15. Sortie-
ren — eine Wissenschaft flr sich).

Potenzierung von Zahlen

interativ
def potenz (basis, exponent) :
pot=1
for i in range (exponent+1l) :
pot*=basis
return pot

rekursiv
def potenz (basis, exponent) :
if exponent==0:
return 1
else:
return basis*potenz (basis, exponent-1)

BK_SekI+l_Python_prof.docx -106 - (c,p) 2015 - 2026 Isp: dre

Rucksack-Problem

eng.: knapsack problem
Optmirungs-Problem aus der Kombinatorik

gegeben ist eine Menge von Objekten, die einen ~ <>
Nutzwert und ein Gewicht (Kostenfaktor) besitzen Qw
gesucht ist eine Teilmenge, deren Gewicht eine be-
stimmte Grenze nicht (iberschreitet und der Nutzen w

aber maximiert sein soll <>
|) =

gehort zu den klassischen NP-vollstandigen Prob-

lemen (Richard KARP (1972))

Veranschalichung des
Rucksack-Problems
Q: de.wikipedia.org (Dake)

Zahlen-Beispiel von http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo15.php

Objekt 1 2 3 4 5 6 7 8
Gewicht 153 | 54 191 | 66 239 | 137 [148 | 249
Profit 232 |73 201 |50 141 |79 48 38
Profit-Dichte 1,592 11,35 1,05 |0,76 | 0,59 |0,58 |0,32 | 0,15

Gewichts-Schranke soll z.B. bei 645 liegen

1. intuitiver Lésungs-Ansatz:
nehme die Objekte mit der hdchsten Profit-Dichte
also>1,2,3,4 - Gewicht=464 - Profit=556

2. Lésung, wie 1. und Auffillen mit weiteren passenden Objekten (entsprechend der Rang-
folge)
also>1,2,3,4,6 - Gewicht=601 - Profit=647

- aber nicht optimal! ??7?7??
es muss jede Kombination ausprobiert werden!

2" Mdglichkeiten (einpacken oder nichteinpacken / 1 oder 0)
Problem ist hier die expotentielle Steigerung des Rechen-Aufwandes
es gibt scheinbar mehrere Lésungen !?

besser ist der Algorithmus von NEMHAUSER und ULLMANN (1969)
basiert auf PARETO-Prinzip

BK_SekI+II_Python_prof.docx -107 - (c,p) 2015 - 2026 Isp: dre

Alpha-Beta-Suche fiir Spielziige bei Brettspielen (Computer-Stategie)

Volumen-Berechnung einer n-dimensionalen Hyperkugel

Suche in einem Baum

Weg aus einem Labyrint
Rechte-Hand-Regel

geht naturlich auch als Linke-Hand-Regel

Permutationen

def permutation() :

return

BK_SekI+l_Python_prof.docx -108 - (c,p) 2015 - 2026 Isp: dre

effektive Speicherung von Daten (z.B. Bilder)

Wollten wir das nebenstehende Bit-Muster / Bild tber

eine Liste abspeichern, dann wirde diese mit 64 1 |11 11 [1]0 0 |0 |O
Elementen doch recht lang werden. Nehmen wir an, 111]1 J1 10 /O |O |O
es geht oben links los und es wird Zeilen-weise gear- 1 11 (1 /110 |0 |1 |1
beitet, dann ergibt sich die folgende Liste: i /1 /1 /110 0 J1 |1
0O |1 /0 [0 |JO |O |O |O
muster=[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, 1, 1, 1/0 /0 /00 0 |0 |0
1,1,0,0,1,1,1,1,1,1,0,0,1,1,0,1,0,0, }1+ 10 11 1140 |0 10 |0
0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0, LI 1T 1 7§00 0 0
0,0,1,1,1,1,0,0,0, 0]

Das Bild / Daten-Muster wird zuerst als das grotmdgliche Quadrat (gleicher Elemente) be-
trachtet. Ware es z.B. homogen nur mit Einsen gefillt, dann wirde sich als Muster die Liste
muster=[1] ergeben. Statt der 64 Speicher-Elemente hatten wir es nur noch mit einem zu
tun. Wir brauchten also grob 1/64 des Speicherbedarfs — wenn das keine Kompression ist?!
Das Muster ist aber heterogen, also mussen wir es verkleinern.

Die verkleinerten Quadrate sind umrandet hervorgehoben. Fir jedes der kleineren Quadrate
mussen wir nun in unserer muster-Liste ein Listen-Element verwenden. Da es mehr als eins
ist, wird klar, dass das gesamte 8x8-Quadrat strukturiert ist. Die Grundstruktur sieht dann so
aus:

muster=[, , ,]

Waren jetzt die kleineren (4x4)-Quadrate einheitlich gefarbt (mit 1 oder 0 belegt), dann wiirden wir mit 4 Listen-
Elementen hinkommen, was immer noch einer Effektivitat der Kompression von 4/64 entsprechen wiirde. Aber
leider ist es im Beispiel nicht so, also missen wir genauer weiter differenzieren.

Das oberste linke Quadrat ist vollstandig mit Einsen gefllt, also speichern wir uns in die Teil-
Liste eine Eins:
muster=[1, , ,]
Nun wechseln wir zum rechten oberen 4x4-Quadrat. Es ist nicht homogen und muss deshalb

wieder unterteilt werden. Es entsteht also eine Liste (rot gekennzeichnet) in der Liste (Das Listen-
Element ist selbst wieder eine Liste).

muster=[1,[,,,],,]

Die sich ergebenden 2x2-Quadrate sind homogen, also kann die Muster-Liste nun so ge-
schrieben werden:

muster=[1, [0, 0, 0, 1], ,]

Das untere, linke Quadrat ist nicht homogen, also muss es zerlegt werden. Auch das oberste
linke 2x2-Quadrat ist nicht homogen, also muss es als Bit-Muster in die Liste geschrieben
werden.

muster=[1, [0, 0, 0, 1], [[0, 1, 1,01, , , 1,]

Das zweite 2x2-Quadrat ist homogen mit Nullen belegt, also speichern wir ein 0 in die Liste.

muster=[1, [0, 0, O, 1], [[0, 1,1,0],0,,1,1]

BK_SekI+II_Python_prof.docx -109 - (c,p) 2015 - 2026 Isp: dre

Bei den unterern beiden 2x2-Quadraten verfahren wir in der gleichen Weise und erhalten
dann:

muster=[1, [0, O, O, 1], [[0, 1, 1, 0], O, [1, O, 1, 1], 1],]

Bleibt das letzte (untere, rechte) 4x4-Quadrat. Es ist homogen, so dass die Liste nur die da-
rin enthaltene Null reprasentieren muss:

muster=[1, [0, 0, 0, 1], [[0, 1, 1, 0], 0, [1, 0, 1, 1], 1], O]

Im vergleich zur obigen Voll-Liste kommen wir nun mit 26 Speicher-Elementen aus. Das be-
deutet eine Verbesserung fast um den Faktor 2,5 (grob: 16/64).

Die Kompressionsraten sind sehr theoretisch berechnet. Es muss beachtet werden, dass
noch Strukturierungs-Elemente (zur Unterscheidung von Uber- und unter-geordneten Listen)
mit abgespeichert werden mussen.

So ahnlich — wie hier besprochen — laufen z.B. Kompressions-Verfahren, wie das JPEG oder
MP4 ab. Neben dem Vergleich der Bild-Elemente werden auch noch die vorlaufenden Bilder
mit verglichen. Dabei nutzt man den Effekt aus, dass sich in einer Bildfolge meist nur wenige
— isolierte — Teile verandern.

Aufoaben:

1. Ubernehmen Sie das Muster und Muster-Liste! Kennzeichen Sie durch un-
terschiedlich farbige Umrandungen im Muster und durch enlsprechend far-
bige Klammern, welche Bilmusker zu welchen Listen-Elementen gehoren!

Eine Rekursion bietet sich immer dann an, wenn das Problem / die Funktion
schrittweise auf ein kleineres / leichteres Problem // eine einfachere Funktion
reduziert werden kann.

BK_SekI+l_Python_prof.docx -110 - (c,p) 2015 - 2026 Isp: dre

McCARTHYs "91-Funktion”

f(n) = n-10 falls n > 100
f(f(n+11)) sonst
PELL-Folge
0, fallsn=0
P(n) = { 1, falls n =1
2P(n-1) + P(n-2) sonst

erste Elemente: 0, 1, 2, 5, 12, 29, 70, 169, 408, ...

die ersten beiden Elemente sind mit 0 und 1 definiert

Rekursions-Anfang

Rekursions-Anfang
Rekursions-Schritt

die nachfolgenden Elemente ergeben sich als Summe aus dem verdoppelten Vorganger und

dem (einfachen) Vorvorganger

PELL-Folge 2. Art
2, fallsn=0
Q(n) = { 2, falls n = 1
2Q(n-1)+Q(n-2) sonst
erste Elemente: 2, 2, 6, 14, 34, 82, 198, 478, 1154, ...

die ersten beiden Elemente sind mit 2 definiert

Rekursions-Anfang

Rekursions-Anfang
Rekursions-Schritt

die nachfolgenden Elemente ergeben sich als Summe aus dem verdoppelten Vorganger und

dem (einfachen) Vorvorganger

BK_Sekl+ll_Python_prof.docx - 1 1 1 -

(c,p) 2015 - 2026 Isp: dre

LucAs-Folge(n)

X, fallsn=0 Rekursions-Anfang
L(n) = { Y, fallsn=1 Rekursions-Anfang
L(n-1)+L(n-2) sonst Rekursions-Schritt

erste Elemente: immer abhangig von x und y
bei x=2undy=1 > 2,1,3,4,7,11,18, 29,47, ...

die ersten beiden Elemente sind mit x und y definiert

die nachfolgenden Elemente ergeben sich als Summe aus dem Vorganger und dem Vorvor-
ganger

JACOBSTHAL-Folge

0, fallsn=0 Rekursions-Anfang
J(n) = { 1, fallsn=1 Rekursions-Anfang
J(n-1)+2J(n-2) sonst Rekursions-Schritt

erste Elemente: 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, ...

die ersten beiden Elemente sind mit 0 und 1 definiert
die nachfolgenden Elemente ergeben sich als Summe aus dem Vorganger und dem verdop-
pelten Vorvorganger

RECAMANs-Folge
(OEIS - A005132)

0, fallsn=20 Rekursions-Anfang
R(n) = { R(n-1)-n falls R(n) >= 0 und nicht in Sequenze Rekursions-Schritt
R(n-1)+n sonst Rekursions-Schritt

erste Elemente: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, ...

die ersten beiden Elemente sind mit 0 und 1 definiert
die nachfolgenden Elemente ergeben sich als Summe aus dem Vorganger und dem verdop-
pelten Vorvorganger

BK_SekI+l_Python_prof.docx -112 - (c,p) 2015 - 2026 Isp: dre

interessante Links:
https://oeis.org/wiki/Welcome (On-Line Encyklopedia of Integer Sequences ® OEIS ®)

Aufoaben fiir die gehobene Anspruchsebene:
1. Informieren Sie sich zur Biographie von N.J.A. SLOANE!
2. Was verbirgt sich hinfer der Folge A000108?

NUR!!! zum Uben: die DREws-Folgen

Nicht wundern, natirlich gibt es diese Folge (wahrschein) nicht wirklich — und wenn, dann
unter einem anderen Namen! Sie sind praktisch abgewandelte FIBONACCHI-Folgen. Bei der
ersten Folge wird immer eine 1 dazuzahlt. Also typisch DREWS — immer noch Einen drauf
setzen. Die Folgen haben keinen tieferen Zweck, auller dem Programmieren zu dienen.

0,1,2,4,7,12, 20, 33, 54, 88, 143, 232, ...

- 0. falls n =0 Rekursions-Anfang
dre(n) = 1, falls n = 1
dre(n-1) + dre(n-2) + 1, sonst Rekursions-Schritt

Die zweite Folge ist etwas komplexer. Hier unterscheidet sich das Zuzahlen danach, ob die
Gliednummer gerade oder ungerade ist.

0,1,2,5,8, 15, 24, 41, 66, 109, 176, 287, ...

0, falsn=0 Rekursions-
dre2(n) = 2, falls n = 1 Anfang

dre2(n-1) + dre2(n-2) + 1, sonst, falls n gerade Rekursions-

dre2(n-1) + dre2(n-2) + 2 sonst, falls n ungerade Schritte

Aufoaben:

1. Programmieren Sie die 1. DREWS-Folge als rekursive Funklion mil einem
kleinen Rahmen-Programm!/

2. Erstellen Sie ein Programm, mit dem die DREWS-Folge sowohl rekursiv als
auch inferativ berechnel wird!

3. Enlwickeln Sie nun ein Programm, das die DREWS2-Folge rekursiv berech-
nel!

fiir die gehobene Anspruchsebene:

4. Erstellen Sie ein Programm, mit dem die DREWS2-Folge sowohl rekursiv

als auch interaliv berechnel wird!

Vergleichen Sie den Implementier-Aufwand fiir die Berechnung der
DREWS2-Folge beim interativen und rvekursiven Vorgehen!

5.

BK_SekI+II_Python_prof.docx -113 - (c,p) 2015 - 2026 Isp: dre

8.4.2.3. direkte Gegeniiberstellung von interativen und rekursiven Algorithmen

In der Literatur und in der taglichen Programmierarbeit finden sich bzw. entstehen die unter-
schiedlichsten Umsetzungen von bestimmten Problem. Einige sind hier gesammelt und jeder
programmierer wird nach und nach den einen oder anderen programm-Text hinzutuen kon-
nen. Ob die einzelnen Losungen immer optimal (gut lesbar, schnell, wenig Speicherbedarf,
...) sind, wird hier nicht bewertet. Sollten Algorithmen entscheidend flr ein Programm sein,
dann mussen spezielle Test (Abfrage Speicherbedarf, Zeitmessungen, ...) erfolgen. Auf eini-
ge Mdoglichkeiten gehen wir noch ein.

In einigen Algorithmen sind blaue print-Anweisungen eingebaut. Diese dienen als optionale
Ausgabe, um das Arbeiten des Algorithmus zu verfolgen. Fur echte Anwendungen sollten sie
dann raus genommen werden. Ev. lassen sich weitere sinnvolle Ausgaben erzeugen, z.B.
um die Anzahl der Schleifendurchldufe bzw. die Rekursion-Aufrufe zu zahlen. Daflr missen
dann aber eigene Variablen und Zahl-Anweisungen eingebaut werden.

Bei einigen ausgewahlen Algorithmen-Umsetzungen notieren wir das in roter Farbe. Auch
diese Quelltext-Teile sollten vor dem echten Einsatz entfernt werden.

8.4.2.3.1. GGT — groRter gemeinsamer Teiler

Lésung | interativ rekursiv
1 def ggt(a,b): def ggt(a,b,1i):
i=0 i+=1
while b > 0: print ("Aufruf: ",6i)
i+=1 print("a= ",a,"b= ",kb)
print ("Durchlauf: " ,i) if b ==
print("a= ",a,"b= ",b) return a
r=a5s%hb return ggt(b, a % b,1i)
a=>
b =r
return a # Aufruf der Funktion:
i=0
ggt(a,b,1)
2 def ggt(a,b): def ggt(a,b):
while b !'= 0: return if a ==
a,b =b, a %$b a
return a elif a > b:
ggt (a-b, b)
else:
ggt(a, b-a)
3 def ggt(a,b):
while a !'= Db:
if a > b:
a=a-b
else:
b=b-a
return a
def ggt(a,b):
return if a > b:

BK_SekI+lI_Python_prof.docx -114 - (c,p) 2015 - 2026 Isp: dre

8.4.2.3.2. Palindrom-Priifung

Losung | interativ rekursiv
1 def ist palim(s): def ist palim(s):
links = 0 if len(s) <= 1:
rechts = len(s)-1 return 1
while links < rechts: if s[0] != s[-1]:
if s[links] != s[rechts]: return 0
return O return ist palim(s[1l:-1])
links += 1
rechts -= 1
return 1
2
auler def ist palim(s):
Konkur- liste = list][s]
renz llste.reveréeﬁ) .
return ("".join(liste))

8.4.2.3.3. Potenz-Priifung

ist p eine ganzzahlige Potenz von x

Losung | interativ rekursiv
1 def istpotenz (p,x): def istpotenz(p,x):
return if p == 1 or p == x return if p == 1 or p == x:
or p 5 x !=0: True
p ==1o0or p==x elif p % x !=0:
else: False
istpotenz (p/x, x) else:
istpotenz (p/x, x)
2 def istpotenz (p,x):
while p != 1 and p != x
and p % x ==
p=p/x
return p == 1 or p == x
BK_SekI+II_Python_prof.docx -115- (c,p) 2015 - 2026 Isp: dre

8.4.3. komplexe Programmier-Aufgaben:

Wihlen Sie eine geeignele oder Ihre priferierte Programmiersprache zur 1L.6-
sung der nachfolgenden Aufgaben aus!
Ubet'leoen Sie sich bzw. vergleichen mit anderen, ob die von Ihnen praferierte

programmicrsprache gut gecignel ist das gewahlte Problem zu losen!
Zahlen-Eigenschaften nach: www.zahlen.mathematic.de

Aufoaben:

1. Berechnen Sie die Summe und das Produkt eciner Reihe von einzugebener
Zahlen sowie Summe und Produkt der veziproken Werfe!

2. Erslellen Sie ein Programm, dass im Zahlen-Raum bis zur einer einzugebe-

nen (groferen) naliivlichen Zahl, die Kombination von drei aufeinanderfol-

genden Primzahlen findel, deren Produkt moglichst dicht an der Zahlen-

Grenze liegl!

Priifen Sie ob cine als Zeichen-String vorgegebene Zahl (ohne Leer- und

Vorzeichen bzw. Nachkommasltellen) im auszuwihlenden Zahlensysfem giil-

Hg ist! (Die Ziffern werden als ASCII-Zeichen noliert. Giiltige und unfer-

scheidbare Zeichen sind: 0 .. 1 A .. Z a ..z =2 das sollte auch bis zum

Sexagesimal-System reichen! Doppeldeulung A = a muss nicht beachlet

werden!)

Lassen Sie durch cine Erweilerung des Programms von 3. priifen, ob es

sich bei der eingegeben Zahl um eine normale Zahl handell! Novrmale Zah-

len enthallen alle Ziffern ihres Alphabeles mit der gleichen Haufigkeil.

Erstellen Sie das Programm "Zahlen-Charaklerisierer”! Das Programm soll

eine einzugebene ganze Zahl (ev. zuerst nur fiiv nalivliche Zahlen) Charak-

ter-Figenschaften priifen bzw. bestimmen und ausgeben, ob die Zahl die Fi-

genschaft hat oder nicht bzw. den berechneten Werl. Das Programm sollfe

spaler um weilere Zahlen-Eigenschaffen erganzt werden konnen und pas-

send kommentiert sein! Auf die (spatere) Nulzbarkeil von Unlerprogrammen

ist zu achten! Wihlen Sie sich mindestens 12 Figenschaften aus! Die Rei-

henfolge kann frei geandert werden!

a) mannliche Zahl (Zahl ist ungerade und grofer als 1)

b) Quersumme (ist die Summe der einzelnen Ziffern der Zahl (ohne deren
Polenzwert)

¢) ltanische Zahl (ist eine Primzahl mit mindestens 1000 Stellen

d) weibliche Zahl (Zahl ist eine posilive gerade Zahl)

e) Tolient od. Indikalor (ist diec Anzahl der Primzahlen, die kleiner als die
(cegebene) Zahl ist)

P zusammengeselzle (od. zervlegbare od. Feilbare) Zahl (ist eine Zahl, die
mehr als zwei positive Teiler hat ODER eine gerade Zahl, die grofer als
1 ist)

©) abundante Zahl (wenn echle Teilersumme (Summe aller Teiler (ohne
Resl), aufer die Zahl selbst) groper als die Zahl selbst isk)

h) arme od. defizierte od. mangelhafte Zahl (wenn echte Teilersumme klei-
ner als das doppelte derv Zahl ist)

v

N

v

BK_SekI+l_Python_prof.docx -116 - (c,p) 2015 - 2026 Isp: dre

i) vollkommene od. perfekte Zahl (wenn die echfe Teilersumme gleich der
Zahl selbst ist)

J) Sophie-GERMAIN-Primzahl (sind Primzahlen, bei denen der Term 2 p
+ 1 wieder eine Primzahl ist)

k) reiche od. iiberschiefende od. iibervollstindige Zahl (wenn die echfe Tei-
lersumme grofer als das Doppelte der Zahl selbst isk)

) SMITH-Zahl (wenn die Quersumme derv Zahl gleich der Quersummen ih-
rer Primfakloren ist; aufer Primzahlen!)

m) erhabene Zahl (wenn Zahl und deren echle Teilersumme vollkommene
Zahlen sind)

n) palindrome Zahl (wenn die Zahl und diec umgedrehle Ziffernfolge gleich
(erop) sind)

o) palindrome Primzahl (wenn Zahl eine Primzahl ist und die Zahl und de-
ren umgedrehlte Ziffernfolge gleich sind)

p) SIERPINSKI-Zahl (ist eine ungerade, naliirliche Zahl n, bei der der Term
n 2¥ + 1 immer eine zusammengeselzlte Zahl ergibl (x ist cine beliebige
naluvliche Zahl)

q) RIESEL-Zahl (sind ungerade, naliirliche Zahlen, bei denen der Term n 2*
- 1 immer eine zusammengeselzte Zahl ergibl (x ist ecine beliebige naliir-
liche Zahl))

r) strobogrammalische Zahl (ist eine Zahl, die um 180° gedrehl wieder dic
gleiche Zahl ergibt (hier gelten 1, 2 mit 5, 6 mit 9, 8 und 0 als drehbare
oder strobogrammalische Ziffern))

s) strobogrammalische Primzahl (ist eine Primzahl, die auch strobogramma-
tisch ist)

6. Gesucht wird ein modulares Programm, dass fiir zwei natiirliche Zahlen
priift, ob es sich um ein Paar mit den folgenden FEigenschaften handell!

a) befreundelte Zahlen (wenn die echlen Teilersummen beider Zahlen gleich
sind))

b) Primzahlen-Zwilling (wWenn zwei aufeinanderfolgende Primzahlen cine
Differenz von 2 aufweisen)

¢) Teiler-fremde (od. inkommensurable) Zahlen (ganze Zahlen, die aufer -1
und 1 keine gemeinsamen Teiler besiltzen)

7. Gesuchl wird ein modulares Programm, dass fiiv drei natiivliche Zahlen
priifl, ob es sich um ein Tripel mil den folgenden Figenschaften handell!

a) pythagoreische Zahlen (Tripel edfiillt die diophantische Gleichung 2.
Grades (a° + b =)

b) Primzahlen-Drilling (wenn drei aufeinanderfolgende Zahlen die Reihe p,
p+2, p+6 bilden ODER wenn innerhalb einer Dekade (also 10 aufei-
nanderfolgenden Zahlen) drei Primzahlen vorkommen)

8.

BK_SekI+II_Python_prof.docx -117 - (c,p) 2015 - 2026 Isp: dre

8.5. Umgang mit Dateien

8.5.0. Dateien und Ordner

Text-Dateien

relativ leicht zu erzeugen, immer selbst durch Programmierer moglich, meist aber Module
zum effektiveren Umgang verfugbar, sowohl vom Computer, als auch von Menschen lesbar
relativ Fehler-tolerant

praktisch ein Umleiten der Bildschirmausgabe in eine Datei

Binar-Dateien
Daten sind sehr kompakt gespeichert, praktisch nur noch Maschinen-lesbar
Fehler kénnen fur vollige Unlesbarkeit der Daten sorgen

Arbeiten mit Dateien bestehen immer aus drei Abschnitten, die unbedingt eingehalten bzw.
erledigt werden mussen

e Eroffnung, Initialisierung Festlegen der Datei Uber den Dateinamen
und den Datentyp
Festlegung der Zugriffsart auf Datei

o eigentliches Schreiben bzw. Lesen eben genau das
(praktisch konnte dieser Abschnitt auch ent-
fallen, aber wozu dann der andere — unbe-
dingt notwendige! - Aufwand)

e Datei-Freigabe Beenden des Zugriffs auf die Datei, damit
wird die Datei fur andere Programme, Pro-

grammteile etc. benutzbar
an dieser Stelle erfolgt vielfach erst das physikalische

Schreiben
Einfaches Datei-Handling:
dateiName = "Beispiel.txt"
with open (dateiName) as datei: # with sorgt auch fir das Schliefen der Datei am
Ende

inhalt = datei.read()
dateiName = "Beispiel.txt"
with open(dateiName) as datei:

inhalt = datei.read() .splitelines() # zerlegt inhalt in Zeilen (gespeichert

als Liste von Strings

BK_SekI+l_Python_prof.docx -118 - (c,p) 2015 - 2026 Isp: dre

8.5.1. Dateien lesen

8.5.1.1. Lesen von Text-Dateien

Dateivariable = open(Dateiname,"r")
Zeilenlistenvariable = Dateivariable.readlines()
Zeilenvariable = Dateivariable.readline()

Dateivariable.close()

Dateivariable.seek(Position)

Will man den gesamten Datei-Inhalt in einen String schreiben, dann lasst sich das folgen-
dermalden realisieren:

Dateivariable = open(Dateiname,"r")
Inhalt = Dateivariable.read()
print("Datei-Typ: ", type(Inhalt)
print("Datei-Inhalt:")

print(Inhalt)

Dateivariable.close()

8.5.1.1.1. Lesen von CSV- bzw. strukturierten TXT-Dateien

BK_SekI+II_Python_prof.docx -119 - (c,p) 2015 - 2026 Isp: dre

Einlesen einer Text-Datei und Speichern als CSV

zielDatei = open ("daten.CSV", "w")

for zeile in open ("Text.TXT"):
zelle = zeile.strip()
if zeilestartswith ("#") :
continue
elemente = zeile.split ()
print (elemente)
print (";".join (elemente), file = zielDatei)

8.5.1.1.2. Lesen von XML-Dateien

spezielle Module verfligbar

8.5.1.1.3. Lesen von JSON-Dateien

spezielle Module zum decodieren verfligbar

import sys, Jjson
dateinmae = "test.JSON"

print (json.dumps (json.load (dateinmae)), indent =2))

8.5.1.2. Lesen von Bindir-Dateien

BK_SekI+l_Python_prof.docx -120 - (c,p) 2015 - 2026 Isp: dre

8.5.2. Dateien schreiben

8.5.2.1. Schreiben von Text-Dateien

8.5.2.1.1. Schreiben einer neuen Datei

Dateivariable = open(Dateiname,"w") zum Neuschreiben
Dateivariable.write("\n"+Zeile | "\n"+Zeilenvariable)

die write-Funktion liefert Ubrigens die Anzahl der geschriebenen Zeichen wieder zurtck

alternativ auch Umleitung der Bildschirmausgabe maglich
print >> Dateivariable, Text | Textvariable
etwas einfacher, weil Ausgaben immer in String- / Text-Format umgewandelt werden

Dateivariable.close()
hier extrem wichtig, weil erst jetzt das echte Speichern erfolgt!

mit writelines(StringListe) kann eine Liste von Strings in einen Text-Datei geschrieben wer-
den

8.5.2.1.2. anhangendes Schreiben

zum Anhangen weiterer Daten an eine existierende Datei
Dateivariable = open(Dateiname,"a")
Dateivariable.write(Zeile+"\n" | Zeilenvariable+"\n")

letzte Zeile ohne "\n"
Dateivariable.write(Zeile | Zeilenvariable)

Dateivariable.close()
nicht vergessen!

8.5.2.1.3. Schreiben von CSV- bzw. strukturierten TXT-Dateien

BK_SekI+II_Python_prof.docx -121 - (c,p) 2015 - 2026 Isp: dre

8.5.2.1.4. Schreiben von XML-Dateien

8.5.2.1.5. Schreiben von JSON-Dateien

8.5.2.2. Schreiben von Bindir-Dateien

8.5.3. gepickelte Dateien — Dateien mit gemischten Daten

8.5.3.1. Schreiben von Dateien mit gemischten Daten

8.5.3.2. Lesen von Dateien mit gemischten Daten

BK_SekI+l_Python_prof.docx -122 - (c,p) 2015 - 2026 Isp: dre

8.6. Module

= Bibliothek
Sammlung vorgefertigter Programm-Teile (meist Funktionen)
praktisch Objekte (= Objekt-orientierte Programmierung)

Probleme dann moglich, wenn im aktuellen Programm-Ordner schon eine Datei mit dem
Namen des Moduls vorhanden ist, dann muss mit Fehler-Meldungen gerechnet werden
genau wenn man versucht seine eigene Datei mit dem Namen eines Moduls abzuspeichern,
das geht zwar, aber der Aufruf der Module / Modul-Funktionen geht nicht > Fehler-
Meldungen

volistdndiger Import eines Moduls

import modul
wert = modul.funktion (10)
print (modul. funktion (20))

Laden eines Modil's

Funktionen mussen mit vorgesetztem Modul-Namen aufgerufen werden

Vorteile:

man kann eigene Funktionen und (globale) Variablen mit dem gleichen Namen im Programm
handeln

Nachteile:
lastiges Mitschreiben des Modul-Namens

Import einzelner Funktionen eines Moduls

from modul import funktion
wert = funktion (10)
print (funktion (20))

Vorteile:
Funktion kann ohne Modul-Namen aufgerufen werden

Nachteile:
Aufruf from ... import fUr jede einzelne Funktion oder fur Gruppen notwendig

volistédndiger Import eines Moduls als integraler Programmteil

from modul import *
wert = funktion (10)
print (funktion (20))

BK_SekI+II_Python_prof.docx -123 - (c,p) 2015 - 2026 Isp: dre

Vorteile:
keine selektiven Importe mehr

Nachteile:
es werden viele unndtige Funktionen importiert

Modul-Import mit Vergabe eines internen Namens

import modul as mo
wert = mo.funktion (10)
print (mo.funktion (20))

Vorteile:

keine selektiven Importe mehr

klrzere Modulschreibung maoglich

Module mit gleichen internen Funktionen / Attributen lassen sich sauber trennen

Nachteile:

es werden viele unndtige Funktionen importiert

Anzeige der verfugbaren Funktionen und (globalen) Variablen

import math
print (dir (math))

>>>

[' doc_ ', ' loader ', ' name ', ' package ', ' spec ', 'a-
cos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'co-
pysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expml',
'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',6 'hypo-
t', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'loglO',
'loglp', 'log2', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh',
'sqrt', 'tan', 'tanh', 'trunc']

Um Module auch in der Konsole nutzen zu konnen, missen diese am Ende des Quell-

Code's folgenden Konstrukt enthalten:

if name == " main ":

BK_SekI+lI_Python_prof.docx -124 - (c,p) 2015 - 2026 Isp: dre

8.6.1. "built-in"-Funktionen

Funktionen, die schon direkt im klassischen Python verflugbar sind

haufig gebraucht; weiterhin sollen sie schnell und Fehler-frei bzw. Fehler-unanfallig sein

in vielen anderen Programmiersprachen gehéren sie gleich zum Befehls-Umfang dazu

in Python extra Module; dadurch etwas langsamer aber auch veranderlich / Uberschreibbar,
wenn's denn wirklich notwendig ist

z.B. max(), min(), abs(), type()

Built-in Functions

abs () dict () help () min () setattr ()
all () dir() hex () next () slice()

any () divmod () id() object () sorted()
ascii() enumerate () |input () oct () staticmethod ()
bin () eval () int () open () str ()

bool () exec () isinstance () ord () sum ()
bytearray () filter () issubclass () pow () super ()
bytes () float () iter () print () tuple ()
callable () format () len () property () |type ()

chr () frozenset () |1ist () range () vars ()
classmethod () |[getattr () locals () repr () zip ()
compile () globals () map () reversed () import ()
complex () hasattr () max () round ()

delattr () hash () memoryview () set ()

BK_SekI+II_Python_prof.docx -125 - (c,p) 2015 - 2026 Isp: dre

mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#abs
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-dict
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#help
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#min
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#setattr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#all
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#dir
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#hex
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#next
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#slice
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#any
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#divmod
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#id
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#object
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#sorted
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#ascii
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#enumerate
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#input
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#oct
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#staticmethod
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#bin
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#eval
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#int
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#open
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-str
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#bool
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#exec
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#isinstance
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#ord
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#sum
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#bytearray
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#filter
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#issubclass
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#pow
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#super
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#bytes
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#float
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#iter
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#print
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-tuple
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#callable
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#format
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#len
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#property
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#type
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#chr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-frozenset
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-list
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-range
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#vars
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#classmethod
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#getattr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#locals
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#repr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#zip
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#compile
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#globals
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#map
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#reversed
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#__import__
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#complex
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#hasattr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#max
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#round
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#delattr
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#hash
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-memoryview
mk:@MSITStore:E:/Python/Doc/Python343.chm::/library/functions.html#func-set

8.6.2. wichtige interne Module

8.6.2.1. die Bibliothek math
ausfuhrlich unter: https://docs.python.org/3/library/math.html

ausgewahlte Konstanten

math.pi

math.e

ausgewahlte Funktionen

math.ceil(wert)
rundet auf die nachstgroRere Ganzzahl bzw. auf Wert, wenn Wert eine Ganzzahl ist
Gegenstick ist math.floor()

math.fabs(wert)
liefert den Absolut-Wert zuriick

math.factorial(wert)
liefert die Fakultat von Wert zuriick

math.floor(wert)
rundet auf die nachstkleinere Ganzzahl bzw. auf Wert, wenn Wert eine Ganzzahl ist
Gegenstuck ist math.ceil()

math.fmod(wert)
Modulo-Funktion bevorzugt fur Gleitkommazahlen (sonst besser x %y verwenden

math.frexp(wert)
liefert die Mantisse und den Exponenten als Paar zurlck

math.gcd(wert {, wert})
liefert den gréfiten gemeinsamen Teiler (GGT) der Werte zuriick

math.lecm(wert {, wert})
liefert das kleinste gemeinsame Vielfache (KGV) zurlick

math.perm(wert)

BK_SekI+l_Python_prof.docx -126 - (c,p) 2015 - 2026 Isp: dre

https://docs.python.org/3/library/math.html

liefert die Anzahl der Permutationen (Kombinations-Méglichkeiten von k Elementen aus den
n Elementen) zurlick

math.trunc(n, k=keine)
gibt den Nachkomma-Teil einer Gleitkommazahl zurtick

math.exp(wert)
liefert den Funktions-Wert der Expotential-Funktion zu Wert zurtick

math.log(wert [, basis])
liefert den Funktions-Wert der naturlichen Logarithmus-Funktion zu Wert zurtick, bei Bedarf
kann eine zu e abweichende Basis angegeben werden

math.log10(wert)
liefert den Lorarithmus zur Basis 10 zurlick

math.pow(wert, exponent)
liefert die Exponente Potenz von Wert zurlick

math.sqrt(wert)
liefert die Quadrat-Wurzel zuriick

math.sin(wert)
liefert den Sinus zu Wert zuriick

math.cos(wert)
liefert den Cosinus zu Wert zuriick

math.tan(wert)
liefert den Tangens zu Wert zurtick

math.asin(wert)
liefert den Sinus zu Wert (gegeben in Bogenmal3) zurlick

math.acos(wert)
liefert den Cosinus zu Wert (gegeben in Bogenmal}) zurtick

math.atan(wert)
liefert den Tangens zu Wert (gegeben in Bogenmal}) zuriick

math.dist(punkt1, punkt2)
liefert den EUKLIDischen Abstand zwischen den Punkten (mit Koordinaten) zurtick

BK_SekI+II_Python_prof.docx -127 - (c,p) 2015 - 2026 Isp: dre

math.degrees(wert)
liefert den Winkel in Grad zum Wert in Bogenmal} zuriick

math.radians(wert)
liefert den Winkel in Bogenmall zum Wert in Grad zurtick

8.6.2.2. die Bibliothek random
ausfuhrlich unter:

random.random () liefert Zufallszahl zwischen 0 und 1

random.randint (kleiste, groesste) liefert eine Zufallszahl zwischen und ein-
schlielich kleiste und groesste

z.B.:

random.randint (1, 6) entspricht dem klassischen Wirfeln

random.choice () wahlt z.B. aus einer Liste zufallig aus

8.6.2.3. Verschiedenes zum Modul: statistics
ausfuhrlich unter:

import statistics
statistics.median(liste)
liefert den Medien aus einer Liste

statistics.mean(liste)
liefert den arithmetischen Mittelwert

8.6.2.x. Verschiedenes zum Modul: sys

BK_SekI+l_Python_prof.docx -128 - (c,p) 2015 - 2026 Isp: dre

8.6.2.x. Verschiedenes zum Modul: time
ausfiuhrlich unter:

clock()

liefert einen Programme-internen Zeitstempel (Programm-Laufzeit) zurtick

fur Laufzeit-Messungen vergleicht man einfach die Zeitstempel vor und nach dem zu prufen-
den Programm-Teil / Algorithmus / Funktions-Aufruf

from time import *

t0 = clock()
hier steht dann der zu testende Quelltext
tl = clock()

print ("Laufzeit: ",tl1-t0,"s")

>>>

time()
liefert Zeitstempel als FlieBkommazahl
gut fur genauere Zeit-Differenzen auch im ms-Bereich geeignet

import time

t0 = time.time ()
hier steht dann der zu testende Quelltext
tl = time.time ()

print ("Laufzeit: ",tl1-t0,"s")

>>>

ctime()
Zeitstempel wird als Text ausgegeben (mit Datum und Uhrzeit)
Die Formatierung orientiert sich an der Zeit-Anzeige in der Programmiersprache C.

import time
zeitstempel = time.ctime ()

print (zeitstempel)

BK_SekI+II_Python_prof.docx -129 - (c,p) 2015 - 2026 Isp: dre

>>>
Wed Dec 16 17:25:59 2020
>>>

strftime()
ermoglicht die formatierte Ausgabe von Datum und Zeit

import time
jetzt = time.strftime()

8.6.2.x. Verschiedenes zum Modul:datetime
ausfuhrlich unter:

import datetime

oder auch:
import datetime as dttm

Abfrage des aktuellen Zeit-Stempels mit
dttm.datetime.now ()
hat man auf das as dttm verzichtet, dann wiirde der Funktions-Aufruf so aussehen:

datetime.datetime.now ()

mit Hilfe der str()-Funktion Iasst sich aus dem Ergebnis-String eine lesbare / verstandliche
Ausgabe erzeugen

zusammen z.B.:
str(dttm.datetime.now () .date())

entsprechend flr Zeit:
str(dttm.datetime.now () .time ())

oder als Selektion der einzelnen Zeit-/Datum-Elemente:
.year(), .month(), .day(), .hour(), .minute(), .second(), .microsecond()

Der Zeitstempel kann also mittels integrierter Funktionen / Attribute in die Anteile zerlegt
werden. Das ist dann wichtig, wenn nur bestimmte Zeit-Informationen gebraucht werden. Ein

BK_SekI+lI_Python_prof.docx -130 - (c,p) 2015 - 2026 Isp: dre

klassisches Problem ist z.B. die Angabe eines Zeitstempels in einem Datei-Namen. Zuerst
ist dies scheinbar kein Problem, da z.B. ctime() ja einen String zurlickliefert. Aber wie immer
steckt der Teufel im Detail. Der String enthalt in der Zeitangabe Doppelpunkte. Diese sind
aber nicht in Dateinamen zugelassen.

import datetime as dttm

zeltstempel = dttm.datetime.now ()
print ("Zeitstempel: ", zeitstempel)
print ()

print ("Stunden : ",zeitstempel.hour)
print ("Minuten : ",zeitstempel.minute)
print ("Sekunden: ",zeitstempel.second)

>>>
Zeitstempel: 2020-12-16 17:45:48.235872

Stunden : 17

Minuten : 45
Sekunden: 48
>>>

Wahrscheinlich ist das erneute Zusammensetzen eines Zeitstemples aus den Bestandteilen
des datetime-Zeitstempels die flexibelste Variante. Hier kann man die gewunschten Bestand-
teile frei auswahlen:

import datetime as dttm

zeltstempel = dttm.datetime.now ()
print ("Zeitstempel: ",zeitstempel)
print ("Stunden : ",zeitstempel.hour)
print ("Minuten : ",zeitstempel.minute)
print ("Sekunden: ",zeitstempel.second)

zeitstempel neu = ""

zeitstempel neu += str(zeitstempel.hour)+"-"
zeitstempel neu += str(zeitstempel.minute)+"-"
zeitstempel neu += str(zeitstempel.second)

print ()
print ("Zeitstempel: ",zeitstempel neu)

>>>

Zeitstempel: 2020-12-16 19:34:48.928490
Stunden : 19

Minuten : 34

Sekunden: 48

Zeitstempel: 19-34-48
>>>

Deutlich kirzer ist die Umwandlung des Zeitstempels in einen String und dann nachfolgen-
des Slicing und Zusammensetzen der Elemente unter Herausschneiden der Doppelpunkte.

zeitstempel = str(zeitstempel)
zelitstempel neu = zeitstempel[:13]+"-"
+zeitstempel [14:16]+"-"+zeitstempel [17:19]

BK_SekI+II_Python_prof.docx -131- (c,p) 2015 - 2026 Isp: dre

den Zeit-Stempel mit strftime() frei formatieren

jetzt = time.strftime ("$Y-%m-%d $H:%M UTC, time.gmtime ())
print (jetzt)

BK_SekI+l_Python_prof.docx -132 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen Sie einen neuen Zeilstempel fiiv einen Daleinamen aus einer akhu-
ellen Tageszeil einschlieflich Millisekunden!

2. Erstellen Sie eine Funklion, die aus einem daletime-Zeilstempel einen Zeil-
stempel-Stving erzeugt, der cin beliebiges Trennzeichen zwischen den Da-
tums-~ bzw. Zeil-Bestandleilen benulzl!

2
.

8.6.2.x. Verschiedenes zum Modul: os
ausfiuhrlich unter:

import os

aktuelles Arbeits-Verzeichnis anzeigen:
os.getcwd () .replace (os.sep, /")

Ermitteln des aktuell verfiigbaren / freien Speichers

fur Linux-basierte Systeme (tUber Shell-Aufruf)

import os

speicher = os.popen('df -m | grep rootfs | cut -c33-42') .readline ()
print ("freier Speicher: ", int (speicher)," Byte")

>>>

8.6.2.x. Verschiedenes zum Modul: collections

fur divese Zahl-Aufgaben

liste — ["gelb", "gelb", "blau", "rot", "gelb", "rot", "gelb"]
collections.Counter (liste) .most common (2) zeigt die 2.hdufigsten Elemente mit
ihrer Haufigkeit an

BK_SekI+II_Python_prof.docx -133 - (c,p) 2015 - 2026 Isp: dre

Counter verarbeitet auch Strings, z.B. das Zahlen von enthaltenen Buchstaben (liefert ein

Dictonary zurlck)

das geht auch selektiv (Suche nach bestimmten Elementen)
hier wird dann nur Anzahl zurtickgegeben

8.6.2.x. Verschiedenes zum Modul: inspect

fur die Anzeige aller Objekte in der Datei mein.py
import mein
print ("\n".Jjoin (dir (mein)))

Durchsuchen und Daten-Ubernehmen ohne Datei zu 6ffnen

import inspect
print (inspect.getsource (mein.meineFunktion))

liefert dann z.B. den Quell-Code von meineFunktion

mit inspect.getfullargspec (meineFunktion) erhadlt man die Argumente der ge-

nannten Funktion

BK_Sekl+Il_Python_prof.docx - 134 -

(c,p) 2015 - 2026 Isp: dre

die intern verfiigbaren Module der Standard-Python-Installation (V. 3.5.0.)

AutoComplete
AutoCompleteWindow
AutoExpand
Bindings
CallTipWindow
CallTips
ClassBrowser
CodeContext
ColorDelegator
Debugger
Delegator
EditorWindow
FileList
FormatParagraph
GrepDialog
HyperParser
IOBinding
IdleHistory
MultiCall
MultiStatusBar
ObjectBrowser
OutputWindow
ParenMatch
PathBrowser
Percolator
PyParse

PyShell
RemoteDebugger
RemoteObjectBrowser
ReplaceDialog
RstripExtension
ScriptBinding
ScrolledList
SearchDialog
SearchDialogBase
SearchEngine
StackViewer
ToolTip
TreeWidget
UndoDelegator
WidgetRedirector
WindowList
ZoomHeight

__ future
__main__

_ast

_bisect
_bootlocale
_bz2

_codecs
_codecs_cn
_codecs_hk
_codecs_iso02022
_codecs_jp
_codecs_kr
_codecs_tw
_collections
_collections_abc
_compat_pickle
_csv

_ctypes
_ctypes_test
_datetime
_decimal
_dummy thread
_elementtree
_functools
_hashlib

_pickle
_pyio
_random
_shal
_sha256
_shab12
_sitebuiltins
_socket
_sqlite3
_sre

_ssl

_stat
_string
_strptime
_struct
_symtable
_testbuffer
_testcapi
_testimportmultiple
_thread
_threading local
_tkinter
_tracemalloc
_warnings
_weakref
_weakrefset
_winapi

abc
aboutDialog
aifc
antigravity
argparse
array

ast
asynchat
asyncio
asyncore
atexit
audioop
base64

bdb
binascii
binhex
bisect
builtins
bz2
cProfile
calendar
cgi

cgitb

chunk

cmath

cmd

code

codecs
codeop
collections
colorsys
compileall
concurrent
configDialog
configHandler

enum
errno
faulthandler
filecmp
fileinput
fnmatch
formatter
fractions
ftplib
functools
gc
genericpath
getopt
getpass
gettext
glob

gzip
hashlib
heapq

hmac

html

http

idle
idle_test
idlelib
idlever
imaplib
imghdr

imp
importlib
inspect

io
ipaddress
itertools
json
keybindingDialog
keyword
1lib2to3
linecache
locale
logging
lzma
macosxSupport
macpath
macurl2path
mailbox
mailcap
marshal
math
mimetypes
mmap
modulefinder
msilib
msvcrt
multiprocessing
netrc
nntplib

nt

ntpath
nturl2path
numbers
opcode

configHelpSourceEdit operator
configSectionNameDialog optparse

configparser
contextlib
copy

copyreg

os
parser
pathlib
pdb

pydoc_data
pyexpat
pygame
queue
quopri
random
re
reprlib
rlcompleter
rpc
run
runpy
sched
select
selectors
setuptools
shelve
shlex
shutil
signal
site
smtpd
smtplib
sndhdr
socket
socketserver
sqlite3
sre_compile
sre_constants
sre_parse
ssl
stat
statistics
string
stringprep
struct
subprocess
sunau
symbol
symtable
sys
sysconfig
tabbedpages
tabnanny
tarfile
telnetlib
tempfile
test
textView
textwrap
this
threading
time
timeit
tkinter
token
tokenize
trace
traceback
tracemalloc
tty
turtle
turtledemo
types
unicodedata
unittest
urllib
uu

BK_Sekl+ll_Python_prof.docx

-135-

(c,p) 2015 - 2026 Isp: dre

_heapqg crypt pickle uuid

_imp csv pickletools venv
_io ctypes Pip warnings
_Jjson curses pipes wave
_locale datetime pkg_resources weakref
_lsprof dbm pkgutil webbrowser
_lzma decimal platform winreg
_markerlib difflib plistlib winsound
_markupbase dis poplib wsgiref
_md5 distutils posixpath xdrlib
_msi doctest pprint xml
_multibytecodec dummy threading profile xmlrpc
_multiprocessing dynOptionMenuWidget pstats xxsubtype
_opcode easy install pty zipfile
_operator email py_compile zipimport
_osx_support encodings pyclbr zlib
overlapped ensurepip pydoc

Fir eine schnelle Hilfe kann folgender Link benutzt werden. Dabei wird random durch den
Namen der Bibliothek ersetzt:

https://docs.python.org/3/library/random.html

ansonsten als Einsprung-Punkt: https://docs.python.org/3/ nutzen

fur die Bibliotheken ist der Index: https://docs.python.org/3/library/index.html

8.6.2.x. Verschiedenes zu eigenen Modulen

bei einer existierenden Datei mein.py kann Quelltext importiert werden

mein.py
inhalt = 100

im aktuellen Code dann:
from mein import inhalt

es geht auch:
import mein
print (mein.inhalt)

fur die Anzeige aller Objekte in der Datei mein.py
import mein
print ("\n".Jjoin (dir (mein)))

Durchsuchen und Daten-Ubernehmen ohne Datei zu 6ffnen
import inspect
print (inspect.getsource (mein.meineFunktion))

liefert dann z.B. den Quell-Code von meineFunktion

BK_SekI+lI_Python_prof.docx -136 - (c,p) 2015 - 2026 Isp: dre

https://docs.python.org/3/library/random.html
https://docs.python.org/3/
https://docs.python.org/3/library/index.html

8.6.3. externe Module installieren und nutzen

8.6.3.x. Package-Installer PIP

Fur das Installieren von Paketen (Bibliotheken, Modulen, ...) gibt es Python das Tool PIP.

Es wird in der Eingabeaufforderung / Konsole bedient. Soll in ein aktuelles System ein zu-
satzliches Paket installiert werden, dann wechselt man in der Konsole ins Installations-
Verzeichnis von Python.

Eine gute Hilfe fir die nicht mehr DOS-méachtigen Konsolen-Benutzer ist ein verstecktes fea-
ture von Windows. Im Windows-Explorer klickt man bei gedrickter [1t]-Taste auf die rechte
Maus-Taste. Im nun angezeigten Kontext-Menu findet man auch den Meni-Punkt: "Einga-
beaufforderung hier 6ffnen".

Sollte dieser Menu-Punkt nicht erscheinen, dann geht auch die folgende Schrittfolge:

1. Offnen des Windows-Explorer's und Auswahlen des lbergeordneten Ordner's (bezo-
gen auf den Ziel-Ordner)

2. Offnen der Konsole

3. Eintippen des Befehls: cd

4. Ziehen des Ziel-Ordner-Symbols aus dem Windows-Explorer in die Konsole

- der vollstandige Pfad steht jetzt hinter dem cd-Befehl und kann ausgefiihrt werden

Ev. muss noch ein Laufwerks-Wechsel mittels Laufwerk-Buchstabe und angehangtem Dop-
pelpunkt gemacht werden. In der Konsole wird dann mit:

pip install Paketname

das angegebene Paket installiert. Es werden diverse Verlaufs-Informationen angezeigt und
beim ordnungs-gemalfen Durchlauf auch eine Erfolgs-Bestatigung.
Zum Deinstallieren verwendet man:

Pip uninstall Paketname

Das ist aber eigentlich in speziellen Situationen notwendig.
Lauft das Python-System schon langer, dann sollte man das PIP-Programm zuerst einmal
selbst updaten:

pip install -upgrade pip

Das ist auch eine Option, falls eine Paket-Installation nicht klappt. Oft geht es dann mit der
aktuellen PIP-Version.

Die Anzeige der installierten Pakete erfolgt mit:

pip list

Sollen (ver)alte(ter) Paket angezeigt werden und die zugehdrigen neuerenVersionen, dann
hilft das Kommando:

pip list --outdated

Vielleicht ist der genaue Paketname nicht bekannt, oder die Versionen Uberschlagen sich,
dann ist eine Suche nach bestimmten Paketen mit:

pip search "Anfrage"

mdglich.

BK_SekI+II_Python_prof.docx -137 - (c,p) 2015 - 2026 Isp: dre

8.6.4. Modul / Bibliothek NumPy

ausfihrlich unter: https://numpy.org/doc/stable/

Die wichtigste Eigenschaft von NymPy ist wohl die bereitstellung von Feldern / Array's fur
mathematische Aufgaben in Python. Die Ublichen Listen des originalen Python sind fur auf-
wendige mathematische Anwendungen einfach zu sperrig und zu langsam.

NumPy bietet viele Mdglichkeiten seine Array's intern zu verknupfen oder Funktionen dar-

Uber laufen zu lassen. Diesen direkten Weg sollte man immer der eigenen Interation Uber die
Array's vorziehen. Die NumPy-Umsetzungen sind deutlich schneller.

Importieren der Bibliothek

import numpy

oder etwas praktischer mit einem verkirzten Namen fir die Bibliothek. Dabei hat sich in der
Programmierer-Welt np eingeburgert.

import numpy as np

Im Folgenden gehen wir genau von diesem Import aus.

Erstellen von Array's

Ein einfache Array (Feld) lasst sich Uber:

datenSet = np.arravy([4,3,6,2,7,2,2,3,4,4]) # 10 Daten-Punkte

erzeugen. In der Array- oder Matrix-Sprache handelt es sich um eine ein-dimensionales Feld
oder einen sogenannten Vektor. Auch der nachste Erstellungs-Befehl erzeugt einen solchen
Vektor:

datenSet = np.arange (12) #liefert aufsteigend belegtes Feld (von 0 bis 11)

Viele Daten liegen praktisch oder im Modell als mehr-dimensionale Struktur vor. Gerade hier-
fur eigenet sich NumPy besonders. Ein mehr-dimensionales Array aus konkreten Daten(-
Listen) erstellt man so:

datenSet = np.array([[4,3,6,2,7,2,2], # 7 Beobachtungen
[7121 615141312]1
[3,2,6,4,3,2,1]1]1) # in 3 Beobachtung(s—-Reih)en
print (datenset.shape) # liefert Dimensionen des Array's
print (np.max (datenSet, axis=1 - np.min(datenSet,axis=1)) #zeigt Spanbreite

#der Beobachtungen innerhalb einer Reihe

BK_SekI+lI_Python_prof.docx -138 - (c,p) 2015 - 2026 Isp: dre

https://numpy.org/doc/stable/

Initialisieren eines leeren Array's

datenSet = np.empty([3,4,7]) # leeres 3-dim. Feld 3x4x7

Der Standard-Datentyp ist bei NumPy float.
Werden aber andere Daten vorgegeben und die Erstellungs-Funktion asarray() benutzt,
dann "errat" NumPy den passenden Datentyp.

Initialisieren eines Array's mit Nullen (Null-Matrix)
hier 2-Dim-Matrix

matrix = np.zeros((3,4))

Auch wenn es nicht scheint, die Nullen sind allesamt float-Werte! Das muss ev. bei Berech-
nungen usw. beachtet werden.

Initialisieren eines Array's mit Nullen (Null-Matrix)
hier 4-Dim-Matrix

matrix = np.ones((3,4,2,3))

Auch hier sind die Einsen vom Datentyp float.

Initialisieren eines Array's mit Zufalls-Zahlen

Vektor mit 10 Zufalls-Zahlen zwischen 0 und 1

matrix = np.random.rand (10)

Matrix mit deb Dimensionen von 4 Spalten und 3 Zeilen sowie ganzzahligen Werten zwi-
schen 4 und 10 (praktisch also obere Grenze: 11):

matrix = np.random.randint (4,11, (3,4))

Daten aus Dateien einlesen

Nichts ist nerviger als Daten beim Testen eines Programm's standig per Hand einzugen.
Natirlich kann man sich ein Daten-Set direkt in den Quell-Text legen, aber von schéner und
universeller ist das Laden von Daten aus Dateien.

dateiname = "eingabedaten.csv"
datenset = np.genfromtxt (dateiname)

BK_SekI+II_Python_prof.docx -139 - (c,p) 2015 - 2026 Isp: dre

Neben dem Dateinamen kénnen Komma-getrennt auch noch merhrere Optionen angegeben
werden. Besonders interessant sind dabei das Trennzeichen zwischen den Daten-
Elementen in der Zeile. Dies wird mit delimiter festgelegt. Bei einer Semikolon-getrennten
CSV-Datei wirde man dann delimiter=";" verwenden. Soll die erste Daten-Zeile Uberle-
sen werden, weil sie — wie haufig vorkommend — Uberschriften enthélt, dann kann dies mit
skip_header=1 eingestellt werden.

Der Dateiname ist vom Typ her offen. Man kann also auch gerne Datei-Typ-Kurzel wie .IN,
.OUT oder .TXT benutzen. Selbst wenn man es .BMP nennen wirde, ist dies ok. Nur sollte
man damit rechnen, dass dann Objekt-bezogene Aufrufe durch das Betriebssystem oder
eine BMP-verarbeitendes Programm schief gehen werden. Intern ist und bleibt die Datei eine
Text-Datei.

Die Speicherung eines Array's in eine Text-Datei erfolgt Giber:

np.savetxt (dateiname)
Hier sind ebenfalls wieder diverse Optionen zulassig.

Mit Hilfe der Funktionen .tofile(dateiname) und .fromfile(dateiname) lassen sich NumpY-
Array's auch in Binar-Form speichern bzw. laden.

Zugriff auf Daten-Elemente

Der Zugriff auf einzelne Elemnte erfolgt, wie Ublich tber die Indicies in eckigen Klammern:

elem = datenset[3,2]
Mittels Slicing lassen sich Bereiche aus einem grof3eren Array herausholen. Dabei wird fur

jede Dimension ein eigener Slicing-Ausdruck verwendet. Es gilt die Ubliche Notierung
start:ende:schrittweite.

Operationen / Funktionen mit / zu Array's

Multiplikation eines Vektor’'s / einer Matrize mit einem Faktor
import numpy as np

vektor = np.array([12.3, 53.6, 31.5, 33.31)
vektor = vektor * faktor

print (vektor)

Multiplikation einer Matrize mit einem Vektor
matrix = np.array([[2,3,4,5],
[4,5,6,71,
[6,7,8,911)
vektor = np.array([2,6,4,3])
erg = np.dot (vektor,matrix)
print (erqg)

Multiplikation einer Matrize mit einer anderen
matrixA = np.array([[2,3,4,5],
[4,5,6,711)
matrixB = np.array([[1,2],
(2,31,

BK_SekI+l_Python_prof.docx -140 - (c,p) 2015 - 2026 Isp: dre

[3,4],

(4,511)
erg = np.dot (matrixA,matrixB)
print (erqg)

Vergleich von zwei NumPy-Array's und speichern des Ergebnis in einem Array mit BOOLE-

schen Werten, z.B.:

vergl erg = NumPyArrayl < NumPyArray2

Lineare Alsebra (z.B. Losen von Gleichungs-Systemen)

Ein lineares Gleichungs-System lasst sich

in die Matrizen-Welt Ubersetzen. Dabei 8 = 3 x1 + -1 x + 2 X
ergibt sich eine Matrix (praktisch ein Vektor) = 2 X2 +t 2 X
fur die Ergebnisse (hier Schreibung links) 4 x ol X
und dem Variablen-Teil.

Die Faktoren vor den Variablen x1 bis x3 bilden eine zwei-dimensionale Matrix.

Dabei ist zu beachten, dass jedes Element eine num-

merisch verwertbare Zahl ist. Die nicht benutzten Vari- -8 3, -1, 2
ablen erhalten als Faktor eine 0 und die ohne Faktor 2 = 0o, 2, 2
0 4 , 0, 1

den Faktor 1.

faktoren = np.array([I[3,-1,2], # Matrix muss quadr. u. vollst. sein
[0,2,2] # keine Vielfache anderer Zeilen zuldssig
[4,0,11]) # Determinante darf nicht 0 sein
ergebnisse = nparray([-8,2,01]) # quasi y-Werte

variablen = np.linalg.solve (faktoren,ergebnisse)
print (variablen)

interessante Links:

https://s3.amazonaws.com/assets.datacamp.com/blog assets/Numpy Python Cheat Sheet.pdf (>
Cheat Sheet zu NumPy)

https://riptutorial.com/de/numpy (Tutorial zu NumPy)

BK_SekI+II_Python_prof.docx -141 - (c,p) 2015 - 2026 Isp: dre

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://riptutorial.com/de/numpy

8.6.5. Modul / Bibliothek MatPlotLib

(&
aktuelle Dokumentation unter https:/matplotlib.org/ \

4
)
>

Was dem Standard-Python fehlt, sind Befehle, um graphische Elemente auf dem Bildschirm
darzustellen. Fur viele Berechnungen usw. wirden wir uns aber gerne eine Ausgabe als Di-
agramm od.a. winschen. Zwar kann man sich flr den Notfall auch mit Pseudographiken
helfen, die auf den Konsolen-Symbolen basieren. Fur Facharbeiten usw. reicht sowas natur-
lich nicht. Hier brauchen wir professionelle Diagramme.

Die Bibliothek MatPIotLib bietet viele Funktionen zum einfachen Erstellen und Gestalten von
Diagrammen. Diese werden in einem separaten Graphik-Fenster angezeigt.

Praktisch ist das Modul MatPlotLib in reichlich Untermodule geteilt. Fur unsere Zwecke —
der einfachen Erstellung anspruchvoller 2D-Diagramme — brauchen wir das Untermodul
PyPlot.

Hauptziel-Richtung von PyPlot ist die Prasentation von Daten in einer MATLAB-&hnlichen
Umgebung. Dabei wird derzeit auf 2D-Diagramme orientiert.

Da es sich bei MatPlotLib um eine externe Bibliothek handelt, kann eine Installation notwen-
dig sein.

Einige Entwicklungs-Umgebungen — wie z.B. Anaconda, WinPython und ActiveState — haben
MatPlotLib gleich mitinstalliert. Bei der klassischen Python-Installation (mit dem Installations-
Programm von python.org) ist die Bibliothek nicht dabei.

Ob MatPlotLib verfiigbar ist, merkt man sofort nach einem Import der Bibliothek (s.a. sonst
auch weiter unten). Dazu reicht es in der Python-Konsole ein:

import matplotlib

einzugeben. Kommt keine Fehlermeldung, dann ist MatPlotLib schon integriert. Ansonsten
mussen wir es nachinstallieren.

Die Installation erfolgt auf der Konsole (Eingabeaufforderung, ms-dos-Fenster, PowerShell-
Fenster).

Fir viele Windows-Nutzer gestaltet sich innerhalb der Konsole ein Verzeichniswechsel
schwierig, weil die alten ms-dos-Befehle (cd Pfad oder Verzeichnis und Laufwerkswechsel
mit Doppelpunkt) nicht mehr recht gelaufig sind. Hier bietet sich ein kleiner Trick an:

1. Wahlen Sie im Arbeitsplatz / Windows-Explorer / Datei-Manager / ... das Laufwerk und
den Ordner aus, in dem Python installiert wurde.

2. Wenn Sie im rechten Fenster-Bereich den Ordner Python sehen, dann klicken Sie bei
gedrickter Hochstell-Taste mit der rechten Maus-Taste drauf.

3. Im nun sichtbaren erweiterten Kontext-Men(sieht man — je nach Betriebssystem — eine
Moglichkeit die Eingabeaufforderung oder die PowerShell zu 6ffnen.

In der gedffneten Konsole missen wir nun Text-basiert einige Befehle eingeben, um unser
Python-System auf den neuesten Stand zu bringen.

BK_SekI+l_Python_prof.docx -142 - (c,p) 2015 - 2026 Isp: dre

https://matplotlib.org/

Zuerst aktualisieren wir das Update-
Programm pip selbst:

python -m pip install -U pip

Es folgen u.U. mehrere Installations-
Vorgange (s.a. Abb. rechts). Wenn dann der
Konsolen-Prompt wieder angezeigt wird, dann
installieren / updaten wir MatPlotLib mittels:

python -m pip install -U matplotlib

und wieder folgt im Allgemeinen eine Reihe
von Installationen.

E:\Python> python
Requirement already sa

0n Pip

cting matplotlib

Installin
Attempt
ound

uni

n: m
atplot1ib-3.2.1:
uninstalled mat
1led matplotlib-

1 matplotlib
matplotlib in e

p

ython\1ib\si te-packag

1 in e:\python\1ib

1.0.1 in e:\python\Tib\site-f

0.10 in e:

:\python

win_amd64
| 2.1.»

plotlib 3.2

otli

ine

python\1ib\site-pack

1ib\site-packages (from cycler

python\1ib\site-packages (from k

wh

MB 59
, matplotlib

b-3.2.1

3 pilio

1

1@
5 kB/s

BK_Sekl+ll_Python_prof.docx - 143 -

(c,p) 2015 - 2026 Isp: dre

8.6.5.1. allgemeines Vorgehen (Workflow)

Die Diagramme werden in Python Plot's oder Figuren genannt. Je nach dem werden ent-
sprechend benannte Variablen benutzt. Diese kdnnen aber beliebig ausgetauscht werden.
Nur fr den Austausch mit anderen Programmierern usw. sind standardisierte Namen eher
sinnvoll.

Arbeitsschrittfolge fiir die Diagramm-Erstellung

e Vorbereiten der Daten Daten in Listen oder NumPy-Array zusammenstellen /
berechnen/ ...
e 1D: aufgezahlte y-Werte
e 2D: x-und y-Werte oder Bilder

¢ Importieren der Bibliothek nur einmalig (zu Beginn des Programms / Modul's)
(Modul + Untermodul) import matplotlib.pyplot as plt
plt kann durch anderen Namen ersetzt werden, hat

sich aber so eingeburgert

e Erzeugen eines Plot's Initialisierung eines Zeichen- / Diagramm- / Plot-

Objektes (auch Figur genannt)
plt.plot(..)

z.B. mdglich:
e klassische X-Y-Diagramme
e Histogramme
e Balken-Diagramme
e Kreis-Diagramme
[]

e Formatieren / Anpassen optional
eines Plot's viele Anpassungen / Festlegungen werden klassi-
scherweise schon gleich beim Erzeugen des Plot's
gemacht
zusatzlich z.B. Hinzufugen von:
e Legende
Titel
Achsen

e Speichern des Plot's optional
Diagramm als Bild-Datei speichern

e Anzeigen eines Plot's erst mit
plt.show()

wird das Zeichen-Objekt / das Diagramm / der Plot /
die Figur angezeigt (vorher nur Speicher-Objekt!)
nach Anderungen ist ein erneuter Aufruf notwendig!

e Schlieen eines Plot's innerhalb des Programm's mit:
plt.close()

ansonsten wird Plot am Ende des Programm's auto-
matisch geschlossen

BK_SekI+lI_Python_prof.docx -144 - (c,p) 2015 - 2026 Isp: dre

Die Plot's / Diagramme werden klassischerweise in
gaudratischen Boxen (Figuren) angezeigt. In diesen ste-
hen einige Bedien-Elemente fir eine interaktive Anpas-
sung zur Verfigung. Die Schaltflachen unten sind wei-
tesgehend selbsterklarend.

Mit dem Haus gelangt mann nach irgendwelchen Mani- .

+|Q=|
Aktivitats-Schaltflachen
in der Diagramm-Anzeige

pulationen immer wieder zur urspringlichen Anzeige ™ ceorsieromsesmorpn
zuriick. Man kann die Diagramm-Flache verschieben - - o
sich hineinzoomen und / oder auch die Grafik (mit all o I | -*
ihren Parametern) einstellen. o I |
Das letzte Button lasst eine Speicherung der Figur in :::= }
einer PNG-Datei zu. Gerade fir Dokumentations-
Zwecke ist das sehr praktisch. — . .
Einstell-Dialog

weitere Moglichkeiten:

Die quadratische Grund-Figur lasst sich kleinere Unter-Figuren — also Unter-Diagramme —
unterteilen.

Mit der Funktion imshow(...) lassen sich Bilder mit quadrat-férmiger Ausdehnung anzei-
gen. Dies wird z.B. gern fir die Anzeige von Bilder aus Trainings-Set's fir Programme zu
Kinstlichen Neuronalen Netzen (KNN, = (X Programmieren mit Python Teil 3: fiir Ex-
perten - 10.8. Python und Data Science + 10.9. Python und Kunstliche Intelligenz) genutzt.

BK_SekI+II_Python_prof.docx -145 - (c,p) 2015 - 2026 Isp: dre

8.6.5.2. Erstellen und Manipulieren von Diagrammen

8.6.5.2.1. Entscheidung fiir einen Diagramm-Typ

Entsprechend der vorliegenden Daten muss in einem ersten Schritt festgelegt werden, wel-
chen Diagramm-Typ man benutzen mdchte. Hier sind natirlich die allgemeinen Regeln fir
die Auswahl zu beachten. Der Diagramm-Typ muss zu den Daten passen.

moégliche Diagramm-Typen (Auswahl klassischer Typen)

¢ Linien-Diagramm .plot()
e X-Y-Punkt-Diagramm .plot(... , '0")
e Zeit-Diagramme .plot_date()

& Figun

re { - o

Nwos B e N ® e

2 4 6 8 10

N w s v e N ® o
)

@/ €[> +a|=| # €3 #lal=|
e Saulen-Diagramm .bar()
e Balken-Diagramm .b.arh()
o Histogramm -hist()
-hist2d()
€3] Az #/¢[3] +laf=

&1 Figure

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

1 - o

60 80

#|¢[2| #[a|=m

BK_Sekl+Il_Python_prof.docx

- 146 -

(c,p) 2015 - 2026 Isp: dre

o Kreis-Diagramm .pie()
(Torten-Diagramm)

% Figure 1 - u] X % Figure 1 - o X

#| €[5 #Qf= xe0734y=-0307 &l €3] #Qf=

¢ Polar-Diagramm

% Figure 1

Um ev. spater mit den Diagramm-Typen experimentieren zu kdnnen und vielleicht auch den
Quell-Code wiederzuverwenden, empfiehlt es sich, die Daten in Variablen zu speichern.

Die Daten werden in den meisten Fallen als Listen bzw. NumPy-Array's erwartet.

Zuerst werden wir hier nur die Linien- bzw. die recht dhnlichen Punkt-Diagramme bespre-
chen. An diesen zeigen wir dann auch die Formatierungs-Maoglichkeiten auf (= Diagramm
gestalten / formatieren). Die anderen — oben erwahnten — Diagramm-Typen sowie einige
aullergewbhnliche Diagramme betrachten wir hinterher in einer komplexeren Form, ohne
dabei betont Erstellung und Formatierung zu trennen (- weitere Diagramm-Typen).

Vielfach erwahnen wir nur den Funktions-Namen. Die Optionen und Gestaltungs-
Méoglichkeiten sind flr ein Skript, wie dieses, viel zu speziell. Der genétigte Anwender wird
sich Uber die Hilfe-Seiten von MatPlotLib aber schnell einarbeiten.

BK_SekI+I|_Python_prof.docx -147 - (c,p) 2015 - 2026 Isp: dre

Erstellen eines Linien-Plots (aus einfacher Daten-Reihe)
import matplotlib.pyplot as plt

werte = [2,3,3,4,5,6,7,7,8,10]
plt.plot(list(range(l,11)), werte)
plt.show ()

Der obige Quell-Text erezugt ein einfa-
ches Linien-Diagramm (s.a. Abb. rechts),
bei dem nur eine Werte-Liste genutzt
wird. Die Werte bekommen uber die ran- 0]
ge()-Funktion Nummern fur die x-Achse.

Zu beachten ist hier, dass die Daten im-
mer in Listen-Form bereitgestellt werden
mussen. 71

Durch eine einfache Options-Angabe
(hier: '0'), kann aus dem Linien-

Diagramm das elementare Punkt- 31

Diagramm gemacht werden. Ob das 2]

Verbinden der Punkte Uber eine Linie 3 2 6 B 10
Uberhaupt zulassig war, muss vorher

gepriift werden. #/€/d +Q=|

plt.plot(list(range(l,11)), werte, 'o')

Spatestens, wenn mehrere Punkt- | ™" .
Reihen dargestellt werden sollen, muss
man sich um die Formatierung der Da- 10] .
ten-Punkte kUmmern. Als Formatie- ol
rungs-Moglichkeiten fur Daten-Punkte
sind unterschiedliche Symbole und auch ’ *
Farben mdglich. ! ¢
Bei den oben vorgestellten Linien- 61 .
Diagrammen kann bei der Formatierung 5 .
auf unterschiedliche Strich-Starken und . .
Linien-Arten zurtckgegriffen werden (>
8.6.5.2.3. Diagramm gestalten / formatie- ’ *t
@) 2{ e
€3 #Ql=|

Aufoaben:

1. FErstellen Sie fiir die nochfolgenden Dalen einer Reihe ein Linien-
Diagramm!
54,4,3,3,45,6,7,8,7,8,8,6,4,3
2. Verwenden Sie die nachfolgenden Daten zum FErstellen eines Punkit-
Diagramm’'s!
2,3;3,1;2,8; 3,0; 4,0; 4,6; 3,9; 4,1

BK_SekI+lI_Python_prof.docx -148 - (c,p) 2015 - 2026 Isp: dre

Kombination von Daten-Reihen
import matplotlib.pyplot as plt
wertel = [2,3,3,4,5,6,7,7,8,9]
werte2 = [4,4,4,5,5,5,6,6,6,5]

plt.plot(list (range(l,11)), wertel)
plt.plot(list (range(l,11)), werte2)

plt.show ()

Linien- und Punkt-Diagramme lassen
sich auch kombinieren. Fir den entspre-
chend veranderten Graphen wird einfach
die passende Option angegeben.

plt.plot(list (range(l,11)), werte2,

Desweiteren lassen sich die einzelnen
Daten-Reihen auch in einem plot-Befehl
vereinen:

x _werte = list(range(1l,11))
plt.plot (x werte, wertel,
x werte, werte2, 'o'")

Die Anzahl der Paare von x- und y-

Werten ist praktisch nur durch die Uber-
sichtlichkeit des Plot's begrenzt.

Aufoaben:

5 Figure 1 — m] X

T T T T T
2 4 6 8 10

al¢l3] #a/=

'o')

51 Figure 1 — m] X

T T T T T
2 4 6 8 10

alel3] #a/z

1. Erstellen Sie ein Punkl-Diagramm aus der folgenden Dalen-Reihe!
2,4,6,8,10,10,8,6,4,2,4,6,8, 10,10, 8,6
2. Erstellen Sie aus der gegebenen Dalen-Reihe (von Aufgabe 1) ein kombi-
nierfes Punkt- und Linien-Diagramm!
3. Lassen Sie sich ein Diagramm fiir die quadralische Funklion (filr x nur na-
Hirliche Zahlen) anzeigen. Der Definilions-Bereich soll von 0 bis 10 gehen.

BK_Sekl+ll_Python_prof.docx

-149 - (c,p) 2015 - 2026 Isp: dre

8.6.5.2.2. Sichern der Diagramme

Das Abspeichern der Plot's gelingt ganz einfach aus der Anzeige heraus. Das Disketten-
Symbol steht hier fir die Moglichkeit eine Graphik-Datei in verschiedenen Formaten zu er-
zeugen. Der klassische Datei-Typ wird wohl PNG sein.

Man kann aber auch direkt aus dem eigenen Programm heraus eine Speicherung auslésen.

Plot Programm-gesteuert abspeichern
plt.savefig(dateiname, format='png')

Zu beachten sind mehrere Sachen. Der Aufruf der Speicher-Funktion muss vor der show()-
Funktion erfolgen. Wahrscheinlich ist der Befehl als vorletzte Aktion (vor dem show()) am
universellsten.

Zum Zweiten werden Dateien, die schon existieren, ohne Nachfrage uberschrieben. Wenn
also mehrere Diagramme in einem Programm gespeichert werden sollen, dann mussen die
Dateinamen entsprechend angepasst werden.

Dies kann z.B. durch den Einbau eines Datums-Zeit-Stempels im Diagramm-Namen geldst
werden. Wie man hier vorgehen kann wurde schon beim Modul datetime besprochen (=2
8.6.2.x. Verschiedenes zum Modul:datetime).

Desweiteren ist die Format-Vorgabe entscheidend. Es geht zwar auch folgender Aufruf:

plt.savefig("Diagramm.jpg", format='png')

aber die angebliche JPG-Datei ist und bleibt eine PNG-Datei, auch wenn sie anders heift.
Fir viele Zwecke bendtigt man Bilder / Bild-Dateien mit einem transparenten Hintergrund.
Dann passen die besser zum Basis-Dokument. Der Transparenz-Modus wird tber die Option
transparent gesteuert.

plt.savefig("Diagramm.png", format='png', transparent=True)

Aufoaben:

1. Passen Sie ein Diagramm-Programm so an, dass das erstellte Diagramm als
"MeinDiagramm.png” gespeichert wird!

2. Uberlegen Sie sich eine Mdoglichkeil, wie Sie in den Daleinamen einen Zeil-
Stempel einbauen konnen! Realisieren ein passendes Programm!
Hinweis: Zeil-Stempel sind iiber das Modul tme erveichbar.

2
2.

BK_SekI+l_Python_prof.docx -150 - (c,p) 2015 - 2026 Isp: dre

8.6.5.2.3. Diagramm gestalten / formatieren

Jeder Linie kann eine individuelle Strich-Art und Farbe zugewiesen werden. Die Daten-
Punkte kénnen ebenfalls ganz speziell festgelegt werden. Das erleichtert das Erkennen von
Graphen in komplexeren Diagrammen. Die speziellen Merkmale werden als Zeichen-Folge
im Options-String gesammelt, der Komma-getrennt an die Daten-Paare angehangt wird.

Linien-Arten formatieren

plt.plot (rangel,11l), werte2, ':'")

Linienarten:
“* durchgezogen ’ gepunktet
--* gestrichelt ‘-.” Strich-Punkt-Linie

Marker / Daten-Punkte formatieren
oft in Kombination mit Linien-Art

plt.plot(rangel,11l), wertel,’o—")
plt.plot(rangel,11l), werte2,’h:’)

oder auch in Kombination mit einer Linien-Farbe

plt.plot (rangel,11l), wertel,’o—r')

Marker / Daten-Punkt-Arten

‘.’ Punkt ‘s’ Quadrat

‘7 Pixel ‘P’ Finfeck

‘0" Kreis * Stern

‘+’ Plus-Zeichen ‘h’ Sechseck 1

‘X" Kreuz-Zeichen ‘H Sechseck 2

‘d’” Diamant-Zeichen, dinn ‘ ' horizontale Linie

‘D’ Diamant-Zeichen " vertikale Linie

‘v’ Dreieck mit Spitze nach unten ‘1" Dreiecksstern mit Spitze nach unten
‘" Dreieck mit Spitze nach oben ‘2" Dreiecksstern mit Spitze nach oben
‘<’ Dreieck mit Spitze nach links ‘3" Dreiecksstern mit Spitze nach links
>’ Dreieck mit Spitze nach rechts ‘4’ Dreiecksstern mit Spitze nach rechts

Linienfarben formatieren

plt.plot (rangel,11l), wertel,’r')

Linienfarben:

‘K’ schwarz ‘g’ grin ‘Y gelb
‘D> blau ‘m’” magenta ‘W weild
‘c cyan r rot

BK_SekI+II_Python_prof.docx -151 - (c,p) 2015 - 2026 Isp: dre

feine Funktions-Diagramme

In der Praxis kommen Daten oft in NumPy-Array's daher. Diese sollen dann mittels MatPlot-
Lib als Funktions-Diagramme dargestellt werden.

Im folgenden Programm wird zuerst einmal eine Sinus-Funktion Uber 2n-Intervalle erzeugt
und angezeigt.

import numpy as np
import matplotlib.pyplot as plt
import math as mth

x min = 0
x max = 4 * np.pi
x werte = np.linspace(x min, x max, 40, endpoint=True)

fkt = np.sin(x werte)
y min = mth.floor (np.min (fkt))
y max = mth.ceil (np.max (fkt))

plt.plot (x werte, fkt)
plt.axis([x min, x max, y min, y max])
plt.show ()

%1 Figure 1 - m] b4

Auf der x-Achse haben wir hier — et-
was unschon — dezimale Werte. Prak-

tischer ware hier eine Skalierung mit 100
Pi-Vielfachen. Soetwas bekommt man 075]
durch Formatierung der Achsen ein-

gestellt (> Achsen gesondert definie-]
ren und formatieren). 0.25
Bei solchen Diagrammen kommt es 0.00 4
oft auch dazu, dass die Kurven an die

Achsen anstoRen. Wenn dies stort, 07
dann kann man durch geschickte 050 1
Wahl der Grenzen die Darstellung o]
entsprechend anpassen (- Dia-

gramme ohne "anstoRige" Kurven) “rood 7 2 p 5 10 1
€3 +Qf=

Bei Funktions-Diagrammen lassen sich naturlich auch mehrere Graphen darstellen:

fkt np.sin(x _werte)
fkt2 = 1.5 * np.sin(0.75 * x werte)
y min = mth.floor (np.min (fkt))
y max = mth.ceil (np.max (fkt))
y min2 = mth.floor (np.min (fkt2))
if y min2<y min:
y _min=y min2
y max2 = mth.ceil (np.max(fkt2))
if y max2>y max:
y_max=y max2

plt.plot (x werte, fkt)
plt.plot (x werte, fkt2)
plt.axis([x min, x max, y min, y max])

BK_SekI+lI_Python_prof.docx -152 - (c,p) 2015 - 2026 Isp: dre

Im Programm wurden die Grenzen

iber die Maximum- und Minimum- pouet .
Funktion ermittelt und durch Runden !
etwas erweitert. Da macht i.A. einen 20
angenehmeren Eindruck. Allerdings 151
muss man hier ev. noch Anpassun-
gen vornehmen, wenn die Grenzen 0
nicht im Einer-Bereich liegen. Ceil() 05 1
und floor() runden eben nur auf den oo '
nachsten ganzzahligen Wert. Bei z.B.
einem Maximum von 10'342,3 macht]
das keinen Sinn (Grenze ware dann 10
10'343). s
200 2 4 6 8 10 12

Die einzelnen Graphen lassen sich —
aquivalent zu oben — gestalten: # € +Ql=
plt.plot (x werte, fkt)
plt.plot(x werte, fkt, 'bx')
plt.plot (x _werte, fkt2, color='green', linewidth=3, linestyle='--"')

(

plt.axis([x min, X max, y min, y max])

| %) Figure 1 - m] X

2.0

1.5

1.0 4

Kehren wir zu unseren ursprunglichen
Kurven zuruck. In diesen wollen wir 05 1
nun Flachen einfarben. Dazu stellt .
Mathplotlib die Funktion fill_between()
bereit. Sie bendtigt diverse Argument.
Als Erstes wird das Array mit den x- T
Werten erwartet. Es folgen zwei Ar-
ray's fir y-Werte. Diese kénnen aber

—-0.5

-1.5

auch auf 0 oder einen anderen Wert 200 3 2 . : 10 12
(quasi Parallele zur x-Achse) gesetzt |
werden. ® €D $Q= , , x=BSUTI y=-144560

-0.25 -0.25

-0.50 -0.50

-0.75 -0.75

-1.00 | -1.00+4

€[> #al=] B #led| #la= B
plt.fill between (x werte, 0, fkt) plt.fill between (x _werte, 0.5, fkt)

BK_SekI+II_Python_prof.docx -153 - (c,p) 2015 - 2026 Isp: dre

Uber die Option alpha kann man die Farb-Intensitat
anpassen. Die normale Intensitat ist auf 1,0 gesetzt.
Durch eine kleinere Zahl 14t sich z.B. die Flache auf-
hellen:

plt.fill between(x werte, 0, fkt,alpha=0.2)

Das erzeugt fir die normale Anwendung einen ange-
nehmeren Eindruck.

Kommen wir aber zu den Argumenten von
fill_between() zurlick. Das zweite y-Argument kann
auch ein Array sein. So lassen sich Flachen zwischen
Graphen einfarben.

Hier nun noch einmal den gesamten Quelltext:

import numpy as np
import matplotlib.pyplot as plt
import math as mth

x min = 0
x max = 4 * np.pi

-0.25

-0.50

-0.75

-1.00 T
2

al€[>| Q= B

x _werte = np.linspace(x min, x max, 100, endpoint=True)

fkt = np.sin(x werte)

fkt2 = 1.5 * np.sin(0.75 * x werte)
y min = mth.floor (np.min (fkt))

y max = mth.ceil (np.max (fkt))

y min2 = mth.floor (np.min (fkt2))
if y min2<y min:

y _min=y min2
y max2 = mth.ceil (np.max (fkt2))
if y max2>y max:

y _max=y max2

print(y min, y max)

plt.plot (x werte, fkt, 'r')

plt.fill between (x werte, 0, fkt,color="yellow',alpha=0.3)

plt.plot (x werte, fkt2, color='green')

plt.fill between (x werte, fkt, fkt2,color="'green',alpha=0.4)

plt.axis([x min, x max, y min, y max])
plt.show()

4

BK_Sekl+Il_Python_prof.docx - 154 -

(c,p) 2015 - 2026 Isp: dre

Zu erwahnen sind noch zwei weitere
mdglich Argumente / Optionen. Da
ware zum Einen "where". Where ist per
Default auf None gesetzt. Man kann 20
aber auch eine Numpy-Array mit = 5]
Boolean's Ubergeben, mit denen fest-
gelegt wird, wo eingefarbt werden soll. ‘
Weniger gebrauchlich ist die zweite | os;
Option "interpolate". Mit ihr wird per |
Boolean-Wert festgelegt, ob zwischen
den beiden y-Kurven der Schnittpunkt
interploliert werden soll. -1.01
So ein Boolean-Array lasst sich z.B.
durch den Vergleich von zwei Numpy-
Array's erzeugen. ey 7 3 : : o 5
Mit fill_betweenh() lassen sich die

Flachen zwischen vertikalen Kurven #|€[3| +[Q/=| B

einfarben.

|

% Figure 1 — m]

1.0 4

—-0.5

-1.5

Aufoaben:

1. Erstellen Sie ein Diagramm, in dem die Sin- und die Cos-Funktion im Infer-
vall von 0 bis 10 angezeigt wird!

2. Lassen Sie sich die Flache zwischen der x-
Achse und der Cos-Funklion hell-blaulich

einfarben!
3. Lassen Sie sich die Flachen zwischen der
Sin- und der Cos-Funktion hell-vollich ein-
[arben!
[iir die gehobene Anspruchsebene: | o
4. Bei der Sin-Funktion soll nun diec Flache
grunlich eingefarbt werden, die iiber ciner BT A

Geraden (von {0,0} bis {10,0.5}) licgt! ale>|+as
(s.a. Abb. rechls)

Label / Achsen-Beschriftungen hinzufiigen / formatieren

plt.xlabel (‘'x-Achse’)
plt.ylabel (‘y—-Achse’)

BK_SekI+II_Python_prof.docx -155- (c,p) 2015 - 2026 Isp: dre

Achsen gesondert definieren und formatieren

achsen = plt.axes/()
achsen.set x1im([0,11]
achsen.set ylim([-1,11
4
3,

)
achsen.xticks ([1, 2, 3 ,5,6,7,8,9,10])
achsen.yticks ([0,1,2, 4,5,6,7,8,9,10])
plt.plot (range(l,11) ,werte)

plt.show ()

Bereiche definieren und in einem Achsen-Aufruf unterbringen:
xmin=0

xmax=10

ymin=0

ymax=100

plt.axes ([xmin, xmax, ymin, ymax])

Achsen bei einem bestimmten Wert schneiden lassen:

zuerst einmal die "alten" Achsen unsichtbar machen

achsen = plt.gca()
achsen.spines['right'].set color('none')
achsen.spines['top'].set color('none')

dann neue Achsen einstellen

achsen.xaxis.set ticks position('bottom')

achsen.spines|'bottom'].set position('data',0)
achsen.yaxis.set ticks position('left')
achsen.spines['left'].set position('data',0)

Achsen im Programm-Ablauf anpassen (abfragen und neu festlegen)

print ("Die aktuellen Minima und Maxima flr die Achsen sind:")
print (plt.axes()) # Abfrage

print ("die neue Grenzen werden nun festgelegt auf:")

xmin, xmax, ymin, ymax = 0, 12, 0, 90

print (xmin, xmax, ymin, ymax)

plt.axes ([xmin, xmax, ymin, ymax]) # Setzen

print ("Die aktuellen Minima und Maxima fir die Achsen sind nun:")
print (plt.axes ()) # Abfrage

An dieser Stelle ist z.B. auch ein automatisches Runterrunden der Minima und Aufrunden
der Maxima sinnvoll einzusetzen (Runden: -). So lassen sich auch Diagramme erstellen,
bei denen der Graph so skaliert wird, dass der Plot optimal ausgenutzt wird. Ev. nicht ge-
brauchte Zahlen-Bereiche werden so eleminiert.

BK_SekI+lI_Python_prof.docx -156 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Lassen Sie sich ein Diagramm fiiv die Quadrale dev Zahlen von 5 bis 15 an-
zeigen! Die Achsen sollen dabei so skaliert werden, dass dev Graph mog-
lichst grof dargestelll wird!

2.

=~
2
.

Diagramme ohne "ansto6Bige” Kurven

plt.xlim(X.min ()

X.max ()*1.1)
plt.ylim(Y.min () Y .max

*1.1,
*1.1, ()*1.1)

Gitternetz-Linien hinzufiigen
Zum besseren Orientieren und Ablesen von Werten dienen Gitternetzlinien.

achsen.grid()

fur Polar-Diagramme:

plt.rgrids(..)

Aufoaben:
1 *

2. Erstellen Sie ein Diagramm fiir eine halbierte quadralische Funklion, in dem
die Funktionswerte von 0 bis 5 eingezeichnel sind! Mil Hilfe eines Gilternel-
zes und der geeignelen Achsen-Skalierung sollen Schiiler die Moglichkeit
bekommen im Ausdruck (gespeichertes Bild), die Funklionswerle von 6 bis
10 zu erganzen!

Daten-Punkte beschriften
Mit xy wird die Position beziglich des Gitternetzes bestimmt und mit s der auszugebene Text

plt.annotate(xy=[1,1], s='Wert 1')

BK_SekI+II_Python_prof.docx -157 - (c,p) 2015 - 2026 Isp: dre

Legende hinzufiigen / formatieren

plt.legend ([‘Datenreihe 1’,’Datenreihe 2’], loc = 4

einer Achse eine Daten-Tabelle hinzufiigen / formatieren

el - [m} X

plt.table(..)

Schaden durch Katastrophen

2000

H
]
)
S

1000

Schaden in $1000's

o
S
s

0 Trost Wind FIuE Frdbeben Fagel
ahre 4315 10494 EEK3 149 3179
50 Jahre 2972 717.8 456.4 1368.5 865.6
20 Jahre 213.8 636.0 305.7 11752 796.0
ahre 1296 5554 15 677
ahre 564 74 5T 5779 ()

&l €|+ #a/= B

(Bsp. aus MatPlotLib-Dokumentation; ubersetzt: dre)

mehrere Diagramme in einem Plot
plot, ((diagl, diag2?), (diag3, diag4)) = plt.subplots(2,2)

Nachfolgend mussen dann die Unter-Diagramme diag1 bis 4 wie gewdhnliche plot's initiali-
siert und formatiert werden.

alle offenen Plot's schlieBen und die Optionen wieder zuriicksetzen

plt.switch backend()

sollen nur die Achsen wieder zurlickgesetzt werden, dann geht dies mit:

plt. cla()

und die gesamte Figur / den gesamten Plot zurlicksetzen durch:

plt.clf()

BK_SekI+l_Python_prof.docx -158 - (c,p) 2015 - 2026 Isp: dre

8.6.5.2.4. weitere Diagramm-Typen

Kreis-Diagramm

werte = [20,30,20,15,15]

farben=[‘b’ , re! , rgr , "m’ , 'W']
beschrift=[‘blaue’,’"hellblaue’,’griine’,’lilane’,’ weile’]
explodiert=[0,0.2,0,0,0]

plt.pie(werte, color=farben, labels=beschrift, explode=explodiert, au-
topct=%1.1£%%, counterclock=False, shadow=True)

plt.title(‘Werte’)

plt.show ()

Balken-Diagramm

gemeint ist hier ein Saulen-Diagramm

weite = [0.7,0.7,0.7,0.7,0.7]
plt.bar(range(0,5), werte, width = weite, color = farben, align='’center’)

ein horizontales Balken-Diagramm (also ein echtes Balken-Diagramm erhalt man mit:

plt.barh(..)

Aufoaben:

1. Recherchieren Sie die letzten Wahlergebnisse zum Bundeslag
a) fiir Deultschland (insgesamt)
b) aus Ihrem Bundesland

2. Stellen Sie die Deulschland-Dalen in einem Torten-Diagramm dar! Stellen
Sie eine Partei in explodierfer Form heraus (z.B. Wahl-Sieger oder Ihre
Praferenz)!

3. Die Datlen aus Ihrem Bundesland sollen in einem Saulen-Diagramm ange-
zeigt werden!

fiir die gehobene Anspruchs-Iobene:

4. Recherchieren Sie die vorlefzten Wahlergebnisse zum Bundeslag fiir
Deutschland dazu und erstellen Sie ein geeigneles Diagramm, in dem dic
Zugewinne und Verluste sichtbar werden.

BK_SekI+II_Python_prof.docx -159 - (c,p) 2015 - 2026 Isp: dre

Histogramm

Entwickeln eines Histogramm'’s Uber eine Zufalls-bedingte Verteilung
import numpy as np

import matplotlib.pyplot as plt

werteX=20* np.random.randn (10000)
plt.hist (werteX, bins=10,
#range (-50, 50),
histtype='bar', align='mid',
color="b', label='Test-Verteilung')
plt.legend()
plt.title('Histogramm: Zufalls-Verteilung')
plt.show ()

Auch méglich sind 2D-Histogramme. e .
Die Betrachtungs-Richtung ist nun

von oben und die Hohe der Saulen 3000 |
wird durch die Farben ausgedruckt.
Die Funktion daflr heift: | 2500

Histogramm: Zufalls-Verteilung

H Test-Verteilung

plt.hist2d(..) 2000 1
Wir bendtigen natiirlich ~ 2- P
dimensionale Daten. Diese erzeugen
wir uns fir ein Beispiel wieder per
Zufalls-Funktion aus dem NumPy- 500
Modul.

1000 A

o
—80 —60 —40 —-20 0

€3 pQ|=

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn (1000)
y = np.random.randn (1000)
plt.hist2d(x, y, bins=10)
plt.show ()

Eine weitere interessante Darstellung ist mit z.B.
.hexbin(x,y, gridsize=25) mdglich. Allerdings wird
hier das Interpretieren der Daten schon schwieriger,
da ein exaktes Zuordnen der Daten unklarer bleibt. RSE IR YRS

-3 -2 -1 o 1 2 3

Aufoaben:

1. Erstellen Sie eine Histogramm fiiv 10000 Zufallszahlen im Bereich von 0
bis 1,0

2. Erzeugen Sie sich ein Histogramm mit 10 Gruppen (bins) aus 1000 Zufalls-
Zahlen aus dem Zahlen-Bereich von 0 bis 100 in der Farbe rol!

3. In einem Diagramm soll fiir 100000 Wiirfe mit einem Ger Wiirfel die Verltei-
lung der gewiirfelten Punkle dargestellt werden. Erslellen Sie ein enlspre-
chenes Programm daffiir!

4. Erstellen Sie ein 2D-Histogramm fiir 100000 Zufalls-Zahlen, die in einem
Raster von 50x50 dargestellt werden sollen!

BK_SekI+lI_Python_prof.docx -160 - (c,p) 2015 - 2026 Isp: dre

Ein Linien- / Funktions-Diagramm mit Fehler-Indikator

plt.errorbar(..)

Streu-Diagramme / Haufen-Diagramme

plt.(..)

Box-Plot-Diagramme / Whisker-Diagramme

A « Ausreiler
Box-Plot's eigenen sich besonders gut dazu, um £ Maximum
umfangreiche Datensatze mittels mehrerer 2 fofine fusreiben)
Kennwerte vergleichend darzustellen. oberes Quartll
Die obere und untere Grenze (Maximum und
Minimum) werden auch als Whisker (frei tibersetzt: Median (mittl. Quart.)
Haar-Linie) bezeichnet. unteres Cuartil
Minimum,
plt.boxplot (..) Verteilungen ' !
???-Diagramme / Violin-Plot — —
% Fgure -
vereint Histogramme in einer Box-Plot-ahnlichen violin plot
Struktur ol T
oder anders herum: In Boxplot's werden die Daten T T T
statt mit Boxen durch Verteilungen dargestellt 0|
ermoglichen mehr Detail-Verstandnis, dafir fallen
die kategorisierenden und verallgemeinernden 2 ol L T 4 + |3
Kennwerte weg. = =
10
plt.violinplot (..) 1
—20 A 4 —
xll x‘2 xlii x4
xlabel
& €[] PQ=

Gruppen von Box-Plot’s

Darstellung von Graphen (Knoten und Kanten)

hierfir muss aber eine andere (Unter-)Bibliothek (mit) eingebunden werden, die sich mat-
plotlib.path nennt.

BK_SekI+II_Python_prof.docx -161 - (c,p) 2015 - 2026 Isp: dre

Késtchen-Diagramme

Folge von horizontal angeordneten Rechtecken (z.B. fur differenzierte Balken)

plt.broken barh(..)

andere Varianten erreicht man durch:

plt.pcolormesh(..)

oder:

plt.contour(..)

Diagramme mit Wind-Fahnen (Barb's, Strémungs-

Fahnen) 50 + 1{) #1045

¥®¢J
Fur Wetterkarten oder metreologische Modelle sind u.a. A\ Wind bloving from the
Diagramme mit Wind-Fahnen gebrauchlich. Mit barbs()
lassen sich solche Wind-Fahnen auf einer 2D-Flache
verteilen. Einige Grund-Informationen zur Codierung /(Q Wind blawin from the
kann aus der nebenstehenden Abbildung enthommen northeast at 25 knots
werden.
Der Grund-Aufruf erfolgt Gber die Funktion:

J Wind blowing from the

plt.barbs(..) southats knots

Dabei sind Unmengen von Optionen und speziellen Dar-

stellungen mdglich. Wer hier einsteigen will oder muss, @\] Calm winds
dem hilft die Hilfeseite zu dieser Methode / Funktion wei- ~
ter. Q: en.wikipedia.org (Thegreatdr)

Fir die Zwecke dieses Skriptes geht das zu weit.

Sehr ahnlich sind Diagramme mit Pfeilen / Pfeilspitzen

plt.quiver(..)

Diagramme mit Strémungs-Linien (Stromlinien-Diagramme)

plt.streamplot ()

Zeichnen eines Spektrogramm's

plt.specgram(..)

BK_SekI+lI_Python_prof.docx -162 - (c,p) 2015 - 2026 Isp: dre

Zeichnen eine Phasen-Spektrum's

plt.phase spectrum(..)

Magnituden-Spektren

plt.magnitude spectrum(..)

Step-Diagramme (?77?)

plt.step(..)

interessante Links:

https://s3.amazonaws.com/assets.datacamp.com/blog assets/Python Matplotlib Cheat Sheet.pdf
(Cheat Sheet zu MatPlotLib)
http://matplotlib.1069221.n5.nabble.com/Matplotlib-3-1-cheat-sheet-td49476.html (visuelles Cheat
Sheet zu MatPlotLib)

https://matplotlib.org/gallery.html (Diagramm-Gallerie mit Code-Beispielen)

8.6.5.3. ein komplexes Diagramm-Projekt — Evrdbeben-Anzeige
Q: https://github.com/rougier/matplotlib-tutorial

BK_SekI+II_Python_prof.docx -163 - (c,p) 2015 - 2026 Isp: dre

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
http://matplotlib.1069221.n5.nabble.com/Matplotlib-3-1-cheat-sheet-td49476.html
https://matplotlib.org/gallery.html

8.6.6. Modul / Bibliothek network

Mit der Bibliothek kann man sich die Arbeiten mit Graphen und Graph-Daten in Python ver-
einfachen.

Adjazenz-Matrix ist ein Mittel zur Darstellung der Kanten eines Graphen

Jeder Eintrag in der Matrix gréfier Null steht fur eine Verbindung zwischen den Knoten, die
Hohe des Eintrags steht fiir die Lange / den Wert / die Kosten der Verbindung

Bei gerichteten Graphen muss die Matrix nicht spiegelbildlich / ??7? sein

import network as netw
graf = netw.cycle graph(10) // Beispiel: Zyklus mit 10 Knoten
adjMatrix = netw.adjacency matrix(graf)

print (adjMatrix.todense())

-------- erweiterte Fortsetzung
import matplotlib.pyplot as zeichnung

netw.draw networkx (graf)
zeichnung.show ()

-------- erweiterte Fortsetzung
graf.add edge (knotenl, knoten2)
netw.draw networkx (graf)
zeichnung.show ()

BK_SekI+lI_Python_prof.docx -164 - (c,p) 2015 - 2026 Isp: dre

8.6.7. Modul / Bibliothek re

Bei der Bibliothek handelt es sich um ein Modul zur Nutzung von rreguldren Ausdricken.

Suchmuster lassen sich mit re wesentlich effektiver nutzen, da diese in re sehr Maschinen-
nah programmiert wurden. Damit ist re deutlich effektiver als die meisten selbst-
programmierten Muster-Suchen.

import re

muster=re.compiler (r'(reguldrer Ausdruck))
eingabe=beispieltext
ausgabe=muster.search (eingabe) .groups ()
print (ausgabe)

(re) gruppiert reg.Ausd.e und behalt den Ubereinstimmenden Text

(?:re) gruppiert reg.Ausd.e ohne den uUbereinstimmenden Text

(?# ...) ist ein Kommentar; wird nicht vom Compiler verarbeitet

re? Maximal eine Ubereinstimmung im vorherigen Ausdruck

re* keine oder mehrmalige Ubereinstimmung im vorherigen Ausdruck (= KLINE-Stern)
re+ mindestens eine Ubereinstimmung im vorherigen Ausdruck

(?>re) Ubereinstimmung in einem unabhangigen Muster ohne Riickverfolgung

[*..] Ubereinstimmung in jedem mdglichen einzelnen Zeichen oder einer Reihe / Gruppe
von Zeichen, die nicht innerhalb der Klammern vorkommen

[.--] Ubereinstimmung in jedem méglichen einzelnen Zeichen oder einem Bereich / einer
Gruppe von Zeichen, die innerhalb der Klammern vorkommen

re(n, m) Ubereinstimmung mit mindestens n und maximal m Vorkommen des vorherigen
Ausdrucks

\n, \r, \t, ... Ubereinstimmung mit Steuerzeichen (neue Zeile, Zeilenumbruch, Tabulator,
n)

\d Ubereinstimmung mit Ziffern (dquivalent mit: [0-9])

\D Ubereinstimmung mit einem Nicht-Ziffern-Symbol

\S Ubereinstimmung mit einem Nicht-Leerzeichen-Symbol (alles auler Leerzeichen)

\s Ubereinstimmung mit einem Leerzeichen (aquivalent zu: [\t\n\r\f])

\b Ubereinstimmung mit Wortgrenzen auBerhalb der Klammern (Ubereinstimmung mit
Backspace (0x08) innerhalb der Klammern)

\B Ubereinstimmung mit leeren Zeichenketten, die vor oder hinter einem Wort stehen (=
Trimmen des Ausdruck’s)

\w Ubereinstimmung mit Wortzeichen

\W Ubereinstimmung mit einem Nicht-Buchstaben-Symbol (alles auRer Buchstaben)

\A Ubereinstimmung mit dem Beginn einer Zeichenkette

A Ubereinstimmung mit dem Beginn einer Zeile

$ Ubereinstimmung mit dem Zeilenende

\z Ubereinstimmung mit dem Ende einer Zeichenkette

\Z Ubereinstimmung mit dem Ende einer Zeichenkette, wenn eine folgende Zeile existiert
(Ubereinstimmung vor dem Zeilenumbruch)

\1...\9 Ubereinstimmung mit dem n-gruppierten Unterausdruck

\G Ubereinstimmung mit den Zeichen der zuletzt gefundenen Ubereinstimmung

a|b Ubereinstimmung mit a oder b

re{ n} Ubereinstimmung mit exakt der Anzahl n des Vorkommens des vorherigen Aus-
drucks

re{ n,} Ubereinstimmung mit mindestens der Anzahl n des Vorkommens des vorherigen
Ausdrucks

BK_SekI+II_Python_prof.docx -165 - (c,p) 2015 - 2026 Isp: dre

(?=re) gibt eine Position unter Verwendung eines Musters zurtick (das Muster hat keinen
bestimmten Bereich)

(?'re) gibt eine Position unter Verwendung der Negation eines Musters zurtck (das Mus-
ter hat keinen bestimmten Bereich)

(?-imx) schaltet die (Compiler-)Optionen i-, m- und x- zeitweise aus (wenn Ausdruck in
Klammern, dann gilt die Optionen-Abschaltung nur fir den Klammer-Ausdruck (= (?-imx: re)
)

(?imx) schaltet die (Compiler-)Optionen i-, m- und x- zeitweise ein (wenn Ausdruck in
Klammern, dann gilt die Optionen-Einschaltung nur fir den Klammer-Ausdruck (= (?imx: re)

)

8.6.8. Modul / Bibliothek pymongo

Arbeiten mit einer NoSQL-Datenbank

import pymongo

import pandas as pds

from pymongo import Connection

verbindung = Connection ()

datenbank = verbindung.database name
eingabeDaten = datenbank.collection name
daten = pds.DataFrame (list (input data.find()))

BK_SekI+l_Python_prof.docx -166 - (c,p) 2015 - 2026 Isp: dre

8.6.9. Modul / Bibliothek ?? (Word Embedding)

Tokenisierung
Ist die Segmentierung eines Satzes auf Einheiten der Wort-Ebene.

Stemming
Ist der Prozess der Reduzierung eines Wortes auf seinen Wortstamm.

Entfernen von Suffixen

Entfernen von Prafixen

Stop-Worter

Sind solche Woérter, die fir das Satz-Verstandnis durch uns Menschen eine wichtige Rolle
spielen, fur die Text-Analyse durch Computer aber eine untergeordnete Rolle haben.
Beispiele fur Stop-Worter: ein, und, die, diese, ...

Bag-of-Words-Modell

als Ergebnis einer Tokenisierung erhalt man eine Wort-Menge, die als eine Struktur (Menge)
verflgbar ist

Sammeln der vorhandenen Woérter

Grammatik und Wortreihenfolgen werden ignoriert

Bag-of-Words (Wort-Behalter / -Tasche, Wort-Container) lasst sich dann fur Klassifizierun-
gen und / oder andere Analysen (weiter-)verwenden

Im Vorfeld sollte eine Entfernung von Sonder- und / oder Steuer-Zeichen , ein Stemming und
das Entfernen von Stop-Woértern erfolgen

N-Gramme

Ist eine kontinuierliche Folge von (allen) Elementen aus einem Text

N-Gramm kann ein Symbol, Silbe, Symbolfolge, ein Wort oder z.B. eine Basen-Sequenz (der
DNA) sein

N-Gramm der Lange Eins heif3t Unigramm, mit der Lange 2 , mit Lange 3 Trigramm usw. usf.
z.B. fur die Vorhersage von folgenden Sequenzen wichtig

weiterhin Vergleiche von Texten und / oder Autoren moglich

(interessant auch die Beziehung zwischen den haufigsten Wortldngen und der Popularitat
von Texten (z.B. Welt-Literatur) sowie der Zielgruppe (Leserschaft))

TF-IDF-Transformation

Kommt von Term Frequency times Inverse Document Frequency ()

Verfahren, bei dem die Textlange kompensiert wird (also klrzere und langere Texte ver-
gleichbar gemacht werden soll)

Verfahren macht deutlich, wie wichtig ein Wort fir den Text ist (Haufigkeit wird zur Lange des
Textes in Bezug gesetzt)

TF ermittelt die Haufigkeit des Wortes

IDF bestimmt die Wichtigkeit des Wortes im / fur den Text

BK_SekI+II_Python_prof.docx -167 - (c,p) 2015 - 2026 Isp: dre

8.6.99. Cheat Sheet's fur einige Bibliotheken

Zusammenstellungen / Ubersichten / Hilfs-Blatter heiRen Neudeutsch Cheat Sheet's.

von DataComp.com sind einige sehr gut zusammengestellte im Internet verfigbar
wenn ich noch andere zu den erwahnten Bibliotheken / Themen gefunden habe, dann wur-
den sie von mir gleich dahinter angegeben

welche Cheat Sheet's zu einem selbst passen, muss man einfach ausprobieren
so gewaltig unterscheiden sich die einzelnen Ubersichten aber nicht

zu NumPy
https://s3.amazonaws.com/assets.datacamp.com/blog assets/Numpy Python Cheat Sheet
-pdf

zu Matplotlib
https://s3.amazonaws.com/assets.datacamp.com/blog assets/Python Matplotlib Cheat Sh
eet.pdf

http://matplotlib.1069221.n5.nabble.com/Matplotlib-3-1-cheat-sheet-td49476.html

zu SciPy (lineare Algebra)

https://s3.amazonaws.com/assets.datacamp.com/blog assets/Python SciPy Cheat Sheet
Linear Algebra.pdf

Scikit-Learn (Machine learning)
https://datacamp-community-prod.s3.amazonaws.com/5433fa18-9f43-44cc-b228-
74672efcd116

zu Pandas

http://datacamp-community-prod.s3.amazonaws.com/dbed353d-2757-4617-8206-
8767ab379ab3
https://s3.amazonaws.com/assets.datacamp.com/blog assets/Python Pandas Cheat Sheet

2.pdf

BK_SekI+lI_Python_prof.docx -168 - (c,p) 2015 - 2026 Isp: dre

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
http://matplotlib.1069221.n5.nabble.com/Matplotlib-3-1-cheat-sheet-td49476.html
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_SciPy_Cheat_Sheet_Linear_Algebra.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_SciPy_Cheat_Sheet_Linear_Algebra.pdf
https://datacamp-community-prod.s3.amazonaws.com/5433fa18-9f43-44cc-b228-74672efcd116
https://datacamp-community-prod.s3.amazonaws.com/5433fa18-9f43-44cc-b228-74672efcd116
http://datacamp-community-prod.s3.amazonaws.com/dbed353d-2757-4617-8206-8767ab379ab3
http://datacamp-community-prod.s3.amazonaws.com/dbed353d-2757-4617-8206-8767ab379ab3
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Pandas_Cheat_Sheet_2.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Pandas_Cheat_Sheet_2.pdf

weitere Cheat Sheet's
Importing Data

https://s3.amazonaws.com/assets.datacamp.com/blog assets/Cheat+Sheets/Importing Data

Python Cheat Sheet.pdf

Tidyverse (transforming and visualizing data)
https://datacamp-community-prod.s3.amazonaws.com/e63a8f6b-2aa3-4006-89e0-

badc294b179c¢

Jupyter Notebook
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-
0c96c0133c40

keras (Neural networks)
https://datacamp-community-prod.s3.amazonaws.com/94fc681d-5422-40cb-a129-
2218e9522f17

Seaborn (Statistic Data Visualization)
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-
0c96c0133c40

PySpark (Spark DataFrames / SparkSQL)
https://datacamp-community-prod.s3.amazonaws.com/65076e3c-9df1-40d5-a0c2-
36294d9a3ca9

Bokeh (Daten-Prasentation in Web-Browsern)
https://datacamp-community-prod.s3.amazonaws.com/f9511cf4-abb9-4f52-9663-
ea93b29ee4b7

spaCy (advanced NLP)
http://datacamp-community-prod.s3.amazonaws.com/29aa28bf-570a-4965-8f54-
d6ab41ae4e06

R ()

data.table R ()
https://datacamp-community-prod.s3.amazonaws.com/6fdf799f-76ba-45b1-b8d8-
39c4d4211c31

xts (time series in R)
https://datacamp-community-prod.s3.amazonaws.com/e04c5abb-4aca-46f5-8cd5-
803d975ccc4b

Data Science
https://datacamp-community-prod.s3.amazonaws.com/e30fbcd9-f595-4a9f-803d-
05cabbf84612

BK_Sekl+II_Python_prof.docx - 1 69 - (c,p) 2015

- 2026 Isp: dre

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Cheat+Sheets/Importing_Data_Python_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Cheat+Sheets/Importing_Data_Python_Cheat_Sheet.pdf
https://datacamp-community-prod.s3.amazonaws.com/e63a8f6b-2aa3-4006-89e0-badc294b179c
https://datacamp-community-prod.s3.amazonaws.com/e63a8f6b-2aa3-4006-89e0-badc294b179c
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-0c96c0133c40
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-0c96c0133c40
https://datacamp-community-prod.s3.amazonaws.com/94fc681d-5422-40cb-a129-2218e9522f17
https://datacamp-community-prod.s3.amazonaws.com/94fc681d-5422-40cb-a129-2218e9522f17
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-0c96c0133c40
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-0c96c0133c40
https://datacamp-community-prod.s3.amazonaws.com/65076e3c-9df1-40d5-a0c2-36294d9a3ca9
https://datacamp-community-prod.s3.amazonaws.com/65076e3c-9df1-40d5-a0c2-36294d9a3ca9
https://datacamp-community-prod.s3.amazonaws.com/f9511cf4-abb9-4f52-9663-ea93b29ee4b7
https://datacamp-community-prod.s3.amazonaws.com/f9511cf4-abb9-4f52-9663-ea93b29ee4b7
http://datacamp-community-prod.s3.amazonaws.com/29aa28bf-570a-4965-8f54-d6a541ae4e06
http://datacamp-community-prod.s3.amazonaws.com/29aa28bf-570a-4965-8f54-d6a541ae4e06
https://datacamp-community-prod.s3.amazonaws.com/6fdf799f-76ba-45b1-b8d8-39c4d4211c31
https://datacamp-community-prod.s3.amazonaws.com/6fdf799f-76ba-45b1-b8d8-39c4d4211c31
https://datacamp-community-prod.s3.amazonaws.com/e04c5a6b-4aca-46f5-8cd5-803d975ccc4b
https://datacamp-community-prod.s3.amazonaws.com/e04c5a6b-4aca-46f5-8cd5-803d975ccc4b
https://datacamp-community-prod.s3.amazonaws.com/e30fbcd9-f595-4a9f-803d-05ca5bf84612
https://datacamp-community-prod.s3.amazonaws.com/e30fbcd9-f595-4a9f-803d-05ca5bf84612

8.7. Graphik

Auf der Kommando-Ebene und in der Grund-Version bietet Python keinen Zugriff auf die
graphischen Fahigkeiten von Windows oder vergleichbaren Betriebssystemen und / oder
ihren Benutzer-Oberflachen.

Fir einfache Zwecke kann man sich mit Pseudo-Graphiken behelfen. Dabei werden die ver-
schiedensten ASCII-Symbole benutzt. Vor allem im erweiterten ASCII-Code ab Symbol 128
sind diverse Zeichen fur Pseudographiken enthalten. Damit lassen sogar grobe Diagramme
zeichnen.

Um die graphischen Mdglichkeiten moderner betriebssysteme zu nutzen, bedarf es aber der
Einbindung von geeigneten Modulen.

An vorderster Front ist hier die Turtle-Graphik mit dem Modul turtle (- 8.8. Turtle-Graphik —
ein Bild sagt mehr als tausend Worte)zu nennen. Sie geht auf

zuruck.
Heute ist die Turtle-Graphik vollstandig Pixel-orientiert. Die Schildkréte als Zeichen-Stift soll
nur einer besseren Orientierung und der Verstandlichkeit / Nachvollziehbarkeit dienen.

Andere graphische Systeme ermdglichen den Zugriff oder die Nutzung von typischen Be-
dien-Elementen aus den Betriebssystemen. Das sind zum Einen die Einzel-Bedienelemente,
wie Text-Felder (Edit-Feld), Beschriftungen (Label), Optionen (), Auswahl-Listen (List- oder
Combo-Boxen usw. usf. Zum anderen werden fertige Dialoge bereitgestellt. Hierzu zahlen
kleine Meldungs-Fenster (Message-Dialog) aber auch Datei-Speicher- oder -Offnen-Dialoge.
Dies ermdglicht es dem Programmierer, sich auf den Kern seines Programm's zu konzentrie-
ren und die sich wiederholenden, klassischen Aufgaben der Kompetenz von System-Profi's
zu Uberlassen.

Die Module stellen dabei vorrangig Schnittstellen und Ubersetzungen zwischen Python und
den Graphik-Systemen der Betriebssysteme zur Verfugung.

Zu den bekanntesten Modulen, die Bedien-Elemente, Fenster und Dialoge bereitstellen, ge-
hort Tkinter (= 8.12. GUI-Programme mit Tkinter).

BK_SekI+l_Python_prof.docx -170 - (c,p) 2015 - 2026 Isp: dre

8.8. Turtle-Graphik — ein Bild sagt mehr als tausend Worte

didaktische Entwicklungs-Oberflache (Interface-Builder)

schone Bilder und coole Ablaufe, Programmierung soll da so nebenbei mit aufgenommen
werden

aber genau das ist die Gefahr aus meiner Sicht, das Nebenbei wird haufig zu wenig aufge-
nommen und von einem Jahr Programmierung bleiben nur wenige Monate Ahnungs-Effekte
- an die tolle Oberflache kann sich aber jeder noch erinnern

besonders gut fir einen sehr frihen Kontakt mit Programmierung

wir werden hier die schon getatigten Schritte dieses Skriptes zur Einfuhrung in die Program-
mierung quasi auf graphischem Niveau wiederholen

8.8.1. Turtle auf der Shell

Die Turtle-Graphik ist ein internes Modul, was mit der Installation von Python schon mit ein-
gerichtet wurde. Um die Turtle-Graphik nutzen zu kénnen, missen wir unsere aktuelle Py-
thon-Version etwas pushen.

Durch die Eingabe von import turtle >>> import turtle
werden die Befehle und Funktionen der >>> turtle.forward(0)
Turtle-Graphik geladen und verfigbar iii turtle.forward(100)
gemacht.

Eine alternative Bibliothek ist gturtle.

In den meisten Fallen passiert gar nichts, weder

gibt es eine Meldung in der Shell, noch sehen wir =10 %]
eine Schildkrote. =
Gibt man als nachsten Befehl z.B. turt-
le.forward (0) ein, dann erscheint ein Graphik-
Fenster, in dessen Mitte eine Pfeilspitze zu sehen
ist. Die Pfeilspitze ist unsere Schildkréte. Sie zu —_—»
bewegen und sie dazu anzuregen Spuren zu hin-
terlassen, dass ist der Hintergedanke bei der
Turtle-Graphik.

Mit turtle.forward(100) bewegen wir die hd
Schildkréte 100 Pixel (auf dem Bildschirm) vor- 4 | i
warts. Ublicherweise werden die Pixel als Schritte

interpretiert.

Der zurlickgelegte Weg wird als Linie (gesetzte Pixel) sichtbar. Rickwartes geht’'s mit turt-
le.backward(schritte). Die zuriickgelegten Wege sind dann vollstandig oder teilweise
deckungsgleich. Es ist aber nur eine Linie zu sehen.

Richtungs-Anderungen lassen sich mit >>> turtle.backward(90)
turtle.left() und turtle.right() >>> turtle.left (45)
erreichen. Als Argument miissen wir den iii ::i:i::cl’rzz’zigfo)
(Dreh-)Winkel (in Grad) (bergeben. | 270 (it e L g L 200)
Wem das Dreieck als Turtle zu abstrakt >>> turtle.shape ("turtle")
ist und lieber eine echte Schildkrote
wandern sehen mdchte, der kann ja mal
turtle.shape ("turtle") ausprobie-

ren.

BK_SekI+II_Python_prof.docx -171 - (c,p) 2015 - 2026 Isp: dre

Den urspringliche Dreiecks-Zeiger erhdlt man (ber den Text "classic". Weitere Formen
sind "arrow", "circle", "square" und "triangle".

Ein Neustart der Turtle-Graphik — quasi das

Loéschen des Ausgabe-Bildschirm ("Verges- ol x|
sen der alten Wege") erreicht man mit 2l
turtle.reset().

Beim Beenden des Shell-Fensters wird
auch die Turtle-Graphik geschlossen. Will
man dieses Fenster weiterhin sehen, gibt
man in der Shell den Befehl turt-
le.exitonclick () ein.

Erwahnt sei hier auch noch der Befehl
turtle.undo (), der den jeweils letzten
Befehl riickgangig macht.

Hat man etwas Geduld bei der Eingabe der ‘
turtle-Befehle, das erscheint nach dem Ein-

tippen des Punktes eine Code-Erganzungs- =l
Auswahlbox. 7] LB
Mit der Tab-Taste wird die ausgewahlte

Funktion Gbernommen.

Vorher kann man mit der Maus oder mitttels der Eingabe weiterer Buchstaben die geeignete
Funktion heraussuchen.

Aufoaben:

1. Aktivieren Sie die Turlle-Graphik und lassen Sie sich das Graphik-Fensler
mil derv Schildkrole in Lauerstellung anzeigen!

2. Bewegen Sie die Schildkrdle so, dass ein Summen-Zeichen ()) auf dem
Bildschirm zu schen ist!

Kommen wir nun schon im Vorfeld der echten Programmierung zu den Befehlen, die beson-
ders von Madchen / weiblichen Programmierern als erstes erfragt werden. Das ist ein Befehl,
der die Farbe der Schildkréte und damit auch ihre Spur-Farbe dndern kann.

In einer ersten Mdglichkeit legt man die Farbe mittels eines Color-Strings fest.

Das sind vordefinierte

Farben mit den Ublichen

englisch-sprachigen

Bezeichnungen.

Die zweite Variante der Farb-Festlegung ist weitaus Leistungs-fahiger, aber auch aufwandi-
ger und komplizierter in der Umsetzung.

Bei dieser Variante wird
die Farbe als RGB-
Tupel Ubergeben. Es
kénnen nun die Zahlen
fir die Rot-, Griin- und
Blau-Anteile von 0 bis
255 verandert werden.

BK_SekI+lI_Python_prof.docx -172 - (c,p) 2015 - 2026 Isp: dre

Verwendet man die Funktion turtle.color() ohne Argumente, dann wird die aktuelle Farbein-
stellung als Color-String oder Hexadezimal-Code zurlickgegeben.

Der Hintergrund des Graphik-Fenster lasst sich mit der Funktion turtle.bgcolor(farbcode) ein-
stellen.

Ein geschlossener Polygonzug kann auch in der Flache eingefarbt werden.

BK_SekI+II_Python_prof.docx -173 - (c,p) 2015 - 2026 Isp: dre

8.8.2. Turtle-Programme und Sequenzen

Das Erstellen von Programmen unterscheidet sich kaum von der Eingabe auf der Konsole
(Shell) bzw. von der bei anderen Programmen. Das forward(0) zum Aktivieren / Anzeigen
des Graphik-Fenster kann ausbleiben. Python zeigt das Fenster mit den ersten Programm-
schritten sofort an.

Wichtiger Hinweis auf einen Fehler-Klassiker bei der Turtle-Programmierung. Schnell vergibt
man den Dateinamen fur den selbstgeschriebenen Quelltext mit turtle.py. Danach funktio-
niert die Turtle-Programmierung nicht mehr, weil das Turtle-Modul quasi durch das eigene
Programm ersetzt wurde. Man importiert das eigene Programm als Modul, was keinen Sinn
macht und auch noch rekursiv ins Nirvana fuhrt.

Unsere erste Aufgabe soll das Zeichnen eine Quadrates sein. Dazu brauchen wir die vier
gleichen Seiten einer bestimmten Lange und am Ende der Seite immer eine Drehung um
90°.

Zeichen eines Quadrates =] |
import turtle -]
laenge=100

turtle.forward(laenge)
turtle.left (90)
turtle.forward (laenge)
turtle.left (90)
turtle.forward (laenge)
turtle.left (90)
turtle.forward (laenge)

Kl o

Das Ergebnis Uberrascht wenig.

Aber das einfache Aneinanderreihen von Turtle-Anweisungen nervt jetzt schon ein bisschen.
Viel tippen und wenig Leistung des Programms. Wir wissen ja schon, dass man mit Schleifen
effektiver arbeiten kann.

Eigentlich wirden jetzt zuerst die Verzweigung folgen, aber Graphik-Programmierung lebt
mehr von Wiederholungen als von Alternativen. Die sind aber gleich danach dran (= 8.8.4.
Verzweigungen).

BK_SekI+lI_Python_prof.docx -174 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen Sie ein Programm, in dem die Schildkrdte ein Rechleck mit den
Kantenlingen 250 und 320 zeichnel!

2. Erstellen Sie ein Programm, das ein Quadral mit einer Kanlenlange von 200
zeichnel!

3. Lassen Sie die Schildkrote das Quadral so zeichnen, dass es um 45° gedveht
ist!

4. Erstellen Sie ein Programm mit der (ungepriiften) Eingabe eines Winkels
(am Zeichen-Ursprung) fiir ein rechiwinkliges Dreieck! Die erste Kanlken-

linge soll 200 betragen! Lassen Sie alle anderen Winkel und Kanten be-
rechnen! (Die Quadral-Wurzel-Funkltion sqri() ist in der math-Bibliothek
verfiighbar.)

fiir die gehobene Anspruchsebene:

5. Gesuchl ist das Programm, mit dem ein Rhombus mit einer Seilenlange von
180 und den Winkeln 60 und 120 Grad gezeichnet wird! In der Erweilerung
soll der gleicher Rhombus um 45° gedreht zusatzlich dargestellt werden!

BK_SekI+II_Python_prof.docx -175 - (c,p) 2015 - 2026 Isp: dre

8.8.3. Schleifen

Also programmieren wir unser Quadrat Uber eine Schleife. Der Einfachheit halber nehmen
wir auch noch eine abschlieRende Drehung in das Programm auf. Die Schildkréte wird somit
auf die Ausgangs-Position und —Richtung zurlickgesetzt.

Zeichen eines Quadrates N =S
import turtle -]
laenge=100

for i in range (4):
turtle.forward (laenge)
turtle.left (90)

Natirlich lasst sich das Gleiche auch mit
einer while-Schleife erreichen. Was man L
praktisch wanhlt ist auch ein bisschen Ge-
schmackssache. Im Falle von klaren Zahl- |
Vorgangen ist die Nutzung von for- A | ©
Schleifen aber logisch verstandlicher.

Mich personlich schreckt auch immer der zusatzliche Aufwand (Vorbelegung der Laufvariab-
le, Korrektur der Laufvariable) ab. Alles Fehler-Quellen, die sich durch eine "schone" Zahl-
schleife in Grenzen halten lassen.

Zeichen eines Quadrates =0l x]
import turtle -]
laenge=100

anzahl=0

while anzahl<4:
turtle.forward (laenge)
turtle.left (90)

anzahl+=1
Beim Erzeugen von Mustern oder Wie- |
derholungen, deren Anzahlen sich schwer K | |

abschatzen lassen, sind while-Schleifen
dann naturlich die bessere Wahl.

Zur Demonstration nehmen wir hier mal das Zeichnen eines Musters aus Quadraten, die
immer leicht verdreht zueinander solange gezeichnet werden sollen, bis die Umkreisung
vollstandig ist.

Zeichen eines Musters aus Quadraten
import turtle

laenge=100

drehwinkel=25

gesamtwinkel=0

while gesamtwinkel<360: Zeichnen begrenzen; Schluf® nach mind. 360°

for i in range (4): einegentliches Zeichnen des Quadrates
turtle.forward (laenge)

turtle.left (90)
turtle.right (drehwinkel) Drehung auf neue Anfangsricht
gesamtwinkel+=drehwinkel (Gesamt-)Drehwinkel verfolgen / korrigieren

BK_SekI+lI_Python_prof.docx -176 - (c,p) 2015 - 2026 Isp: dre

Schleifen-Konstrukte konnen wir auch
benutzen, um z.B. gestrichelte Linien
ZU erzeugen.

Dazu miuissen wir natlrlich wissen,
wie man die Schildkréte ohne Spur
bewegt. Mit der Anweisung turt-
le.penup () wird der Zeichenstift (fur
die Spur) abgehoben und mit turt-
le.pendown () wieder aufgesetzt.

Will man nun ein Muster mit getsri-
chelten Linien zeichnen, dann kommt
noch eine dritte Schleife hinzu, die
quasi die alte Linienfihrung (turt-
le.forward(laenge) durch eine zusatz-
liche Muster-Erzeugung ersetzt.

Hier wurde ich intuitiv lieber eine whi-
le-Schleife nehmen. Vor allem, weil
die Lange ja als intern Veranderlich im
Programm steht. Da will man auf alle
Eventualitaten vorbereitet sein.

Python Turtle Graphics

=101]

Um lhnen nicht den Spal® am Programmieren und Experimentieren zu nehmen stelle ich hier
nur die Erzeugung einer einzelnen gestrichelten Linie vor. Das Zusammenstellen und Einar-

beiten in eigene Programme Uberlasse

ich IThnen.

Strichel- und Nichtstrichel-Lange miissen zusammen

einen Teiler von Lange bilden!
strichellaenge=5
nichtstrichellaenge=5

gesamtlaenge=0
while gesamtlaenge<laenge:

turtle.forward(strichellaenge)

turtle.penup ()

turtle.forward(nichtstrichellaenge)

turtle.pendown ()

gesamtlaenge+=(strichellaenge+nichtstrichellaenge)

Ein Muster aus Quadraten mit Stri-
chelmustern konnte dann so ausse-
hen.

python Turtle Graphics

=10l x|

R
’ - .
| o o Tt X
L% M LR ST X
PN oyl . L e
- ki N f s - I~
A ot LY \'Ir A ,)\I -
B I T T M PR R | -
\ < - o i il ¢
- I.r - Y L s - P
e }"-,__H - W N o e . s
b RS RYT a il
- \.rl R T P T
“ i) P \
4 e - e e ’
voe p DTN T
- -~
T R R o
r“'t.a" ey LI - L H l’
; Lo - 0! Pr s T Th e
! 15 PR P RO
~ 1 - b - '
- N ; - I
N L oo v F -
R Y v -
. L s [
- N -
\ v Loy ey l
D =TT LT i ¢

BK_Sekl+ll_Python_prof.docx

-177 -

(c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen Sie ein Programm, dass ein gleichseitiges Dreieck mil der Kanlen-

lange 75 erzeugt!

2. Erweitern Sie das Dreiecks-Programm nun um die Drehung um 5° solange
bis die Schildkrote mindestens einmal um sich selbst gekreist ist!

3. Lassen Sie ein Sechseck mil einer Kanlkenlange von 125 zeichnen!

4. Erstellen Sie ein Musler aus um sich kreisenden Sechsecken, die jeweils
immer um 25° zueinander verdreht sind! Das Musler-Zeichnen soll erst
dann beendet werden, wenn die Schildkrote wieder exakt die Ausgangsrich-
tung besilzl!

5. Verindern Sie das Programm von 3. so, dass nur while-Schleifen zuv An-
wendung kommen!

fiir die gehobene Anspruchsebene:

6. Erstellen Sie ein Musker, wie oben, aus selbslgewahllen n-Fcken! Die Li-
nien sollen gelvichell ausgefiihrl werden!

7. Erstellen Sie Programm, dass ein Musker aus Quadralen erstelll, bei dem
der Nulzer vorher ecingeben darf, wie lang die Strichel- und die Nichlslvi-
chellinien sein sollen! (Die Begrenzung auf Teilbarkeil soll und muss hier
aufgehoben und umschifft werden!)

8.8.4. Verzweiqungen

Ubliche Verzweigungen
z.B. Auswertung von Eingaben

Verzweigungen basierend auf Turtle-Eigenschaften
Beispiel Abfrage, ob der Stift zeichnet oder nicht (unten oder oben ist)

isdown() liefert entsprechend True oder False zurlck

oder Abfrage der X- bzw. Y-Koordinaten, um z.B. Uberschreitungen von Grenzen auszuwer-
ten

Auswertung Uber Vergleiche

weitere auswertbare Eigenschaften der Schildkréte findet man in der Zusammenstellung der
Turtle-Funktionen (= Anweisungen, Funktionen und Methoden des Turtle-Graphik-Moduls)

BK_SekI+l_Python_prof.docx -178 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen Sie ein Programm, das eine gelvichelle Linie zeichnel! Der Nulzer
soll vorher als Fingaben die Gesaml-Lange und die Shichel-Lange einge-
ben! (Die Priifung der Exaktheil dev Daten soll im Programm erfolgen und
ev. Fehlerhinweise ausgegeben werden! Nur dann zeichnen, wenn die Werte
ok sind.))

2.

fiir die gehobene Anspruchsebene:

3. Stalt, wie in Aufgabe 1 soll eine Shvich-Punkl-Linie gezeichnel werden! Der
Punkt wird hier mil einer Kanlenlange von 2 feslgelegt! Die Striche miissen
mindesltens doppell so lang sein!

BK_SekI+II_Python_prof.docx -179 - (c,p) 2015 - 2026 Isp: dre

8.8.5. Funktionen

Nutzung von Python-eigenen Funktionen bzw. Funktionen aus importierten Modulen kein
Problem

Nutzung, wie Ublich mit vorgestelltem Modul-Namen oder dem speziellen Importnamen

Zusammenfassung von Turtle-Anweisungen

Beschreibung von Objekten z.B. ein Quadrat, n-Eck, ...

ubliche def-Struktur

from turtle import *

ein Ruckgabewert wird meist nicht gebraucht, def rechteck(a,b):

kann aber — wie ublich — zuriickgegeben werden for _ in range(2):
forward (a)

z.B. um Fehlerwerte oder Berechnungs- Left (30)

forward (b)

Ergebnisse dem Ubergeordneten Programm bzw. left (90)

der Ubergeordneten Funktion mitzuteilen
rechteck (70,110)

Python Turtle Graphics i =]

BK_SekI+lI_Python_prof.docx -180 - (c,p) 2015 - 2026 Isp: dre

geschlossene farbige Polygonziige

from turtle import *
from random import *

Farbliste=[]

def farbQuadrat(x,y,1l,farbe):

up ()

goto (x,Vy)

down ()

begin fill ()

fillcolor (farbe)

for in range(4):
forward (1)
left (90)

end ()

for farbe in Farbliste:
x=randint (1,400)
y=randint (1, 400)
l=randint (1, 100)
farbQuadrat (x,vy, 1, farbe)

Aufoaben:

1. Lassen Sie das Haus vom Nikolaus iiber eine Funklion zeichnen (die Sei-
lenlange soll 100 belragen! Die Schildkrole soll am Schluff wieder in der
Start- bzw. Ausgangs-Ausrichlung stehen! (Uberlegen Sie sich, ob es Sinn
macht, mit Paramelern zu avbeilen!)

2. Lassen Sie sich mit Ihrer Nikolaus-Haus-Funktion 5 Nikolaus-Hauser di-
rekt nebenceinander zeichnen!

3. Andern Sie das Programm von Aufgabe 2 nun so, dass die Hiuser stalt des
tiblichen rechiwickligen Dach's nun ein gleichseiliges bekommen!

4. Verindern Sie das Progamm von Aufgabe 3 nun so, dass beliebige Seilen-
langen cingegeben werden konnen!

5. Erstellen Sie ein Programm, dass mit Hilfe ciner Funktion gleichSeitiges-
Dreieck(laenge) eine Reihe von 12 Dreiecken divekl nebencinander zeich-
nel!

6. Machen Sie aus dem Programm von Aufgabe 5 ein neues, dass eine Reihe
von ¢ Dreiecken zeichnel, die immer abwechselnd nach oben und unfen
zeigen! Es darf nur eine Funklion gleichSeitigesDreieck(...) verwendel
werden!

7. Lassen Sie eine neue Programm-Version von Aufgabe 6 eine Dreiecks-
Reihe zeichnen, die aus 5 Basis-Dreiecken besteht! Die Dreiecks-Spitzen
sollen miteinander verbunden scin, so dass eine "Stahl-Bricke” im ETFEL-
Stl entsteht! (Es darf nur die neue Funktion gleichSeitigesDreieck(...)
verwendel werden!)

8. Zeichnen Sie ein Sechseck aus gleichseitigen Dreiecken!

BK_SekI+II_Python_prof.docx -181 - (c,p) 2015 - 2026 Isp: dre

komplexe Aufoaben:

1. Erstellen Sie ein Programm, das -
dic abgebildete Szene zeichnel! | 40
(Gehen Sie schrithweise vor! Ver- 40 [—m—]
wenden Sie sinnvolle Funkltionen!) 40 Dr O]z0
2. Denken Sie sich e¢in cigenes L 2

20

P"ul‘s{er ocI'e.r cine .Szen‘e aus! T
Skizieren Sie diese auf ein Blalt 70
Papier (z.B. kleinkariert) und le-
gen Sie die Mape fest!
Lassen Sie die Szene vom Kursleiter abzeichnen! Selzen Sie die Szene in
ein Turtle-Programm um! (Wenn das Programm funklioniert, kénnen Sie
den Mal-Effekt durch eine delay()-Funktion zwischen den Programmieilen
noch verstarken!)

3. Evrstellen Sie eine Funkltion wellenOrnamenlt(), die nebenstehendes IE
Musler erzeugt!

4. Gesucht ist ein Programm, dass die Turtle-Zeichenflache mil diesem Musler
umgibl!

N.

[iir die gehobene Anspruchsebene:

N.

aktuellePosition = position|{()

def Funktion...
return aktPosition

aktuellePosition = Funktion(..)

aktPosition und aktuellePosition sind jeweils ein Tupel, deshalb funktioniert auch die Ruck-
gabe aus der Funktion, weil ein Tupel hier eben nur ein Werte-Paar ist

BK_SekI+l_Python_prof.docx -182 - (c,p) 2015 - 2026 Isp: dre

8.8.6. Rekursion

#irekursives Zeichen eines Baumes mit Turtle
import turtle

def baum(laenge,tiefe):
if tiefe>=0:

turtle.forward(laenge)
turtle.left (45)
zweiglaenge=laenge/1.5
baum (zweiglaenge, tiefe-1)
turtle.right (90)
baum (zweiglaenge, tiefe-1)
turtle.left (45)
turtle.backward (laenge)

main

Eingaben

print ("Zeichnen eines selbstahnlichen Baums")
laenge=eval (input ("Stamm-Lange: "))
tiefe=eval (input ("Verzweigungstiefe: "))

Beginn des Zeichnens

turtle.left (90) # Drehen zum Zeichnen nach oben

baum (laenge, tiefe)

turtle.right (90) # wieder auf die urspriingliche Richtung drehen

Das Ergebnis und vor allem die Ar- i
beit der Schildkrite beim Erstellen MMEEASEISES a0 x|
der Graphik ist richtig cool.

Aufoaben:
1. Erklaren Sie, warum die Schildkrote auf dem Riickweg immer die rvichlige
Weglinge weiss!

BK_SekI+II_Python_prof.docx -183 - (c,p) 2015 - 2026 Isp: dre

8.8.7. Eingaben mit der Maus

onclick(auszufiihrende_Funktion)

from turtle import *

def anzeige(x,y) :
print (Mausklick auf Position: ",x,",",vy)

onclick (anzeige)

Programm nach einem Durchlauf beendet.

mit der Funktion mainloop() wird eine unendliche Kontrollschleife (fiir Eingaben / Ausgaben)
erzeugt, die praktisch wahrend der gesamten Programme-Laufzeit aktiv ist

from turtle import *

def anzeige(x,yVy) :
print (Mausklick auf Position:

onclick (anzeige)

mainloop ()

Nutzung nun z.B. um die Schildkréte an die Klick-Position zu bewegen

from turtle import *

def anzeige(x,yVy) :
goto (x,Vy)

onclick (anzeige)

mainloop ()

so erhalten wir ein kleines Zeichen-Programm

BK_SekI+l_Python_prof.docx -184 - (c,p) 2015 - 2026 Isp: dre

8.8.8. Und wie geht es weiter?

Die Objekt-orientierte Turtle-Programmierung folgt hinter der theoretischen Vorstellung und
ersten praktischen Ubungen zur Objekt-orientierten Programmierung ganz allgemein.

Windrad aus Rechtecken

windrad.py
from turtle import *

def rechteck(seite): # Prozedur rechteck wird definiert
for 1 in [1,2]:
forward (seite); left (90)
forward (seite/4); left (90)

tracer (0) # maximale Zeichengeschwindigkeit
width(2) # Zeichenstiftbreite
for i in range(1,9):

rechteck (100)

left (45)

Parkettierung (mit Rhomben)

parkett.py
from turtle import *
def raute(laenge, winkel, strich dicke, col):
width (strich dicke)
color (col)
for i in range (1,3):
forward (laenge); left (winkel)
forward (laenge); left (180-winkel)
tracer (0)
anzahl reihe = 10
up () ; backward(280); left(90); forward(220); right(90); down ()
for i in range(1,15):
for j in range(l,anzahl reihe+l):
raute (50, 45, 1, 'darkgreen')
up(); forward(50); down ()
up () ; backward(anzahl reihe*50); right (90); forward(35); left(90); down()

BK_SekI+II_Python_prof.docx -185 - (c,p) 2015 - 2026 Isp: dre

Wald aus Baumen

baeume.py

Wald mit B&umen

from turtle import *

from random import random

def baum(a) :
for i in range(1,3):
color ("brown")
£i11(1)
forward(a); left (90)
forward(2*a); left(90)
£1i11(0)
up(); left(90); forward(2*a); left(90); forward(a); left(180); down ()
color ("darkgreen")
£1i11 (1)
forward(3*a); left(110)
forward(4.39*%a); left (140); forward(4.39*a); left (110)
£111(0)
up(); forward(a); right(90); forward(2*a); left(90); down()

tracer (0) # max. Zeichengeschwindigkeit
up () ; backward(220); left(90); forward(220); right(90); down ()
Turtle im Windwows-Fenster nach links oben setzen
a=8 # Breite Baumstamm
anzahl x = 12 # Anzahl der Bdume in x-Richtung
anzahl y = 8 # Anzahl der Baumreihen in y-Richtung
for j in range(l,anzahl y+1):

for i in range(l,anzahl x+1):

baum(a); up(); forward((0.5+random())*5*a); down ()

up () ; backward(anzahl x*5*a); right (90); forward(8*a); left(90); down()

Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

Zeichnen eines Strauches

strauch.py

Strauch

from turtle import *
import time

def strauch(a, n):
Die Prozedur strauch ruft sich rekursiv selber auf!
if n>0:

forward(a);left (30); forward(a):;
strauch(a/2,n-1); backward(a); right (30); forward(a);
right (30); forward(a/2);
strauch(a/2,n-1); backward(a/2); left (30); forward(a):
strauch(a/2,n-1); backward(3*a)

tracer (0)

a=30 # Lange a

color ("darkgreen")

width (2) # Strichdicke

left (90)

strauch(a,b) # Aufruf der Prozedur strauch
time.sleep (4) # Programm halt 4 Sekunden an
exit ()

Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

BK_SekI+lI_Python_prof.docx -186 - (c,p) 2015 - 2026 Isp: dre

Baum mit Friichten

orangenbaum.py
from turtle import *

def baum(s, t):
if t>1:
color ("brown")
for i in range(1l,3):
£111(1)
forward(s); left (90)
forward (3*t); left (90)
£111(0)
forward(s)
left (30)
baum(s*0.6, t-1)
right (55)
baum(s*0.65, t-1)
left (25)
backward(s)
elif t>=0:
color ("darkgreen")
£111(1)
forward(4*s); circle(2*s); backward (4*s)
£111(0)
color ("red")
£111(1)
forward (3*s); circle(5); backward(3*s)
£111(0) ;
forward(s)
left (50);
color ("brown")
baum(s*0.6, t-1)
right (85)
baum(s*0.65, t-1)
left (35)
backward(s)

setup (width=400, height=400, startx=0, starty=0)
Fenstergrobe

title (" Orangenbaum")

Fenstertitel

tracer (0)
left (90
width (1
up ()
backward (150)

down ()

baum (100, 6)

Q: http://www.michael-holzapfel.de/progs/python/python_beisp.htm

0
)
)

Python-Stern

from turtle import *
color('red', 'yellow')
begin fill ()
while True:

forward (200)

left (170)

if abs(pos()) < 1:

break

end fill()
done ()

BK_SekI+II_Python_prof.docx -187 - (c,p) 2015 - 2026 Isp: dre

8.8.9. Turteln bis zu Umfallen - rekursive Probleme schrittweise Losen

Ein rekursives Graphik-Problem zu I6sen ist nicht immer so trivial, wie es die Definition einer
Rekursion suggeriert.

In Anlehnung an den gerade gezeigten Baum wollen wir nun einen Strauch rekursiv zeich-
nen. Er soll keinen Stamm haben und gleich mit Zweigen anfangen und statt der dichtomen
(zwei-spaltigen) Teilung noch einen mittleren Zweig enthalten (also trichotom geteilt sein).

Wir fangen bei ganz einfachen Versionen an und arbeiten uns dann zu einem vollstandigen
Programm vor.

Im ersten Schritt erstellen wir eine einfache Funktion (noch ohne rekursive Elemente) fur
einen rudimentaren Strauch und ein einfaches Haupt-Programm. Selbst auf Eingaben ver-
zichten wir erst einmal um die Zeichnung ohne viel Schnick-Schnack auf den Bildschirm zu
bekommen.

import turtle

def strauch(laenge,tiefe):
turtle.left (30)
turtle.forward (laenge)
turtle.backward (laenge)
turtle.right (30)
turtle.forward (laenge)
turtle.backward (laenge)
turtle.right (30)
turtle.forward (laenge)
turtle.backward (laenge)
turtle.left (30)

Main

laenge=60

tiefe=4

turtle.left (90) # Turtle aufrecht drehen
strauch (laenge, tiefe)

turtle.right (90) # Turtle in die Ausgangslage zurilickdrehen
Python Turtle Gra =10 x|
Nachdem der rudimentare Strauch steht, -]

kdnnen wir uns nun die Positionen heraus-
suchen, wo ein rekursiver Aufruf erfolgen
soll. Das muss immer jeweils am Ende der 3
Zweige erfolgen. Die Lange belassen wir
zuerst einmal so, wie in der ersten Re-
kursions-Ebene. Verkurzungen organisieren
wir als Nachstes.

Was man natirlich nicht vergessen darf, ist
der Rekursions-Abbruch, ansonsten zeich-
net das Sysem ziemlich lange. o | N

BK_SekI+l_Python_prof.docx -188 - (c,p) 2015 - 2026 Isp: dre

Wer will kann auch ersteinmal nur den ersten (linken) Zweig programmieren, damit Fehler

noch gut sichtbar sind.
import turtle

def strauch (laenge, tiefe):
if tiefe>0:

linker Zweig
turtle.left (30)
turtle.forward (laenge)
stauch (laenge, tiefe-1)
turtle.backward (laenge)
mittlerer Zweig
turtle.right (30)
turtle.forward (laenge)
turtle.backward (laenge)
turtle.right (30)
rechter Zweig
turtle.forward (laenge)
turtle.backward (laenge)
turtle.left (30)

Main

laenge=5

tiefe=0

turtle.left (90) # Turtle aufrecht drehen

strauch (laenge, tiefe)

turtle.right (90) # Turtle in die Ausgangslage zurickdrehen

£ python Turtle Graphics

=10]

Das Graphik-Fenster zeigt saubere Linien
und die Schildkréte ist auch wieder an ihrem
Start-Platz angekommen. Soweit scheint die
Programmierung und die Rekursion zu funk-
tionieren.

import turtle

def strauch (laenge, tiefe):
if tiefe>0:

linker Zweig
turtle.left (30)
turtle.forward (laenge)
strauch (laenge, tiefe-1)
turtle.backward (laenge)
mittlerer Zweig
turtle.right (30)
turtle.forward (laenge)
strauch (laenge, tiefe-1)
turtle.backward (laenge)
turtle.right (30)
rechter Zweig
turtle.forward (laenge)

BK_Sekl+ll_Python_prof.docx - 189 -

(c,p) 2015 - 2026 Isp: dre

strauch (laenge, tiefe-1)
turtle.backward (laenge)
turtle.left (30)

Main

laenge=5

tiefe=0

turtle.left (90) # Turtle aufrecht drehen

strauch (laenge, tiefe)

turtle.right (90) # Turtle in die Ausgangslage zurilickdrehen

Python Turtle Graphics =] |

Wenn die gesamte Funktion durchdefiniert
ist und es funktioniert, dann kann man noch
das Rahmen-Programm anpassen. Dazu
gehoren sicher ordentlich abgesicherte Ein-
gaben und die angepasste (- klrzere -)
Zweiglange fur die untergeordneten Zweige.

import turtle

def strauch (laenge, tiefe):
if tiefe>0:

linker Zweig
turtle.left (30)
turtle.forward (laenge)
zweiglaenge=int (laenge/1.5)
strauch (zweiglaenge, tiefe-1)
turtle.backward (laenge)
mittlerer Zweig
turtle.right (30)
turtle.forward (laenge)
strauch (zweiglaenge, tiefe-1)
turtle.backward (laenge)
turtle.right (30)
rechter Zweig
turtle.forward (laenge)
strauch (zweiglaenge, tiefe-1)
turtle.backward (laenge)
turtle.left (30)

Main
laenge=5
tiefe=0
turtle.delay(0) # Turtle beschleunigen
while not (laenge>=10 and laenge<=200) :
laenge=eval (input ("Zweiglédnge [10 .. 200]: "))
if laenge>=10 and laenge<200:
while not (tiefe>=1 and tiefe<=10):
tiefe=eval (input ("Verzweigungen [1 .. 10]: "))
if tiefe>=1 and tiefe<=10:
turtle.left (90) # Turtle aufrecht drehen
strauch (laenge, tiefe)
turtle.right (90) # Turtle in die Ausgangslage zurilickdrehen

BK_SekI+l_Python_prof.docx -190 - (c,p) 2015 - 2026 Isp: dre

>>>
Zweiglange [10 .. 200]: 60
Verzweigungen [1 .. 10]: 5

Ob man das Ergebnis nun als

Strauch durchgehen lasst oder [Re LRI EXEET TS =10 x|
es eher einem Blitenstand ei- |
nes Doldenbliiten-Gewachs

entspricht, bleibt der Phantasie
des Betrachters Giberlassen.

[

A ar

Aufgaben:

1. Andern Sie die Funktion strauch() so ab, dass sie mil einem vom Haupl-
Programm vorgegebenen Winkel zwischen den Zweigen arbeifen kann!

fiir die gehobene Anspruchsebene:

2. Andern Sie das Programm so ab, dass die Zweige einwenig zufallig differie-
ren! Geht das iiberhaupl, oder muss dev Baum / Strauch immer symmelvisch

sein? Uberlegen Sie sich cine begriindete Anwort vor dem Losen des Prob-
lems!

BK_SekI+II_Python_prof.docx -191 - (c,p) 2015 - 2026 Isp: dre

Lésen von weiteren graphischen Aufgaben und Problemen

am Ende des Abschnittes zur Turtle-Graphik gibt es eine kleine Zusammenstellung der ver-
schiedenen Turtle-Befehle

Zeichnen eines Labyrint's (Aaron Bies)
import turtle, random, math

Zeichnet zwar kein Quadrat,
dafiir aber ein perfektes Labyrinth.

Der Algorithmus ist rekusiv, also
kann es sein, dass es nach ein paar
Sekunden abstiirtzt. Einfach Skript
neustarten, wenn das passiert.

Wenn jemand weiss, warum kein Quadrat
rauskommt, schreibt mir bitte.

#
#
#
i
i
#
#
#
#
#

turtle.delay(2)

size = 42
scale = round(380/size)
visited = []

def generate(x=0, y=0, lor=0):
visited.append ((x,Vy))

order = list (range (4))
random.shuffle (order)

for direct in order:

newX = max(-size/2, min(size/2,
x+round (math.cos (direct*math.pi/2))))
newY = max(-size/2, min(size/2,
(

y+round (math.sin (direct*math.pi/2))))
if (newX,newY) not in visited:
turtle.goto (newX*scale, newY*scale)
generate (newX, newY, lor+l)
turtle.goto (x*scale, y*scale)

generate ()
turtle.hideturtle ()

BK_SekI+l_Python_prof.docx -192 - (c,p) 2015 - 2026 Isp: dre

Aufoaben: (relaliv einfach)

1. Erstellen Sie das Haus vom Nikolaus nach der klassichen Regel, das keine
Linie doppelt gezogen werden darf! (Als besondere intellekluelle Heraus-
forderung suchen wir noch das nebenstehende Haus vom Weihnachismann.)

2. Zeichnen Sie eine Stiichel-Linie, bei der die Strichel-Linien immer ein klei-
nes Stiick langer werden! (es reichen 10 Stvichel!)

3. Erstellen Sie ein Programm, dass 10 ineinander geschachtelfe Quadrale (mit
dem gleichen Slaripunkl) zeichnel! Das erste Quadrat soll eine Kanlenlinge
von 20 Pixeln haben, die nachfolgenden sollen immer um 10 Pixel verlin-
gert werden!

4. Erstellen Sie ein "Spielfeld” fiir ein Tic-Tac-Toe-ahnliches Spiel aus 9 ein-
zelnen Quadralen, die sich in den belveffenden Kanlen beriihren, aber nicht
tberschneiden! Zur Demonsitration, dass es sich auch wirklich um ecinzelne
Quadrale handell, konnen Sie z.B. eine Diagonale mil einer Farbe ausfiillen.

5. Schreiben Sie ein Programm, bei dem 15 Rechfecke (Start-Seitenlangen 30
und 50 Pizel) mit einer Seiten-Verlingerung um 10 Pixel ineinander (eigent-
lich ja auseinander) schachlell werden!

6. Schreiben Sie eine Funktion linie_ohne_bewegung(lénge), bei der eine Linie der
mil der gewiinschlfen Lange gezeichnel wird, die Schildkrole aber wieder
zum Ausgangspunkt zuriickkehrt!

7. Zeichnen Sie mil Hilfe der Funktion von Aufgabe () einen Strahlenkranz
mit dem Radius 150 Pixel!

Aufoaben: (schon schwerer)

1.

2. Erstellen Sie ein Programm, dass aus Quadralen ein Dreh-Musler erstelll,
wobei immer abwechselnd links und rechls gezeichnel wird! (quasi ein Flii-
gel-Effekl)

3. Gesucht wird ein Programm, bei dem 12 incinander geschachlelfe Dreiecke
gezeichnel werden, bei denen sich keine Kanlen berviihren und die Dreicke
zueinander immer 20 Pixel Abstand haben! Das auferste Dreieck soll eine
Kantenlinge von 400 Pixeln haben!

4. Erstellen Sie ein Musler aus 7 (gleichseiligen) Sechsecken, die zu einem
Wabenmuster angeordnet sind! Das Zeichnen eines Sechseckes ist als Funk-
ton zu realisieren!

BK_SekI+II_Python_prof.docx -193 - (c,p) 2015 - 2026 Isp: dre

Aufeaben: (schwer)

1. Gesucht wird die Simulation einer Schildkrote, die sich in einem Kaslken
(Kantenlinge 300 x 500) bewegt!

2. Erstellen Sie ein Programm fiiv eine Teilchen-Simulation (Kugel) in einem
Gefap (Kasten 400 x 200)! Die Teilchen-Bewegung erfolgt Zufalls-gesteuert
(BROWNSsche Molekularbewegung). An den Wandungen wird das Teilchen
nach den Geselzen der Physik zuriickgeworfen.

Aufoaben fur diec oehobene Anspruchsebene: (richlio schwer)
X

BK_SekI+l_Python_prof.docx -194 - (c,p) 2015 - 2026 Isp: dre

Anweisungen, Funktionen und Methoden des Turtle-Graphik-Moduls
Cheat sheet zur Bibliothek "turtle”

allgemeine Hinweise / Bemerkungen

X- und Y-Positionen kdnnen Integer oder Float-Werte sein; als Rickgabe-Werte der Funktionen sind
es immer Float-Werte

None bedeutet, dass der Wert / das Argument i.A. weggelassen werden kann

zulassige Farbwerte sind: ""; "yellow"; "red"; "brown"; "green", "violet", "blue", "",

oder z.B.: flr weiss:

'"Bffffff' od. 255 bzw. schwarz: '#000000' od. O;

Schildkréten-Anweisung
turtle. ...

Beschreibung / Leistung / Funktion

Beispiele / Hinweise

addshape(formname,
me)

objektna-

registriert ein definiertes Objekt und
macht es unter objektname (als Turtle)
benutzbar

formname kann auch
eine GIF-Datei sein

addcomponent(komponente,
farbstring, hintergrundfarbe)

figt zu einem Objekt eine komponente
mit Vordergrund- und Hintergrund-
Farbe hinzu

Objekt muss vom Typ
"compound” sein (>
Shape)

back(ldnge) - backward
backward(/dnge) bewegt Turtle um J/dnge Pixel rick-
warts
begin_fill() Start- / Initialisierungs-Aufruf flr nach- | beenden mit >
folgendes Fllen end_fill(); Farbe setzen
mit = fillcolor()
begin_poly() Start- / Initialisierungs-Aufruf flr nach- | aktuelle Position st
folgendes Polygon-Zeichnen erster Polygon-Punkt
bgcolor liefert die Hintergrundfarbe des zu- | es kann auch

grundeliegenden
zurlck

screen-Objektes

screen.bgcolor() ge-
nutzt werden

bgpic(bildname)

setzt den Bildschirmname mit bildna-

es kann auch

bgpic() me oder gibt ihn zurtick screden.bgpic() genutzt
werden

bk(ldnge) - backward

bye() schlie3t das Zeichenfenster

circle(radius)
circle(radius, sektor)
circle(radius, sektor, schritte)

zeichnet einen Kreis mit dem angege-
benem radius; sektor ist der gezeich-
nete Kreisbogen in rad; schritte legt die
Anzahl Polygone fest, aus der der
Kreis gezeichnet werden soll

schritte
None

sektor und
kdnnen auch
sein

clear

- clearscreen

clearscreen

I6scht die aktuelle Turtle-Zeichnung

die Turtle wird nicht
bewegt od. ihre Para-
meter verandert!

clearstamp(stempel_ID)

I6scht den durch stempel ID (stamp-
ID) gekennzeichneten Turtle-Stempel

clearstamps() I6scht die aktuelle Liste der stamp-ID's
clearstamps(anzahl) bzw. die durch anzahl bestimmten
clearstamps(-anzahl) ersten bzw. letzten Turtle-Stempel
clone() erstellt bzw. liefert einen Klon der Turt-
le an der aktuellen Position
color() liefert Tupel aus Vorder- und Hinter- | hintergrundfarbe ist ein
color(farbstring, hintergrundfarbe) | grundfarbe zurlick bzw. setzt Vorder- | farbstring
color(farbstring) grund- und ev. auch Hintergrund-Farbe
color(RGBtripel)

color(RGBtupel, RGBtupel)

colormode(colormodus)

setzt den colormodus (Wert kann 1 od.
255 sein)

begrenzt die Spanne
fur die RGB-Anteile

degrees(gradzahl)

legt die gradzahl / Schritte fir einen
Vollkreis fest

Standard sind 360°

BK_Sekl+ll_Python_prof.docx

-195 -

(c,p) 2015 - 2026 Isp: dre

Schildkréten-Anweisung
turtle. ...

Beschreibung / Leistung / Funktion

Beispiele / Hinweise

delay(verzoegerung)
delay()

setzt die verzoegerung in ms oder gibt
sie zurlick

distance(koordinatenpaar)
distance(x_position, y position)

liefert die Entfernung zu einem anvi-
sierten Punkt zurick

done() macht letzte Anweisung riickgangig

dot(groesse, farbe) zeichnet einen Punkt mit den Parame- | farbe ist ein Farbstring

dot() tern groesse und farbe an der aktuel- | oder ein RGBtripel

dot(groesse) len Position groesse kann auch

None sein

down() - pendown

end_fill() End- / Destruktions-Aufruf fir Full- | starten mit >
Vorgang begin_fill(); Farbe set-
(der erste und letzte Punkt innerhalb | zen mit - fillcolor()
der Full-Seqenz werden am Schiufy
automatisch verbunden)

end_poly End- / Destruktions-Aufruf fir Polygon- | aktuelle Position ist der

Zeichen-Vorgang

letzte Punkt des Poly-
gons und wird mit dem
ersten verbunden (>

begin poly)

exitonclick()

bindet die bye-Methode an einen
Mausclick auf / in das Zeichenfenster

fd(ldange) - forward
fillcolor() gibt aktuelle Farbwerte (als RGBtupel) | farbstring kann sein:
fillcolor(farbstring) zurlck oder setzt die Werte Farbnamen - s.a.
fillcolor(RGBtupel) oben oder ein:
fillcolor(rotwert, gruenwert, blau- | die Fullung wird dann fur die Formen | RGBhexadezimalcode
wert) zwischen begin_fill() und end_fill() | (Start und Ende des
benutzt Fillens mit >
begin_fill() bzw.
end_fill())
filling() gibt True oder False zurlck jenach-
dem, ob der Fillmodus eingschaltet
oder nicht-eingeschaltet ist
forward(/dnge) bewegt Turtle um /dnge Pixel vorwarts
get_poly() liefert das letzte gezeichnete Polygon

zurtick

get_shapepoly()

liefert das Polygon der aktuellen Turt-
le-Form als Koordinaten-Tupel zuriick

getcanvas() liefert Zeichenflache als Objekt zurlick | Objekt ist ein Tkinter-
Objekt und kann damit
weiter verwendet wer-
den
getpen() liefert das Turtle-Objekt sich selbst
(zeigt Speicher-Adresse des Objektes)
getscreen() liefert die Zeichen-Flache als Objekt | einzelne Attribute las-
zurlick sen sich dann andern
(zeigt Speicher-Adresse des Objektes)
getshapes() liefert eine Liste mit den Namen der
moglichen Turtle-Formen zuriick
getturtle() liefert das Turtle-Objekt sich selbst
(zeigt Speicher-Adresse des Objektes)
goto(position) -> setposition
heading
hideturtle() versteckt die Turtle samt Spur (z.B. bei | = isvisible
komplexen Zeichenvorgangen)
home() setzt Turtle wieder auf die Start- / Aus- | entspricht: turt-
gangs-Position le.setpos(0,0)
ht() - hideturtle
BK_SekI+lI_Python_prof.docx -196 - (c,p) 2015 - 2026 Isp: dre

Schildkréten-Anweisung
turtle. ...

Beschreibung / Leistung / Funktion

Beispiele / Hinweise

isdown() gibt True oder False zuriick jenach-
dem, ob der Stift zeichnet oder nicht-
zeichnet

isvisible

left(winkel) dreht Turtle um winkel nach links

listen(dummy_x_position, dum-

my_y position)

setzt den Focus auf die Zeichenflache;
die Dummy-Argumente werden fir die
onclick-Methode genutzt

It(winkel) - left
mainloop() startet die Ereignis-Abfrage-Schleife | muss die letzte Anwei-
des Ubergeordneten Objektes (screen | sung in einem Turtle-
von Tkinter) Programm sein (im
Script-Modus nicht
notwendig)
mode(modus) setzt den modus fur die Turtle-Graphik | "standard": Ausrich-
mode() oder liefert ihn zurtick tung Ost, Drehung
modus kann sein: "logo", "world", | entgegen Uhrzeiger;
"standard" "logo": Ausrichtung
Nord, Drehung mit
Uhrzeiger
numinput(titel, text, vorgabe, mi- | erzeugt ein Popup-fenster mit dem /
nimum, maximum) einem titel und der Eingabe-
Aufforderung text; optional konnen
eine vorgabe, das minimum und ma-
ximum fur die einzugebene Zahl ange-
geben werden
onclick(funktion) Aufruf einer Argument-losen funktion
beim Klicken mit der linken Maustaste
onclick(funktion, maustaste, add) | Aufruf einer zwei-argumentigen funkti- | maustaste ist norma-
on (Click-Position) mit einer maustas- | lerweise:

te;

1 .. linke Maustaste
2 ..
3..

ondrag

onkey(funktion, taste)

Aufruf einer Argument-losen funktion
beim Loslassen einer taste

taste kann auch ein
Tasten-Sybol-String
z.B. "space" sein

onkeypress

Aufruf einer Argument-losen funktion
beim Drlcken einer taste

taste kann auch ein
Tasten-Sybol-String
z.B. "space" sein

onkeyrelease(funktion, taste)

Aufruf einer Argument-losen funktion
beim Loslassen einer taste

taste kann auch ein
Tasten-Sybol-String
z.B. "space" sein

onscreenclick

ontimer(funktion, zeit)

Aufruf einer Argument-losen funktion,
nach einer bestimmten zeit in ms

pd - pendown

pen(kategorie) liefert Informationen zu bestimmten | die Rickgabewerte
Kategorien Uber die Turtle zurtick: sind entweder True /
kategorie: False oder die lblichen
"shown"; "pendown"; "pencolor”; "fillco- | Uber- bzw. Riickgabe-
lor"; "pensize"; "speed"; "resizemode"; | Werte / -Typen der
stretchfactor"; "outline"; "tilt" Kategorie)

Pen

BK_Sekl+ll_Python_prof.docx

-197 -

(c,p) 2015 - 2026 Isp: dre

Schildkréten-Anweisung
turtle. ...

Beschreibung / Leistung / Funktion

Beispiele / Hinweise

pencolor() liefert aktuellen Farbwert als RGBtupel | farbstring kann sein:
pencolor(farbstring) zurick bzw. setzt die Farbwerte Farbnamen > s.a.
pencolor(RGBtupel) oben oder ein:
pencolor(rotwert, gruenwert, blau- RGBhexadezimalcode
wert)

pendown() senkt den Stift zum Zeichnen ab (>

Turtle-Spur)

pensize(dicke)

bestimmt die dicke der Spur bzw.

dicke kann auch None

pensize() liefert die Dicke der Spur zuriick sein

penup hebt den Stift ab (= keine Turtle-Spur)

pos

position() liefert die aktuelle Turtle-Position als | turtlePos=turtle.pos()
Tupel zurtick

pu - penup

radians(gradmass)

setzt die Messeinheit (gradmass) fir
(die nachste Aktion(en)) auf rad fest

7?7

RawPen

RawTurtle

register_shape(formname, ob- | registriert ein definiertes Objekt und | formname kann auch

jektname) macht es unter objektname (als Turtle) | eine GIF-Datei sein
benutzbar

reset() - resetscreen

resetscreen I6scht aktuelle Turtle-Zeichnung und | Turtle ist wieder auf
setzt alle Turtle-Parameter wieder auf | Ausgangsposition mit
die Ausgangswerte allen Standardwerten

resizemode(modus)
modus kann sein: "auto", "user", "no-
resize"

right(winkel) dreht Turtle um winkel nach rechts

rt - right

Screen Tkinter-Objekt:

ScrolledCanvas Tkinter-Objekt:

screensize(bildschirmweite, bild- | setzt die Zeichenflaiche (Turtle- | farbstring kann sein:

schirmhoehe, farbstring)

Bildschirm / Ubergeordnetes screen-
Objekt) auf eine bestimme Weite (x-
Ausdehnung), Hoéhe (y-Ausdehnung)
und Hintergrundfarbe

Farbnamen -
oben oder ein:
RGBhexadezimalcode
es kann auch
screen.screensize()
genutzt werden

S.a.

seth

- setheading

setheading(winkel)

legt Orientierungs-Richtung (als win-
kel) fur die Turtle fest

im logo-Modus ist Nor-
den bei 0°; sonst ist 0°
Richtung Osten

von Standard-Start
nach Nord 2>
setheading(90)

setpos(position)

- setposition

setpostion(position)

setzt Turtle auf die position
position ist ein Vec2D oder ein Koordi-
naten-Paar

setpos(20, 50)
setpos((20,50))

settilangle(winkel)

die Ausrichtung der
Turtle wird nicht gean-
dert

setundobuffer(schritte)

setzt oder deaktiviert den Ruckschritt-
Speicher (Keller-Speicher) auf schritte

schritte kann None

sein

BK_Sekl+Il_Python_prof.docx

-198 -

(c,p) 2015 - 2026 Isp: dre

Schildkréten-Anweisung
turtle. ...

Beschreibung / Leistung / Funktion

Beispiele / Hinweise

setup(x_pixel,
y_start)
setup(x_anteil, y_anteil)

y_pixel, x_start,

gibt die Ausdehnung des Zeichenfens-
ters in Pixeln und die Start-Position
vor; bei Angabe einer Float-Zahl wird
der Anteil am Gesamtbildschirm ge-
wahlt

Standard sind 50% =
0.5 des Gesamt-
Bildschirms

setworldcoordinates(x_linksoben,
y_linksoben, X_rechtsunten,
y rechtsunten)

setzt die Zeichenflachen-Koordinaten
(Runter-Diagonale)

setx(x_wert)

setzt x_wert der Turtle-Position (Hori-
zontal-Position)

sety(y_wert)

setzt y wert der Turtle-Position (Verti-
kal-Position)

shape(form) legt das Aussehen der Turtle fest; form kann auch None
form kann sein: "arrow", "turtle", | sein
"circle", "square", "triangle", "classic"

Shape Tkinter-Objekt

shapesize() liefert die aktuelle Vegrolerungs- | x_faktor, y faktor und

shapesize(x_faktor,
umriss_staerke)

y_faktor,

faktoren und die Umriss-Starke zurilick
oder setzt sie (im - resizemodus =
"user")

umriss_staerke sind
positive Werte od. No-
ne

shapetransform(t11, t12, t21, 22)

transformiert die Matrix der Turtle-
Form

t11, t12, t21, 22 kon-
nen auch None sein

shearfactor()

gibt oder setzt

die Ausrichtung der
Turtle wird nicht gean-
dert

showturtle() zeigt die (unsichtbare) Turtle bzw. | - isvisible
deren Spur an (seit letztem Unsicht-
barmachen)
speed() bestimmt die geschwindigkeit des Turt- | tempostring:
speed(geschwindigkeit) le's; Werte von 0 .. 10 werden ausge- | "fastest" .. 0; "fast" ..
speed(tempostring) wertet, andernfalls wird 0 gesetzt; 0 .. | 10; "normal” .. 6; "slow"
ohne Animation .. 3; "slowest" .. 1
st() - showturtle
stamp() hinterlasst eine Turtle-Abdruck an der | s.a. clearstamp
aktuellen Position und liefert eine
stamp_ID zurick
Terminator

textinput(titel, text)

erzeugt ein Popup-Fenster mit dem /
einem titel und der Eingabe-
Aufforderung text

tilt(winkel)

die Ausrichtung der
Turtle wird nicht geén-
dert

tiltangle(winkel)

die Ausrichtung der
Turtle wird nicht gean-
dert

title(titel)

setzt den titel des Zeichenfensters

towards(x-position, y_position)
towards(koordinatenpaar)

tracer(anzahl, verzoegerung)
tracer(schalter)

Schalter legt fest, ob die Zeichnung mit
voller Geschwindigkeit (1) ohne sicht-
bare Turtle oder verzdgert (0) mit
sichtbarer Turtle erstellt werden soll

- delay

BK_Sekl+ll_Python_prof.docx

-199 -

(c,p) 2015 - 2026 Isp: dre

Schildkréten-Anweisung
turtle. ...

Beschreibung / Leistung / Funktion

Beispiele / Hinweise

Turtle liefert ein neues Turtle-Objekt (Kon-
struktor)

turtles() liefert eine Liste der Turtle's vom Bild-
schirm zurick

TurtleScreen Tkinter-Objekt:

turtlesize

undo() macht die letzte bzw. die durch anzahl/

undo(anzahl) bestimmte Menge an Turtle-Aktionen
rickgangig

undobufferentries() liefert die Anzahl der Eintrdge im
Ruckschritt-Speicher zuriick

up - penup

update zeigt den aktuellen Bildschrim z.B. | - tracer
wahrend eines tracer-Modus

Vec2D Tkinter-Objekt:

width(dicke) bestimmt die dicke der Spur bzw. dicke kann auch None

width() liefert die Dicke der Spur zuriick sein

window_height

gibt die Fenster-Hohe (y-Ausdehung)
des Zeichenfensters zuriick

window_widht

gibt die Fenster-Breite (x-Ausdehung)
des Zeichenfensters zuriick

write(schreibobjekt, bewegt, aus-
richtung, schrift)

schreibt ein schreibobjekt mit der aus-
richtung ("left"; "center", "right") und
der schrift (schriftname, schriftgroesse,
schrifttyp) an der aktuellen Position

Bsp. fur schrift:

"Arial, 11, "normal"
bewegt besagt, ob die
Schreib-Position auf
Ausgang oder Ende
des Schreib-Objektes
gesetzt werden soll

write_docstringdict

xcor() liefert die x-Koordinate der Turtle zu-
rick
ycor() liefert die y-Koordinate der Turtle zu-

rick

u.a. Q: https://docs.python.org/3.5/library/turtle.html (hier Dokumentation nach Kategorien!)

Default- / Vorgabe-Einstellungen fur Turtle-Graphik (in turtle.cfg gespeichert)

width =
height =
leftright
topbottom
canvwidth 400
canvheight = 300
mode = standard
colormode = 1.0
delay = 10
undobuffersize =
shape = classic
pencolor = black
fillcolor = black
resizemode = noresize
visible = True
language = english
exampleturtle =
examplescreen
title =
using IDLE =

0.5

0.75
None
None

1000

False

turtle
screen
Python Turtle Graphics

BK_Sekl+Il_Python_prof.docx

-200 -

(c,p) 2015 - 2026 Isp: dre

https://docs.python.org/3.5/library/turtle.html

Es existieren verschiedene Demo-Programme / -Skripts zur Turtle-Graphik. Diese kénnen
mit:
python -m turtledemo

entpackt werden.

8.8.10. Verandern des Schildkroten-Zeigers

Mit der Funktion shape() kann man die Anzeige-Form der Schildkréte anpassen. Zugelassen
sind dabei die Formen:

arrow > Pfeil

circle > Kreis
square - Quadrat
triangle - Dreieck
classic > Pfeilspitze

Die gewiinschte Form wird als String in die shape()-Funktion eingegtragen.
Man kann aber auch eigene Formen festlegen und diese dann benutzen. Dazu muss man
zuerst die neue Form registrieren:

register shape ("rhombus", ((0,5), (5,10), (10,5), (5,0)))

und dann spater genau diese registrierte Form zuweisen:

shape ("rhombus")

8.8.11. Animationen mittels turtle-Grafik

Bisher war die Dynamik unserer Zeichnungen auf die Erstellung beschrankt. Nun wollen wir
uns an echte Animationen machen.

Nehmen wir als Beispiel einen Fisch. Dies konnte ein Skalar sein, der durch

sein rhomische Seiten-Ansicht ein Hinkucker in jedem Aquarium ist. Wir nut-

zen zuerst einmal nur wenige Linien zur Veranschaulichung. Spater kdnnen

wir dann noch ein paar Details erganzen.

Die Grundform kdnnte ein Quadrat und ein Dreieck sein. Eine andere Losung

basiert auf drei rechten Winkeln.

Da es spater grof3e und kleine Fische geben soll, definieren wir eine Funktion

fisch() mit mdglichen Eigenschaften. Fir uns ware das wohl die Seitenlange

und die Farbe. Auch eine Schwimm-Richtung ware wohl angebracht.

Unser Fisch soll aus Winkeln zusammengesetzt sein. Fur diese Winkel entwickeln wir zuerst
auch eine Unter-Funktion. Neben GréRe und Farbe interessiert uns sicher auch die Rich-
tung.

BK_SekI+II_Python_prof.docx -201 - (c,p) 2015 - 2026 Isp: dre

Auch ﬁk_db an' from turtle import *
kel definieren wir

Richtungen. Als def winkel (laenge, richtung):
Orientierung ver- # Richtung: von 0 bis 3 fiir N, O, S u. W
wende ich hier die # am Ende hat Turtle wieder Start-Pos. u. —-Richtg.
Himmels- case richtung on:
; 1:
Richtungen. else: # fur 0

Die Winkel-Funk-
tion soll mdglichst

end
forward (laenge)

effektiv ablaufen, left (90)

da sie ja sehr hau- forward (laenge)
fig benutzt wird. backward (laenge)
In welcher Zu- right (90)
sammenstellung backward (laenge)

wir aus Winkeln case richtung on:

einen "Fisch" ma-

. . end
chen, ist uns Uber-
Iqssenzlch wahle # MAIN (Test-Programm)
hier ein andrat delay (0)
aus zwei Winkeln winkel (100, 0)
und die Schwanz- winkel (100,1)
flosse als ein Win- winkel (100, 2)
kel. Da kann ich winkel (100, 3)

dann spater Vviel-
leicht auch Fisch
mit andersfarbiger
Flosse erstellen.

Aufoaben:

1. Realisieren Sie die Winkel-Funktion!

2. Testen Sie die Geschwindigkeit der Winkel-Funktion, indem Sie sie z.B.
10'000x aufrufen und dabei die bendtigte Zeil messen!

3. Varieren Sie die Erstellungs-Moglichkeiten fiiv einen Winkel! Testen Sie die
Leistungsfahigkeit Ihrer Varvianten! Wihlen Sie die schnellste Varviante aus!

fiir die gehobene Anspruchsebene:

4. Testen Sie die Leistungsfahigkeil anderer Erstellungs-iioglichkeilen fiir ei-
nen Fisch! Welche Variante ist warum die Giinstigste?

Meine Variante ist aus mehreren Griinden nicht sehr effektiv. Sicher haben Sie eine schnel-
lere Variante fur das Zeichnen gefunden. Diese sollten Sie nun weiter fir das Erstellen eines
Fisches verwenden.

def fisch(laenge, farbe, richtung):
Richtung: -1 od. 1 fir links od. rechts
pencolor (farbe)

An dieser Stelle darf man auch Mal hinterfragen, ob es gunstig ist, bei der Winkel-Funktion
immer an die Start-Position zurlickzukehren oder ob man besser fahrt, wenn man am Zei-
chen-Endpunkt stehen bleiben (und die Richtung vielleicht zuriickmeldet)?

Egal, wie nun unser Fisch gezeichnet wird, jetzt kann er schon mal bewegt werden.

Fir einen ersten Test nehmen wir eine Zahlschleife mit

BK_SekI+l_Python_prof.docx -202 - (c,p) 2015 - 2026 Isp: dre

def vorwaerts (schritte, richtung, flaenge, ffarbe, frichtung):

zuerst alten Fisch léschen
fisch(flaenge, 0, frichtung)
Fisch an neuer Position zeichnen
penup ()
apos=pos () .x
if richtung ==
apost=schritte
else:
apos-=schritte
goto (apos, pos () .Vy)
pendown ()
fisch(flaenge, ffarbe, frichtung)

MAIN
pause=100
richtung=100
Fisch zeichnen (Start-Situation)
laenge=50
farbe=3
richtung=1
fisch(laenge, farbe, richtung)
while true:
delay (pause)

Erstellen eigener Figuren (Sprite's)
register_shape(Name, Punktliste)

Beispiel: "Schiff"

register_shape('schiff', ((0,10),(5,0),(15,0),(20,10)))

setzen der (Vordergrund-)Farbe mit:
color(Farbname) 'red', 'blue’, 'black’, 'green’, ...

fur mehrere Objekte:
t1 = Turtle() erzeugt ein neues turtle-Objekt mit dem Namen t1

BK_Sekl+ll_Python_prof.docx - 203 -

(c,p) 2015 - 2026 Isp: dre

Zugriff Uber Variablennamen und dann mittels Punkt abgetrennt die zugehdrigen Attribute
und Methoden, z.B.:

t1.shape('schiff')
t1.goto(posx,posy)

from turtle import *
register shape('schiff', ((0,10), (5,0), (15,0), (20,10)))

1. Schiff
tl=Turtle ()
tl.shape ('schiff')
tl.left (90)
tl.up ()
tl.color('red')
tl.goto (0, 50)

1. Schiff
t2=Turtle ()
t2.shape ('schiff')
t2.1left (90)
t2.up ()
t2.color('green')
t2.goto (0, 50)

#

for x in range (100) :
tl.goto (100-x,50)
t2.goto(x,-50)

Eine Turtle-ahnliche Bibliothek ist frog (= http://www.viktorianer.de/info/prog-frog.html), die
sich eher spielerisch an das Problem der Graphik-Programmierung macht und deshalb mehr
fur jungere Python-Programmierer geeignet ist

8.8.12. Realisierung des Snake-Spiel's mittels turtle-Grafik

Entwicklungs-Schritte an der Umsetzung durch den HPI-Python-Kurs (2020) orientiert
dazu sollte man sich die Video's von dort ansehen
hier erfolgt nur eine (leicht veranderte) Darstellung der dortigen Umsetzung

Kopf der Schlange (Snake) ist ein schwarzes Quadrat
Start-Position ist die Ubliche Turtle-Graphik-Flache

from turtle import *
shape ("square")

color ("black")
penup ()

BK_SekI+l_Python_prof.docx -204 - (c,p) 2015 - 2026 Isp: dre

http://www.viktorianer.de/info/prog-frog.html

Bewegung des Quadrates ist immer mit Positions-Veranderungen um 20 Pixel jeweils in x-
bzw. y-Richtung verbunden
z.B. um eine Raster-Position nach oben, dann mit

goto (0,20)

erzeugt eine langsame Bewegung des Quadrates
gewunscht ist ev. / original im Spiel sprung-hafte Veranderung
dazu kann mit speed(0) die interne Verzégerung des Turtle-Moduls auf 0 gesetzt werden

speed (0)
goto (0,20)

erganzt wird der erste Abschnitt um die Speicherung der (aktuellen Bewegungs-Richtung fir
den Schlangen-Kopf (ist als solcher schon als direction in der Turtle-Bibliothek verflgbar.
zuersteinmal setzen wir diesen initial auf "stop" (was flr keine Bewegungs-Richtung steht)

direction="stop"

es folgt die Definition der Nahrung fur die Schlange — hier als rote Kreise
spater wird die Position zufallig erzeugt, hier zuerst einmal auf eine bestimmte Position fest-
gelegt

shape ("circle")
color ("red")
penup ()

speed (0)

goto (0,100)

jetzt kann man den ersten Prototypen schon mal ausprobieren

dabei stellen wir fest, das zuerst mal kurz das Quadrat erscheint, dann aber schnell vom
Kreis abgeldst wird und als solcher am Ende zu sehen ist

Problem ist, das wir praktische nur eine Schildkrote steuern, die zu Anfang ein Quadrat ist,
dann aber in einen Kreis gewandelt wir und als solcher nach dem programm-Ende immer
noch sichtbar ist

zum getrennten Benutzen von zwei Schildkréten mussen wir Objekt-orientiert arbeiten und
jede Schilldkréte als einzenes (Turtle-)Objekt definieren und benutzen

from turtle import *

kopf=Turtle ()
kopf.shape ("square")
kopf.color ("black")
kopf.penup ()
kopf.speed (0)
kopf.goto(0,20)
kopf.direction="stop"

essen=Turtle ()
essen.shape ("circle")
essen.color ("red")
essen.penup ()
essen.speed(0)
essen.goto (0,100)

damit sind die graphischen Grund-Elemente definiert

als nachstes Problem nehmen wir uns die Steuerung der Schlangen-Bewegung vor

dies soll Uber vier griine Richtungs-Dreiecke in der rechten unteren Ecke des Graphik-Feldes
erfolgen

BK_SekI+II_Python_prof.docx -205 - (c,p) 2015 - 2026 Isp: dre

jedes Richtungs-Dreieck wird als eigenstandiges Turtle-Objekt realisiert

rechts=Turtle ()
rechts.shape ("triangle")
rechts.color ("green")
rechts.speed (0)
rechts.penup ()
rechts.goto (180,-160)

unten=Turtle ()
unten.shape ("triangle")
unten.color ("green")

(
unten.right (90)
unten.speed(0)
unten.penup ()
unten.goto (160,-180)

links=Turtle ()
links.shape ("triangle")
links.color ("green")
links.left (90)
links.speed(0)
links.penup ()
links.goto (160,-140)

oben=Turtle ()
oben.shape ("triangle")
oben.color ("green")

(
oben.right (180)
oben.speed (0)
oben.penup ()
oben.goto (160,-140)

die Eingaben sollen als Maus-Klicks auf die Dreiecke erfolgen
diese Klicks missen im Programm selbst standig ausgewertet werden

def interpretiere eingabe(x,y):
if (x>=150 and x<=170) :
if (y>=-190 and y<=-170):
nach unten ausrichten ()
elif (y>=- and y<=-):
nach oben ausrichten ()
elif (y>=-170 and y<=-150) :
if (x>=170 and y<=190):
nach rechts ausrichten ()

elif (x>=- and x<=-):
nach links ausrichten ()
kopf bewegen() # muss spdter ergdnzt werden

und an andere Stelle gesetzt werden (hier nur temp.)

onclick (interpretiere eingabe) # Reaktion auf Mausklick

bei der neuen Ausrichtung wollen wir verhindern, dass der Schlangen-Kopf sich um 180°
dreht, dies wirde bedeuten, die Schlange beillt sich in den Koérper / Schwanz, was zum
Spielende flihren wiirde

def nach unten ausrichten():

BK_SekI+lI_Python_prof.docx - 206 - (c,p) 2015 - 2026 Isp: dre

def

def

def

if kopf.direction != "up": # dient dem Ausschlub der
kopf.direction="down"

nach oben ausrichten() :
if kopf.direction != "down":
kopf.direction="up"

nach rechts ausrichten() :
if kopf.direction != "left":
kopf.direction="right"

nach links ausrichten():
if kopf.direction != "right":
kopf.direction="1left"

nun kénnen wir die eigentliche Bewegung des Kopfes realisieren

def

kopf bewegen () :
if kopf.direction=="down":

180°-Drehung

y=kopf.ycor () # Abfrage der aktuellen y-Position

kopf.sety(y-20) # Setzen der neuen y-Position

if kopf.direction=="right":

x=kopf.xcor () # Abfrage der aktuellen y-Position

kopf.setx (x+20) # Setzen der neuen y-Position

if kopf.direction=="up":
y=kopf.ycor ()
kopf.sety (y+20)

if kopf.direction=="left":
x=kopf.xcor ()
kopf.setx (x-20)

an dieser Stelle kann das Ganze als Prototyp ausprobiert werden
vor allem Auffinden von Programmierfehlern, ev. Anpassungen von Koordinaten usw. usf.
vornehmen

Schlange(n-Kopf) sollte sich nun Uber das Spielfeld bewegen lassen
(fir die Analyse von (graphischen) Fehlern kann das Auskommentieren der speed()-Funktion
helfen) es wird jetzt alles sehr langsam gezeichnet, aber (erste) Graphik-Fehler lassen sich
schon hier besser korrigieren, als spater in einem fast fertigen Programm

jetzt kdnnen wir das Essen-Aufnehmen planen
in einer speziellen Funktion wird gepruft, ob wir mit dem Kopf die Position des Essen's ge-
funden haben, dabei reicht ein seitliches Beriihren

def

checke kollision mit essen() :
if kopf.distance (essen)<20
neues Essen positionieren
Start mit ungliltiger Position auf Steuerung
x=160
y=-160

zufallig neue Position erstellen und prifen, bis sie funktioniert

while (x>=-140 and y<=-140):
x=randint (=9, 9) *20
y=randint ((-9, 9) *20
essen.penup ()
essen.speed (0)
essen.goto (
Schlange verlangern

BK_Sekl+ll_Python_prof.docx - 207 -

(c,p) 2015 - 2026 Isp: dre

fur die obige Funktion bendtigen wir fir das Wachsen der Schlange eine Liste der Segmente
Diese mussen wir naturlich vorher leer anlegen.
Jedes Segment soll dann ein eigenstandiges Turtle-Objekt sein

segmente=[]

die Kollision mit dem Fenster- / Spielfeld-Rand ist ein Abbruch-Kriterium. Der Speiler hat
dann verloren.

def check kollision mit fensterrand() :
if (kopf.xcor()<-190 or kopf.xcor()>190
or kopf.ycor()<-190 or kopf.ycor>190):
Neustart des Programms
penup ()
speed (0)
goto (0,0)
direction="stop"

segmente entfernen ()
ev. Ausgabe Ulber verlorenes Spiel

Da das Neustarten des Programm's auch noch gebraucht wir, wenn man z.B. Uber den eige-
nen Schwanz lauft, werden die relevaten Befehle in eine eigene Funktion gepackt und diese
in check_kollision_mit_fensterrand() einegbaut.

def spiel neustarten():
penup ()
speed (0)
goto (0,0)
direction="stop"

def check kollision mit fensterrand() :
if (kopf.xcor()<-190 or kopf.xcor()>190
or kopf.ycor()<-190 or kopf.ycor>190):
Neustart des Programms
spiel neustarten()
segmente entfernen ()

ev. Ausgabe iiber verlorenes Spiel

def check kollision mit segmenten () :
for segment in segmente:
if segment.distance (kopf)<20:
spiel neustarten()

def koerper bewegen () :
Segmente bewegen
for index in range(len (segmente)-1,0,-1): # von hinten nach vorn

? nur Kopf
if ..
bewege 1. Segment zum Kopf

BK_SekI+l_Python_prof.docx -208 - (c,p) 2015 - 2026 Isp: dre

Hauptprogramm

e definitionen
onclick(interprtiere_eingabe)
checke_kollision_mit_essen()
check_kollision_mit_fensterrand()
koerper_bewegen()
kopf_bewegen()
checke_kollision_mit_segmenten()

letzte 5 Spiel-Bausteine wiederholen sich spater 6fter und werden deshalb als extra Funkti-
on:

def wiederhole spiellogik():
checke kollision mit essen()
check kollision mit fensterrand()
koerper bewegen ()
kopf bewegen ()
checke kollision mit segmenten ()

Hauptprogramm
e definitionen
e onclick(interpretiere_eingabe)
e wiederhole
o spiellogik

fertiges Programm (zusammengesammelt)

from turtle import *
from random import randint

def interpretiere eingabe(x, y):

if (x >= 150 and x <= 170 and y >= -190 and y <= -170) :
nach unten ausrichten ()

elif (x >= 170 and x <= 190 and y >= -170 and y <= -150):
nach rechts ausrichten ()

elif (x >= 150 and x <= 170 and y >= -150 and y <= -130):
nach oben ausrichten ()

elif (x >= 130 and x <= 150 and y >= -170 and y <= -150):
nach links ausrichten ()

#

onclick (interpretiere eingabe)

def kopf bewegen() :
if kopf.direction == "down":
y = kopf.ycor()
kopf.sety(y - 20)
elif kopf.direction == "right":
x = kopf.xcor ()
kopf.setx(x + 20)

BK_SekI+II_Python_prof.docx -209 - (c,p) 2015 - 2026 Isp: dre

elif kopf.direction == "up"
y = kopf.ycor ()
kopf.sety(y + 20)

elif kopf.direction == "left":
x = kopf.xcor ()
kopf.setx(x - 20)

def checke kollision mit essen():
if kopf.distance(essen) < 20:
Teil 1: Essen an neue Position bewegen
x=160
y=-160
zufdllig neue Position erstellen und priifen, bis sie funktioniert
while (x>=-140 and y<=-140):
x=randint (-9, 9) *20
y=randint (-9, 9) *20
essen.goto (x,V)
Teil 2: Schlange wachsen lassen
neues_ segment=Turtle ()
neues_segment.shape ("square")
neues_segment.color ("yellow")
neues_segment.penup ()
neues_segment.speed (0)
neues_ segment.goto (kopf.xcor (), kopf.ycor())
neues_ segment.goto (0, 0)
neues segment.direction=kopf.direction
segmente.append (neues_segment)

def spiel neustarten() :
Kopf in der Mitte platzieren
kopf.goto (0,0)
Richtung auf "stop" setzen
kopf.direction="stop"
segmente entfernen ()
Ausgabe, dass Spielrunde vorbei ist
print ("Leider verloren! Auf ein Neues ...")

#HHfHAF A F A F A A Hauptprogramm# ## ##HHFFFHHFFHHHH

Schlange
kopf=Turtle ()
kopf.shape ("square")
kopf.color ("black™)
kopf .penup ()
kopf.speed(0)
kopf.goto (0, 20)
kopf.direction="stop"

segmente=[]

Essen
essen=Turtle ()
essen.shape ("circle")
essen.color ("red")
essen.penup ()
essen.speed (0)
essen.goto (0,100)

Steuer-Region

rechts = Turtle ()
rechts.shape ("triangle")
rechts.color ("green")

BK_SekI+lI_Python_prof.docx -210 - (c,p) 2015 - 2026 Isp: dre

recht
recht
recht

unten

unten.
unten.

unten

unten.
unten.
unten.

links

links.

links
links
links
links
links

oben

oben.
oben.
oben.
oben.
oben.
oben.

s.speed (0)
s.penup ()
s.goto (180, -160)

= Turtle ()
shape ("triangle")

color ("green")
.right (90)
speed (0)
penup ()

goto (160, -180)

= Turtle ()

shape ("triangle")
.color ("green")
.right (180)
.speed (0)
.penup ()

.goto (140, -160)

= Turtle ()

shape ("triangle")
color ("green")
left (90)

speed (0)

penup ()

goto (160, -140)

BK_Sekl+ll_Python_prof.docx

-211 -

(c,p) 2015 - 2026 Isp: dre

8.9. Musik mit python

8.9.1. Musik mit Board-Mitteln

siehe dazu im Skript "Muenker-Intro_Python DSP.pdf"

8.9.2. Musik mit python-sonic

externes Modul

aktuelle Version unter:
https://github.com/gkvoelkl/python-sonic

sehr gut mit dem Raspberry Pi realisierbar, hier ist die Version "sonic pi" schon in mehreren
Betriebssystem-Distributionen vorinstalliert

Kopfhoérer kénnen direkt angeschlossen werden

einfacher Einstieg mit einfachen Ergebnissen moglich (wird in diesem Skript auch den we-
sentlichen Teil der Besprechung ausmachen)

relativ komplexes System

sehr Leistungs-fahig

fur Anfanger und nicht so Noten-affinen Nutzern schnell zu / sehr kompliziert
Fehler-Findung recht schwierig (Welche Note ist wann und wie falsch?)

BK_SekI+l_Python_prof.docx -212 - (c,p) 2015 - 2026 Isp: dre

8.10. das Modul "pygame"

Da Python nicht direkt auf die Hardware zugreifen kann, dieses aber eigentlich fiir viele Pro-
gramme und besonders schnelle Spiele usw. notwendig ist, bietet das Modul pygame indi-
rekte Zugriffe und Funktionen an. So bleiben wir bei Programmieren auf Python-Ebene und
die Programme konnen diverse Funktionen moderner Multimedia-Hardware nutzen. Pygame
sorgt auch daflr, dass es uns vollig egal ist, welche konkrete Graphik- oder Sound-Karte
(oder entsprechende onboard-Version) auf unserem Rechner installiert ist. Da ist Sache von
pygame und braucht uns nicht zu kiimmern.

8.10.0. Quellen und Installation

Als Download-Quellen sind einmal die offizielle pygame-Seite im Internet (www.pygame.orq)
und eine inoffizielle — aber scheinbar bestens gepflegte — Quelle fir alle mdglichen Module
zu Python (http://www.Ifd.uci.edu/~gohlke/pythonlibs/#pygame) zu nennen.

Eigentlich sollte es mit den Installations-Dateien (msi-Dateien fur Windows-Systeme) eine
Installtion gelingen. Bei mir funktionierten das nur mit einem Python-2-System.

Bei der letzteren Quelle sind sogenannte whi-Dateien zu downloaden, die mit dem internen
pip-Progamm zu installieren sind. Das war bei mir der einzige funktionierende Weg.

Je nach Betriebssystem-Type (32- oder 64bit) und Python-Version findet man dort die pas-
sende whl-Datei.

Am einfachsten ist es, diese gleich in den Scripts-Ordner der lokalen Python-Installation zu
downloaden. Wenn die Datei vom Browser woanders hin gespeichert wird, dann kopiert man
sie einfach in das Verzeichnis Scripts.

Nun brauchen wir eine Eingabe-Aufforderung (Konsole) in dem Ordner. Dazu geht man im
Windows-Explorer (od. Arbeitsplatz) zum Python- und dann in den Scripts- Ordner.

Mittels Hochstell-Taste (Shift) und rechter Maustaste kann man sich eine Eingabe-
Aufforderung 6ffnen.

Nun muss man die Befehle sehr exakt eintippen, da sonst Fehlermeldungen folgen oder gar
nichts passiert.

Zuerst aktualisieren wir das pip-Programm:

python -m pip install --upgrade pip

Das Ergebnis sollte dann in etwa so aussehen. Die Versionen werden sich sicher schon wie-
der unterscheiden.

C:wPythonsSewriptsdpython —a pip install upgrade pip
Collecting pip
Down loading pip—8.1.2-pyl.pyd-none—-any.whl <1.2HMB>
188: (HHuEREHUEHERORREY HuddguEgnng: 1.2HE 291kB-s
Installing collected packages: pip
Found existing installation: pip 7.1.2
9 9

Unin ling pip—-7.1.2:
8 sfully uninstalled pip-?.1.2
Successfully installed pip-8.1.2

C:wPython~Scripts>

Nun kénnen wir die passende whl-Datei installieren:

pip3 install pygame-....whl

BK_SekI+II_Python_prof.docx -213 - (c,p) 2015 - 2026 Isp: dre

file:///D:/XK_INFO/BK_S.I_Info/www.pygame.org
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame

Statt der Punkte missen da die exakten Angaben der whl-Datei verwendet werden. Man
kann sich einen Dateiname im Explorer kopieren und dann Uber die rechte Maustaste in der
Konsole einflgen.

Kommen Fehler-Meldungen, dann bleibt nur ein erneuter Versuch. Allerdings ist jetzt (meist)
ein upgrade nowendig.

pip3 install --upgrade pygame-...whl
Wenn alles geklappt hat, dann sollte eine Bestatigungs-Meldung in der Konsole erscheinen.

S—none-win3d2 .whl

g ollected packages: py
Found existing installation: pygame 1.9.2a8

ng pygame—1
f unins ed pygame—1.7.2a8
Successfully installed pygame-1.9.2a8

C:wPython“Scripts>

Jetzt steht ersten Tests nichts mehr im Weg. Ein Neustart des Rechners ist zu empfehlen,
damit die integrierten DLLs ordnungsgemalf} geladen werden.

Bei aktuellen Python-Installationen kann man es zuerst einmal mit:

pip3 install pygame

probieren.

8.10.1. Ausprobieren / Testen / Grundlagen

Bevor wir uns nun auf die Mdglichkeiten von pygame einlassen, testen wir erst einmal die
Installation. Das nochfolgende Programm erzeugt nur ein schwarzes Fenster und warten auf
das regulare Schlieen Uber den zugehdrigen Fenster-Knopf.

pygame

pygame.init ()
screen=pygame.display.set mode ([640,480])

aktiv=
aktiv:
event pygame.event.get () :
event.type==pygame.QUIT:
aktiv=

pygame.quit ()

Sollte das programm nicht funktionieren, sollte man nochmals pygame installieren / upgra-
den. Bleibt dieses erfolglos, dann bleibt nur die groRe Suche nach Hilfe im Internet oder ein
Uberspringen dieses Kapitels.

Nach meinen ersten anfanglichen Schwierigkeiten mit pygame fand ich das unten folgende
Test-Programm flr die pygame-Schnittstellen von der Seite www.spieleprogrammierer.de.
Auf dieser steht auch ein online-Tutorial zur Verfligung.

BK_SekI+l_Python_prof.docx -214 - (c,p) 2015 - 2026 Isp: dre

file:///D:/XK_INFO/BK_S.I_Info/www.spieleprogrammierer.de

Pygame-Modul importieren.
import pygame

Uberpriifen, ob die optionalen Text- und Sound-Module geladen werden konnten.

if not pygame.font: print ('Fehler pygame.font Modul konnte nicht geladen werden!')
if not pygame.mixer: print ('Fehler pygame.mixer Modul konnte nicht geladen wer-
den!"'")

def main () :

Initialisieren aller Pygame-Module und

Fenster erstellen (wir bekommen eine Surface, die den Bildschirm représen-
tiert) .

pygame.init ()

screen = pygame.display.set mode ((800, 600))

Titel des Fensters setzen, Mauszeiger nicht verstecken und Tastendriicke wie-
derholt senden.

pygame.display.set caption ("Pygame-Tutorial: Grundlagen")

pygame.mouse.set visible (1)

pygame.key.set repeat (1, 30)

Clock-Objekt erstellen, das wir bendtigen, um die Framerate zu begrenzen.
clock = pygame.time.Clock ()

Die Schleife, und damit unser Spiel, lauft solange running == True.
running = True
while running:
Framerate auf 30 Frames pro Sekunde beschranken.
Pygame wartet, falls das Programm schneller lauft.
clock.tick (30)

screen-Surface mit Schwarz (RGB = 0, 0, 0) fullen.
screen.fi111((0, 0, 0))

Alle aufgelaufenen Events holen und abarbeiten.
for event in pygame.event.get () :
Spiel beenden, wenn wir ein QUIT-Event finden.
if event.type == pygame.QUIT:
running = False

Wir interessieren uns auch fiir "Taste gedriickt"-Events.
if event.type == pygame.KEYDOWN:
Wenn Escape gedriickt wird, posten wir ein QUIT-Event in Pygames
Event-Warteschlange.
if event.key == pygame.K ESCAPE:
pygame.event.post (pygame.event.Event (pygame.QUIT))

Inhalt von screen anzeigen.

pygame.display.flip ()

Uberpriifen, ob dieses Modul als Programm liuft und nicht in einem anderen Modul
importiert wird.

if name == "' main ':
Unsere Main-Funktion aufrufen.
main ()

Q: www.spieleprogrammierer.de

Links:

http://www.spieleprogrammierer.de

www.pygame.org (die offizielle pygame-Seite; offizielle Installations-Dateien fur alle Betriebssysteme)
http://www.Ifd.uci.edu/~gohlke/pythonlibs/#pygame (whl-Dateien fur die Installation Gber pip)

BK_SekI+II_Python_prof.docx -215- (c,p) 2015 - 2026 Isp: dre

http://www.spieleprogrammierer.de/
file:///D:/XK_INFO/BK_S.I_Info/www.pygame.org
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame

8.10.1. Sound mit pygame

Sound-Dateien erzeugen (bzw. aufnehmen) und abspielen
Python bzw. das Modul pygame kann mit folgenden Sound-Dateien arbeiten:

e WAV Wave-Dateien

e MP3

e WMA WindowsMedia

e OGG Ogg Vorbis-Dateien komprimierte Sound-Dateien mit sehr guter Dynamik
und geringen Konvertierungs-Verlusten

Sound erzeugen Uber einen einfachen integrierten Synthesizer

8.10.1.1. Sound-Dateien abspielen

Initialisierung der Soundverarbeitung
import pygame

pygame.init ()

pygame.mixer.init ()

Auswahl der Datei
dateiname="musik.wav"

eigentliches Abspielen -- Variante 1
soundobjektl=pygame.mixer.Sound (dateiname)
soundobjektl.play ()

erneutes Abspielen —- Variante 1
soundobjektl.play ()

eigentliches Abspielen —-- Variante 2
pygame.mixer.music.load (dateiname)
pygame.mixer.music.play ()

erneutes Abspielen —- Variante 2
pygame.mixer.music.load (dateiname)
pygame.mixer.music.play ()

BK_SekI+l_Python_prof.docx -216 - (c,p) 2015 - 2026 Isp: dre

Initialisierung der Soundverarbeitung
import pygame

pygame.init ()

pygame.mixer.init ()

Auswahl der Dateil
dateiname="musik.wav"

eigentliches Abspielen -- Variante 1
soundobjektl=pygame.mixer.Sound (dateiname)
soundobjektl.play ()

erneutes Abspielen —-- Variante 1
soundobjektl.play ()

eigentliches Abspielen —-- Variante 2
pygame.mixer.music.load (dateiname)
pygame.mixer.music.play ()

erneutes Abspielen —-- Variante 2

pygame.mixer.music.load (dateiname)
pygame.mixer.music.play ()

8.10.1.2. Sound-Dateien erzeugen / aufnehmen

8.10.1.3. Musik aus dem Synthesizer

8.10.2. Grafik mit pygame

Haupt-Programm (Starter) — oft main.py genannt:
import pygane, sys, ObjektModul

Definitionen / Konstanten
fensterBreite=800

fensterHoehe=600

Initialisierungen
pygane.init ()

BK_Sekl+ll_Python_prof.docx - 21 7 -

(c,p) 2015 - 2026 Isp: dre

fenster=pygame.display.set mode (fensterBreite, fensterHoehe)
spites=pygame.sprite.Group ()

anzeigeObjekt= .. # aus ObjektModul

sprites.add (anzeigeObjekt)

zeit=pygame.time.Clock ()

Hauptschleife
while True:
for event in pygame.event.get () :
if event.type==pygame.QUIT:
pygame.quit ()
sys.exit ()
ev. noch andere Events / Eingaben abfragen

fenster.fill ((255,255,255))
sprites.aktualisieren ()
sprites.draw (fenster)

pygame.display.flip()
zeit.tick (30)

Ein dazu gehérendes Objekt-Modul kénnte dann so aussehen:
class AktionObjekt (pygame.sprite.Sprite) # erbt von pygame..

Initialisierung

def init (self, fensterBreite, fensterHoehe) :
super (). init ()
self.fensterB=fensterBreite
self.fensterH=fensterHoehe
self.bild=pygame.image.load("???.png")
self.bildFlaeche=self.image.rect ()
self.rect.center=(self.fensterB/2,self.fensterH/2)

Funktionen (Bewegungen, ..)
def aktualisieren(self):
eingabeTaste=pygame.key.get pressed()

Eingabe-Auswertung und Aktionen, Funktionen,

if eingabeTaste[pygame.K RIGHT]:
self.rect.x+=10

if eingabeTaste[pygame.K LEFT]:
self.rect.x-=10

if eingabeTaste[pygame.K UP]:
self.rect.y+=10

if eingabeTaste[pygame.K DOWN] :
self.rect.y-=10

Ojekt einfangen
self.rect.clamp fp (pygame.Rect (0,0,self.fensterB,self.fensterH))

Dieses Modul muss dann natirlich im Haupt-Programm (statt: ObjektModul) importiert wer-
den. Bei mehreren unterschiedlichen Objekten — die andere Funktionen usw. gebrauchen —
sind auch mehrere Objekt-Module notwendig.

BK_SekI+l_Python_prof.docx -218 - (c,p) 2015 - 2026 Isp: dre

8.11. Objekt-orientierte Programmierung

Die Objekt-orientierte Programmierung ist neben der imperativen und der deklarativen ein
weiteres Programmier-Paradigma. Paradigmen beschreiben grundsatzliche Denk- und Ar-
beitsweisen. In der Informatik verstehen wir darunter vor allem den Programmier-Stil. Insge-
samt haben sich schon viele verschiedene Programmier-Paradigmen herauskristallisiert.
Praktisch kann man mit jeder Herangehensweise ein Programm flir ein spezielles Problem
erstellen. Dabei sind Aufwand und die Qualitat des Programm's oft sehr unterschiedlich. Ziel
ist aber immer ein Fehler-freies, effektives, gut lesbares, Redundanz-freies, modulares und
Nebenwirkungs-freies Programm zu entwickeln. Gute Programmierer wahlen immer eine
spezielle Programmiersprache — die meist unterschiedlichen Paradigmen zugehdren — um
ein Problem zu |6sen.

Viele Programmier-Sprachen lassen sich mit mehreren Herangehensweisen benutzen. So
kénnen wir Python imperativ und Objekt-orientiert verwenden.

In der letzten Jahren sind viele vollig neuartige Paradigmen entwickelt worden. Hier seien
einige kurz genannt;

neuartige Programmier-Paradigmen

o Komponenten-orientierte Programmierung
o Agenten-orientierte Programmierung

o Aspekt-orientierte Programmierung

¢ generative Programmierung

e generische Programmierung

o Subjekt-orientierte Programmierung

o Datenstrom-orientierte Programmierung

¢ Graphen-ersetzende Programmierung

¢ konkatenative Programmierung

e multi-paradigmatische Programmierung

[)

Bei der Objekt-orientierten Programmierung beschreibt man komplexe Systeme / Problem-
Stellungen mittels den Namens-gebenden Objekten. Eine Menge von zusammen-
gehdrenden / dhnlichen Objekten werden als eine Klasse betrachtet. In komplexen Syste-
men werden meist mehrere Klassen von Objekten in einem Programm bearbeitet.

Beim Objekt-orientierten Ansatz geht es darum Eigenschaften (Attribute) und Prozeduren
(Methoden), die zu einem Ding (Objekt) dazugehdren, gemeinsam zu verwalten und zu pro-
grammieren.

bei Modulen ist die Zusammenfassung eher inhaltlich gemein z.B. mathematische Funktio-
nen oder Funktionen zur Zeit (Berechnungen, Umrechnungen, ...)

hier nur grobe Verwendung und Nutzung

HelloWorld
mit 2 Texten Begriflung und Verabschiedung

Bevor wir uns in die Objektwelt von Python begeben, wollen wir erst einmal klaren mit was
wir es hier zu tun haben.

Objekte sind in der Realitat irgendwelche konkreten Dinge, wie z.B. der Mitschiler Friedrich,
der Lehrer Muller, der Porsche von Frau Geizig oder die gelbe Blume auf dem Kiichentisch.

BK_SekI+II_Python_prof.docx -219 - (c,p) 2015 - 2026 Isp: dre

In der Informatik werden ebenfalls Objekte der Realitadt modelliert. Wir schaffen uns also ein
informatisches Objekt, um Informationen rund um das Real-Objekt herum elektronisch / in-
formatisch bearbeiten zu kénnen.

Die Modellierung fiir die Objekt-orientierte Programmierung erfolgt heute zumeist tiber soge-
nannte UML-Diagramme (Unified Modeling Language = universelle Modellierungs-Sprache).
Bei modernen Systemen erstellt das UML-Modellierungs-Programm gleich den Quelltext-
Grundrahmen fur die modellierten Klassen.

Praktisch jedes Objekt kann man einer oder mehrerer Gruppen zuordnen. In der Informatik
heilen die Gruppen Klassen. Objekte mit gleichen gemeinsamen Merkmalen werden in einer
Klasse bearbeitet. Im Prinzip kann man zu einer Klasse immer spezielle Mengen / Arten von
Informationen verarbeiten. Gerade deshalb lohnt es sich nicht flr jedes Objekt die einzelnen
Informations-verarbeitenden Vorgange einzeln zu programmieren, sondern es ist effektiver,
sie irgendwie gemeinsam zu erstellen. Eine Moglichkeit so etwas zu machen, haben wir mit
den Funktionen kennengelernt. Sie liefern aufgrund bestimmter Ubergebener Argumente
einen oder mehrere Werte (Ergebnisse) zurick, egal fir welche konkreten Variable oder
Wert dies erfolgt.

Ein Objekt ist etwas, das Eigenschaften (Attribute) hat und bestimmte Dinge kann (= Me-
thoden; Funktionen).

Objekte sind Dinge der Realitat, die miteinander Informationen austauschen (kommunizie-
ren).

Informatische Objekte sind Abbildungen real-existierender Dinge in einem Computer-Modell.

Wenn wir ein Objekt einer Klasse zugeordnet haben oder aus ihr heraus entwickeln, dann
nennen wir das Objekt eine Instanz (der Klasse).

Jedes Objekt hat eine bestimmte Menge von Eigenschaften, wie z.B. einen Namen oder eine
Farbe usw. usf. In Klassen werden die gemeinsamen Arten von Eigenschaften Attribute ge-
nannt. Bei der Notierung hat sich punktierte Schreibung durchgesetzt. So wird der Name von
dem Lehrer-Objekt Miiller Uber die Notierung Miiller.Name erreicht.

Da alle Instanzen z.B. der Lehrer-Objekte — also der Klasse Lehrer — tGber einen Namen ver-
fugen, wird der Klasse das Attribut Name zugeordnet. Geschrieben wird dann Lehrer.Name.
Neben den charakterisierenden Eigenschaften eines Objektes (eben die Attribute) brauchen
wir noch Verfahren z.B. zum Abfragen oder Andern des Lehrer.Name's. Die Verfahren wer-
den Methoden genannt. Praktisch gehort fast immer zu jedem Attribut einer Klasse eine set-
zende und eine abfragende Methode. Die beiden heif3en fast immer SET und GET.

Die Notierung wirde dann Lehrer.Name.set(...) bzw. Lehrer.Name.get(...) lauten. GET und
SET sind also praktisch Funktionen.

BK_SekI+lI_Python_prof.docx -220 - (c,p) 2015 - 2026 Isp: dre

Klassen sind die allgemeinen Beschreibungen / Bildungs-Vorlagen fir (informatische) Ob-
jekte.

Eine Klasse ist ein Bildungsschema flr ahnliche / vergleichbare Objekte.

Attribute sind die individuellen Eigenschaften von Objekten.

Methoden sind die Funktionen / Fahigkeiten / Arbeitsmdglichkeiten / ... von Objekten und /
oder Klassen.

Methoden lassen durch das sogenannte chaining kombinieren / aneinanderhangen.

z.B.:
text = "Alle a's zahlen."
text.lower () .count ("a")

Klassen-Attribute sind gemeinsame oder Ubergreifende Eigenschaften von Objekten einer
Klasse (z.B. die Anzahl der Objekte einer Klasse).

Zum besseren Verstandnis und fir eine genauere Ubersicht wer- Konto
den Objekte und Klassen in verschiedenen Schemata dargestellt. '::_IT:'

[Kontostand

Einzahlan

Inhabear.
Inh @rung

BK_SekI+I|_Python_prof.docx -221 - (c,p) 2015 - 2026 Isp: dre

Wie das Objekt intern funktio-
niert, also wie es z.B. den Namen
abspeichert oder beim Konto den
aktuellen Konto-Stand berechnet
bleibt fur die Umgebung uninte-
ressant und (meist) auch un-
sichtbar.

Konto

Nummer

Inhabar
Konlostand

Konto-Auflésung

Konio-Neuerstellung

Kontostand-Abfrage

Einzahlen

Airsrahlen
Inhaber g

Inhabar. n

Sparbuch-Konto

[Zinssatz

[SB-Konto-Erstellung

[SB-Konto-Aufissung

Finssatz-Andaru |
Kontostands-Barachnu

[Giro-Konto

Haban-Zinsate
Schuld-Zinsatz
Dispo-Grisse
|Dispo-Zinssatz
[GKonto-Erstallung |
| G-Konto-Auflésung]

H-Zinssatz-Abfrage

H-Zinssatz-Anderung
S-Zinssatz-

[@ruin
D-Zinssalz: @

D-Zinssatz eruang
Oberwsisung
Daueraufirag

Junior-Giro-Konto

Minimal-Betrag
Maximal-Transaktion
Bonus-Grenze
Bonus-Zinssatz

[J-G-Konto-Aufiosung |

Max.-Trans. &
Max.-Trans. erung|
Bonusweri-Abfrage
Jonuswert-Andening |
-Zinssatz: 8
B-Zinssatz 2rung

beim Objekt-orientierten Ansatz geht es darum Eigenschaften (Attribute) und Prozeduren
(Methoden), die zu einem Ding (Objekt) gehéren, gemeinsam zu verwalten und zu program-

mieren

bei Modulen ist die Zusammenfassung eher inhaltlich gemein z.B. mathematische Funktio-
nen oder Funktionen zurzeit (Berechnungen, Umrechnungen, ...)

Instanz-Variablen sind die Attribute eines Objektes

Objekt-orientierte Programmierung (OOP)

BK_Sekl+Il_Python_prof.docx

-222 -

(c,p) 2015 - 2026 Isp: dre

Konzepte der OOP

e Abstraktion

o (Daten-)Kapselung
e Feedback

e Persistenz

o Polymorphie

e Vererbung

Die Objekt-orientierte Programmierung ist eine Form der Software-Erstellung auf der Basis
von reelen Grund-Strukturen und deren Umsetzung in informatische Modelle.

Unter Objekt-orientierter Programmierung versteht man das Programmier-Paradigma, das
Daten und Programm-Code in Ubersichtlichen Einheiten — Klassen genannt — kapselt / be-
handelt.

Objekt-orientierte Programmierung ist eine Methode der Modularisierung von Programmen,
bei der in Anlehnung an Gruppen von realen Sachverhalten informatische Modelle erzeugt
und verarbeitet werden.

Unter der Objekt-orientierten Programmierung versteht man das Programmieren von kom-
plexen Software-Systemen, bei dem Objekte und deren Kommunikation untereinander im
Vordergrund steht.

MVvC-
lolt Konzept
Objekt- Objekt- Sk
o s s orientiere
Auftrag orientierte orientiertes
. Program- Programm
Problem Analyse Design mierung
(OOA) (OO0D) (OOP)
BK_SekI+II_Python_prof.docx -223 - (c,p) 2015 - 2026 Isp: dre

GUI-Schicht

—Anzeige; Bedienung)

Tl

Fachkonzept-Schicht

Datenverarbeitung; Fach-Modell;

Tl

Datenhaltungs-Schicht

Design pattern — Entwurfsmuster

Sicht des Nutzers auf die Daten (Daten-Eingabe und

Daten-Speicherung z.B in einer Datenbank

Analyse-Situation

Losung / UML-Diagramm

Gemeinsame Attribute und
Methoden

abstrakte Oberklasse

mehrere Klassen haben eini-
ge gemeinsame Attribute in
der Oberklasse

klassische Vererbungs-
Situation der Verallgemei-
nerung

spezielle Unterklasse

konkrete Oberklasse

zu einer (konkreten) Klasse
kommt eine Unterklasse mit

Daten einer Beziehung
festhalten
Koordination von Objekten

Assoziation liber eine vermittelnde
Klasse

Container / Kollektion und
ihr Inhalt

Aggregation in einer Sammlung

Beschreibung
Registrierung von Ereig-
nissen

Aggregation Beschreibungen

Attribut-Werte weitergeben

Aggregation zur Zuordnung gleicher
Attribut-Werte

nach Q: http://www.oszhdl.be.schule.de/gymnasium/faecher/informatik/ooa-ood/designpattern.htm

BK_Sekl+Il_Python_prof.docx

-224.-

(c,p) 2015 - 2026 Isp: dre

8.11.x. Objekt-orientierte Programmierung mittels Turtle-Grafik

Das Modul turtle ermdglicht auch die Objekt-orientierte Programmierung von zeichnenden
Schildkréten. Der Umgang mit Objekten gehdrt heute fur eigentlich alle Module zum Stan-
dard. Moderne Programme flr grafische Bedienoberflachen — wie Windows, iOS, Android
oder Linux-KDE bzw. Linux-gnome — lassen sich anders gar nicht mehr benutzen. In unseren
ersten Turtle-Ubungen haben wir nur unterschwellig mit einem Turtle-Objekt gearbeitet (>
8.8. Turtle-Graphik — ein Bild sagt mehr als tausend Worte). Es wurde gleich fir uns automa-
tisch angelegt und wir konnten es benutzen, ohne dass wir uns um irgendwelche "Objekte"
einen Kopf machen mussten. Das war zu diesem Zeitpunkt auch sinnvoll, da wir uns einfach
(und unkompliziert) die grafische Seite der Programmierung ansehen wollten.

Nun gehen wir aber einen deutlichen Schritt in Richtung moderne Programmierung.
Ubrigens werden Sie merken, dass die meisten Programme aus dem Internet auch immer Objekt-orientiert pro-
grammiert sind.

Wir wollen zuerst einmal zwei Schildkroten auf dem Bildschirm erzeugen. Diese sollen dann
eigenstandig Bewegungen ausflhren.

Zuerst brauchen wir — wie Ublich — das from turtle import *
Modul turtle, welches wir hier importie-

ren. tl=Turtle ()

Nun erstellen wir uns zwei (unabhangi- e2=Tueele ()

ge) Turtle-Objekte. Ublich ist die Notie-

rung der Klassen-Namen mit einem

GroRbuchstaben beginnend.

Lassen wir das Programm an dieser Stelle laufen, sehen wir allerdings nur eine Schildkrote.
Das liegt daran, dass beim Erstellen die gleichen Vorgaben benutzt wurden. Beide Schildkré-
ten haben die gleiche Farbe und liegen an der gleichen Position. Der Konstruktor — der aus
der Klassen-Vorgabe ein konkretes Objekt erzeugt hat, hatte nur diese Vorgaben.

Um nun zu zeigen, dass wir es mit zwei eigenstandigen Objekten zu tun haben, kdnnen wir
die eine Schildkrote mit unseren typischen Funktionen bewegen.Die Klasse Turtle wird also
zweimal bemuht und die beiden Objekte t1 und t2 zu erstellen.

Allerdings mussen wir jetzt immer sagen, from turtle import *
welche Schildkrote wir bewegen wollen.

In der Objekt-orientierten Programmie- tl=Turtle ()

rung wird dazu Ublicherweise die Punkt- e2=Tueele ()

Notierung genutzt. Wir geben zuerst das

benutzte Objekt an und dann hinter ei- Eoogoito (b, LU0

nem Punkt die auszufiihrende Aktion. oo omEel (200

Zuerst lassen wir die Schildkrote t1 an
eine andere Position wandern.

Danach bewegen wir sie ein Stuck vor-
warts. Die Aktionen, Funktionen usw.
werden Methoden genannt. Es ergibt
sich also die allgemeine Notierungs-
Vorschrift objekt.methode. Man sieht
sehr schon, dass eine Schildkrote am
Koordinaten-Ursprung zuruckbleibt.
Beide Schildkréten haben jetzt unter-
schiedliche Positionen. Diese Objekt-
Eigenschaften werden unabhangig fir
jedes Objekt verwaltet und heillen Attri-
bute. Jede Schildkréte hat zwar die glei-
chen Attribute, aber jeweils unterschied-
liche gespeicherte Attribut-Werte.

Python Turtle Graphics =] |

L 4

BK_SekI+II_Python_prof.docx -225- (c,p) 2015 - 2026 Isp: dre

Die "zuriickgebliebene" Schildkréte wollen
wir nun auch testweise bewegen. Lassen
wir sie z.B. ein Rechteck mit einer unserer
getesteten Funktionen (= 8.8.5. Funktio-
nen) zeichnen.

Zum deutlichen Abgrenzen setzen wir sie
auch noch auf einen anderen Startplatz.
Fraglich ist ja eigentlich schon, welche
Schildkréte bewegt wird. Ist es die letzte
angesprochene?

Die Uberraschung ist perfekt, mit einem
Mal haben wir drei Schildkréten.

Die Schildkrote t2 wurde zwar schrag
nach unten bewegt, aber das Rechteck
ging nicht von dieser Position und nicht
von dieser Schildkrote aus.

Ganz offensichtlich fuktioniert zwar unsere
Rechteck-Funktion, aber nicht Objekt-
bezogen.

Um einen Objekt-Bezug hinzubekommen,
muassen unsere Funktionen speziell defi-
niert werden. Als ersten Parameter Uber-
geben wir einen Objekt-Bezug (rot her-
vorgehoben). Der wird Ublicherweise self
genannt. Mit diesem self-Objekt (blau
hervorgehoben) werden dann alle Aufga-
ben innerhalb der Funktion — besser jetzt
Methode genannt — erledigt.

Nun befriedigt uns das Ergebnis auch
hinsicht des erwarteten Ergebnisses.

Tippt man langsam genug — bzw. wartet man einen kleinen -

from turtle import *

def rechteck(a,b):
for in range(2):
forward (a)
left (90)
forward (b)
left (90)

tl=Turtle ()
t2=Turtle ()

tl.goto (0,100)
tl.forward (200)

t2.goto (-50,-50)
t2.rechteck (70,110)

python Turtle Graphics i =]]

¥

def rechteck (self,a,b):

for in range(2):
self.forward(a)
self.left (90)
self. forward (b)
self.left (90)

gL g Lo

Augenblick nach der Eingabe des Punktes, dann zeigt uns tl.forward(200)

IDLE aufeinmal ein kleines Auswahlwahl-Fensterchen an. Hier

kénnen wir die verfugbaren Methoden

JEFALLT_ANGLEQOFFSET jieal
DEFAULT _AMGLEORIENT
DEFAULT_MODE
START_ORIENTATIOMN

back

backward

begin_fill

begin_poly

bk

circle d|

BK_Sekl+Il_Python_prof.docx

- 226 -

(c,p) 2015 - 2026 Isp: dre

Informatisch betrachtet haben wir es bei der Objekt-orientierten Pro-
grammierung ja immer mit Klassen und Objekten zu tun. Mit dem Mo-
dul turtle bekommen wir eine Klasse Turtle zur Verfugung gestellt, die
alle Attribute (Eigenschaften) und Methoden (Funktionen) enthalt.

Von der Klasse Turtle kdnnen wir uns nun beliebig viele Schildkréten
zum Zeichnen ableiten. Jede Schildkréte hat nun quasi einen Namen,
da beim Ableiten eines Turtle-Objektes immer ein Variablen-Name an-
gegeben werden musste. Uber diesen Namen ist das Objekt im folgen-
den Programm ansprechbar. Der Varibalen- bzw. Objekt-Name steht
immer vor dem Punkt in einer Objekt-Anweisung.

Jedes Objekt bekommt einen Satz eigener Attribute. Das sind z.B. die
x- und y-Position oder auch die Farbe. Schliellich soll sich ja auch gje-
des Objekt frei auf der Zeichenflache bewegen kdnnen.
Die abgeleiteten turtle-Objekte haben Zugriff auf

Klasse
Attribute

Methoden

I

Attribute

Methoden

Klasse

den gesamten Methoden-Satz. Jedes Turtle-Objekt
kann sich unabhangig von den anderen vorwarts

Attribute

oder rickwarts bewegen oder auch drehen. Die fir

Methoden

das jeweilige Objekte gewiinschte Methode wird
immer hinter dem Punkt der Objekt-Anweisung
notiert. /

P

‘ Methoden

- £ L -
Objekt1) Objekt2
Attribute | bﬁri bute

L Methoden |

BK_Sekl+ll_Python_prof.docx - 227 -

(c,p) 2015 - 2026 Isp: dre

8.11.x. Klassen — selbst erstellen

Beispiel Klasse "Konto™:

Wenn man zuerst einmal sehr stark vereinfacht,
dann haben wir nur wenige Aktionen, die wir mit
einem Konto machen wollen / kénnen wollen.

Mit den Pfeilen kennzeichnen wir Aktionen. Startet
ein Pfeil bei einer Klasse, dann wird diese fur die
Aktion gebraucht.

Am Ende des Pfeil's steht die resultierende Klasse.

eine leere Klasse lasst sich mit:

class Konto:
pass

definieren

neu anlegen

Konto

auflisen

im Hauptprogramm muss dann eine Instanz abgeleitet werden:

kontol = Konto()

und kann mit (neuen) Attributen gefuttert werden:

kontol.stand = 1000
kontol.inhaber = "Mustermann"

die aktuelle Instanz lasst sich mit

kontol. dict

anzeigen / weiterverwenden

Je konkreter man wird, umso
mehr Klassen werden in das

Modell einbezogen. neu anlegen

Beim Umsetzen in ein Pro- Konto

grammiersprache macht man
dann oft einen Zwischenschritt
und formuliert in einer Pseu-
dosprache.

auflisen

So konnte das Einzahlen etwa so formuliert werden:

einzahlen

Kontostand
anzeigen

auszahlen

(neuer)Kontostand < einzahlen((aktueller)Kontostand; Betrag)

einzahlen

Kontostand
anzeigen

auszahlen

Betrag

Die Aktion einzahlen bendtigt zum Funktionieren einen (aktuellen) Kontostand und einen
(einzuzahlenden) Betrag. Als Ergebnis erhalten wir einen (neuen) Kontostand zuriick. Die

BK_Sekl+Il_Python_prof.docx - 228 -

(c,p) 2015 - 2026 Isp: dre

Zuweisung (Ergibt-Anweisung) wird hier als gerichtete Handlung durch einen Pfeil gekenn-
zeichnet.
Etwas Python-typischer ist die folgende Formulierung:

(neuer)Kontostand = einzahlen((aktueller)Kontostand; Betrag)
Die PASCALer wirden es so notieren:
(neuer)Kontostand := einzahlen((aktueller)Kontostand; Betrag)

In jedem Fall meinen wir eine Zuweisung des rechten Teils zum linken.

Naturlich benutzen wir dann auch die in der Objekt-Orientierung festgelegten Begriffe Me-
thoden und Attribute. Die Methoden sind eben die vorgestellten Aktionen. Attribute sind die
einzelnen Eigenschaften, welche die Objekte / Instanzen dann besitzen. Zu den Objekten
kommen wir dann spater. Bis jetzt erstellen wir "nur" allgemeine Beschreibungen — eben die
Klassen.

BK_SekI+II_Python_prof.docx -229 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Verbessern Sie das Klassen-Methoden-Diagramm so, dass ein Konfo nur
angelegt werden kann, wenn ein Besilzer vorhanden ist und und eine Ein-
zahlung vorgenommen wird!

2. Erstellen Sie ein Klassen-Diagramm mil zugehorenden Methoden fiiv die
folgenden Klassen:

a) Briefiarken-Sammlung b) Adressbuch ¢) Bibliothek

3. Geben Sie fiir die einzelnen Methoden an, ob sie etwas bendtigen (z.B. ein-
zahlen(Belrag)), elwas zurviickliefern (z.B. Konlostand = anzeigenKonfo-
stand()) oder ev. auch beides!

am Besten vor der praktischen Umsetzung in eine Programmiersprache jeweils das Klas-
sen-Diagramme erstellen bzw. ein vorhandenes nutzen)
gute Vorplanung spart Arbeit und schiitzt zumindestens teilweise vor bésen Uberraschungen

geeignete Form UML-Diagramme

Lebewesen
. e . . Attribute
UML steht dabei fir Unified Modeling Language
(dt: einheitliche Modellierungs-Sprache). Methoden
stellen standardisiert Klassen mit ihren Attributen
und Methoden sowie die Beziehungen zu anderen it
Klassen dar
Tier
zuséatzliche Attribute
zusétzliche Methoden
(Ober-)Klasse ist
Attribute
NViethaden Saugetier
% /\ zusaizliche Attribute
=
g zuséatzliche Methoden
K ist
S
5 /
S Unter-KI ist
L: nter: asse
= zusétzliche Attribute Hund Katze
|_zusétzliche Methoden| zusétzliche Attribute zusétzliche Attribute
zusatzliche Methoden zuséatzliche Methoden

BK_SekI+lI_Python_prof.docx -230 - (c,p) 2015 - 2026 Isp: dre

nebenstehend flr eine minimalistische

Konto-Klasse Konto Klassenname
- Kontostand Attribute

die ublichen Alternativen sind die pri- +C neu Methoden

vate oder globale Nutzung / Freigabe +? zeigeKontostand(Kontostand)

der Variable +! einzahlen(Betrag)

private (interne) Variablen erhalten ein + auszahlen(Betrag)

Minus-Zeichen (-) it (i

mit einem Plus-Zeichen (+) kennzeich-

net man globale (public) Variablen

C steht fur Constructor (Konstrukteur) und ist die Methode, mit der neue Objekte (Instanzen)
erzeugt werden. In Python heif3t diese init().

Mit D wird der Destructor (Zerstorer) gekennzeichnet. Mit ihm werden vorhandene Objekte /
Instanzen geldscht (sauber entfernt).

Python verwendet nur selten Destructoren. Dies ist nur notwendig, wenn Attribut-Werte ge-
rettet werden mussen. Das kdnnte z.B. ein Rest-Kontostand sein, der notwendigerweise
beim Aufldsen des Konto ausgezahlt oder einem anderen Konto zugeordnet werden muss.
Die Benennung ist freigestellt, meist nutz man del(). In anderen Sprachen sind Destruktoren
zwingend vorgeschrieben, um eine sauberes Objekt-Handling zu realisieren.

Steht vor der Methode ein Fragezeichen (?), dann gibt diese einen oder mehrere Werte zu-
rick. Die Methode hat (an-)fragenden Charakter.

Mit einem Ausrufe-Zeichen (!) werden solche Methoden gekennzeichnet, die schreibend auf
die (lokalen) Attribute wirken. Die Methode ist anweisend / befehlend.

verbesserte bzw. erweiterte Konto- Konto Klassenname
Klasse + Kontenzahler Attribute
- Kontostand
Verwendung sehr elementarer Metho- + Dispo
den - Inhaber
- Berechtige
. . S +C neu Methoden
zB. V\.”rd elnzahI'en() an. das Elnbrln- +? zeigeKontostand(Kontostand)
gen eines Betrag's reduziert. Wlll man + zeigelnhaber(Inhaber)
den Kontostand vorher oder hinterher +! anderelnhaber(neuerinhaber)
wissen, dann muss man zeigeKonto- +? berechtigt(Akteur)
stand() benutzen. +! einzahlen(Betrag)
+! auszahlen(Betrag)
+D I6schen

Aufoaben:

1. Erstellen Sie ein UMl.-Klassen-Diagramm fiir die Klasse "Adressbuch’!

2. Uberlegen Sie sich ein Klassen-iMethoden- und ein UNM1-Diagramm fiir eine
Klasse "DVD-Ausleihe"!

fiir die gehobene Anspruchsebene:

3. Erstellen Sie Klassen-iMethoden- und UrMl.-Diagramm fiir einen Shreaming-
Dienst mit Einzel-Abrechnung (Kein Abo!)!

BK_SekI+II_Python_prof.docx -231- (c,p) 2015 - 2026 Isp: dre

Klasse-Objekt-Beziehung

Aus einer Klasse konnen wir Objekte generieren. Die Informatiker spre-
chen auch von Instanzen (d(ies)er Klasse). Dies sind die ganz konkreten
Dinge / Sachverhalte, die wir verarbeiten wollen. Also z.B. die Kuh "Else",
der Ziegenhirt "Peter" oder das Auto "Speedi 3000". Sie werden nach dem
Muster erstellt, was in der Klasse vordefiniert ist.

Wenn man einzelne Objekte (vielleicht als Beispiel) in ein UML-Diagramm
bringen will, dann werden die Rechte dafur mit abgerundeten Ecken ge-
zeichnet. Die Beziehung wird als einfacher Pfeil mit gestrichelter Linie
dargestellt.

Die Attribute werden dann meist auch mit konkreten Werten gefiihrt. Die
Methoden werden ohne Veranderungen von der Klasse Gibernommen.

"ist"-Beziehung (Vererbung)

Bei den "ist"-Beziehungen handelt es sich um klassische Uber- und Unter-
Ordnungen von Klasse als Hierrarchie. Die untergeordnete Klasse ist eine
Verfeinerung der oberen Klasse. Sie erbt von der Ubergeordneten Klasse
viele Attribute und Methoden, kann diese aber in sich Uberschreiben oder
erweitern.

In der Informatik gehoren alle Klassen automatisch zur Klasse "Objekt".
Sie erben von dieser Klasse bestimmte minimale Attribute und Methoden,
die minimal notwendig sind. Das kdnnten z.B. eine Speicher-Adresse und
die minimalste init()-Methode sein. Diese Methode wirde dann vielleicht
nur eine Speicher-Adresse festlegen.

Die Klasse "Objekt" darf nicht mit einem konkreten Objekt — besser einer
Instanz — verwechselt werden. Die Klasse "Objekt" ist die allgemeine (mi-
nimalste) Ableitungs-Vorschrift flr jedes spatere Objekt (- jede Instanz).

"besteht aus"-Beziehung (Aggregation)

Hier beinhaltet eine Klasse eine oder mehrere andere Klassen, die fir sich
eigenstandig sind und keine Verfeinerung darstellen. Die Instanzen der
Unterklasse kénnen auch weiter existieren, wenn das ubergeordnete Ob-
jekt geléscht wird. Diese Objekte missen nicht zwangslaufig mit einem
Ubergeordneten Objekt gemeinsam geléscht werden.

Karteikarte ist eine Klasse mit eigenstandigen Objekten.

Man kann sich spater beliebig viele einzelne Karteikarten als Objekte vor-
stellen, ohne dass diese eine Kartei bilden.

Eine Kartei ist nur dann vorhanden, wenn mindestens ein Karteikarten-
Objekt vorhanden ist.

Ein anderes klassisches Beispiel ist die Klasse "Auto", die wiederum aus
vielen Bauteil-Klassen besteht. Sie kdnnte z.B. die Klassen "Motor", "Rad"
und "Sitz" enthalten. Jede der spater erstellten Instanzen — z.B. von "Mo-
tor" — kann unabhangig von einem konkreten "Auto" fir sich existieren und
auch fir ganz andere Objekte (vielleicht ein Motor-Boot) verwendet wer-
den.

In einigen UML-Diagrammen findet man auch die Umschreibung "ge-
hort_zu". Hier wird dann die "Pfeil"-Richtung getauscht.

Klasse
Attribute

Methoden

)

Attribute

Methoden

Lebewesen

zusatzliche Attribute

zusétzliche Methoden

ist

Tier

zusatzliche Attribute

zusatzliche Methoden

Kartei

Attribute

Methoden

1

besteht_aus

n

Karteikarte

Adttribute

Methoden

Kartei

Attribute

Methoden

Karteikarte

Attribute

Methoden

-232 -

BK_Sekl+Il_Python_prof.docx

(c,p) 2015 - 2026 Isp: dre

Gebiude
Attribute

"hat"-Beziehung (Komposition)

Methoden

Bei einer "hat"-Beziehung beinhaltet eine Klasse ebenfalls eine oder meh-
rere andere Klasse. Nur hier existieren diese Klassen nur im Zusammen-
hang mit der Oberklasse.

Ein klassisches Beispiel ist die Klasse "Raum" zur Klasse "Gebaude".
Raume existieren nur im Zusammenhang mit dem Gebaude.

Werden spater Instanzen von "Gebaude" geldscht, dann existieren die
darin angelegten Raume (Instanzen der Klasse "Raum") nicht mehr. Sie
werden mit geldscht. Eine Existenz ohne ein Gebaude ist nicht denkbar.

Im Zusammenhang von "hat"-Beziehungen spricht man bei der Ubergerdneten Klasse auch
gerne von einer Besitzer-Klasse. Wenn der Besitzer nicht mehr existiert, dann existieren die
zugeordnten Instanzen anderer Klassen auch nicht mehr.

hat

Raum
Attribute

Methoden

"kennt"-Beziehung

Lehrer

Mit dieser Beziehung werden kommunikative Bezie-
hungen charakterisiert. Zwischen den Objekten der
Klassen sollen dann spater Nachrichten ausgetauscht
werden. "Kennt"-Beziehungen werden meist zwischen
Klassen der gleichen oder benachbarten (direkt tber-

zusétzliche Attribute

zusatzliche Methoden

kennt

Schiiler

oder unter-geordneten) Klasse(n) aufgebaut.
Im nebenstehenden Beispiel sind "Schiler" und "Leh-
rer" Klassen auf der gleichen Hierrarchie-Ebene (nicht

zusétzliche Attribute

Schulleiter

zusatzliche Attribute

kennt

zusatzliche Methoden

zusétzliche Methoden

abhangig von der Darstellung!). Spater missen Lehrer
und Schiler dann zu Schul-Klassen zusammengefasst
werden, was dann uber die "kennt"-Beziehung einfach
realisierbar ist.

ein etwas grofReres UML-Klassen-

Diagramm kdénnte dann nebenstehen- Paket |
den Aufbau haben Besitzer(-Objekt) (Ober-)Klasse
Attribute Attribute
. hat
Methoden Methoden
ist Ist
KlasseA KlasseB
Attribute kennt 2= Attribute
Methoden Methoden
BK_SekI+II_Python_prof.docx -233 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen Sie ein realistisches Klassen-Diagramm (UMI1.) aus den folgenden
Klassen und geben Sie auch immer ein passendes Objekt an! Im Klassen-
Symbol nennen Sie immer mindesltens ein Altvibut und eine Methode (aufer
init() bzw. del())!

(LKW, Fahrrad, Fahrzeug, molorisierfesFahrzeug, PKW, Mercedes, nichl-
molorisiertesFahrzeug)

2. Erskellen Sie ein Klassen-Diagramm fiir "Fahrvad"! Es reichen die wesenlli-
chen Aftribute und Methoden.

3. Erstellen Sie ein realistisches Klassen-Diagramm (UML) aus den folgenden
Klassen und geben Sie auch immer cin passendes Objekt an! Im Klassen-
Symbol nennen Sie immer mindestens ein Allvibul und cine Methode (zu-
salzlich zu init() und del())!

(Schiiler, Schule, Klassenrvaum, Lehrer, Gebaude, Tisch, Schulleiler,
Hausmeister, Invenlar)

fiir die gehobene Anspruchsebene:

4. Ein Bauer will seine Wirlschaft vollstindig digitalisieren. Erstellen Sie ein
UMI1.-Diagramm. dass die von IThnen als digilal zu verwallenden Klassen mil
wichtigen (den wichligsten!) Altvibulen und Methoden vorskelll!

BK_SekI+l_Python_prof.docx -234 - (c,p) 2015 - 2026 Isp: dre

Ubersicht / Legende zu UML-(Klassen-)Diagrammen:

A

Assoziation

Beziehungsname

ungenau
nur in eine Richtung
navigierbar

in beide Richtungen
navigierbar

nicht von B nach A
navigierbar

Hilfslinie

Assoziations-Name

>

Aggregation (A gehort_zu B)
Teile-Ganzes-Beziehung

Komposition (B besteht_aus A; B bendtigt A)
"hat"-Beziehung

Vererbung (A erbt_von B)

"ist"-Beziehung

Realisierung (A kann B)

"kann”-Beziehung

"kennt"-Beziehung
Instanz-Beziehung (A ist_Instanz_von B; Rolle)

Objekt / Klasse [...

N

Multiplizitat {optional)

1
a
a.
n
*

genau eins
genau a

.b im Bereich von a bis b

m beliebig viele
beliebig viele

BK_Sekl+ll_Python_prof.docx

-235 -

(c,p) 2015 - 2026 Isp: dre

8.11.x.1. Erstellen einer Klasse

Erzeugen einer Instanz / eines Objektes im Programm dann mit

instanzname = klassenname(initialattribute)

mit pass wird fur die Phase der Programm-Entwicklung temporar die Notwendigkeit von in-
haltlichen Quellcode ausgeschaltet
das gilt fir Klassen und Methoden

Normalerweise sind in Python die Attribute und Methoden einer Klasse von auf3en sichtbar
bzw. nutzbar. Zugriff immer Gber den Namen der Instanz und dem Punkt-getrennten ent-
sprechenden Attribut bzw. dem Methodennamen.

Das ist aber in der Objekt-orientierten Programmierung nicht gewollt. Die Attribute sollen
immer nur Uber geeignete Methoden verandert oder gelesen werden. Die Methoden werden
meist als get(Attributname() und set(Attributname) definiert.

Wir sprechen auch vom get-set-Paar oder bei vielen von den Gettern und Settern.

Unsichtbare Klassen-Bestandteile werden mit private deklariert.

Gibt man direkt vor dem Namen einen Unterstrich an, dann ist der Klassenbestandteil als
protected gekennzeichnet. Dieses gilt nur fir Programmierer (als Konvention / Empfehlung),
dem Interpreter ist dies egal. Fur ihn sind die Attribute und Methoden immer (Uber die In-
stanz) sichtbar

Die Quellcode-Texte fir ein spezielles Beispiel — hier eine Konto-Klasse sind grin umrahmt.

Konto-Beispiel (Schritt 1)

class Konto:
pass

Die allgemeinen Quellcode's sind ohne diesen Rahmen und missen immer fur ein konkretes
Beispiel angepasst werden.

class Klassenname () :
pass

BK_SekI+l_Python_prof.docx -236 - (c,p) 2015 - 2026 Isp: dre

8.11.x.1.1. der Konstruktor

class Klassenname () :
def init (self):
pass

hat eine Klasse keinen Konstruktor, dann wird der Konstruktor der Oberklasse aufgerufen
man kann aber auch den Konstruktor der Oberklasse explizit aufrufen und ausgewahlte Ei-
genschaften etc. verandern / iberschreiben

class Klassenname (Objekt) :
def init (self):
Objekt. init (self)

der Aufruf — und damit das Erzeugen eines (konkreten) Objektes erfolgt dann im Programm
mit:

objektname = Klassenname()

Wenn man sich schon auf der Ebene des Konstruktors Uber die unbedingt zu definierenden
(initialen) Variablen und ev. auch Werte schon klar ist, dann kann man diese gleich mit in die
Vordefinition des Konstruktors einflie3en lassen.

Grundlage daftir kdnnte z.B. ein gut ausgearbeitetes UML-Diagramm sein.

Konto-Beispiel (Schritt 2)

class Konto:
def init (self, inhaber,betrag,autorisiert=["Banker"]):
pass

Diese Vordefinition — immer gut am pass zu erkennen, muss dann spater unbedingt mit Le-
ben — sprich: Programm-Text — ausgefillt werden.
Dazu muissen wir aber erst mal klaren, wo diese Werte hin gehoren.

BK_SekI+II_Python_prof.docx -237 - (c,p) 2015 - 2026 Isp: dre

8.11.x.2. Attribute einer Klasse

es wird zwischen Klassen-Attributen und Instanz-Attributen unterschieden
Klassen-Attribute werden fur eine Klasse nur einmal angelegt und gelten fur die Klasse all-
gemein bzw. fur alle Instanzen gemeinsam

eine typische Verwendung ist das Zahlen der Instanzen, die gerade von einer Klasse erzeugt
/ gehandelt werden

Klassenattribute folgen direkt im class-Block einschliel3lich der Zuweisung eines Initial-
Wertes

Instanz-Attribute sind nur innerhalb der Instanz guiltig,
ein Attribut der einen Instanz eines Klassenobjektes ist unabhangig vom gleichnamigen At-
tribut einer anderen Instanz der selben Klasse

public-Attribute sind von auf3en Uber die Punkt-Schreibung benutzbar

private-Attribute sind nur innerhalb einer Instanz benutzbar / sichtbar; ein Zugriff von Aufien
muss Uber darauf abgestimmte Methoden (z.B. GET- und SET-Funktionen) realisiert werden
in Python wird ein Attribut private, wenn man vor den Namen zwei Unterstriche schreibt
Attribute mit nur einem Unterstrich sind protected, sie sind praktisch public, aber Program-
mierer sollten nicht auf diese Zugreifen; die protected-Klassifizierung ist also nur eine Emp-
fehlung, kein echtes Statement

ev. als Beispiel dummer und schlauer Melder aus "Python fiir Kids" S. 387 ff.

Schreibung Status- Bedeutung / Eigenschaften

der Variable Bezeichnung

name public von aufden sichtbar (lesbar und schreibar)
innerhalb der Klasse lesbar und schreibbar

_name protected von aulden sicht (lesbar und schreibar), ABER

Zugriff durch Programmierer der Klasse nicht gewollt
innerhalb der Klasse lesbar und schreibbar

__name private von aufen nicht sichtbar (nicht lesbar und nicht schreib-
bar)
innerhalb der Klasse lesbar und schreibbar

ev. Objekt-Hierarchie BlackBox mit verschiedenen inneren (nach aufen) unsichtbaren Funk-
tionen / Reaktionen
ahnlich Skalierungs-Objekt / -Klasse aus "Raspberry Pi programmieren” S.85 ff.

Konto-Beispiel (Schritt 2)

class Konto:
kontenzaehler=0

def init (self,inhaber,betrag,autorisiert=["Banker"]) :
self. inhaber=inhaber
self. kontostand=betrag
self. autorisiert=autorisiert
Konto.kontenzaehler+=1
self. kontonummer=Konto.kontenzaehler

BK_SekI+l_Python_prof.docx -238 - (c,p) 2015 - 2026 Isp: dre

8.11.x.3. Methoden einer Klasse

Methoden sind nichts anderes als Funktionen innerhalb einer Klasse. Sie sind auch nur in-
nerhalb der Klasse sichtbar und nutzbar.

Will man eine Klassen-Methode nutzen, dann geht das immer nur UGber die erzeugte Instanz
(das erstellte Objekt).

Ein Zugriff von auflen kann verhindert werden, wenn die Methode als privat deklariert wur-
de. Eine private Methode kann nur innerhalb einer Klasse benutzt werden.

Alle Methoden mussen mindestens und damit als ersten Parameter eine Referenz auf sich
selbst als aufrufendes Objekt enthalten.

def methode(self{, parameter})

def methode(self{, parameter=wert})

Konto-Beispiel (Schritt 3)

class Konto:
kontenzaehler=0
kontennummer=0

def init (self, inhaber,betrag, autorisiert=["Banker"]) :
self. inhaber=inhaber
self. kontostand=betrag
self. autorisiert=autorisiert+inhaber
Konto.kontenzaehler+=1
Konto.kontennummer+=1
self. kontonummer=Konto.kontennummer

def abfragen (self):
pass

def einzahlen (self) :
pass

def auszahlen (self) :
pass

Nun werden die einzelnen Methoden durch Quelltext untersetzt. Ev. sollten auch noch durch
FluR- oder UML-Diagramme die notwendigen Parameter geklart werden. Einmal program-
mierte Funktionen sollten dann spater auf der Ebene der Parameter-Listen nicht mehr gean-
dert werden. Bei kleinen Projekten Uberschaut man die verschiedenen Stellen mit den zu
andernden Parameter-Listen in Methoden-Aufrufen noch, aber bei groen Projekten wird
schnell mal eins Ubersehen.

def abfragen(self):
print ("===> Kontostand: ",self. kontostand

Hier ist quasi auch eine wesentliche Entscheidung Uber das Ausgabe-Prinzip gefallen. Wir
geben in diesem Beispiel immer gleich in den Methoden aus. Praktisch kann das auch im

BK_SekI+II_Python_prof.docx -239 - (c,p) 2015 - 2026 Isp: dre

Haupt-Programm erledigt werden. Dann hatte die abfragen()-Methode z.B. so aussehen
kénnen:

def abfragen (self) :
return self. kontostand

Konto-Beispiel (Schritt 4)

def einzahlen (self,betragqg):
if betrag > 0:
self. kontostandt+=betrag
print ("===> Kontostand: ",self. kontostand)
else
print ("===> Fehler! (Kein glltiger Betrag!)")

Konsequenterweise sollten wir hier auch gleich unsere abfragen-Methode benutzen, statt die
Ausgabe hier wieder zu organisieren.

def einzahlen (self,betrag):
if betrag > 0:
self. kontostandt+=betrag
self.abfragen
else
print ("===> Fehler! (Kein glltiger Betrag!)")

def auszahlen (self,betrag,initiator):
if initiator in self. autorisiert:
if betrag <= self. kontostand:
self. kontostand-=betrag

print ("===> AUSZAHLUNG: ",betraq)
else

print ("===> Fehler! (Kein giltiger Betrag!)")
print ("===> Kontostand: ",self. kontostand)

BK_SekI+l_Python_prof.docx - 240 - (c,p) 2015 - 2026 Isp: dre

8.11.x.4. Speicher-Bereinigung

8.11.x.4.1. der Destruktor

def __del_ ()

in den Rumpf werden die Anweisungen geschrieben, die vor / beim Léschen des Objektes
(der Instanz / Referenz) erledigt werden sollen / missen

del(instanz)

Konto-Beispiel (Schritt 5)

def del (self):
if betrag > 0:
self.auszahlen (self)
else
print ("===> Fehler! (Kontenausgleich notwendig!)")

BK_SekI+II_Python_prof.docx -241 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Verbessern Sie das Konlen-Beispiel so, dass mehrfache (gleiche) Fehler-

Meldungen in cine eigene Methode ausgelagert werden!

Erweitern Sie das Konlto-Programm so, dass alle Fehler-iMeldungen iiber

eine Methode ausgegeben werden!

3. Uberlegen Sie sich, wie man alle Fehler-iMeldungen in ciner (neuen) Me-

thode unterbringen konnte! Die Methode soll immer den gerade passenden

Fehler ausgeben!

Regionaliseren Sie das Programm fiir den englischen Sprachraum!

Erstellen Sie eine Klasse "Aufo” unter Beachtung der folgenden Vorgaben

und geforderten Methoden! Teskten Sie alle Methoden in einem kleinen Test-

Programm! Nach einem erfolgreichen Test konnen einzelne Methoden aus

dem Test-Programm auskommentiert werden — miissen aber wieder nulzbar

gemachl werden konnen!

Ein Auto hat die Mevkmale Kennzeichen, Verbrauch (gemeint pro 100 km),

TachoStand, TankMaxVol (maximales Tank-Volumen) sowie TankAkiVol

(aktuelles Tank-Volumen).

Beim Erstellen cines Aulo's gehen wir davon aus, dass es ungefahren und

unbelankt ist.

Die Klassen-Definition soll alle (sinnvollen) Geter und Sefer (Gib- und Selz-

Methoden) enthalten.

Als spezielle Moglichkeiten sollen einem spateren Hauplprogramm die fol-

genden Funklionen zur Verfiigung skehen: StatusAnzeige() (als Nulzer-

freundliche Anzeige aller Alvibule in einer zweizeiligen Ausgabe), lan-

ken(olumen) und fahren(kilomefer).

Fiir die Maximal-Bewertung werden auch Fehler-Meldungen in den Metho-

den erwartel, z.B. wenn versucht wird, zuviel Treibstoff einzufiillen usw.

usf.! Eine erste Klassen-Definition kann auch noch mit z.B. negaliven Tank-

Volumen usw. arbeiten! Das Haupt-Programm liefert kontvollierfe Werte fiiv

FEingaben / Parameler!

Extra-Bewertung: die Tanken-iMethode so gestallen, dass nicht gebrauchler

Treibsloff an das Hauplprogramm zuriickgegeben wird! Die Anzeige soll

tiber das Haupt- bzw. Test-Programm erfolgen!

fiir die gehobene Anspruchsebene:

6. Regionaliseren Sie Ihr Konlo-Programm fiir den franzdsischen oder spani-
schen oder ... Sprachraum (mit lateinischen Buchstaben)! (Lassen Sie sich

ev. von einem anderen Kurskeilnehmer die Texte und / oder Stichworle) ge-
ben!

2

.

W N

.

BK_SekI+l_Python_prof.docx -242 - (c,p) 2015 - 2026 Isp: dre

Projekt-Aufoaben:

1. Erstellen Sie ecin Menii-gesteuertes Programm nach unlen aufgezeiglten Bei-
spiel mit einer cigenen / geanderten Klassen-Konshruklion!

2. Gebraucht wird eine praklisch nulzbare Klassen-Definition (einschlieflich
Alvibuten, Methoden elc.) fiir ein Advessbuch! Im Adressbuch sollen Name,
Vorname, Geburisdatum, eMail und Telefonnummer gespeichert werden.
Weilerhin soll die Klasse die Anzahl der Konltakle ausgeben konnen und ei-
ne Anzeige machen, wenn de Konlakt heute Geburistag hat!

3. Erstellen Sie cin kleines Teslprogramm, um die Klasse mil ausgedachlen
Daten auszuprobieren!

fiir die gehobene Anspruchsebene:

4. Erweiltern Sie das Adressbuch um eine Vorwarnung, wenn jemand morgen
bzw. iibermorgen Geburislag hat!

5. Erstellen Sie ein Menii-gesteuertes Haupl-Programm fiiv die Adrvessbuch-
Klasse!

BK_SekI+II_Python_prof.docx -243 - (c,p) 2015 - 2026 Isp: dre

bank.py

class Bankkonto:
"""Einfache Bankkonto-Klasse"""

def init (self,startbetrag):

"""Konstruktor: erzeugt Bankkonto

elf.kontostand = startbetrag

def einzahlung(self, betrag):

self.kontostand = self.kontostand + betrag

def auszahlung(self, betragqg):

self.kontostand = self.kontostand - betrag

def anzeigen (self):

print self.kontostand

ausprobieren

kontol
kontol
kontol
kontol
kontol
kontol

= Bankkonto (100)
.anzeigen ()
.einzahlung(200)
.anzeigen ()
.auszahlung (125)
.anzeigen ()

print kontol. doc

Q: http://www.wspiegel.de/pykurs/kurs_index.htm

Beispiel 1

nmnn

direkter Dialog zwischen zwei Instanzen unterschiedlicher Klassen iiber deren Methoden
Nur client ist hier wirklich aktiv, server reagiert nur
Die melde-funktion von server dient hier nur zur Kontrolle

nmnn

class server:
def init _ (self, wert=0):
self.data = wert
def neu(self, wert):
self.data = wert
def melde(self):
return self.data

nmnn

server macht hier das Einfachste vom Einfachen
er merkt sich nur eine Zahl

nmnn

class client:
def init_ (self, wert):
self.wert = wert
def setze(self):
s.neu(self.wert)

BK_Sekl+Il_Python_prof.docx - 244 -

(c,p) 2015 - 2026 Isp: dre

def frage(self):
print s.melde()

s = server()
print s.melde() # server in Grundstellung (wert = default)
cl =client(123)

nun sind zwei Instanzen geschaffen, die miteinander reden konnen

cl.setze()
jetzt hat c1 wert von server neu gesetzt

s.melde()

Beispiel 2

nmn

direkter Dialog zwischen Instanzen unterschiedlicher Klassen i{iber deren Methoden
Auch hier ist nur client wirklich aktiv, server reagiert nur
Die melde-funktion von server dient nur zur Kontrolle

nmn

class server:
def init (self):
self.data =[]
def hinzu(self, wert):
self.data.append(wert)
def melde(self):
return self.data

nmn

server macht hier schon mehr, als im Beispiel 1, er merkt sich die Zahlenwerte aller ange-
schlossenen client

aus Vereinfachungsgriinden konnen diese Zahlenwerte durch client nach der Erstmeldung
nicht nochmal gedndert werden

nmn

class client:
def init (self, wert):
self.wert = wert
s.hinzu(wert)
def melde(self):
return self.wert

s = server()
print "Wertesammlung in server vorher: ", s.melde() # server - Liste noch leer

clients = []
foriin (6, 5, 100, 19, 27):
¢ = client(i)

BK_SekI+II_Python_prof.docx -245 - (c,p) 2015 - 2026 Isp: dre

clients.append(c)

print "Wertesammlung in server nachher:", s.melde()

nmn

wo sind eigentlich die 5 clients geblieben, die wir in der for - Schleife erzeugt haben? Sie
liegen als Feld von Adresszeigern in der Liste clients und kdnnten dort jederzeit weiterver-
wendet werden. Das ginge dann so:

nmn

for i in range(0, 5):
print str(i+1) + ". client hat den Wert:", clients[i].melde()

Und eben dies konnte doch auch die server - Klasse verwalten!

nmn

Q: http://www.way2python.de/

Beispiel 3

nmn

direkter Dialog zwischen Instanzen unterschiedlicher Klassen liber deren Methoden

Hier werden sowohl client als auch server aktiv

die clients hinterlegen im Server ihre Adresse und werden durch server auf ihren Zustand
befragt.

nmnn

class server:

def init_ (self):
self.data =[]

def hinzu(self, adr):
self.data.append(adr)

def abfrage(self):
werte =[]
for 1 in self.data:

werte.append(i.melde())

return werte

nmnn

server macht hier noch mehr, als im Beispiel 2, er merkt sich die Adressen aller angeschlos-
senen client

Zur Abfrage holt er sich die aktuellen Werte der clients, wenn es soweit ist.

Hier konnen die Zahlenwerte der clients nach der Erstmeldung jederzeit gedndert werden

nmnn

class client:
def init (self, wert):
self.wert = wert
s.hinzu(self)
jetzt ist es passiert, hier geht die client-adr in die Liste und nicht der Wert
def melde(self):

BK_SekI+lI_Python_prof.docx - 246 - (c,p) 2015 - 2026 Isp: dre

return self.wert
def setzneu(self, wert):
self.wert = wert

s = server()
print "Wertesammlung in server vorher: ", s.abfrage() # server - Liste noch leer

clients =[]

foriin (6, 5, 100, 19, 27):
¢ = client(i)
clients.append(c)

print "Wertesammlung in server nachher:", s.abfrage()

clients[3].setzneu(4000))
print "Wertesammlung in server, nach einer Anderung:", s.abfrage()

Q: http://www.way2python.de/

Dateiname: konto.py
Modul mit Implementierung der Klasse Konto. Sie wird von
der Klasse Geld abgeleitet und modelliert ein Bankkonto

Objektorientierte Programmierung mit Python

Kap. 10

Michael Weigend 20.9.2009

import time

from geld2 import Geld

class Konto (Geld) :

""" Spezialisierung der Klasse Geld zur Verwaltung eines Kontos

Offentliche Attribute:
geerbt: waehrung, betrag, wechselkurs

Offentliche Methoden und Uberladungen:
geerbt: add (), _ cmp (), getEuro()
ueberschrieben: str ()
Erweiterungen:
einzahlen (), auszahlen (), druckeKontoauszug /()

def init (self, waehrung, inhaber):
Geld. init_ (self,waehrung, O0) #1
self. inhaber = inhaber #2
self. kontoauszug = [str(self)] #3
def einzahlen(self,waehrung, betrag): #4
einzahlung = Geld(waehrung,betrag)
self.betrag =(selfteinzahlung) .betrag #5
eintrag = time.asctime()+ ' ' + str(einzahlung)+ \
' neuer Kontostand: ' + self.waehrung + \
format (self.betrag, '.2f')
self. kontoauszug += [eintrag] #6

def auszahlen(self, waehrung, betrag):
self.einzahlen (waehrung, -betrag)

def druckeKontoauszug(self) : #7
for 1 in self. kontoauszug:
print (i)

BK_SekI+II_Python_prof.docx - 247 - (c,p) 2015 - 2026 Isp: dre

self. kontoauszug = [str(self)]

def str (self):
return 'Konto von ' + self. inhaber + \
':\nKontostand am ' + \

time.asctime()+ ': '+ self.waehrung +

format (self.betrag, '.2f'")

#8

v +\

Dateiname: geld2.py

Klasse Geld mit Uberladung der Operatoren +, <,
Objektorientierte Programmierung mit Python
Kap. 10

Michael Weigend 20.9.2009

= =

class Geld(object) :
wechselkurs={'USD':
'GBP':
'EUR':
'JPY':

.84998,
.39480,
.0,
.007168}

O P O

def berechneEuro(self):

#1

return self.betrag*self.wechselkurs[self.waehrung]

def init (self, waehrung, betrag):
self.waehrung=waehrung
self.betrag=float (betrag)

def add (self, geld):

a = self. berechneEuro ()
b = geld. berechneEuro ()

faktor=1.0/self.wechselkurs[self.waehrung]

summe = Geld (self.waehrung, (a+b)*faktor
return summe

def 1t (self, other):
a = self.getEuro ()
b = other.getEuro ()

return a < b

def le (self, other):
a = self.getEuro ()
b = other.getEuro ()

return a <= b

def eq (self, other):
a = self.getEuro ()
b = other.getEuro ()

return a ==

def str (self):

)

#2

return self.waehrung + ' ' + format(self.betrag, '.2f'")

BK_Sekl+Il_Python_prof.docx - 248 -

(c,p) 2015 - 2026 Isp: dre

8.11.x.6. eine "Auto'-Klasse

class Auto:

Konstruktor
def init (self,):
self.Name=name
self.Kennzeichen=kennzeichen
self.TankVolumen=tankvolumen
self.Verbrauch=

8.11.x.6.1. Erweiterung der "Auto"-Klasse um LKW's

BK_SekI+II_Python_prof.docx - 249 - (c,p) 2015 - 2026 Isp: dre

8.11.x.7. eine ""Personen'’’-Klasse

Fir eine Personen-Datenbank wird eine Klasse "Person" gebraucht. Diese soll dann spater
in einer Verwaltung fur Familien-Betreuung genutzt werden.

Wir gehen dieses Mal in etwas groferen Schritten vor und erlautern die einzelnen Schritte
nicht mehr zu ausfuhrlich.

Zuerst erstellen wir uns die klassische Struktur aus Klassen-Defintion, Konstruktor und ei-
nem einfachen Test-Programm. Das Test-Programm wir immer nur schnell erweitert, um die
neuen Attribute und Methoden unserer neuen Klasse gleich testen zu kdnnen. Sinn muss
dieser Test-Teil nicht unbedingt ergeben.

class Person:

Konstruktor
def init (self, name, vorname):
self.Name=name
self.Vorname=vorname

#Test-MAIN

Pl=Person ("Muster", "Oleg")
P2=Person ("Schulz", "Franka")
P3=Person ("Bauer", "Kim")

Beim Laufen-Lassen unseres kleinen Programm erhalten wir keine Fehler-Meldung, aber
auch keine Anzeige.

Unsere nachste Aufgabe soll also eine Anzeige der gespeichert Personen-Daten sein. Die
Klassen-Definition wir entsprechend um die Methode zeigePersonDaten() erweitert. Den
Test der Methode hangen wir dann auch gleich im Test-Teil an.

def zeigePersonDaten (self) :
print ("Name: ",self.Name," Vorname: ",self.Vorname)
#Test-MAIN

P3.zeigePersonDaten ()
Pl.zeigePersonDaten ()

Jetzt erzeugen wir bei Ausprobieren auch
tatsachlich Ausgaben auf dem Bildschirm.

BK_SekI+l_Python_prof.docx -250 - (c,p) 2015 - 2026 Isp: dre

8.11.x.7.1. Erweiterunqg der "Personen"-Klasse auf eine Familie

BK_SekI+II_Python_prof.docx -251- (c,p) 2015 - 2026 Isp: dre

8.11.x.7. eine "Nachrichten'-Klasse

Klasse Nachrichten mit den Attributen Sender, Empfanger und Text (ev. ++)
Methoden senden, antworten und weiterleiten

8.11.x.y. eine Klasse zu ""Dreiecken'’

class Dreieck
def init (self, a, b, ¢)
self.a = a
self.a = a
self.a = a
if not(a+b > ¢ and a+c > b and b+c > a):
raise ValueError ("ungiiltig Daten: eine Seite ist zu lang")

def flaeche(self) # nach HERON
s = (self.a + self.b + self.c) / 2
flaeche = (s + (s - self.a) * (s - self.b) * (s -self.c))**0.5)

return flaeche

BK_SekI+l_Python_prof.docx -252 - (c,p) 2015 - 2026 Isp: dre

8.11.x.y. eine Graphik-Beispiel-Klasse

- http://www.b.shuttle.de/b/humboldt-os/python/kapitel4/index.html

Die Grafik-Klassen in graph.py
#! /usr/bin/python

import Tkinter
from Tkconstants import *
import Canvas

class Image:

/* Bildklasse

def init (self,Name) :

/* Name: string : Dateiname des Bildes
nmon

self.Bild=Tkinter.PhotoImage (file=Name)
self.Breite=self.Bild.width()
self.Hoehe=self.Bild.height ()

def get Bild(self):
/* liefert das Bildobjekt fur 'image' in Canvas.Imageltem
/* (Darstellung des Bildes auf einer Zeichenfl&che)

return self.Bild

def get Breite(self):

/* liefert die Bildbreite in Pixeln

return self.Breite

def get Hoehe (self):

/* liefert die Bildhoehe in Pixeln

return self.Hoehe

class TColor:
won
/* erste primitive Version mit nur wenigen Farben
/* Die Farben koénnen iiber die deutschen Namen oder iber
/* Zahlen abgerufen werden
/* Hinweis: "$fff" entspricht "weiss",
/* statt "#xxx" kann auch "red", "green" usw. benutzt werden
/* andere Lésungen mit true-colors sind denkbar

def init (self):

/* transparent, schwarz, blau, gruen, tuerkis, rot, gelb, grau, weiss

self.Fnamen = { \
0:"transparent”, \
1:"schwarz" \
2:"blau" ;0\
3:"gruen" ;0\
4:"tuerkis" \
5:"rot" , N\
6:"gelb" , N\
7:"grau" ;0\
8:"weiss" \

}

self.Farbe={ \
"transparent":"", \
"schwarz" :"#000", \
"blau" c"H00E", N\
"gruen" J"H0E0M, N\
"tuerkis" :"#0ee", \
"rot" c"#E£00", N\
"gelb" JHELOM, N\
"grau" :"#cce", \

BK_SekI+II_Python_prof.docx -253 - (c,p) 2015 - 2026 Isp: dre

http://www.b.shuttle.de/b/humboldt-os/python/kapitel4/index.html

"weiss" THEEET N\
}

def getColor (self,nr):
mwwn
/* nr : int : 0 .. 8 fir die oben angegebenen Farben
/* liefert die Farbdarstellung fur X

wun

return self.Farbe[self.getFarbnamen (nr)]

def getFarbnamen (self,nr):
/* nr : int : 0 .. 8 fiir die oben angegebenen Farben
/* liefert den (deutschen) Bezeichner der Farbnummer (s.o.)

return self.Fnamen[nr]

def getFarbe (self,wort):
mwwn
/* wort : string : ein Element aus den oben angegebenen Farben
/* liefert die Farbdarstellung fuer X

return self.Farbe[wort]

class TFigur:
mwwn
/* interne Hinweise:
/* ZF ist Referenz auf Zeichenfldche, wird spdter gesetzt
/* grafObj ist das aktuelle Grafikobjekt

def init (self):
/* Alle Grafik-Klassen erben von TFigur. TFigur wird beschrieben durch
/* folgende Attribute:
/* X1,Y1l (linke obere Ecke)
/* X2,Y2 (rechte untere Ecke)
/* Farbe
/* Fuellfarbe
self.X1=20
self.Y1=20
self.X2=100
self.Y2=100
self.Farben=TColor ()
self.Farbe=self.Farben.getColor (0)
self.Fuellfarbe=self.Farben.getColor (0)

def setPos(self,axl,ayl,ax2,ay2):
/* axl,ayl : int :(linke obere Ecke)
/* ax2,ay2 : int :(rechte untere Ecke)
self.X1l=axl
self.Yl=ayl
self.X2=ax2
self.Y2=ay2

def getXPos (self):

wun

/* liefert x-Wert der Position der linken oberen Ecke

wun

return self.X1

def getYPos (self):

wun

/* liefert y-Wert der Position der linken oberen Ecke

return self.Yl

def setFarbe(self,F):

/* F : string : deutscher Bezeichner (s.o.)

wun

self.Farbe=self.Farben.getFarbe (F)

def getFarbe (self):

wun

/* gibt akt. Farbe zuriick : string : Farbrepr. fir X

return self.Farbe

BK_SekI+lI_Python_prof.docx -254 - (c,p) 2015 - 2026 Isp: dre

def setFuellfarbe(self,F):

/* F : string : deutscher Bezeichner (s.o.)

self.Fuellfarbe=self.Farben.getFarbe (F)

def getFuellfarbe (self):

/* gibt akt. Fillfarbe zuriick : string : Farbrepr. fiir X

return self.Fuellfarbe

def pos_versetzen um(self,dx,dy):

/* versetzt die Position des heweiligen Grafikobjektes um dx und dy
self.Xl=self.X1+dx
self.X2=self.X2+dx
self.Yl=self.Yl+dy
self.Y2=self.Y2+dy

def zeigen(self):

/* zeigt das Grafikobjekt auf dem Schirm an

pass

def loeschen(self):

/* loscht das Grafikobjekt auf dem Schirm

self.grafObj.move (1000,1000)

def entfernen(self):

/* entfernt das Grafikobjekt aus dem Speicher

self.grafObj.delete ()

class TLinie (TFigur) :

/* Klasse Linie
def init (self):
TFigur. init (self)
x = self.getFarbe()
self.grafObj=Canvas.Line (TFigur.ZzZF, (self.X1l, self.Yl), (self.X2, self.Y2)\
("£ill": x})

def zeigen(self):
self.grafObj.config(fill=self.getFarbe())
self.grafObj.coords (((self.X1l,self.Y1l), (self.X2,self.Y2)))

class TEllipse (TFigur) :

/* Klasse Ellipse
def init (self):
TFigur. init (self)
x = self.getFarbe ()
y = self.getFuellfarbe ()
self.grafObj=Canvas.Oval (TFigur.2F, (self.X1l, self.Y1l), \
(self.X2, self.Y2), {"outline": x, "fill": y})

def zeigen(self):
self.grafObj.config(fill=self.getFuellfarbe (), outline=self.getFarbe())
self.grafObj.coords (((self.X1l,self.¥Yl), (self.X2,self.Y2)))

class TKreis (TFigur) :

/* Klasse Kreis

def init (self):

/* zus. Attribute sind hier: Radus, x-Mittelpunkt, y-Mittelpunkt
TFigur. init (self)
self.R=0

BK_SekI+II_Python_prof.docx -255- (c,p) 2015 - 2026 Isp: dre

self.Mx=0
self.My=0
x = self.getFarbe ()
y = self.getFuellfarbe ()
self.grafObj=Canvas.Oval (TFigur.ZF, (self.X1l, self.Yl), \
(self.X2, self.Y2), {"outline": x, "fill": y})

def _ berechne Standard(self):
self.X1l=self.Mx-self.R
self.X2=self.Mx+self.R
self.Yl=self.My-self.R
self.Y2=self.My+self.R

def setRadius (self,r):
mwwn
/* r : int : Radius
self.R=r
self. berechne Standard()

def getRadius (self):

/* liefert aktuelle Radiuslange

wuon

return self.R

def setMPos (self,ax,ay):
/* ax, ay : int
/* setzt Mittelpunktskoordinaten
mun
self.Mx=ax
self.My=ay
self. berechne Standard()

def zeigen(self):
self.grafObj.config(fill=self.getFuellfarbe (), outline=self.getFarbe())
self.grafObj.coords (((self.X1l,self.Y1l), (self.X2,self.Y2)))

class TRechteck (TFigur) :

wnn

/* Klasse Rechteck
def init (self):
TFigur. init (self)
x = self.getFarbe ()
y = self.getFuellfarbe()
self.grafObj=Canvas.Rectangle (TFigur.ZF, (self.X1l, self.Yyl), \
(self.X2, self.Y2), {"outline": x, "fill": y})

def zeigen(self):
self.grafObj.config(fill=self.getFuellfarbe (), outline=self.getFarbe())
self.grafObj.coords (((self.X1l,self.Y1l), (self.X2,self.Y2)))

class TText (TFigur) :

/* Klasse Text zur Beschriftung der Zeichenflé&che

wun

def init_ (self):
/* Attribute sind
/* Text : string
/* Schriftart : String (X-Fonts-Bezeichner)
/* Zeichen-Hoehe : int : default = 10

TFigur. init (self)
self.Text=""
self.Schriftart="*"
self.Hoehe=10

def setPos(self,ax,ay):

/* ax, ay : int : Position des ersten Zeichens

wun

self.Xl=ax
self.Yl=ay

def setText (self,Text):

BK_Sekl+Il_Python_prof.docx - 256 -

(c,p) 2015 - 2026 Isp: dre

/* Text : string : auszugebender Text

self.Text=Text

def setFont (self,Art="*",Grad=10) :
/* Art : string : Font-Name
/* Grad : int : ZeichengrdBe
self.Schriftart=Art
self.Hoehe=Grad

def zeigen(self):
self.grafObj=Canvas.CanvasText (TFigur.zF, self.X1l, self.Yyl, \
anchor="w", fill=self.Farbe, font=(self.Schriftart, self.Hoehe))
self.grafObj.insert (0, self.Text)

class TZeichenblatt:
/* Zeichenblatt entspricht Canvas. Mit Init wird ein Bild unterlegt
/* Zeichenblatt vom Typ TZeichenplatt wird erzeugt und steht zur
/* Verfigung.
def init (self):
pass

def Init (self,Name) :
nmon
/* Init hinterlegt das Bild
/* Name : string : Dateiname (gif)

self.oWindow=Tkinter.Tk ()

self.oWindow.title ("Zeichenflache - nach S. Spolwig = ----- Kokavecz")
self.oBild=Image (Name)

self.X1=0

self.Y1=0

self.X2=self.oBild.get Breite()

self.Y2=self.oBild.get Hoehe ()

Geometrie=str(self.X2)+"x"+str(self.Y2)+"+0+0"

self.oWindow.geometry (Geometrie)

self.oEbene=Tkinter.Canvas (self.oWindow, relief=SUNKEN, bd=5, \
width=self.X2, height=self.Y2)

bild=Canvas.Imageltem(self.oEbene, (0,0),anchor="nw", \

image=self.oBild.get Bild())
self.oEbene.pack ()
TFigur.ZF=self.oEbene

def get Breite(self):

/* liefert die Bildbreite in Pixeln

return self.oBild.get Breite()

def get Hoehe (self):

/* liefert die Bildhoehe in Pixeln

return self.oBild.get Hoehe ()
def refresh(self):
TFigur.ZF.update ()

sollte oZeichenblatt oder mein Zeichenblatt heifen:
Zeichenblatt = TZeichenblatt ()

Klassen-Dokumentation = http://www.b.shuttle.de/b/humboldt-os/python/kapitel4/grafik.py.html

BK_SekI+II_Python_prof.docx - 257 - (c,p) 2015 - 2026 Isp: dre

http://www.b.shuttle.de/b/humboldt-os/python/kapitel4/grafik.py.html

8.11.x.2. Polymophismus und Vererbung

class erbendeKlasse(vererbendeKlassenListe):

z.B. an erweiterter Konten-Klasse jetzt auch mit Zinsen und Schulden

Aufoaben:
1. Erweilern Sie das Konlen-Programm so, dass fiir jede Minule der Zins fiir
einen Monal angeselzt wird!

alle Attribute und Methoden der in der vererbenden Klassenliste aufgefihrten Klassen sind
nun auch in der erbenden Klasse verfligbar (diese konnen hier aber auch Uberschrieben
werden!)

die originalen Methoden werden Uber vererbendeKlasse.Methode und die Uberschriebenen
Uber erbendeKlasse.Methode

Aufrufe ohne Klassen-Angabe verbleiben erst einmal in der aktuellen Klasse

BK_SekI+l_Python_prof.docx - 258 - (c,p) 2015 - 2026 Isp: dre

Beispiel: Blcher-Klasse

class Buch:
BuecherZahl=0

def init (self,titel,autor,verlag, isbn,preis):
self.Titel=titel
self.Autor=autor
self.Verlag=verlag
self.ISBN=isbn
self.Preis=preis
Buch.BuecherZahl+=1

def zeigeBuchInfo (self):
print ("Buch-Info:")
print ("Autor: ",self.Autor," Titel: ",self.Titel)
print ("Verlag: ",self.Verlag," ISBN: ",self.ISBN)

def pruefelISBN (self) :
pass

def del (self):
Buch.BuecherZahl-=1

Main
buchl=Buch ("Das Leben der ZzZ","Silp","Universal","1234567890X",24)
buchl.zeigeBuchInfo ()

print ("Preis= ",buchl.Preis, "Euro")

print ("--> akt. Buchbestand: ",Buch.BuecherZahl)
print ()

print ()

print ("Entfernen Buchl")

del (buchl)

print ("--> akt. Buchbestand: ",Buch.BuecherZahl)

print ("Ende")

>>>

Buch-Info:

Autor: Silp Titel: Das Leben der Z
Verlag: Universal ISBN: 1234567890X

Preis= 24 Euro
--> akt. Buchbestand: 1

Entfernen Buchl

--> akt. Buchbestand: 0
Ende

>>>

nun braucht man z.B. fur Fachblcher neben den Ublichen Angaben vielleicht auch noch In-
formationen zu Fachgebieten und Themen oder Stich

Natirlich mdchten — wir faulen Programmierer — nicht wieder alles neu programmieren. Wir
haben ja schon eine super programmierte und getestete Klasse flir normale Blcher.

Auf der Basis dieser Blcher-Klasse erstellen wir nun die Fachbuch-Klasse.

BK_SekI+II_Python_prof.docx -259 - (c,p) 2015 - 2026 Isp: dre

class FachBuch (Buch) :
BuecherZahl=0

def
__init (self,titel,autor,verlag,isbn,preis, fachbereich,stichwort) :
Buch. init (self,titel,autor,verlag,isbn,preis)
super (). init (titel,autor,verlag, isbn,preis)

self.Fachbereich=fachbereich
self.Stichwort=stichwort
FachBuch.BuecherZahl+=1

def zeigeBuchInfo (self) :
print ("Fach-",end="")
Buch.zeigeBuchInfo (self)
super () .zeigeBuchInfo ()
print ("Fachbereich: ",self.Fachbereich," Stichwort:
",self.Stichwort)

def del (self):
FachBuch.BuecherZahl-=

Buch.BuecherZahl-=

print ("--> akt. Buchbestand: ",Buch.BuecherZahl," davon: ",
FachBuch.BuecherZahl," Fachbilicher")

print ()

print ()

buch2=FachBuch ("LB Informatik","Meier", "Fachbuchverlag",
"1234567890X",30, "Progammierung", "Python")
buch2.zeigeBuchInfo ()

print ("Preis= ",buch2.Preis, "Euro")

print ("--> akt. Buchbestand: ",Buch.BuecherZahl," davon:
",FachBuch.BuecherZahl," Fachbilicher")

print ()

print ()

print ("Entfernen Buch2 (Fachbuch)")

del (buch2)

print ("--> akt. Buchbestand: ",Buch.BuecherZahl," davon:

", FachBuch.BuecherZahl," Fachbiicher")

BK_SekI+Il_Python_prof.docx - 260 - (c,p) 2015 - 2026 Isp: dre

>>>

Buch-Info:

Autor: Silp Titel: Das Leben der Z

Verlag. Universal ISBN: 1234567890X

Preis= 24 Euro

--> akt. Buchbestand: 1 davon: 0 Fachbiicher

Fach-Buch-Info:

Autor: Meier Titel: LB Informatik

Verlag. Fachbuchverlag ISBN: 1234567890X
Fachbereich: Progammierung Stichwort: Python
Preis= 30 Euro

--> akt. Buchbestand: 2 davon: 1 Fachbiicher

Entfernen Buch2 (Fachbuch)
--> akt. Buchbestand: 1 davon: 0 Fachbiicher

Entfernen Buchl

--> akt. Buchbestand: 0 davon: 0 Fachbiicher
Ende

>>>

Beim genauen Betrachten des Quelltextes kann man einige Spezialititen erkennen. Zum
Ersten kann man innerhalb jeder Objekt-Ebene gleich namige Attribute / Variablen-Namen
nutzen (hier: BuecherZahl). Sie beziehen sich immer auf die jeweilige Ebene, die als Objekt-
namens-Teil (vor dem Punkt) mit angegeben werden muss.

Dann kdénnen wir mit dem allgemeinen Namen super fur die Ubergeordnete Klasse zurlck-
greifen. Das ist z.B. dann praktisch, wenn sich solche Namen 6fter &ndern oder der Quelltext
mehrfach genutzt werden soll. Super ist somit strukturell dem self aquivalent.

In Python I&sst sich auch Uber die Methoden hinweg z.B. eine spezielle Ausgabe realisieren.
Im Fall eines Fachbuches wird nur das Wértchen "Fach-" zur Anzeige (zeigeBuchinfo()) ge-
bracht und dann direkt die Anzeige-Methode von Buch aufgerufen Die Anzeige-Methode von
Fachbuch erganzt dann noch die speziellen Attribute von Fachbuch.

Interessant ist auch, dass die Methoden den Objekten entsprechend ihrer Klasse zugeordnet
werden. In beiden Bucherklassen gibt es die gleichlautende Methode zeigeBuchinfo(). Beim
Aufruf von einem Fachbuch aus wird zuerst die Fachbuch-Methode genutzt. Diese verwen-
det dann — in unserem Beispiel — die gleichnamige Methode aus der Buch-Klasse.

Gibt es keine zeigeBuchlnfo()-Methode in der Fachbuch-Klasse, dann wird dies aus der
Obergeordneten Klasse genutzt. Natilrlich fehlen dann die zuséatzlichen Fachbuch-
Informationen.

BK_SekI+II_Python_prof.docx -261 - (c,p) 2015 - 2026 Isp: dre

8.11.x.y. Tips und Tricks zu Objekt-orientierten Programmen / Klassen-Definitionen

um eine Klassen-Defintion mit einem kleinen Test-Programm auch als Modul benutzen zu
konnen, gibt es den folgenden Konstrukt, der nur dann den THEN-Zweig ausfuhrt, wenn der

Quelltext als Haupt-Programm (MAIN) ausgefuhrt wird. Ist der Quelltext ein Modul wird die-
ser Zweig nicht ausgefiihrt.

in name == " main ":

hier stehen die Anweisungen fiir die Nutzung als (Haupt-)Programm

BK_SekI+l_Python_prof.docx - 262 - (c,p) 2015 - 2026 Isp: dre

8.11.x. OOP-Programmbeispiele

—-*- coding: utf8 -*-

Klasse zur Verwaltung von Personen
class Person (object):
Konstruktor/Initialisierer
def init (self, alter, groesse, name = None):
self.alter = alter
self.groesse = groesse
self.name = name

String-Reprédsentation einer Person erstellen
def repr (self):
return repr((self.alter, self.groesse, self.name))

einfache String-Reprédsentation einer Person erstellen
def str (self) :
return '$s/%s/%s' % (self.alter, self.groesse, self.name)

Person altern lassen, also Alter um n Jahre erhodhen
def altern(self, n = 1):
self.alter += n

mittels eines Dekorators eine Property mytuple erzeugen
@property
def mytuple(self):
das ist der Getter; den Namen lassen wir hier aus
return self.alter, self.groesse
alternativ:
def mytuple(self): return self.alter, self.groesse
mytuple = property (mytuple)

H= FH FH

einen Setter fir die Property definieren
@mytuple.setter
def mytuple(self, t):
if £t[0] > 10 and t[1l] > 150:
self.alter, self.groesse = t[:2]
if len(t) > 2:
wenn t einen Namen enthdlt, dann diesen auch setzen
self.name = t[2]

Personenliste erstellen
personen = [Person(39, 172, 'ABC'), Person (88, 165), Person(l5, 181),
Person (88, 175)]

Ausgabe der Personenliste
print personen
print '==='

Iteration iiber der Personenliste und Ausgabe der einzelnen Personen
for pers in personen:

print pers, '==>', repr (pers)
print '==='

alle Personen altern lassen
for pers in personen:

pers.altern(3)

nochmal ausgeben

BK_SekI+II_Python_prof.docx -263 - (c,p) 2015 - 2026 Isp: dre

print 'nach dem Altern'
print personen
print '==='

nochmal altern lassen, diesmal funktional
map (lambda x: x.altern(3), personen)

print 'nach dem 2. Altern'

print personen

print '==='

nochmal funktional altern lassen, diesmal mit Vorzugswert n
map (Person.altern, personen)

print 'nach dem 3. Altern'

print personen

print '==='

Ausgabe der sortierten Personenliste
print sorted(personen, key = lambda pers: (pers.alter, pers.groesse))
print '==='

dito mit benannter Funktion statt einer anonymen lambda-Funktion
def pers key(pers):
return pers.alter, pers.groesse

print sorted(personen, key = pers key)

Attribute sind public, man kann von auBen zugreifen
print personen[0].alter

print personen[0].groesse

print personen[0].name

p = personen[0]
print p.alter + p.groesse

Nutzung der Property mit Getter
print p.mytuple

p.alter += 100

print p.mytuple

Nutzung des Setters der Property
p.mytuple = 1, 2 # wird vom Setter stillschweigend ignoriert
print repr (p.mytuple)

p.mytuple = 11, 155
print repr (p.mytuple)

nochmal, aber mit Name
p.mytuple = 11, 155, 'Pumuckl'
print repr (p.mytuple)

for p in personen:
print p

print 'maximales Element einer Personen-Liste bestimmen'
print max ((person.alter, person.groesse) for person in personen)

alternativ nutzbar waren
print max (map(lambda elem: (elem.alter, elem.groesse), personen))
print max (personen, key = lambda elem: (elem.alter, elem.groesse))

print

GroBe von auBen andern
personen[l].groesse += 5

BK_SekI+lI_Python_prof.docx - 264 - (c,p) 2015 - 2026 Isp: dre

for p in personen:
print p

print

neues Attribut setzen

personen[l].name2 = 'XYZ'
for p in personen:

print p # str () wird fir die String-Darstellung gerufen
print

hier sieht man das neue Attribut
for p in personen:
print vars(p)

print

print 'Maximum der Property mytuple'
print max (person.mytuple for person in personen)

das Tupel der letzten Person der Liste &ndern
personen[-1].mytuple = 110, 190

Maximum erneut ausgeben
print 'Maximum der Property mytuple nach Zuweisung'
print max (person.mytuple for person in personen)

nochmal alle Attribute mit wvars()
print
for p in personen:

print vars (p)

Q: https://www-user.tu-chemnitz.de/~hot/PYTHON/

BK_SekI+II_Python_prof.docx - 265 - (c,p) 2015 - 2026 Isp: dre

8.12. GUI-Programme mit Tkinter

Tkinter ist nicht etwa eine Fortsetzung ode Erweiterung der Turtle-Graphik. Nein, es ist ge-
nau anders herum — die Turtle-Graphik basiert auf dem machtigen Graphik-Modul Tkinter.
Aber die Turtle-Graphik ist einfach der bessere Einstieg in die graphische Programmierung.
Es macht richtig Laune, der Schildkréte zuzusehen.

Echte graphische Aufgaben 16st man dann eher mit Tkinter.

Tkinter ist die Python-Schnittstelle zur Graphik-GUI "Tcl/Tk" (GUI ... Graphical User Interface)

Tk ist das GUI-Erweiterung fir Tcl

Tcl ist eine Scriptsprache die 1991 von John OUSTERHOUT entwickelt wurde

zu Tk und Tcl gobt es Schnittstellen fiir die verschiedensten Programmiersprachen (z.B.
Perl, Ruby, Common LISP, Ada, R, ...)

Tk stellte Widgets (Steuerelemente, Bedienelemente) flr die Erstellung / Zusammenstellung und
Funktionalisierung von graphischen Programmen zur Verfligung

Far die in graphischen Oberflachen weniger bewanderten folgt hier eine Vorstellung / Zu-
sammenstellung von Objekten, die eben Tk — wie andere Programmier-Systeme eben auch
— bereitstellt.

Tk-Widgets

e button Schaltflache

e canvas Graphik-Flache

e checkbutton Options-Feld

e combobox Auswahl-Box

e entry Eingabefeld

e frame Fenster-Bereich; Contai-
ner flr andere Objekte

e label Beschriftung(sfeld)

¢ labelframe

o listbox Listen-Feld

e menu Mena

¢ menubutton Meni-Eintrag

e message Text-Feld

¢ notebook

¢ panedwindow

e progressbar

¢ radiobutton Auswahl-Feld

e scale Gleiter

e scrollbar (Bild-)Laufleiste

e separator Fenster-Teiler

e sizegrip

e spinbox

o text Text-Feld

o treeview

o tk_optionMenu

Fir die Integration in das Windows-System werden die klassischen System-Fenster bereit-
gestellt. Dazu gehoren:

BK_SekI+l_Python_prof.docx - 266 - (c,p) 2015 - 2026 Isp: dre

Tk-System-Fenster:

tk_chooseColor
tk_chooseDirectory
tk_dialog
tk_getOpenfFile
tk_getSaveFile
tk_messageBox
tk_popup

toplevel

Geometrie-Manager organisieren die Anordnung der Bedien-Elemente im Fenster / auf der
Fensterflache

Tk-Geometrie-Manager
o pack einfache Geometrie, Objekte werden vorrangig untereinander angeordnet

e grid Gitter- bzw. Tabellen-orientierte Geometrie; Objekte werden an Gitter-
Platzen innerhalb des Fensters angeordnet (Spalten: 0 bis x; Zeilen: 1 .. y)

e place genaue (absolute) oder relative Platzierung der Objekte

Mit Tkinter kann man auch auf der Konsolen-Ebene arbeiten. Bei manchen Aktionen ist so-
gar sehr sinnvoll. In der Praxis sind abe eher nachnutzbare Programme interessant. Deshalb
werden wir hier fast ausschlielllich zusammenhangende Quell-Texte schreiben und diese
dann ausprobieren.

BK_SekI+II_Python_prof.docx - 267 - (c,p) 2015 - 2026 Isp: dre

8.12.1. ... und der erste Programmierer sprach: "Hallo Welt!"

Wir gehen mal ganz klassisch vor. Also ...

Aufoabe:

Geben Sie das folgende Programm cin! Die vielen Leerzeilen sind nichl wirk-
lich notwendig, sie dienen nur der Shuklturvierunyg fiir die Evlaulerungen rechls
neben dem Quelllext.

from tkinter import * import des Tkinter-Moduls

fenster=Tk() Erzeugen eines Root-Objektes namens
fenster vom Typ Tk

Erzeugen eines untergeordneten Label-

Objektes namens elem und einem Text
elem=Label (fenster, text="Hallo Welt!")

elem.pack () mit der Pack-Methode wird das untergeod-
nete Objekt integriert

fenster.mainloop () realisiert die Anzeige der Objekte und er-
zeugt die Ereignis-Abfrage-Schleife

Die etwas ungewdhnliche Notierung ist ein typisches Beiwerk der sogenannten Objekt-
orientierten Programmierung. Das irgnorieren wir hier einfach und zwingen uns zu dieser
Schreibweise. Spater werden wir sie verstehen, hier ist sie erst mal als gegeben / notwendig
zu akzeptieren.

Das Ergebnis sieht naturlich richtig Windows-like aus, aber provoziert

sofort die Fragen: =10]
Geht der Text auch in farbig? Hallo Welt!

Kann man den Text grélier oder in einer anderen Schriftart darstellen?

Bevor aber dazu kommen, schnell ein paar Hinweise zur Notierung der Import-Anweisung
und er sich daraus ergebenen Notierung im weiteren Quell-Text.
Das gleiche "Hallo Welt!-Programm kann auch mit der Import-Zeile:

import tkinter as tk

beginnen. Das Programm wurde dann so aussehen:
import tkinter as tk
fenster=tk.Tk()

elem=tk.Label (fenster, text="Hallo Welt!")
elem.pack ()

fenster.mainloop ()

Diese Notierung wird man gegegebenfalls auch in verschiedenen Beispielen aus Blichern
oder dem Internet finden. Man muss allerdings jetzt vor jedem benutztem Objekt noch die
Herkunft von tk (als solches haben wir das Modul Tkinter ja jetzt importiert) mit angeben. Das bedeutet
nur deutlich mehr Schreibaufwand. Nur bei Kombinationen und Uberschneidungen mit ande-
ren Objekten / Modulen ist diese Schreibung sinnig.

Ebenfalls funktioniert die vereinfachte Import-Anweisung:

BK_SekI+l_Python_prof.docx - 268 - (c,p) 2015 - 2026 Isp: dre

import tkinter

Kommen wir zu Gestaltung / Formatierung eines Label zurtck. Natirlich kdnnen wir Farben
und Schriften verandern und es auch nicht wirklich schwer. Wegen der ungewoéhnlich Text-
aufwandigen Notierung, sollten wir uns gleich an eine Ubersichtlichere Strukturierung des
Quell-Textes gewodhnen. Hier sit es allerdings nicht so, dass diese — wie bei Verzweigungen
Schleifen und Funktionen — notwendig ist.

from tkinter import *
fenster=Tk ()

elem=Label (fenster,
text="Hallo Welt!",

fg="blue",

bg="yellow", auch moglich:
font="Times 12 bold" font=("Times','"12','bold'")
) .pack ()

fenster.mainloop ()

Schaut man sich nebenstehendes Resultat des obigen Quelltextes an, =10 x|
dann werden die einzelnen Eigenschaften(-Kurzel) schnell klar. Hallo Welt!
Typische Schriftarten sind "Courier”, "Arial”, "Comic Sans MS",
"Verdana”, "System"”, "Fixedsys", "MS Sans Serif", "Symbol",
"Helvetica" und "ansi".

Die anderen Schriftstil-Bezeichnungen sind "normal”, "italic" fur kursiv, "roman" fur ??7?,
"underline” fir unterstrichen und "overstrike" fiir durchgestrichen.

Einige Worte noch zu der seltsamen mainloop()-Funktion am Ende der meisten hier gezeig-
ten Programme. Mainloop startet die Ereignis-Abfrageschleife flr das gestartete Programm.
Irgenwie soll es ja auf Maus-Klicks oder Tastatur-Befehle reagieren. Genau das realisiert die
mainloop()-Funktion. Die mainloop()-Funktion wird mit dem Zerstéren des (Haupt-
)Programm-Fensters durch das destroy-Kommando beendet.

Tkinter-Programme ohne mainloop lassen sich nur in bzw. mit IDLE benutzen. Dort Uber-
nimmt der Interpreter die Ereignis-Verarbeitung bzw. Ubergibt sie zeitweilig an das gerade
benutzte Programm.

Programme, die eigenstandig funktionieren sollen — also auch direkt aus dem Arbeitsplatz
oder dem Windows-Explorer heraus gestartet und benutzt werden sollen — mussen am
Schluss die mainloop()-Funktion enthalten. Sie kbnnen und sollten dann auch als pyw-Datei
gespeichert werden. In diesem Dateityp lassen sich die Programme direkt unter Windows
etc. ausfihren

8.12.2. Nutzung verschiedener Bedienelemente

Die Vielfalt der verfligbaren Bedienelemente ist in Windows und in Tk recht groB3. Viele sind
fur eine moderne Interaktion mit den Programmen toll, aber nur wenige Elemente sind fur
rein funktionelle Programme wirklich notwendig. Diese werden wir hier vorstellen.

Wer mit diesen klar kommt, kann sich dann in die héheren Spharen der GUI-Programmie-
rung begeben.

BK_SekI+II_Python_prof.docx - 269 - (c,p) 2015 - 2026 Isp: dre

8.12.2.1. Button's - Schaltflichen

Unser erstes "Hello Welt!"-Programm lief3 sich nur Uber die Fenster-Schaltflachen schliel3en.
Fur einfache Programme ist das auch ok, aber wir wollen ja spater doch ein bisschen profes-
sioneller arbeiten. Also mussen Schaltflachen in die Programme rein.

Beginnen wir mit einem Beenden-Button, der natlrlich auch die passende Funktion verpasst
bekommen soll.

from tkinter import *
fenster=Tk()

elemLabel=Label (fenster,
text="Hallo Welt!",
fg="blue",
bg="yellow",
font="Times 12 bold"
) .pack()
elemButton=Button (fenster,
text="'Beenden',

width=30,
command=fenster.destroy
) .pack ()

fenster.mainloop ()
Die Fenster-Elemente hitte man alle auch nur mit elem =10l x|
bgzelchnen kdénnen. Spatgr wollen .er aber doch rpal das Hallo Welt!
eine oder andere Detail eines Bedien-Elementes andern.
Deshalb bekommt jedes Objekt einen eigenen Namen. Beenden |

Ein einfaches Durchzahlen ist natirlich auch mdglich.

Nun soll noch ein kleines Bildchen — ein Icon — mit angezeigt werden. Zuerst einmal soll das
Bildchen rechts nebendem "Hallo Welt!"-Text erscheinen. Dazu muss der verfligbare Raum
verteilt werden. Es gibt ein Label-Objekt links und ein weiteres Label-Objekt — mit der Bild-
chen — rechts. Die Bildchen mussen als (nicht-animierte) GIF-Datei vorliegen (alternativ gehen auch
PGM- bzw. PPM-Dateien).

from tkinter import *
fenster=Tk ()

elemLabell=Label (fenster,
text="Hallo Welt!",
fg="blue",
bg="yellow",
font="Times 12 bold"
) .pack(side="1eft")

bildchen=PhotoImage (file="erde50.gif")
elemLabel2=Label (fenster,
image=bildchen
) .pack (side="right")

elemButton=Button (fenster,
text="'Beenden’',
width=30,
command=fenster.destroy
) .pack (side="bottom")

fenster.mainloop ()

BK_SekI+l_Python_prof.docx - 270 - (c,p) 2015 - 2026 Isp: dre

Wer ein bisschen mit den side-
Parametern in der Pack-Methode
rumspielt, wird schnell merken,
dass das Positionieren der Widgets Hallo Welt!
(Bedienelemente) nicht so ganz

ohne ist. Beenden |

Ein Label kann nun auch daflir benutzt werden, um Daten auszugeben. Fir einen ersten
Versuch soll im Hintergrund ein Zahler laufen, der nach einer Sekunde den Text des Labels
andert. Als Text wird der aktuelle Zahler-Stand genutzt.

from tkinter import *
fenster=Tk ()

zaehler=0
def zaehlerLabel (label) : Zahl-Funktion
def zaehlen() :
global zaehler
zaehler+=1

label.config(text=str (zaehler)) hier wird der Label-Text neu festge-
label.after (1000, zaehlen) legt
zaehlen ()
fenster.title("zahler") Beschriftung / Titel des Fensters

elemLabel=Label (fenster, font="Times 20 bold")

Label, der fir die Anzeige des Zah-
elemLabel .pack ()

lers genutzt werden soll

zachlerlhabel (elemLabel) starten der Zahler-Funktion

elemButton=Button (fenster,
text="'Beenden',
width=20,
command=fenster.destroy)
elemButton.pack ()

fenster.mainloop ()

Nach dem Programm-Start beginnt der Zahler zu zahlen und nach =10] x|
jeweils 1000 ms (= 1 s) andert die Funktion den Text des Labels
mit dem neuen Zahler-Wert. 7

Beenden |

8.12.2.1.1. eine eigene Button-Aktion erstellen

Wollen wir nun einem Button eine eigene Aktion programmieren. Dabei missen zwei Dinge
erledigt werden. Einmal mussen wir eine Aktion als Funktion definieren und zum Anderen
muss diese Aktions-Funktion der Betatigung der Schaltflache zugeordnet werden.

Letzteres passiert in den Optionen des erstellten Button als command-Attribut. Der Name der
Funktion sollte eindeutig sein, damit spater bei vielen Aktionen eine klare Zuordnung maéglich
ist.

Die Funktion selbst wird ganz klassisch angelegt und in unserem Fall einfach mit einem neu
anzulegenen Label versehen.

BK_SekI+II_Python_prof.docx -271 - (c,p) 2015 - 2026 Isp: dre

from tkinter import *

def button aktion():

elem=Label (fenster, text="Hallo Python-Programmierer!")

elem.pack ()

fenster=Tk ()

elem=Button (fenster,
text="Hier dricken!",
command=button aktion)
elem.pack ()

fenster.mainloop ()
Beim Starten des Programm bekommen wir zuerst das obere

Fenster angezeigt. Sobald die Schaltflache gedriickt wird, er-
scheint der untere Text.

Riicksetzen des Zéhlers liber einen weiteren Button

7t TR

Hier driicken! |

_ioix
Hier driicken! |

Hallo Python-Programmierer!

BK_Sekl+Il_Python_prof.docx - 272 -

(c,p) 2015 - 2026 Isp: dre

8.12.2.1.2. Button gestalten / formatieren

Neben reinem Text lassen sich Button auch mit verschiedensten an-
deren Details darstellen.

Ersetzt man z.B. das Text-Argument durch ein Bitmap-Argument,
dann erscheinen statt dem Text je nach Option verschiedenen kleine
Icon's.

Nebenstehend sind die wichtigsten Beispiele aufgezeigt. Solche klei-
nen Schaltflachen eignen sich z.B. zum Aufrufen von kleinen Hilfestel-
lungen usw.

from tkinter import *

def button aktion():
elem=Label (fenster, text="Super gemacht!")
elem.pack ()

fenster=Tk ()

elem=Button (fenster,
text="Drlcke jetzt!",
bitmap="warning",
command=button aktion)
elem.pack ()

fenster.mainloop ()

bitmap="questhead'

EES -(olx]

S|

bitmap="error'

I ol

§

bitmap="warning'

EES -0l

bitmap="error"

s -0l x|

bitmap="hourglass"

Text und Bild lassen sich aber nicht direkt nebeneinander in einer Schaltflache anzeigen. Die

Bild-Option hat Vorrang und der Text wird ignoriert.

BK_Sekl+ll_Python_prof.docx - 273 -

(c,p) 2015 - 2026 Isp: dre

8.12.2.2. Nachrichten-Felder / Text-Felder

Label sind doch recht beschrankte Objekte. Flr Beschriftungen sind sie vollig ausreichend.
Langere Texte oder Nachrichten lassen sich damit nur sehr aufwandig darstellen. Ein etwas
flexibleres Widget ist die message.

Mit ihr lassen sich langere, mehrzeilige mit zusatzlichen Hervorhebungen realisieren.

ausgewdhlte Optionen fiir Message-Widgets

e background
bg

o font

o foreground
fg

o text

e textvariable

o takefocus

Hintergrundfarbe; wenn keine angegeben wird, dann wird die Syste-
meinstellung genutzt

Schrift-Art, -Gré3e und -Stil; wenn nichts angegeben wird, dann wird
die Systemeinstellung genutzt

Vordergrundfarbe / Textfarbe; wenn keine angegeben wird, dann
wird die Systemeinstellung genutzt

anzuzeigender Text

ist eine spezielle Textvariable, die im Hintergrund geandert werden
kann - die Anzeige andert sich entsprechend

wird dieser auf True gesetzt, dann erhalt die Message-Box den Ein-
gabe- / Bedien-Focus; normalerweise ist der Wert: False

Weitere Optionen sind anchor, aspect, borderwidth, cursor, highlightbackground, high-
lightcolor, highlightthickness, justify, padx, pady, relief und width. Wenn fir spezielle
Gestaltungen von Message-Boxen Bedarf besteht, dann kann man sich in den Ublichen
Quellen informieren. Fur Standard-Anwendungen sind sie nicht notwendig.

BK_Sekl+Il_Python_prof.docx

-274 - (c,p) 2015 - 2026 Isp: dre

8.12.2.3. Eingabe-Felder / Eingabezeilen

Widmen wir uns nun der Eingabe von Texten, Zahlen usw. Daflr sind primar die Entry-
Objekte gedacht. Ein erstes Programm soll die gewaltige Aufgabe |6sen, aus eingegebenen
Vor- und Nachnamen eine ordentliche Begrifiung zu erzeugen!

from Tkinter import * ## Tkinter importieren
root=Tk () ## Wurzelfenster!
eingabe = Entry (root) ## Eingabezeile erzeugen
eingabe.pack () ## und anzeigen

.get()

gibt Eingabezeile als Text (!) zurtick

.delete(position)
I6scht Zeichen an der Position (Zahlung beginnt bei 0)

.insert(END, text)

()

= Entry (master)
e.pack ()

e.delete (0, END)
e.insert (0, "a default value")

s = e.get ()

v = StringVar ()
= Entry(master, textvariable=v)
e.pack ()

()

v.set ("a default value")
= v.get ()

0)]

BK_SekI+II_Python_prof.docx -275 - (c,p) 2015 - 2026 Isp: dre

from Tkinter import *
master = Tk()

e = Entry(master)
e.pack ()

e.focus_set ()

def callback() :
print e.get ()

b = Button (master, text="get", width=10,
b.pack ()

command=callback)

mainloop ()
e = Entry(master, width=50)
e.pack ()

text = e.get ()
def makeentry(parent, caption, width=None, **options):
Label (parent, text=caption) .pack(side=LEFT)
entry = Entry(parent, **options)
if width:
entry.config (width=width)
entry.pack (side=LEFT)
return entry

user = makeentry(parent, "User name:", 10)
password = makeentry (parent, "Password:", 10, show="*")
content = StringVar ()

entry = Entry(parent, text=caption, textvariable=content)

text = content.get ()
content.set (text)

mehr: http://www.wspiegel.de/tkinter/tkinter02.htm

- 276 -

BK_Sekl+Il_Python_prof.docx

(c,p) 2015 - 2026 Isp: dre

8.12.2.4. Nachrichten-Boxen

Vielfach sollen kleine Informationen, Fehlerhinweise usw. usf. auf dem Bildschirm gebracht
werden. Diese Art der Nutzer-Information wird Message-Box genannt und

Windows — und die meisten anderen graphi-

schen Betriebssysteme — kennen mehrere

Arten von Message-Boxen. Diese unter-

scheiden sich praktisch vor allem hinsichtlich

der eingeblendeten Icon's und / oder der

Farbgebung.

Klassisch unterscheidet man zwischen "Feh-

ler"-, "Warnung"-, "Frage"- und "Information"-

s-Box.

Von der Ebene des Programmierers aus sind alle gleich.

Die Message-Boxen von Python sind etwas breiter aufgestellt. Zumindestens scheint es so.
Die Abfrage- / Frage-Box kann mit unterschiedlichen Schaltflachen (Button's) versehen wer-
den. Aus den verschiedenen Varianten ergeben sich unterschiedliche Box-Typen:

Tk-Message-Boxen

¢ showinfo Message-Box mit einer Info-Blase als Icon

e showwarning Message-Box mit Warn-Zeichen

o showerror Message-Box mit Fehler-lcon

o askyesno Message-Box mit Frage-Zeichen als Icon und den Schaltflachen [

Ja]und|[Nein]

o askokcancel Message-Box mit Frage-Zeichen als Icon und den Schaltflachen [
OK] und [Abbrechen]

o askretrycancel Message-Box mit Frage-Zeichen als Icon und den Schaltflachen [
Fortsetzen] und [Abbrechen]

from tkinter import *

def antwort () :

titel="Nutzer-Information" die Texte fir Titel und Nachricht
nachricht="Die Aktion wurde gestartet.\n konnen naturlich auch direkt in den

(Info-Box schliefBen mit OK.)" Aufruf der MessageBox notiert wer-
messagebox.showinfo (titel,nachricht) den

\n steht flr einen Zeilenumbruch

fenster=Tk ()

buttonl=Button (fenster,
text="Aktion ausldsen",
command=antwort)
buttonl.pack ()

fenster.mainloop ()

BK_SekI+II_Python_prof.docx - 277 - (c,p) 2015 - 2026 Isp: dre

EEY -ojx

Wenn bei lhnen die Message-Box-Fenster anders Aktion aus,ﬁsenl
aussehen, dann ist das dem benutzten Betriebssys-
tem geschuldet. Diese Message-Boxen werden . .

x|

namlich direkt von Windows (oder dem jeweils be-
nutzten Betriebssystem) direkt zur Verfigung ge-

stellt. { 0 | Die Aktion wurde gestartet.
! " (Info-Box schliefen mit OK.)

Beide Fenster Ubergeben sich immer gegenseitig
den Focus.

Erst ein "SchlieRen" des Haupt-Fensters ("tk") be-
endet das Wechselspiel.

Ein Nachteil der Message-Boxen ist sicher, dass sie immer gleichartig aussehen. Daflir kann
man Informationen, Warnungen usw. usf. schnell und effektiv programmieren.

Einfache Message-Boxen (klassischerweise Info-Boxen) lassen sich temporar in Programme
integrieren, um sich Zwischenwerten usw. anzeigen zu lassen. Dann muss man nicht jedes
Mal das Layout des Programm-Fenster bemihen.

BK_SekI+lI_Python_prof.docx - 278 - (c,p) 2015 - 2026 Isp: dre

8.12.2.5. Checkbutton-Wdget's — Options-Felder

from Tkinter import *
master = Tk()
var = IntVar ()

c = Checkbutton (master, text="Expand", variable=var)
c.pack ()

mainloop ()

var = StringVar ()
c = Checkbutton (
master, text="Color image", variable=var,
onvalue="RGB", offvalue="L"

)

v = IntVar ()
c = Checkbutton (master, text="Don't show this again", variable=v)
c.var = v
BK_SekI+II_Python_prof.docx -279 - (c,p) 2015 - 2026 Isp: dre

8.12.2.6. Radiobutton-Widget — Options-Auswahl

from tkinter import *
fenster=Tk ()
auswahl=IntVar ()

Radiobutton (fenster, text="weiss",

variable=auswahl, value=1l) .pack (anchor=W)
Radiobutton (fenster, text="gelb",

variable=auswahl, value=2) .pack (anchor=W)
Radiobutton (fenster, text="rot",

variable=auswahl, value=3) .pack (anchor=W)
Radiobutton (fenster, text="grin",

variable=auswahl, value=4) .pack (anchor=W)
Radiobutton (fenster, text="blau",

variable=auswahl, value=5) .pack (anchor=Wn)
Radiobutton (fenster, text="schwarz",

variable=auswahl, value=6) .pack (anchor=W)

mainloop ()

=10/ x|
" weiss

" geb

" rot

T grin

" hlau

" schwarz

BK_SekI+lI_Python_prof.docx - 280 - (c,p) 2015 - 2026 Isp: dre

from tkinter import *

Ereignisverarbeitung
def gewaehlt () :
if wahl.get()==
anzeige="Sie wahlen nur Frihstick"
elif wahl.get()==
anzeige="Sie wahlen Halbpension"
elif wahl.get()==
anzeige="Sie wahlen Vollpension"
elif wahl.get()==
anzeige="Sie wahlen keine Verpflegung"
elses
anzeige="Sie haben noch nicht gewahlt"
ergebnis.config(text=anzeige)

Erzeugung des Fensters

tkFenster = Tk ()

tkFenster.title ('Verpflegung')

tkFenster.geometry ('160x175")

Aufforderungslabel

aufforderung=Label (master=tkFenster, text="Wahlen Sie aus:", anchor='w')

aufforderung.place (x=5, y=5, width=140, height=20)

Kontrollvariable

wahl=IntVar ()

Radiobutton Optionsauswahl

rbl=Radiobutton (master=tkFenster, anchor='w', text='nur Frihstick',
value=1, variable=wahl, command=gewaehlt)

rbl.place (x=15, y=30, width=140, height=20)

rb2=Radiobutton (master=tkFenster, anchor='w', text='Halbpension',
value=2, variable=wahl, command=gewaehlt)

rb2.place (x=15, y=55, width=140, height=20)

rb3=Radiobutton (master=tkFenster, anchor='w', text='Vollpension',
value=3, variable=wahl, command=gewaehlt)

rb3.place (x=15, y=80, width=140, height=20)

rb4=Radiobutton (master=tkFenster, anchor='w', text='keine Verpflegung',
value=4, variable=wahl, command=gewaehlt)

rb4d.place (x=15, y=105, width=140, height=20)

ev. Vorauswahl

radiobutton3.select ()

Ergebnislabel

ergebnis=Label (master=tkFenster, bg='white', anchor='w', text=" 2?22 ")

ergebnis.place (x=5, y=140, width=150, height=20)

Aktivierung des Fensters

tkFenster.mainloop ()

'/ vericoup M I=TEY

Wahlen Sie aus:
" nur Frithstiick
i Halbpension
™ vollpension

™ keine Verpflegung

297

BK_SekI+II_Python_prof.docx -281 - (c,p) 2015 - 2026 Isp: dre

Erzeugen einer Radiobutton-Auswahl aus einer Liste (von Tupeln) heraus:

MODES = [

("Monochrome", "1"),
("Grayscale", "L"),

("True color", "RGBR"),
("Color separation", "CMYK"),

v = StringVar ()
v.set ("L") # initialize

for text, mode in MODES:
b = Radiobutton (master, text=text,
variable=v, value=mode)

b.pack (anchor=Ww)

BK_SekI+l_Python_prof.docx -282 - (c,p) 2015 - 2026 Isp: dre

8.12.2.7. Text-Fenster / Text-Widget

from Tkinter import * ## Tkinter importieren
root=Tk () ## Wurzelfenster!
textfenster = Text (root) ## Ein Textfenster erzeugen
textfenster.pack () ## und anzeigen

Zeilen von 1 bis y durchgezahlt; Spalten von 0 bis x

.get(‘anfangzeile.anfangspalte','endezeile.endespalte’)
.get(‘anfangzeile.anfangspalte','endezeile.end’)
.get(‘anfangzeile.anfangspalte',END)

.insert(END, text)
.insert('einfligezeile.einfligespalte’, text)
.insert(‘einfugezeile.end’, text)

.delete(‘anfangzeile.anfangspalte','endezeile.endespalte')
.delete (‘anfangzeile.anfangspalte','endezeile.end')
.delete (‘anfangzeile.anfangspalte',END)

.see(indexzeile)
.see(END)
scrollt den Text, bis angegebene Zeile sichtbar ist

.yview(indexzeile)

.yview(END)

scrollt den Text, bis angegebene Zeile sichtbar ist
Index wandert nach oben (??77?)

.mark(markierungsname, 'zeile.spalte')
erstellt eine Markierung an der Position

.index(markierungsname)
gibt den Index einer Markierung zurick

.names()
liefert die Namen der verfugbaren Markierungen zurtick

.search(suchtext, 'endezeile.endespalte')
.search(suchtext, 'endezeile.end')
.search(suchtext, END)

.tag_add(text, 'anfangzeile.anfangspalte','endezeile.end")
.tag_config(text, foreground=farbe)
.tag_names()

BK_Sekl+ll_Python_prof.docx - 283 -

(c,p) 2015 - 2026 Isp: dre

from Tkinter import *
root = Tk()
textfenster = Text (root)
textfenster.pack ()
eingabe = Entry (root,width=60)
eingabe.pack (side=LEFT)
def hole():
textfenster.insert (END, '\n' + eingabe.get())

but = Button(root, text='Hole', command = hole)

but.pack(side = LEFT)
root.mainloop ()

weitere Teile fiir ein Chat-Programm (zusétzlich zu obigen Quelltext, bzw. Anderungen)

root = Tk()
def ende() :
root.destroy ()

root.title('Chatten mit Python')

textfenster = ScrolledText (root,width=90)
textfenster.pack ()

mehr: http://www.wspiegel.de/tkinter/tkinter02.htm

BK_SekI+l_Python_prof.docx -284 - (c,p) 2015 - 2026 Isp: dre

8.12.2.8. Frames — Group-Box's — Gruppen-Boxen

Frame-Widget

besser Container genannt,

beinhalten andere Bedien-Elemente, kdnnen so gruppiert angeordnet oder z.B. ein- und
ausgeschaltet werden

from Tkinter import *
master = Tk()
Label (text="one") .pack ()

separator = Frame (height=2, bd=1, relief=SUNKEN)
separator.pack (fill=X, padx=5, pady=5)

Label (text="two") .pack ()

mainloop ()

frame = Frame (width=768, height=576, bg="", colormap="new")
frame.pack ()

video.attach window (frame.window id())

BK_SekI+II_Python_prof.docx - 285 - (c,p) 2015 - 2026 Isp: dre

8.12.2.9. Meniis / Menu-Widget

from Tkinter import *

def callback() :
print "called the callback!"

root = Tk{()

create a menu
menu = Menu (root)
root.config (menu=menu)

filemenu = Menu (menu)

menu.add cascade (label="File", menu=filemenu)
filemenu.add command (label="New", command=callback)
filemenu.add command(label="Open...", command=callback)
filemenu.add separator ()
filemenu.add command (label="Exit", command=callback)

helpmenu = Menu (menu)
menu.add cascade (label="Help", menu=helpmenu)
helpmenu.add command (label="About...", command=callback)

mainloop ()

root = Tk ()

def hello():
print "hello!"

create a toplevel menu

menubar = Menu (root)
menubar.add command (label="Hello!", command=hello)
menubar.add command (label="Quit!", command=root.quit)

display the menu
root.config (menu=menubar)

BK_Sekl+Il_Python_prof.docx - 286 -

(c,p) 2015 - 2026 Isp: dre

root = Tk()

def hello():
print "hello!"

menubar = Menu (root)

create a pulldown menu, and add it to the menu bar
filemenu = Menu (menubar, tearoff=0)

filemenu.add command (label="Open", command=hello)
filemenu.add command (label="Save", command=hello)
filemenu.add separator ()
filemenu.add command (label="Exit", command=root.quit)

menubar.add cascade (label="File", menu=filemenu)

create more pulldown menus

editmenu = Menu (menubar, tearoff=0)
editmenu.add command (label="Cut", command=hello)
editmenu.add command (label="Copy", command=hello)
editmenu.add command (label="Paste", command=hello)
menubar.add cascade (label="Edit", menu=editmenu)

helpmenu = Menu (menubar, tearoff=0)
helpmenu.add command (label="About", command=hello)
menubar.add cascade (label="Help", menu=helpmenu)

display the menu
root.config (menu=menubar)

root = Tk()

def hello():
print "hello!"

create a popup menu

menu = Menu (root, tearoff=0)
menu.add command (label="Undo", command=hello)
menu.add command (label="Redo", command=hello)

create a canvas
frame = Frame (root, width=512, height=512)
frame.pack ()

def popup (event) :
menu.post (event.x root, event.y root)

attach popup to canvas
frame.bind ("<Button-3>", popup)

BK_Sekl+ll_Python_prof.docx - 287 -

(c,p) 2015 - 2026 Isp: dre

counter = 0
def update() :
global counter
counter = counter + 1
menu.entryconfig(0, label=str (counter))
root = Tk{()
menubar = Menu (root)
menu = Menu (menubar, tearoff=0, postcommand=update)
menu.add command (label=str (counter))
menu.add command (label="Exit", command=root.quit)

menubar.add cascade (label="Test", menu=menu)

root.config (menu=menubar)

8.12.2.9.2. eine Tool-Bar einbauen

besteht aus einem Frame und Button's
from Tkinter import *
root = Tk{()

def callback():
print "called the callback!"

create a toolbar
toolbar = Frame (root)

b = Button (toolbar, text="new", width=6, command=callback)
b.pack (side=LEFT, padx=2, pady=2)

b = Button(toolbar, text="open", width=6, command=callback)
b.pack (side=LEFT, padx=2, pady=2)

toolbar.pack (side=TOP, fill=X)

mainloop ()

BK_SekI+l_Python_prof.docx - 288 - (c,p) 2015 - 2026 Isp: dre

8.12.2.9.3. eine Status-Zeile (Status-Bar) einbauen

besteht aus einem Frame und Button's

class StatusBar (Frame) :

def init (self, master):
Frame. init (self, master)
self.label = Label (self, bd=1, relief=SUNKEN, an-
chor=W)
self.label.pack (fill=X)

def set(self, format, *args):
self.label.config(text=format % args)
self.label.update idletasks ()

def clear (self):
self.label.config(text="")
self.label.update idletasks ()

status = StatusBar (root)
status.pack (side=BOTTOM, fill=X)

BK_SekI+II_Python_prof.docx - 289 - (c,p) 2015 - 2026 Isp: dre

8.12.2.10. Umgang mit Standard-Dialogen

kommen direkt aus dem Betriebssystem
eigentlich gehdren auch die Message-Boxen (=) mit dazu

Aufruf immer Uber Fehler-Behandlung empfehlenswert

try:
fp = open(filename)
except:
tkMessageBox.showwarning (
"Open file",
"Cannot open this file\n(%s)" % filename
)

return

BK_SekI+l_Python_prof.docx -290 - (c,p) 2015 - 2026 Isp: dre

8.12.2.11. Listbox-Widget — Auswahl-Listen — List(en)-Boxen

from Tkinter import *
master = Tk()

listbox = Listbox (master)
listbox.pack ()

listbox.insert (END, "a list entry")

for item in ["one", "two", "three", "four"]:
listbox.insert (END, item)

mainloop ()

listbox.delete (0, END)
listbox.insert (END, newitem)

lb = Listbox (master)
b = Button (master, text="Delete",
command=lambda lb=lb: lb.delete (ANCHOR))

self.lb.delete (0, END) # clear
for key, value in data:

self.lb.insert (END, key)
self.data = data

items = self.lb.curselection ()
items [self.data[int (item)] for item in items]

BK_SekI+II_Python_prof.docx -291 - (c,p) 2015 - 2026 Isp: dre

8.12.2.12. Options-Meniis — Auswahl-Schaltflichen

from tkinter import *
fenster=Tk ()

auswahl=StringVar (fenster)
auswahl.set ("weiss") # Vorgabe

optionsButton=0OptionMenu (fenster,

auswahl,

"WeiSS", "gelb", "rot", "grun",
"blau", "schwarz")
optionsButton.pack ()

def uebernehmen () :
print ("Die Auswahl lautet(e): ", auswahl.get())

fenster.quit ()

buttonOK=Button (fenster, text="OK", command=uebernehmen)
buttonOK.pack ()

mainloop ()

Die print-Anweisung wird im IDLE-Fenster
realisiert.

weiss L

rot

| gun ||
blau
schwarz

BK_SekI+lI_Python_prof.docx -292 - (c,p) 2015 - 2026 Isp: dre

erstellen eines Options-Menus aus einer Liste von Optionen
from Tkinter import *

the constructor syntax is:
OptionMenu (master, variable, *values)

OPTIONS = [
lleggll ,
llbunnyll ,
"chicken"

master = Tk()

variable = StringVar (master)
variable.set (OPTIONS[0]) # default value

w = apply (OptionMenu, (master, variable) + tuple (OPTIONS))
w.pack ()

mainloop ()

BK_Sekl+ll_Python_prof.docx - 293 -

(c,p) 2015 - 2026 Isp: dre

8.12.2.13. Scale-Widget — Gleiter / Regler

auch slider gnannt
from tkinter import *
fenster=Tk()

schieberl=Scale (fenster, from =0, to=100)
schieberl.pack ()

schieber2=Scale (fenster, from =0, to=12,
resolution=0.5, orient=HORIZONTAL)
schieber2.pack ()

mainloop ()

s -0l x|

.

3.5

BK_SekI+lI_Python_prof.docx -294 - (c,p) 2015 - 2026 Isp: dre

8.12.2.14. Scrollbar-Widget - Bildlaufleisten

from tkinter import *
fenster = Tk()

laufleiste=Scrollbar (fenster)
laufleiste.pack (side=RIGHT, fill=Y)

auswahlListenBox=Listbox (fenster,
yscrollcommand=laufleiste.set)
for nummer in range (30):
auswahlListenBox.insert (END, str (nummer))
auswahlListenBox.pack (side=LEFT, fi11=BOTH)

laufleiste.config (command=auswahlListenBox.yview)

mainloop ()
f th - 10l =l
|:| FY
1
2
3
14
5
5]
7
=
: -

-1l x
20 Al
21
22
23
249
25

27

8.12.2.15. Widget x

BK_SekI+II_Python_prof.docx -295 - (c,p) 2015 - 2026 Isp: dre

8.12.x. Tkinter — stark, starker, noch starker Objekt-orientiert.

Alles was wir bisher mit Tkinter gemacht haben, war schon Objekt-orientiert. Wir benutzten
Objekte, wie z.B. Tkinter selbst oder Labels und Buttun und die dazugehoérigen Methoden.
Wenn man es von Anfang an so macht, dann ist es auch irgendwie gar kein Problem. Wird
man aber richtig Objekt-orientiert, dann ist die Welt fir den Einsteiger-Programmierer schon
schwerer zu durchschauen. Wer die nachfolgenden Programme und Erklarungen nicht gleich
versteht, kann vielleicht erst einmal die Grundlagen der Objekt-orientierten Programmierung
konsumieren. Ein Rlcksprung hierher ist dann gut mdglich und macht dann auch wieder
Spald. Graphische Oberflachen machen eben einfach die schéneren Programme.

8.12.x.1. nochmal "Hello Welt!"

import tkinter as tk

class Application (tk.Frame) :

def init (self, master=None):
tk.Frame. init (self, master)
self.pack()

self.createWidgets ()

def createWidgets (self) :
self.hi there = tk.Button (self)
self.hi there["text"] = "Hello World\n(click me)"
self.hi there["command"] = self.say hi
self.hi there.pack(side="top")

self.QUIT = tk.Button(self, text="QUIT", fg="red",
command=root.destroy)
self.QUIT.pack (side="bottom")

def say hi (self):
print ("hi there, everyone!")

root = tk.Tk()
app = Application (master=root)
app.mainloop ()

BK_SekI+l_Python_prof.docx - 296 - (c,p) 2015 - 2026 Isp: dre

einfache Dialoge
from Tkinter import *

class MyDialog:
def init (self, parent):
top = self.top = Toplevel (parent)
Label (top, text="Value") .pack/()

self.e = Entry(top)
self.e.pack (padx=5)

b = Button(top, text="OK", command=self.ok)

b.pack (pady=5)
def ok (self):
print "value is", self.e.get()
self.top.destroy ()
root = Tk{()
Button (root, text="Hello!") .pack()
root.update ()
d = MyDialog (root)

root.wait window (d.top)

import tkSimpleDialog
class MyDialog(tkSimpleDialog.Dialog) :

def body(self, master):

Label (master, text="First:").grid (row=0)
Label (master, text="Second:").grid (row=1)
self.el = Entry (master)
self.e2 = Entry(master)

self.el.grid(row=0, column=1)
self.e2.grid (row=1, column=1)
return self.el # initial focus

def apply (self):
first = int(self.el.get())
second = int (self.e2.get())

print first, second # or something

def apply (self):
first = int(self.el.get())
second = int (self.e2.get())
self.result = first, second

d = MyDialog(root)
print d.result

BK_Sekl+ll_Python_prof.docx - 297 -

(c,p) 2015 - 2026 Isp: dre

Uberprifung von Eingaben

def apply(self) :
try:
first = int(self.el.get())
second = int (self.e2.get())
dosomething ((first, second))
except ValueError:
tkMessageBox.showwarning (
"Bad input",
"Illegal values, please try again"

def validate(self) :
try:
first= int(self.el.get())
second = int (self.e2.get())
self.result = first, second
return 1
except ValueError:
tkMessageBox.showwarning (
"Bad input",
"Illegal values, please try again"
)

return 0

def apply(self) :
dosomething (self.result)

from Tkinter import *
import os

class Dialog (Toplevel) :
def init (self, parent, title = None):

Toplevel. 1init (self, parent)
self.transient (parent)

if title:
self.title(title)

self.parent = parent

self.result = None

body = Frame (self)

self.initial focus = self.body (body)
body.pack (padx=5, pady=5)
self.buttonbox ()

self.grab set ()

if not self.initial focus:
self.initial focus = self

self.protocol ("WM DELETE WINDOW", self.cancel)

self.geometry ("+%d+%d" % (parent.winfo rootx()+50,
parent.winfo rooty()+50))

BK_Sekl+Il_Python_prof.docx - 298 -

(c,p) 2015 - 2026 Isp: dre

self.initial focus.focus set ()
self.wait window (self)

#
construction hooks

def body(self, master):
create dialog body. return widget that should have
initial focus. this method should be overridden

pass
def buttonbox (self) :

add standard button box. override if you don't want
standard buttons

box = Frame (self)

w = Button (box, text="OK", width=10, command=self.ok,
w.pack (side=LEFT, padx=5, pady=5)

w = Button (box, text="Cancel", width=10, command=self
w.pack (side=LEFT, padx=5, pady=5)

self.bind ("<Return>", self.ok)
self.bind ("<Escape>", self.cancel)

box.pack ()

#

standard button semantics
def ok (self, event=None) :
if not self.validate() :
self.initial focus.focus set() # put focus back

return

self.withdraw ()
self.update idletasks ()

self.apply()
self.cancel ()
def cancel (self, event=None) :
put focus back to the parent window
self.parent.focus set ()

self.destroy ()

#

command hooks

def validate (self):
return 1 # override

def apply(self):

pass # override

the

default=ACTIVE)

.cancel)

BK_Sekl+ll_Python_prof.docx - 299 -

(c,p) 2015 - 2026 Isp: dre

Check-Boxen

def init (self, master):
self.var = IntVar ()
c = Checkbutton (
master, text="Enable Tab",
variable=self.var,
command=self.cb)
c.pack ()

def cb(self, event):
print "variable is", self.var.get()

weiterfiihrende und Quell-Links:
http://www.python-kurs.eu/python_tkinter.php (tolles Tutorial)
http://www.wspiegel.de/tkinter/tkinter_index.htm (kurzes, aber informatives Tutorial)

Tk-Geometrie-Manager

>>>

BK_SekI+lI_Python_prof.docx - 300 - (c,p) 2015 - 2026 Isp: dre

http://www.python-kurs.eu/python_tkinter.php
http://www.wspiegel.de/tkinter/tkinter_index.htm

8.12.x. diverse Tkinter-Beispiele

aus verschiedenen Quellen:

#grafikl.py

from Tkinter import * #alle Funktionen des Moduls Tkinter werden importiert

fenster = Tk() #Ein Objekt der Klasse Tk mit Namen fenster wird eingerichtet
fenster.mainloop () #Die Methode mainloop aktiviert ein Tk-Fenster

#grafik2.py
from Tkinter import *
fenster= Tk()

fenster.etikett= Label (master=fenster, text= ‘Hallo!’) #Ein Objekt der Klasse Label
#mit Namen fenster.etikett wird erzeugt.
fenster.etikett.pack() #Mit der Methode pack() wird das neue

#0bjekt etikett in die Darstellung des
#Anwendungsfensters fenster eingebaut.
fenster.mainloop ()

#grafik3.py

from Tkinter import *

fenster= Tk()

fenster.etikett= Label (master=fenster, text= ‘Hallo!’,

font=(’Comic Sans MS’,14),fg="blue’) #als Schrifttyp wird Comic Sans MS
#in der SchriftgroBe 14;
#Schriftfarbe ist Blau

fenster.etikett.pack()

fenster.title (’Formen’) #Ueberschrift

leinwand=Canvas (fenster,width=800, height=600,bg="yellow") #Mithilfe von Canvas-Objekten
#werden Kreise, Rechtecke, Linien
#oder Textobjekte generiert

leinwand.pack ()

rechteck=leinwand.create_rectangle(40,20,160,80,fill="Moccasin™)

kreis=leinwand.create 1line(270,290,450,350,width=10,fill="Lightblue")

vieleck=leinwand.create polygon(500,80,500,120,600,120,500,80, fill =“white")

streckenzug=leinwand.create line(270,290,450,350,300,200,

arrow = LAST, width =10, fill = “blue“) #andere Werte fuer arrow: #FIRST, BOTH

spruch=leinwand.create text (300,50, text="Aller Anfang ist schwer!"),

font=(’'Arial’,14), fill=“green")

fenster.mainloop ()

Q: 7?77

BK_SekI+II_Python_prof.docx -301 - (c,p) 2015 - 2026 Isp: dre

8.13. Internet

8.13.x. Python und das http-Protokoll

Variante 1

import requests

adresse="http://www.lsp-dre.de"
antwort = requests.get (adresse)
print
print

print
print

antwort.ststus code)
antwort.headers|['content-type'])
antwort.encoding)
antwort.text[:80])

—~ o~~~

Variante 2

import urllib.request
adresse="http://www.lsp-dre.de"
seite=urllib.request.urlopen (adresse)
seiteninhalt=seite.read()

print (seiteninhalt)

seite.close ()

Wichtig ist es, zumindestens fir das erste Ausprobieren, eine einfache Internetseite abzufra-
gen. Ansonsten kann die Antwort etlige Seiten lang sein. Im Beispiel-Fall ist das eine ganz
einfach gestrickte Umleitung auf eine andere Internetseite.

>>>

b'\xef\xbb\xbf<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitio-
nal//EN" "http://www.w3.o0rg/TR/html4/loose.dtd">\n<HTML>\n<HEAD>\n
<TITLE>lern-soft-projekt: drews</TITLE>\n</HEAD>\n\n<BODY BGCo-
lor=#3333FF Text=#FFFF99 Link=#FFFFFF VLink=#FFFF66>\n<H2>Homepage
lern-soft-projekt: drews</H2><HR>\n<P>Derzeit wird diese Domain nicht
bedient. Nutzen Sie bitte:<P>\n<DIV align="center"><H2>www.lern-soft-
projekt.de</H2></DIV>\n</BODY>\n</HTML>'

>>>

BK_SekI+lI_Python_prof.docx -302 - (c,p) 2015 - 2026 Isp: dre

Naturlich kdnnen wir nun den zurtickgelieferten HTML-Text auch weiterverwenden.

Wollten wir einen Browser programmieren,
mussten wir jetzt nach und nach alle Tags
auswerten und in eine Seiten-Darstellung
umsetzen. Dabei sollte dann das heraus-
kommen, was uns ein anderer Browser
(Internet-Explorer, Firefox, Opera, Chrome,
Safari, ...) uns auch liefern wirde.

Mit Text wird das vielleicht noch recht ein-
fach gehen, aber spatestens bei Bildern,
Videos usw. usf. sind dann schon erweiter-
te Programmierkenntnisse notwendig.

Wir wollen den HTML-Text einfach nach
dem Seiten-Titel durchsuchen. Daruber
sollte eigentlich jede Internet-Seite verfi-
gen.

dearbeiten Ansicht Chronik Lesezeichen Exiras

Homepage lern-soft-projekt: drews

Derzeit wird diese Domain nicht bedient. Nutzen Sie batte:

www.lern-soft-projekt.de

die Beispiel-Seite im Browser Firefox

Wer sich schon mit HTML beschaftigt hat, der weiss, dass der Seiten-Titel zwischen den
Tags <TITLE> und </TITLE> zu finden ist. Genau danach wollen wir jetzt suchen.

startpos=0
while True:

startpos=seiteninhalt.find ("<TITLE>", startpos)

if startpos == -1:

break
endepos=seiteninhalt.find ("</TITLE>", startpos)
if endepos == -1:

break

print ("gefundener Text:

",seiteninhalt|[(startpos+7) :endepos])

startpos=endepos
print ("Suche beendet!")

>>>

gefundener Text:
Suche beendet!
>>>

lern-soft-projekt: drews

BK_Sekl+ll_Python_prof.docx

-303 -

(c,p) 2015 - 2026 Isp: dre

Wenn wir das Programm ein wenig umgestalten, dann kann auch nach jedem anderen be-
liebigen Begriffspaar gesucht werden. Ob das Tags sind oder andere Begriffe, ist dabei egal.

print (" ___________ ll)

print ("Suche:")
print ("")startpos=0

starttag="<H2>"

endetag="</H2>"

while True:
startpos=seiteninhalt.find(starttag, startpos)

if startpos == -1:

break
endepos=seiteninhalt.find (endetag, startpos)
if endepos == -1:

break

print ("Text zwischen ",starttag," und ",endetag,":
",seiteninhalt|[(startpos+len (starttag)) :endepos])
startpos=endepos
print ("Suche beendet!")

projekt.de/">www.lern-soft-projekt.de
Suche beendet!
>>>

Suche
gesuchter Text zwischen <H2> und </H2> : Homepage lern-soft-projekt: drews
gesuchter Text zwischen <H2> und </H2> : <A href="http://www.lern-soft-

8.13.x. einfacher Web-Server

from http.server import HTTPServer, CGIHTTPRequestHandler
import os

os.chdir ("/tmp")

CGIHTTP-Server auf Port 8080 starten
server = HTTPServer (("",8080), CGIHTTPRequestHandler)
server.serve forever ()

passendes CGl-script "cgi_test" unter /tmp abgespeichert
echo 'Content-Type: text/plain; charset=UTF-8'
echo

echo 'Hallo Welt!'

oder als Python-script "cgi_test.py" unter /tmp abgespeichert
print ('''Content-Type: text/plain; charset=UTF-8
Hallo Welt!'''

BK_Sekl+Il_Python_prof.docx - 304 -

(c,p) 2015 - 2026 Isp: dre

8.13.x. Python und die eMail-Protokolle (smtp, pop3, imap)

—-*- coding: utf8 -*-
Mail-Versand mit dem Standard-Modul smtplib

Module smtplib und sys importieren
import smtplib, sys

MIMEText aus dem Modul text des Sub-Pakets email.mime des Pakets email
importieren;

im Dateisystem z.B. unter /usr/lib64/python2.6/email/mime/text.py

from email .mime.text import MIMEText

unser ASCII-Mailtext

mail text = '''

Hello friends,

this is a simple ASCII mail.

Tea

eine MIMEText-Nachricht erstellen
msg = MIMEText (mail text)

Header setzen

msg['Subject'] = 'test mail'
me = msg['From'] = 'otto@hrz.tu-chemnitz.de'
you = msg['To'] = 'hot@hrz.tu-chemnitz.de'

Mail senden

s = smtplib.SMTP ()

if len(sys.argv) > 1 and sys.argv[l] == 'd':
Kommandozeilenargument 1 lautet "d", daher Debug einschalten
s.set debuglevel (1)

#s.connect (host = 'mailbox.hrz.tu-chemnitz.de')

s.connect ()

s.sendmail (me, [youl], msg.as _string())

s.close ()

Q: https://www-user.tu-chemnitz.de/~hot/PYTHON/

8.13.x. Zugriffe uber die REST-API

Viele Web-Datenbanken oder Web-Seiten bieten eine oder mehrere Mdglichkeiten an, um
auf ihre Daten und Fahigkeiten zuzugreifen.

8.13.x.y. SOAP

BK_SekI+II_Python_prof.docx -305- (c,p) 2015 - 2026 Isp: dre

8.13.x.y. REST

1 import requests
2
3 url = "https://api.agify.io"
4
5 eingabe = input ("Geben Sie Ihren Namen ein!: ")
6
7 //REST-Abfrage
8 abfrage = requests.get (url + "?name" + eingabe)
9 1if abfrage.ok:
10 print ("Agify schéatzt Dein Alter auf ")
11 print (abfrage.json () ["age"])
12 println (" Jahre")
13 else:
14 abfrage.raise for status()

Verbesserung des Ergebnisses u.U. durch Erweiterung der Abfrage um die Lander-
Zugehorigkeit:

abfrage = requests.get(url + "?name" + eingabe + "&country id=de")

weitere einfache API's fur Test-Zwecke
https://genderize.io (errat das Geschlecht zu einem Namen)
https://nationalize.io (errat die Nationalitat aus einem Namen)

fur die gehobene / erweiterte Anspruchs-Ebene:
https://dwd.api.bund.dev/ (WarnWetter.de)
https://developer.accuweather.com/
http://htc2.accu-weather.com/widget/htc2/weather-
data.asp?location=cityId%3A<ORTSID>&metric=1&langId=9

https://wttr.in/:Rostock (fir Orte mit Leerzeichen Anfiihrungszeichen nutzen)

BK_SekI+lI_Python_prof.docx - 306 - (c,p) 2015 - 2026 Isp: dre

https://api.agify.io/
https://genderize.io/
https://nationalize.io/
https://dwd.api.bund.dev/
https://developer.accuweather.com/
http://htc2.accu-weather.com/widget/htc2/weather-data.asp?location=cityId%3A%3cORTSID%3e&metric=1&langId=9
http://htc2.accu-weather.com/widget/htc2/weather-data.asp?location=cityId%3A%3cORTSID%3e&metric=1&langId=9
https://wttr.in/:Rostock

8.14. besondere mathematische Moglichkeiten in Python

8.14.1. imaginare Zahlen

Notierung
2+3j

(2+3))
complex(2,3)

jede Variable kann auch eine imaginare Zahl beinhalten:
img_zahl = 2.5 - 1.5j

img-zahl.real liefert den Real-Teil, also hier 2,5
img_zahl.imag liefert den Imaginar-Teil, also hier -1,5 = -1,5i

8.14.2. Matrizen (Matrixes)

Ob es nun Matrizen oder Matrixes heif3t, wollen wir hier nicht vertiefen. Ich benutze Matrix fr
die Einzahl und Matritzen fur die Mehrzahl. Das liesst sich aus meiner Sicht einfacher und
jeder halbwegs (mathematisch) Eingeweihte, weiss, worum es geht.

Realisierung und Bearbeitung z.B. Uber geschachtelte Listen (s.a. kurze EinfUhrung: > 8.4.
Listen, die |. — einfache Listen)

def transponiere (matrix, bisIndex) :
for i in range (bisIndex) :
for j in range(it+l, bisIndex):
matrix[i] [j],matrix[j][i] = matrix[Jj][i],matrix[i][]]
return matrix

def testeTransponieren (n) :
matrix= range (n)
for i in range(n):
matrix[i]=range (n)
print (" (Original-)Matrix")
for i in range (n) :
print (matrix[i])
transpoMatrix=transponiere (matrix)
print ("")
print ("transponierte Matrix")
for i in range(n) :
print (transpoMatrix[i])

BK_SekI+II_Python_prof.docx - 307 - (c,p) 2015 - 2026 Isp: dre

def multipliziere (matrixl, matrix?2) :
laengeMl=len (matrixl)
multMatrix=range (laengeMl)
for i in range(laengeMl):
multMatrix[i]=range (laengeMl)
for j in range (laengeMl) :
multMatrix[i] [j]=0
for i in range(laengeMl):
for j in range(laengeMl) :
summme=0
for k in range (laengeMl) :
summet+=matrixl[i] [k] *matrix2[k] []]
multMatrix[i] []j]=sum
return multMatrix

def testeMultipizieren (laengeMatrix) :
matrixA=range (laengeMatrix)
matrixB=range (laengeMatrix)
print (matrixA)
print (matrixB)
for i in range(laengeMatrix) :
matrixA[i]=range (laengeMatrix)
matrixB[i]=range (laengeMatrix)
for j in range(laengeMatrix) :
matrixA[i] [j]=1
matrixB[i] [j]=1
print (matrixA)
print (matrixB)
matrixC=multipliziere (matrixA,matrixB)
print (matrixC)

def berechneDeterminante (matrix) :
laengeM=len (matrix)
if laengeM<=0:
return 1
else:
if laengeM==1:
return matrix[0] [0]
else:
summe=0
neg=-1
for i in range (laengeM) :
neg=(-1) *neg
matrixH=matrixcopy (matrix)
for j in range (laengeM):
matrixH.pop (0)
matrixH-pop (1)
sumt+=neg*matrix[i1i] [0] *berechneDeterminante (matrixH)
return summe

dieser Algorithmus hat eine Laufzeit von O(2"), es existiert aber auch einer mit O(n®)

BK_SekI+l_Python_prof.docx -308 - (c,p) 2015 - 2026 Isp: dre

8.14.3. Python numerisch, Python fur Big Data

auch fur Data science, Maschinelles Lernen, Kunstliche Intelligenz, ...

numerisches Programmieren umfasst einen breiten Teil der Mathematik und meint das Ar-
beiten mit stetigen Variablen, numerische Analysen, Approximations-Algorithmen, ...

in vielen Punkten Ersatz fiir das kostenpflichtige Matlab
hier genannte Module alle kostenfrei
keine Einschranken durch prohibitive / proprietare Lizenzen bei der Weiterverwendung

Pandas
Mathplotlib |

| Scipy |
| Numpy |

Python

Numpy

stellt die grundlegenden Daten-Typen fir numerische Arbeiten und das Handling von Big
Data zur Verfigung

dazu gehdren mehrdimensionale Array's und Matrizen

Scipy

benutzt die Daten-Typen aus Numpy

bietet vor allem Funktionalitdten fir Analysen usw. usf. an, wie z.B. Regression, FOURIER-
Transformation, ...

Matplotlib
bietet Moglichkeiten der graphischen Darstellung von Daten an

import mathplotlib.pyplot as zeichnung

X [1,2,3,4,5,6]

y [1,4,9,16,25,36]

zeichnung.plot (x,Vy)

zeichnung.title ("quadratische Funktion")
zeichnung.show ()

g W
1

~J o

BK_SekI+II_Python_prof.docx -309 - (c,p) 2015 - 2026 Isp: dre

Pandas

nutzt alle genannten Module
erweitert diese fiir Tabellen und Zeit-Reihen

BK_SekI+l_Python_prof.docx -310 - (c,p) 2015 - 2026 Isp: dre

8.15. Behandlung von Laufzeitfehlern — Exception's

try ... except ... else

Bsp: Zahlenraten

Computer wahlt zufallig eine Zahl aus einem Zahlenbereich aus, hier 1 bis 100

der Nutzer soll die Zahl raten; der Computer gibt bein nicht-zutreffen zurtick, ob die Zahl zu
grol’ ode zu klein ist; Ziel sind besonders wenige Rate-Vorgange zu brauchen.

from random import randint

geraten=False
SuchZahl=randint (1,100)
print ("Der Computer hat eine Zahl erwlrfelt?")
print ()
zaehler=0
while not geraten:
Eingabe
try:
eing=int (input ("Welche Zahl vermutest Du?: "))
except ValueError:
print ("")
continue # —--> Eingabe wiederholen
Auswertung
zaehler+=1
if eing > Suchzahl:
print ("vermutete Zahl ist zu groR!")
elif ein < Suchzahl:
print ("vermutete Zahl ist zu klein!")
else:
geraten=True
print ("Richtig! ",zaehler," Versuche gebraucht")
print ("Spiel-Ende")

Die Auswertung kénnte auch im optionalen ELSE-Zweig stehen kénnen.

>>>

>>>

BK_SekI+II_Python_prof.docx -311 - (c,p) 2015 - 2026 Isp: dre

try ... except ... finally

der finally-Zweig wird immer ausgefihrt

Bsp: Zahlenraten

Computer wahlt zufallig eine Zahl aus einem Zahlenbereich aus, hier 1 bis 100

der Nutzer soll die Zahl raten; der Computer gibt beim Nicht-Zutreffen zurlck, ob die Zahl zu
grol’ ode zu klein ist; Ziel sind besonders wenige Rate-Vorgange zu brauchen.

from random import randint

geraten=False
SuchZahl=randint (1,100)
print ("Der Computer hat eine Zahl erwlrfelt?")
print ()
zaehler=0
while not geraten:
Eingabe
try:
eing=int (input ("Welche Zahl vermutest Du?: "))
except ValueError:
print ("")
continue # —--> Eingabe wiederholen
Auswertung
zaehler+=1
if eing > Suchzahl:
print ("vermutete Zahl ist zu groR!")
elif ein < Suchzahl:
print ("vermutete Zahl ist zu klein!")
elses
geraten=True
print ("Richtig! ",zaehler," Versuche gebraucht")
print ("Spiel-Ende")

>>>

>>>

try ... finally

raise

pass
leere Anweisung; z.B. als Platzhalter in definierten, aber noch nicht implementierten Funktio-
nen/ Klassen/ ...

BK_SekI+lI_Python_prof.docx -312 - (c,p) 2015 - 2026 Isp: dre

traceback

|asst eine Nachverfolgung zu, woher ein Fehler gekommen ist
z.B. wenn dieser aus externen Modulen usw. stammt
auch die IDE und der Debugger stellen traceback-Informationen bereit

import traceback

try
kritischeOperation
except:
print (("Fehler aufgetreten:", traceback.format exc())

die Gesamt-Struktur (Syntax) sieht so aus:

try
code

except FehlerType:
alternativerCode

{ except FehlerType:
alternativerCode }

except: # bei allen anderen FehlerTypen

alternativerCode
else:

weitererCode # wenn oben kein Fehler aufgetreten ist
finally:

immerAuszufuehrenderCode # CleanUp-Code

typische FehlerTypen:
ValueError

TypeError

KeyError

8.15.1. Exception — das Exception-Objekt

ermoglicht es die Exception (mit einem Benutzer-definierten Prafix) zu protokollieren

def test (x)
try
return operationMitX
except Exception as info:
print ("Fehler aufgetreten:", info, sep='\n')

den FehlerTyp-Namen ausgeben:
print (f"Ein {type(info). name } ist aufgetreten: \n {info}")

fur Protokolle ist es auch sinnvoll, Zeit-Informationen mit zu verarbeiten

BK_SekI+II_Python_prof.docx -313 - (c,p) 2015 - 2026 Isp: dre

dazu kann gut auf das Modul time (> 8.6.2.x. Verschiedenes zum Modul: time) zuriickge-
griffen werden

BK_SekI+l_Python_prof.docx -314 - (c,p) 2015 - 2026 Isp: dre

8.16. Sortieren — eine Wissenschaft fiir sich

Dieses Kapitel kdnnte genauso gut unter dem Abschnitt (=) eingeordnet werden. Was
durch den Anfanger vielleicht als Uberzogene, abgehobene, akademische Auseinanderset-
zung abgetan wird, ist in der Informatik ein Kernproblem: Wie bekommt man schnell und mit
mdglichst wenig Speicher-Aufwand eine Liste / ein Feld von Daten sortiert.

Die Algorithmik liefert viele Losungen mit unterschiedlichen Vor- und Nachteilen. Einige Sor-
tier-Verfahren wollen wir hier vorstellen und unter bestimmten Kriterien bewerten.

Fur Anfanger-Listen-Gré3en von vielleicht maximal einigen hundert Werten machen die Un-
terschiede meist nicht viel aus. Bei grofden - ev. sogar mehrdimensionalen Daten-Strukturen
— bekommen die Kriterien dann schon eine ganz andere Bedeutung.

Wir wollen hier versuchen die einzelnen Algorithmen nicht nur zu nennen, sondern auch zu
erklaren und an einer Beispiel-Datenreihe anzuwenden.

Wenn es geht und wenn es sinnvoll ist, dann werden wir auch die Zwischen-Zustande mittels
eines abgewandelten Programm anzuzeigen, um das Verfahren auch in der Praxis zu erle-
ben. Solche Zwischen-Anzeigen bieten sich auch an, wenn man einen Algorithmus auf die
eigenen Daten-Strukturen anpasst. Selten geht alles beim ersten Mal glatt.

Anfangern sei empfohlen, sich zuerst einmal den Algorithmus herauszusuchen, bei dem man
den Eindruck hat, man versteht ihn und die Umsetzung ins Programm. Dadurch wird die
Fehlersuche vereinfacht. Spater kann man sich dann den héheren Verfahren zuwenden.

weiterfiihrende Links:
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html (Visualisierung von Algorithmen)

8.16.x. Bubble-Sort

def bubblesort (liste) :

2 laenge = len(liste)

3 for i in range (laenge) :

4 geaendert = False

5 for j in range(laenge-i-1):

6 if liste[j] > liste[j+1]:

7 liste[j],liste[]j+1] = liste[j+1],1liste[7]
8 geaendert = True

9 if not geaendert:

0 break

return liste

8.16.x. Selection-Sort

BK_SekI+II_Python_prof.docx -315- (c,p) 2015 - 2026 Isp: dre

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

8.16.x. Quick-Sort

Anwendung des "Teile und herrsche"-Prinzips ("divide and conquer")

algemeines Prinzip zum Ldsen von Problemen: Zerteile das Problem in kleinere und lése
diese. Dabei darf das prinzip immer wieder angewendet werden, wir arbeiten also rekursiv
irgendwann sind die Teil-Probleme so klein, dass sie schon geldst sind (Rekursions-
Abbruch) oder einfach zu l6sen sind

Quicksort besteht aus drei Elementen (noch nicht perfekt!)

¢ Herrsche / Beauftragen /
Befehlen

e Teilen

¢ Zusammenfiigen

wenn die Liste langer als ein Element ist, dann wird sie
nach Teilen-Prinzip bearbeitet, ansonsten ist die Liste
sortiert

es kann das Zusammenfligen / Ausgeben erfolgen

aus der Liste wird (zufallig) ein Element elem ausgewahit
und die Liste in zwei Teillisten zerlegt, wobei Liste1 alle
kleineren Elemente als elem enthalt und Liste 2 alle gro-
Reren oder gleichgrofRen (/ anderen)

die Teillisten werden dem Herrsche-Prinzip zur Prifung
Ubergeben

die sortierte Liste wird nun zusammengesetzt aus der
sortierten Liste der kleineren Elemente, dem Element
elem und der sortierten Liste der gréReren Elemente

der Algorithmus stammt von HOARE 1962 ist einer der effektiven Sortier-Verfahren
besonders herausragend ist die Zeit-Effektivitat

es werden durchschnittlich n log n Vergleiche bendtigt

BK_Sekl+Il_Python_prof.docx

-316 - (c,p) 2015 - 2026 Isp: dre

oY U i W N -

~J

O

def quicksort(liste):

def teile(links, rechts):

i = links
jJ = rechts - 1
pivot = liste[rechts]

while True:
while liste[i] <= pivot and 1 < rechts:

=1l
while liste[j] >= pivot and j > links
Jj-=1
if 1 < J:
liste[i], liste[j] = liste[j], liste[i]
else:
break
if liste[i] > pivot:
liste[i], liste[rechts] = listel[rechts], liste[i]

return i

def sortieren(links, rechts):
if links < rechts:
teiler = teile(links, rechts)
sortieren(links, teiler-1)
sortieren (teiler+1l, rechts)

sortieren (0, laenge-1)
return liste

ein Quick-Sort mit Anzeige
def quicksort(liste):

if len(liste)>0:
print ("es wird sortiert: ", liste')
if len(liste)<=1:
return liste
else:
return quicksort ([i for i in liste[l:] if i < liste[0])\
+ [liste[0]1]\
+ quicksort([j for j in liste[l:] if j >= s[0]])

etwas kryptisch , aber auch so geht es:
def quicksort(liste):

if len(liste) <= 1:

return liste
wahlelement = liste.pop ()
links = [element for element in liste i1f element < wahlelement]
rechts = [element for element in liste if element >= wahlelement]
return quicksort (links) + [wahlelement] + quicksort (rechts)

BK_SekI+II_Python_prof.docx -317 - (c,p) 2015 - 2026 Isp: dre

8.16.x. Tree-Sort

8.16.x. Merge-Sort

1 def mergesort(liste):
2 def mische (links, rechts):
3 gemischt = []
4 laengelLinks = len(links)
5 laengeRechts = len (rechts)
6 while laengeLinks != 0 and laengeRechts != 0:
7 if 1links[0] <= rechts[0]:
8 gemischt.append (links[0])
9 links = links([1:]
10 else:
11 gemischt.append (rechts[0])
12 rechts = rechts[1l:]
13 while laengelLinks !=0:
14 gemischt.append (links[0])
15 links = links[1:]
16 while laengeRechts !=0:
17 gemischt.append (rechts[0])
18 rechts = rechts[1l:]
19 return gemischt
20
21 def sortieren(liste):
22 laenge = len(liste)
23 if laenge<=l:
24 return liste
25 else:
26 haelfte=laenge/2
27 links = liste[0O:haelfte]
28 rechts = listelhaelfte:]
29 links = sortieren (links)
30 rechts = sortieren (rechts)
31 return mische (links, rechts)
32
33 return sortieren(liste)

BK_SekI+lI_Python_prof.docx -318 - (c,p) 2015 - 2026 Isp: dre

8.16.x. Selection-Sort

def selectionsort (liste):

;

2 laenge = len(liste)

3 for i in range (laenge-1) :

4 minimum = i

5 for j in range (i, laenge):

6 if liste[j] < liste[minimum]:

7 minimum = j

8 liste[minimum],liste[i] = liste[i],liste[minimum]

return liste

8.16.x. Insertion-Sort

def insertionsort(liste):
laenge = len(liste)
for i in range(l, laenge) :
wert = liste[i]
j =1
while j > 0 and liste[j-1] > wert:
liste[j] = liste[j-1]
Jj-=1
liste[j] = wert
return liste

O ~J oy U b W N

Nej

N
+ O

BK_SekI+II_Python_prof.docx -319- (c,p) 2015 - 2026 Isp: dre

8.16.x. Gnome-Sort

1 def gnomesort(liste):

2 pos = 0

3 laenge = len(liste)

4 while pos < laenge-1:

5 i = pos

6 if liste[i] <= liste[i+1]:
7 pos+=1

8 else:

9 liste[i], liste[i+1l] = liste[i+1], listel[i]
10 if pos !=0:

11 pos—-=
12 else:
13 post+=1

14 return liste

8.16.x. Counting-Sort

def countingsort (liste):

laenge = len(liste)

if laenge ==
return []

listeA = [0] * (max(liste)+1)

listeB = [""] * laenge

for elem in liste:
listeB[elem] +=1

for i in range(l,len(listeB)):
listeB[i]+=listeB[i1-1]

for elem in liste[::-1]:
listeA[listeB[elem]-1] = elem
listeB[elem] -=1

return listeA

o U b W DN

WN R O WO

e
N

BK_SekI+l_Python_prof.docx - 320 - (c,p) 2015 - 2026 Isp: dre

8.16.x. Radix-Sort

1 def radixsort(liste, k=10, d=0):

2 laenge = len(liste)

3 if laenge ==

4 return []

5 elif d ==

6 d = max (map (lambda x: len(str (abs(x))), liste)
7 for x in range(d):

8 listeA = [[] for i in range (k)]

9 for elem in liste:
10 listeA[(elem / 10**x) % k].append(elem)
11 liste = []
12 for bereich in listeA:

13 liste.extend (bereich)
14 return liste

8.16.x. Tim-Sort

8.16.x. Heap-Sort

def heapsort(liste):

w N =

return liste

J O U1 B

o

BK_SekI+II_Python_prof.docx -321- (c,p) 2015 - 2026 Isp: dre

8.16.x. Bucket-Sort

8.16.x. -Sort

BK_SekI+l_Python_prof.docx -322 - (c,p) 2015 - 2026 Isp: dre

8.16.x. Vergleich ausgewahlter Sortier-Algorithmen

Algorithmus in place | stabil Laufzeit-Verhalten
/ Name B AVG w

Best-Case durchschnittlich | Worst-Case
Selection-Sort ja nein O(n?) o(n?) O(n?)
Bubble-Sort ja ja O(n) O(n?) O(n?)
Insertion-Sort ja ja O(n) O(n?) O(n?)
Quick-Sort ja nein O(n*log(n)) | ®(n*log(n)) 0(n?)
Heap-Sort ja nein O(n*log(n)) | O(n*log(n)) O(n*log(n))
Merge-Sort nein, (ja) ja O(n*log(n)) | ©(n*log(n)) O(n*log(n))
Tim-Sort nein ja O(n) O(n*log(n)) O(n*log(n))
Radix-Sort nein ja O(d* (n+k))
Counting-Sort nein ja O(n+k)

Bucket-Sort

interessante Links:

https://www.toptal.com/developers/sorting-algorithms (Animationen zu den verschiedenen Sortier-Algorithmen)

https://www.youtube.com/watch?v=t8g-iYGHpEA (Sortierungen optisch und akustisch veranschaulicht)

BK_Sekl+Il_Python_prof.docx

(c,p) 2015 - 2026 lern-soft-projekt: drews

https://www.toptal.com/developers/sorting-algorithms
https://www.youtube.com/watch?v=t8g-iYGHpEA

8.16.x. das Haufigste Element finden — der Modus

def mode (L) :
for i in range(0,100) :
for 1 in L:
frequency[i] += 1
return i
if frequency[i] == max(frequency) :
frequency=[0]*10

>>>

interessante Links:
http://www.sortierkino.de (zum Zuschauen beim Sortieren; viele Algorithmen im Vergleich)

BK_Sekl+lI_Python_prof.docx (c,p) 2015 - 2026 lern-soft-projekt: drews

http://www.sortierkino.de/

Beispiel-Implementierung
Q: https://github.com/MartinThoma/algorithms/blob/master/sorting.py

BK_SekI+II_Python_prof.docx -325- (c,p) 2015 - 2026 Isp: dre

8.17. Nutzung weiterer (/ besonderer) graphischer Benutzer-
Oberfliichen

BK_SekI+l_Python_prof.docx - 326 - (c,p) 2015 - 2026 Isp: dre

8.18. (die hohe Kunst der) Spiele-Programmierung

Nachdem wir einiges dazu schon beim Modul "pygame" besprochen haben (- 8.9. das Mo-
dul "pygame") dringen wir nun noch etwas tiefer in den Sachvehalt ein.

interessante Links:

http://inventwithpython.com/inventwithpython 3rd.pdf (online-Version des Buches: AL SWEIGART: In-
vert Your Own Computer Games with Python 3rd Edition)
http://inventwithpython.com/makinggames.pdf (online-Version des Buches: AL SWEIGART: Making
Games with Python & Pygame)

8.19. Python im Geheimen - Kryptologie

Begeben wir uns in die Welt von Alice und Bob, den beiden Haupt-Agenten in der Kryptolo-
gie.

8.19.0. Grundlagen

8.19.0.1. Codierung

"geheime" Codierungen

8.19.0.2. Chiffrierung

In den folgenden Kapiteln werden wir die Klartexte (unverschlisselte Texte) griin oder griin-
lich hinterlegt darstellen. Wenn die Buchstaben-Art keine Rolle spielt, dann werden die
Klatrtexte mit Grof3-Buchstaben geschrieben.

Die verschlusselten Texte (Geheimtexte) werden dagegen in Klein-Buchstaben in rot oder
rotlich hinterlegt notiert.

Das Standard-Alphabet sind die 26 deutschen Buchstaben ohne Umlaute und R. Oft wird
auch auf das Leerzeichen verzichtet und die Worter einfach hintereinander geschrieben.
Erweiterte Alphabete nutzen Leerzeichen und / oder Ziffern und / oder Satz-Zeichen mit da-
zu. So etwas definieren wir dann bei den einzelnen Verfahren. Viele Algorithmen sind so
ausgelegt, dass sie Nicht-Alphabet-Zeichen einfach ignorieren oder direkt ibernehmen.

BK_SekI+II_Python_prof.docx - 327 - (c,p) 2015 - 2026 Isp: dre

http://inventwithpython.com/inventwithpython_3rd.pdf
http://inventwithpython.com/makinggames.pdf

I.A. geht es vor allem um das Demonstrieren des Verfahren's. Der wichtigste Grund fur die
Wahl der standardisierten Alphabete ist aber die Vergleichbarkeit der verschiedenen Verfah-
ren. Dabei interessiert uns immer das Agieren der Gegenseite. Kann Sie das Verfahren kna-
cken?

Nicht's ist unangenehmer als eine Ge-)
heimschrift, von der man glaubt, sie sein Verschliisselung
Bomben-sicher und jeder kann aber in

der Praxis mit wenig Aufwand mitlesen. \

Die Einteilung von Geheim-Schriften / - Klartoxt 0 -
Verfahren ist ein unendliches Thema. e Geheimtext

Schliissel
Wir beschrankn uns hier auf zwei ele-
mentare Moglichkeiten.

)

Fir die erste Einteilung betrachtet man Entschliisselung

die Anzahl der verwendeten Schllssel

und das benutzte Verfahren. Wird nur symmetrische Verschlisselung
ein Schlissel und praktisch das gleiche

verfahren fur Ver- und Ent-Schllsselung Verschliisselung

benutzt, dann sprechen wir von sym-

metrischer Verschliisselung. Klassi- m

sche Vertreter sind die CASAR-Chiffre (= Schliissel 1

yund (2). Klartext Geheimtext
Kommen dagegen zwei (zueinander Schliissel 2

gekoppelte) Schliissel und praktisch 0-"

auch zwei Verfahren zum Einsatz, dann
handelt es sich um die asymmetrische
Verschlisselung. asymmetrische Verschliisselung
Beispiele hierfir sind das RSA-

Verfahren oder der DES-Algorithmus.

Die zweite Einteilung bezieht sich auf die Art und Weise, wie der Geheimtext erzeugt wird.So
kann man z.B. Geheimtexte durch Austauschen der Symbole erzeugen. Wir sprechen hier
von Substitution. Typische Umsetzungen sind (=)und (=).

Eine weitere weitere Moglichkeit — Texte unleserlich zu machen — sind Transpositionen.
Hierbei bleiben die Symbole des Klartextes erhalten, aber ihre Positionen innerhalb des Tex-
tes werden verandert. (=)und (>) sind hier viel zitierte Chiffren.

Die dritte Art verandert die Klartext durch Hinzufligen von Symbolen. Dabei geht es zum Ei-
nen darum die Texte unleserlich (oder schwer leserlich) zu machen und zu Anderen sollen
Haufigkeits-Analysen ausgetrickst werden. Kryptographen nennen diese Art der Geheimtext-
Erzeugung Erweiterung. Als typische Vertreter dieser Gruppe kénnen (=)und (2>) ge-
nannt werden.

Entschliisselung

Aufoaben:

1. Vergleichen Sie symmelrvische und asymmelvische Verschliisselung! Nulzen
Sie auch das Infernel, um weilere Wpische Merkmale, Vor- und Nachleile zu
erkunden!

2. Vergleichen Sie die Erzeugung von Geheimfexten durch Substitution,
Transposition und Erweilerung anhand von jeweils mindestens 6 selbslge-
wihlten Kriterien! Versuchen Sie gleichrangig Gemeinsamkeiten und Unler-
schiede zu finden!

3. Informieren Sie sich iiber weilere Einlkeilungs-iioglichkeiten und stellen Sie
eine in Form eines kurzen Vorfrages vor!

Aufgaben:

4. Erstellen Sie ein Stammbaum von Geheimsprachen und stellen Sie diese
vor!

BK_SekI+l_Python_prof.docx - 328 - (c,p) 2015 - 2026 Isp: dre

8.19.1. symmetrische Verschlusselung

Symmetrische Verschlisselungen benutzen fur die Ver- und Ent-Schlisselung (Chiffrierung /
Dechiffrierung) immer den gleichen Schlissel. In praktischallen Fallen kann das gleiche —
oder auch das umgekehrte (reverse) — Verfahren genutzt werden.

Das macht symmetrische Verfahren sehr effektiv. Mit Computern kdnnen sie sehr einfach
umgesetzt werden. Das grolte Problem sind die Schllssel. Sie missen irgendwann ausge-
tauscht werden. Dieser Vorgang kann von Unbefugten mitgehoért / manipuliert / ... werden.
Viele der alteren symmetrischen Verfahren bieten durch eine recht geringe Schllssel-Anzahl
auch keine ausreichende Sicherheit mehr. Mit modernen Rechnern sind sie oft innerhalb
weniger (milli-)Sekunden durch Brute-Force-Angriffe oder Haufigkeits-Analysen angreifbar.

8.19.1.x. CASAR-Verschliisselung

Das Verfahren geht der Legende nach auf Gaius Julius CASAR (100 — 44 v.u.Z) zurtck. Zu
jener Zeit soll die Chiffre auch nicht gebrochen worden sein. Dazu gab es wahrscheinlich
auch zu wenige Menschen, die sich mit Schrift und Alphabet auskannten.

CAsAR's Verschlisselung war einfach und effektiv. Er setzte dem Klartext-Alphabet ein zwei-
tes gegenuber, dass um 3 Positionen verschoben war. Buchstaben, die keine Entsprechung
hatten, wurde an der anderen Seite angelegt.

Wahrscheinlich benutzte CASAR auch nur eine Mdéglichkeit — und zwar eben diese CASAR3-
Verschiebung.

Beispiel: CASAR3
1

Symbole Ifd. Nr. 18 [19| 20 [21 | 22 | 23 [24 | 25 | 26

Klaralphabet | A|B|C|D |E

Q.|
(1]
-
«©
=
(-

Geheimalph. |y|z|a|b|c

Dadurch entsteht ein Buchstaben-Ring. Fur andere CASAR-Verschlisselungen wird der Ring
einfach weitergeschoben.

Beispiel: CASAR7
1

Symbole Ifd. Nr. 2 3 4 5 6 7 8 9 (10 (11|12 |13 |14 |15 |16 |17 |18 | 19|20 |21 |22 |23 |24 | 25 | 26
Klaralphabet |[A|B|C|D|E|F|G|H|I |J|K|L{M|N|O|P|Q|R|S|T|U|V|WIX|Y
Geheimalph. |u|v|w|x|y|z|a|b|c|d|e|f|g|/h|i|j|k|I m|njo|p|lq|r|s]|t

Auch der Nachfolger von CASAR — der Kaiser AUGUSTUS — benutzte eine ahnliche Chiffre. Er
benutzte die Verschiebung um einen Buchstaben und verwendete fir das X (damals letzter
Buchstabe im Alphabet) ein AA als Substituenten.

Die konkrete Umsetzung in Python schauen wir uns etwas spater an. Zuerst diskutieren wir
einige Programmier-Varianten bei einem speziellen Fall der CASAR-Verschllsselung.

BK_SekI+II_Python_prof.docx -329 - (c,p) 2015 - 2026 Isp: dre

8.19.1.x. ROTI3

ROT13 ist eine spezielle Variante der CASAR-Verschlisselung. Genaugesagt handelt es sich
um eine CASAR13-Chiffre.

Beispiel: CASAR13
1

2 3| 4 5|6 718 9 |10 11|12 |13 | 14 16 18119120 (21| 22|23 (24|25 26

Symbole Ifd. Nr.

15 17
Klaralphabet | A|B|C|D|E|F|G|H|I|J|K|L|M|N/O|P|Q|R|S|T|(U|V|W|X|Y|Z
Geheimalph. [n|o|p|q|r|s|t|u|v|w|x|y|z|a|b d hli k

Durch die symmetrische Teilung des Alphabet's ergeben sich einige praktische Besonderhei-

ten.
|

ordnung der Buchstaben von

Es kommt zu einer festen Zu- | A I 14
Klar- und Geheimtext- i i i
Alphabet. Dadurch funktionie- [N vIiw

ren Ver- und Ent-Schllisselung
mit dem exakt gleichen Algorithmus bzw. der gleichen Funktion.

Urspringlich wurde die ROT13 auch nicht wirklich als Verschllisselung eingesetzt, sondern
als Mittel der sehr einfach und effektiven Verschleierung von Texten. Urspriinglich sollte da-
mit im usenet zweideutige Witze und Texte auf den ersten Blick versteckt werden.

Dabei zielte man auch auf den Ef-
fekt hin, dass ein Leser einen
ROT13-Text bewufdt entschlisselt.
Damit ist er auch fir sich verant-

wortlich, wenn er mit bestimmten
Obzonigkeiten, sexuellen Anspie-
lungen usw. usf. nicht klar kommt.
Er hatte es lassen kdnnen.
ROT13-Verschlusselungen sind, wie alle klassischen CASAR-Chiffren sehr leicht durch Brute-
Force- Angriffe oder Haufigkeits-Analysen knackbar. Mittlerweise sind sie ein Sinnbild fir
sehr schlechte kryptographische Verfahren.

In den folgenden Programmier-Beispielen zu den verschiedenen Chiffren wollen wir ein
grundlegendes Schema benutzen.

1. Eingabe des Klartextes

2. Umwandlung des Klartextes in die notwendige Form (Grof3-Buchstaben, ev. ohne Leerzei-
chen)

3. Erstellen einer Haufigkeits-Analalyse (zu Vergleichszwecken)

4. Verschlusseln der Klartextes
a) ev. Anzeige von Zwischenschritten
b) Anzeige des verschlisselten Textes

5. Erstellen einer Haufigkeits-Analyse vom Geheimtext

6. Entschlusseln des Geheimtextes

BK_SekI+lI_Python_prof.docx -330 - (c,p) 2015 - 2026 Isp: dre

Entwickeln wir ein

solches Programm
nun schrittweise flr
die ROT13-Ver-

schlusselung.

Zuerst bauen wir uns
ein einfaches Pro-
gramm ohne Funktio-
nen. Diese fiihren wir
dann in einer zweiten
Entwicklungs-Reihe
ein.

Starten wir mit einem
einfachen Eingabe-
Ausgabe-Rahmen, in
den wir dann als
nachstes die Um-
wandlung der Einga-
be in Grof3-Buch-
staben integrieren.
Die beiden Alphabete
legen wir als feste
Listen an. Gerade
beim ROT13-Ver-
fahren ist dies ja eine
der Basis-Vereinba-
rungen.

Mit der Funktion up-
per() erhalten wir ei-
nen Grol3-Buchsta-
ben-Text von einem
Text-Objekt. (s.a.
8.1.1. Objekt-orientier
te Nutzung von

Strings)

In der Verschlisse-
lung selbst bestim-
men wir zuerst die
Lange des Klartextes.
Desweiteren wird ein
leerer Geheimtext
angelegt, denn wird
dann mit der i-
Schleife Zeichen flr
Zeichen auffillen
wollen.

Bei jedem Schleifen-
durchlauf separieren
wir ein KlarSymbol.
Dieses wird mittel j-
Schleife im Klar-
Alphabet gesucht und
sich die Position ge-
merkt.

ROT13 Ver- und En
L. Drews; 2020

Definitionen

t-Schlisselung

klarAlpha=["A", "B", IIC", IID", "E", "F", "G", IIH", III",
"J", "K", "L", "M", "N", "O", "P", "Q", "R",
"S", "T", "U", "V", "W", "X", "Y", "Z"]

geheimAlpha=["n", "o

llwll, "X", v y

"S", "t", "u", Ny

", v p", "q", "r",
ll, llzll, llall, llbll, IIC", lldll, llell
llfll, llgll, llhll, llill, lljll, llkll, lllll, llmll]

laengeKlarAlpha=26
Eingabe
klarText=input ("Kla
Verschliusselung

geheimText=klarText

print ("Geheimtext:

Entschlisselung

rtext : ")

",geheimText)

dechiffKlarText=geheimText

Ausgabe
print ("Klartext

input ()

Eingabe
klarText=input ("Kla

", dechiffKlarText)

rtext : ")

klarText=klarText.upper ()

print ("KLARTEXT ",klarText)

Verschliisselung

Verschlisselung

print ("=========> Verschlisselung
laengeKlarText=len (klarText)

geheimText=""

for i in range(laengeKlarText):

klarSymbol=klar
pos=-
for j in range(
if klarSymb
pos=j
break

Text[1]

laengeKlarAlpha) :
ol==klarAlphalj]:

geheimSymbol=geheimAlpha [pos]

if pos>=0:
geheimText+
else:
geheimText+
print ("Geheimtext:

Entschliisselung

=geheimSymbol

=klarSymbol

",geheimText)

BK_Sekl+ll_Python_prof.docx

-331-

(c,p) 2015 - 2026 Isp: dre

Mit Hilfe der Position holen wir aus das passende GeheimSymbol aus dem geheim-Alphabet
und hangen es an den bisher bearbeiteten Geheimtext an. Fir den Fall, dass wir kein pas-
sende Symbol gefunden haben (pos ist dann immer noch -1), Ubernehmen wir das Nicht-
Alphabet-Symbol.

Far die EntschlUsselung # Entschliisselung

benutzen wir genau den print ("=========> Entschliisselung ========>")
gleichen Algorithmus, laengeGeheimText=len (geheimText)

nur umgetauschten dechiffKlarText=""

klar- und geheim- for i in range (laengeGeheimText) :

Variablen. Hier macht geheimSymbol=geheimText [1]

sich eine sprechende bos=~

for j in range (laengeKlarAlpha) :
if geheimSymbol==geheimAlphal[j]:
pos=]
break
klarSymbol=klarAlpha[pos]
if pos>=0:
dechiffKlarText+=klarSymbol
eleges
dechiffKlarText+=geheimSymbol

Benennung wieder
einmal bezahlt.

Ausgabe

Aufoaben:

1. Ubernehmen Sie das Programm und die erganzenden Programm-
Abschnilte! Teslen Sie das Programm mil verschieden Eingaben!

2. Erweitern Sie das Programm um die Moglichkeit weitere Klarfexte einzuge-
ben! Ein Abbruch soll mit der Eingabe cines leeren Texltes erfolgen!

3. Veréiindern Sie die Ausgabe "-----=> verschliisselung .." 80, dass fiir jedes
chiffvierte Symbol ein Gleichheilszeichen angezeigt wird! Ubernehmen Sie
dieses dann auch fiir die Enlschliisselung”

Naturlich gibt es weitaus schénere und effektivere Daten-Strukturen fur die Alphabete.
So kann man zwei ein- klarAlpha="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

hache Stﬂngs benutzen geheimAlpha="nopgrstuvwxyzabcdefghijklm"

und dann durch sie

durch interieren.

Diese Variante erscheint mir z.B. sehr gut fur die flexible Erzeugung von Klar- und Geheim-
Text-Symbolen zu sein.

Eine weitere MOglICh- (o) s [GRS R e | TR s i

keit ist die Verwendung

von einer strukturierten]

/ geschachtelten Liste

aus Symbol-Paaren.

Auch TUpeI in Form von rotl3=[["A","n"], ["B","o"1, ["C","p"]1,
Dictonary's sind denk-

bar. Besonders wenn]

man Alphabete aus

einer (JSON-)Datei ein-

lesen mdchte, spricht einiges flr diese Variante.

BK_SekI+l_Python_prof.docx -332- (c,p) 2015 - 2026 Isp: dre

Es geht aber auch ohne Klar-Al E
. -Alphabet Geheim-Alph..
Vordefinition der Alphabete. Py oy o TASCII | Symbol | ASCIl | | Symbol | ASCII
Man kann ja auch die A 065 a 097 n 110
ASCI|-Tabelle der Rechner
selbst nutzen. g 823 b ggg o 1 1;
Natirlich muss man dann c P
die neuen ASCII-Symbole
immer berechnen. Der Al- L 076 I 108 y 121
gorithmus &ndert sich also M 077 m 109 z 122
entscheident. N 078 n 110 a 097
(o) 079 o] 111 b 098
X 088 X 120 k 107
Y 089 y 121 | 108
Z 090 z 122 m 109

Aufoaben:

1. Enlscheiden Sie sich fiir eine neue Arl der Alphabet-Darstellung bzw. die
"Alphabel’-frei Version und erstellen Sie ein neues ROT13-Programm!

2. Drucken Sie Ihr Programm aus und verdffentlichen Sie es fiir eine Diskus-
sion an der Tafel oder einem schwarzen Brell od.a.!

3. Ein Milschiiler verlvilt die Auffassung, man durch mehrfache Anwendung
von Verschliisselungen aufeinander die Sicherheil deutlich erhdhen kann.
Auch beim ROT13-verfahren soll dies so secin. Selzen Sie sich mil dieser
These auseinander!

fiir die gehobene Anspruchsebene:

4. Verandern Sie eine Programm-Version so, dass eine Text-Dalei mil einem

langeren Klartext eingelesen und angezeigt werden kann! Dieser Text soll

dann verschliissell und danach wieder enlschliissell angezeigt werden!

In der Registry sollen in bestimmten Schlisseln die Verlaufe (des Internet-Browsing) gespei-
chert sein, die mit ROT13 verschlisselt sind und wohl auch nicht geléscht werden, wenn
man den Verlauf 16scht!

HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAs
sist\ [Unterverzeichnisse]

Dieses Logging lasst sich abschalten, wenn man in dem Verzeichnis einen neuen Schllssel
(DWORD) "NoLog" anlegt und diesem den Wert auf 1 setzt. Mit einem weiteren Schlissel
"NoEncrypt" mit dem Wert 1 kann die "Verschlusselung" ausgeschaltet werden (mit O eben
wieder einegschaltet)

8.19.1.x.1. ROT13 mit einer Funktion

Die zwei praktisch identischen Algorithmen flr die Ver- und Entschlisselung sind natdrlich
ein Dorn im Auge eine ("faulen") Programmierer's. Findet man irgendwann einen Fehler oder
will man den Algorithmus berandern, dann muss man immer an zwei Stellen im Programm
korrigieren. Erfahrungs.gemal geht das schief. Irgend eine Stelle vergi3t man oder andert
diese anders. Da sind dann Folge-Probleme schon vorprogrammiert.

BK_SekI+II_Python_prof.docx -333- (c,p) 2015 - 2026 Isp: dre

So etwas schreit ja férmlich nach der Benutzung einer Funktion, die den einen Text in den
anderen umwandelt. Was dabei Klar- und was Geheim-Text ist, ist ja egal, weil das Verfah-
ren so schon symmetisch ist.

Wir bleiben hier mal bei
der oben besprochenen
Form der Alphabet-
Darstellung in zwei Lis-
ten. Die Variabalen, die
sich auf den Klartext
bezogen, werden in der
Funktion nun in rein-
gehende Variablen um-
benannt. Dementspre-
chend die geheim-
Variablen auf raus.

def rotl3(textRein) :
laengeTextRein=len (textRein)
textRaus=""
for i in range(laengeTextRein):
reinSymbol=textRein[1i]
pos=-
for j in range (laengeKlarAlpha) :
if reinSymbol==klarAlphal[j]:
pos=]
break
geheimSymbol=geheimAlpha [pos]
if pos>=0:
textRaus+=geheimSymbol

Nun mussen wir aber elges

auch noch beachten, textRaus+=reinSymbol
dass wir aus kosmeti- return textRaus

schen Griinden die

Klar- und geheim-Texte mit anderen Buchstaben versehen haben.
Das Hauptprogramm

verkurzt sich nun natir- abbruch=False

lich deutlich durch die while not abbruch:
Funktions-Aufrufe. # Eingabe

Das Programm erd SO klarText=input("Klartext s Wi

auch deutlich Ubersicht-

licher und verstandli- if klarText>"":

klarText=klarText.upper ()

gher . print ("KLARTEXT : ",klarText)
Anderungen und Erwei-
terungen kdnnen wir nun # Verschliisselung
auch sehr gut vorneh- print ("======> Verschliisselung =====>")
men. geheimText=rotl3 (klarText)

print ("ROT13-Fkt.: ",geheimText)

geheimText=geheimText .upper ()

Entschliisselung

print ("======> Entschliisselung =====>")
Ausgabe
print ("ROT13-Fkt.: ",
rotl3 (geheimText))
PrLAE (Vomemmmmsomeosssossoossoosoo=s=s ")
print ()
else

abbruch=True

print ("Programm-Ende")

Aufgaben:

1. Der Aufbau der Verschliisselungs-Zeile mit den Gleichheils-Zeichen ent-
sprechend der umgewandelten Symbole hat einem Kunden sehr gut gefallen.
Bekommen Sie das auch mit voll3-Funktion hin? Realisieren Sie die Funk-
ton entsprechend ODER begriinden Sie, warum das so nicht geht!

2. Wandeln Sie Ihr 2. ROT13-Programm (mit der geanderten Dalen-Struktur
fiir die Alphabele bzw. mil dem geanderten Algorvithmus) in ein Programm
mil einer passenden roll3-Funklion um!

BK_SekI+l_Python_prof.docx -334 - (c,p) 2015 - 2026 Isp: dre

8.19.1.x.2. Haufigkeits-Analyse

Alle einfachen CASAR-Chiffren — und ganz besonders die ROT13-Chiffre — sind fiir Analysen
der Buchstaben-Haufigkeit empfindlich. Wir wollen die Buchstaben-Haufigkeit vor allem dazu
benutzen, um verschiedene Verfahren miteinander zu vergleichen und zu bewerten.

Hier werden wir eine Funktion erstellen, die sich auf die Z&hlung und Anzeige der Symbole
beschrankt. Fur vergleichende Zwecke misste man sonst vielleicht auch die Ergebnisse wie-
der zurlickgeben.

def symbolHaeufigkeit (alphabet, analyseText) :
print (".. Haufigkeits-Analyse ..")
anzahlSymbole=len (alphabet)
haeufigkeit=[]
for i in range (anzahlSymbole) :
haeufigkeit.append (0)
laengeText=len (analyseText)
for i in range (anzahlSymbole) :
aktSymbol=alphabet [1i]
for j in range(laengeText):
if analyseText[j]==aktSymbol:
haeufigkeit[i]+=1
for i in range (anzahlSymbole) :
print (" ", format (alphabet[i],"2s"),
format (haeufigkeit[i],"34d"),
fomat (haeufigkeit[i]/laengeText*100,"6.2£f"),"s")
#return

In der obigen Funktion wird Alphabet-bezogen gearbeitet. Das Ergebnis soll in der Liste
hauefigkeit gespeichert werden. Fir jedes Symbol aus dem Alphabet wird zuerst einmal eine
Null als Anfangs-Wert eingespeichert.

Danach wird wieder fur jedes Symbol der Text nach allen Vorkommen durchsucht und die
Haufigkeit inkrementiert.

Zum Schlufd wird die Haufigkeit fir jedes Symbol mit Anzahl und prozentualem Anteil ausge-
geben.

Aufoaben:

1. Vereinfachen Sie die Haufigkeils-Analyse dahingehend, dass nur noch eine
Schleife (for i in range(anzahlSymbole) :) benulzt wird!

2. Erweitern Sie die Analyse um die Erfassung der Nicht-Alphabel-Symbole
und einer nahtoschen Ausgabe als "?7?"!

3. Da die Zeilen fiir die Symbole nicht wirklich ausgenulzl werden, mochle der
Kunde cine Ausgabe in mehreren Spalten, wobei die Spalfen-Anzahl varia-
bel gehalten werden soll!

BK_SekI+II_Python_prof.docx -335- (c,p) 2015 - 2026 Isp: dre

Hier eine mdgliche Umsetzung einzelner Aspekte in einer erweiterten Funktion.

def symbolHaeufigkeit (alphabet, analyseText) :
print (".. Haufigkeits-Analyse ..")
anzahlSymbole=len (alphabet)
haeufigkeit=[]
anzahlGefunden=0
laengeText=len (analyseText)
for i in range (anzahlSymbole) :
haeufigkeit.append(0)
aktSymbol=alphabet [1]
for j in range (laengeText):
if analyseText[j]==aktSymbol:
haeufigkeit[i]+=1
anzahlGefunden+t+=1
spalten=3
aktSpalte=0
for i in range (anzahlSymbole) :
print ((8-spalten)*" ", format (alphabet[i],"2s"),
format (haeufigkeit[i], "34d"),

format (haeufigkeit[i]/laengeText*100,"6.2f"),"%",end="")

aktSpalte+=1
if aktSpalte==spalten:
aktSpalte=0
print ()
print ((7-spalten)*" ", format ("22?","3s"),
format (laengeText-anzahlGefunden, "3d"),
format ((laengeText-anzahlGefunden) /laengeText*100,"6.2f"),
#return

Aufgaben:

1. Erweitern Sie die Buchstaben-Haufiokeils-Analyse um kleine Hisfogramme
(>] (>]
(in Balken-Form)! Fiir jeweils gerundefe 10 % konnfe z.B. eine Raule (#)

und fiir 5 % ein senkrechter Strich (|) geselzt werden.

2. Verindern Sie die Funktion so, dass beim Funktions-Aufruf auch mit ange-

geben werden kann, in wievielen Spalfen die Ausgabe erfolgen soll!

2
.

BK_SekI+l_Python_prof.docx -336 - (c,p) 2015 - 2026 Isp: dre

8.19.1.x. Umsetzung der CASAR-Verschliisselung

Mit den Kenntnissen aus der Umsetzung der ROT13-Verschlisselung kdnnen wir nun auch
effektiv eine universelle CASAR-Ver- und Entschlisselung programmieren.

Will man das Konzept der zwei Alphabete, wie vorne beschrieben, weiter benutzen. Dann
muss man sich nach der Festlegung der Verschiebung das Geheim-Alphabet (neu) zusam-
menstellen. Dann kann man viele Funktionen mit wenigen Veranderungen tubernehmen. Da-
fur spricht z.B., dass man diese Funktionen z.B. fur CASAR13 ja schon getestet hat. Wie wir
spater bei der Umsetzung einer CASAR-Verschliisselung mit einem Schliissel noch sehen
werden, ist diese zuerst etwas altbacken wirkende Methode, dann doch wieder sehr prak-
tisch.

Aus meiner Sicht spricht hier aber mehr fur eine flexible Umsetzung auf der Basis der ASCII-
Zeichen.

Geht man von einem Ring-formigen Alphabet aus, dann beschreiben die Funktionen:

chiffrierts(K) = (K + S) mod 26 = G K .. Position Klar-Alphabet-Symbol
S .. Schlussel-(Nummer) / Verschiebung
dechiffrierts(G) = (G - S) mod 26 = K G .. Position Geheim-Alphabet-Symbol

das grundsatzliche Vorgehen.
Bei den ASCII-Zeichen haben wir aber kein geschlossenes Alphabet. Leider sind auch die
Kleinbuchstaben nicht direkt an die Grol3-Buchstaben angeschlossen, was uns hier super
helfen wirde.
So bleibt nur eine Entscheidungs-bezogene Umsetzung entsprechend der Lage des / der
Buchstaben zum Geheim-Buchstaben, welcher der CASAR-Chiffre entspricht.

CASAR-Verschliisselung

01.2020

Eingabe Klartext
klarText=input ("Klartext: ")
verschiebung=eval (input ("CASAR-Code (=26 .. 26): "))

Vorbereitung
klarText=klarText.upper ()

print ("KLARTEXT: ",klarText)
obenGeheimCodeGrenze=90-verschiebung
geheimText=""

Verschliisselung
laengeKlarText=len (klarText)
for i in range (laengeKlarText) :
aktKlarSymbol=ord (klarText[i]) #ASCII-Code
if aktKlarSymbol>=65 and aktKlarSymbol<=90: # GroRbuchstabe
aktGeheimSymbol=aktKlarSymbol+verschiebung
if aktGeheimSymbol>90: # zu grofer ASCII-Code
aktGeheimSymbol-=26
if aktGeheimSymbol<65: # zu kleiner ASCII-Code
aktGeheimSymbol+=26
geheimText+=chr (aktGeheimSymbol) # Symbol aus Code
else: # Nicht-Alphabet-Symbol
geheimText+=chr (aktKlarSymbol)

print ("Geheimtext: ",geheimText.lower())

Nach der Prifung, ob es sich um ein Klartext-Symbol (also Gro3buchstabe) handelt, wird die
Verschiebung im ASCII-Code vorgenommen. Dabei kénnen auch ASCII-Code's jenseits der
GroRRbuchstaben entstehen. Hier korrigienen wir dann um die Alpahbet-Lange (hier 26).

BK_SekI+II_Python_prof.docx -337 - (c,p) 2015 - 2026 Isp: dre

Der aufmerksame Leser wird gleich bemerkt haben, dass ich dieses Mal nicht in die Klein-
buchstaben chiffriert habe. Da steckt einfach schon der Hintergedanke drin, spater eine uni-
verselle Funktion aus dem Prototypen zu machen. Die Darstellung mit Klein- und Grof3-
Buchstaben ist ja nur Kosmetik und die méchte ich den Python-String-Funktionen Uberlas-
sen.

Aufoaben:

1. Erginzen Sie das obige Programm um eine Wiederholungs-Schleife, die
solange chiffrierl, bis cin Leertext eingegeben wird!

2. Verandern Sie das Programm so, dass eine divekte Chiffvierung in die
Kleinbuchstaben erfolgt!

3. Planen Sie eine universelle Funktion fiir die CASAR-Chiffrierung und —
Dechiffrierung! Welche Parameler braucht eine solche Funktion?

4. Realisieren Sie eine universelle CASAR-Funklion!

5. Erweitern Sie das Programm nun noch um die Dechiffrierung und eine
Buchstaben-Haufigkeils-Analyse!

8.19.1.x. moderne CASAR-Verschliisselung mit Schliissel

Naturlich ist der Begriff modern nicht wirklich Ernst gemeint. Durch das grofl3e Leistungs-
Potential von Computern und vielen sehr cleveren Analyse-Methoden ist die CASAR-
Chiffrierung nicht mehr Stand der Zeit. Aber mit ein paar Tricks kann man noch so einiges
aus dieser "einfachen" Verschllsselung herausholen.

Beispiel: CASAR7 m|t Schlusselwort BUCHLISTE

Symbole Ifd. Nr. 1011 ({12 (13|14 [15|16 |17 |18 | 19|20 | 21| 22 |23 |24 | 25| 26
KIaraIphabetABCDEFGHIJKLMNOPQRSTUVWXYZ
Geheimalph. |r |v|w|x|y|z|b|u|c|h|l]i|s|t|e|la|d|f|g|jlk/m|n|o|p|g

Beispiel: CASAR7 auf eln Zufalls AIphabet

Symbo|e Ifd. Nr. 2 10|11 (12|13 |14 (15|16 |17 [18 |19 |20 [21 | 22 | 23 | 24 | 25 | 26

KIaraIphabetKTGEPSWYJQHZIAVORCMNUXBDFL
Geheimalph. [u|(x|b|d|f|l |k|t]|g j h i

®
o

»

3
<
(o
o

BK_SekI+lI_Python_prof.docx -338 - (c,p) 2015 - 2026 Isp: dre

8.19.1.x. POLYBIOS-Verschliisselung

auch unter Polybius zu finden

A|B|C|DJE]|1
beschrieben vom griechischen Geschichtsschreiber POLYB- FIGlHIIIKI2
I0S VON MEGALOPOLIS etwa um 200 bis 120 v.u.Z. LIMINITOIP I3
Basis ist die sogenannte Polybios-Matrix (Polybios-Quadrat), 8 \;T/)S(;I; g g
in der die Klar-Buchstaben Zeilen-weise notiert sind 1T T2 1345

Die Zeilen und Spalten werden durchnummeriert.

Die Zeilen- und Spalten-Nummern (Buchstaben-Koordinaten) werden zur Substitution ge-
nutzt.

Nehmen wir an, unser Klartext lautet:

SEHR GEHEIM

Praktisch wird nun jeder zu verschlisselnde Buchstabe in

AEBWIN =

- (<O |T|>
NISHZ|O |
WO ZITO
~|<|Ho|-|o
O'INC‘E'UXITI

der Matrix gesucht und dann zuerst immer die Zeilen- und

dann die Spalten-Nummer notiert.
Aus dem S wird so 43 usw. usf.
Die Nummer konnten dann z.B. Uber auf dem Burg-Turmen oder —Mauern angeordneten
Fackeln signalisiert werden.

Die Empfanger benutzten die gleiche Tabelle und praktisch AIBICIDIE 1
das gleiche Verfahren (nur umgekehrt), um den Klartext aus FIGlHIIIKI2
den Geheimzeichen zu dechiffrieren. LIMINTOTP I3
Aus den Koordinaten 43 erhalten wir dann den entschlissel- QRS [e—— 4
ten Buchstaben S. VIWIX[Y | Z]|5
112 |3|4]|5
In Python kdénnen wir fur die PO-
LYBlOS-MatrlX eln mehr— polybioszarray(["A", "B", ncn, "D", "E"] ,

dimensionales Feld (Array, Vek- ["E", .1,
tor) nutzen (> 6.6. Vektoren, =)
Felder und Tabellen).

Aufoaben:

1. \Zerschliisseln Sie den obigen Text bis zum FEnde!

2. Uberlegen Sie sich, wie das Verfahren verbessert werden! Machen Sie Vor-
schlige und erklaven Sie, welche Veranderungen sich ergeben wiirden!

3. Selzen Sie die POLYBIOS-Verschliisselung in ein Python-Programm um!
Der zu verschliisselnde Text soll als Fingabe in das Programm cinfliefen!
Als Basis-Quadral verwenden wir eine 6x6-Malvix mit allen Buchstaben und
den Ziffern.

Ein der praktischen Umsetzungen erfolgte als Klopf-Code in Gefangnissen, um z.B. uber
Rohrleitungen oder Wande Nachrichten zu tbertragen.

Beim bifid-Verfahren (=) wird an eine POLYBIOS-Verschliusselung noch eine Transposition
angehangt, um die Koordinaten zu trennen.

Eine noch weitere Verbesserung erfolgte durch das ADFGX-Verfahren (=). Dieses wurde
noch bis in den 1. Weltkrieg hinein verwendet.

BK_SekI+II_Python_prof.docx -339- (c,p) 2015 - 2026 Isp: dre

8.19.1.x. VIGENERE-Verschliisselung

Das grofRe Problem der einfachen Substitutions-Verfahren ist immer die moégliche Krypto-
Analyse Uber die Buchstaben-Haufigkeit.

Johannes TRITHEMIUS (1462 — 1516) erstellte flr sein Verschlisselungs-Verfahren eine
sogeannte Transpositions-Tabelle — diese nannte er Recta transpositionis tabula oder kurz
auch Tabula recta. In der originalen Tabelle fehlen die Buchstaben j und v, da im Mittelalter
in der deutschen Sprachen u und v sowie i und j nicht unterschieden wurden. Wir nehmen
hier eine an unser heutiges Alphabet angepasste Tabelle:

X

[G]E[H

E[1[m[B[LIE[I[B[T[G[E[H[E[I[M[X]X

X

<|clH|w|B|O|v|o|Z|Z|r|X|—|—|T|®|mMmO|0|m|>|N|<[X S| [>

[B[CID]

© O N O 0o b~ WO N -

-
o

-
-

-
N

-
w

-
[¢)]

-
[}

-
)

-
oo

-
©

N
o

N
=

N
N

N
w

N
i

N
(&)

—|T|®e|mmoo|wm|>|N|<|X|S|<|c|H|n|x|o|v|o|Z|Z|r|X|<—

o|—|Z|®|mmoo|m|>|N<|X|S|<|c|Hd|n|x|o|v|lo|Z|Z|r|X
Xl |—|T|®[MmM|o|0|m|>|N|<|X|S|<|Cc|d|n|x|o|T|o|Z|Z|r

X |—IZ|@|mmo|o|m|>|N|<L|X|S|<|C|d|n|x|o|T|o|Z|I=Z

Zir|X|—|—|T|®|mmo0|w|> N|<|X|S|<|c|H|n|x|D|T|o|Z

ZIZ2r|X|—|—|T|@|mmOo|o|m|>|N|<L|X|S|<|c|d|n|x|O|T|O

OZIZ|Ir|X|«|—|T|®@|mm|Oo|0|w|>|N|< | X |S|<|c|H|n|x|0|T

TO|1Z|IZ|r|X|—|—|T|®|MmM|OO|m|>|N|<|X|S|<|C|d|n|x|O

O|o|0|1Z|IZ|r |R|—|—|ZT|O|TMmM|O|0|®m|>|N|<|X|S|<|C|H|n|x

T|0|T|0|Z|IZ2|r|xR|—|—|T|®|mmo|o|m|> N|<[X|S|<|c|H|n

®[DO|T|OZIZ|r|R|—|—|T|®|TmM|O|O|m|>|N|< | X |S|<|C|H

=[O0 Z|IZ|r|XR|«|—|T|®|MMOO|m|>|N< XS |<|C

clHd|ln|m|O|T|o|Z|IZ|r |X|—|—|T|®|MmM|OO|m|>|N|<|X|S|<

N<[x[[<|[e]-[]=|o]v[o]z|z][x||-[z[e][n|m]o|o|]>]
N
>IN | X S|<|Cc|H|n|B|O|T|0|Z|IZ|r |X|—|—|Z|®|mmO|O|w
W>N< X |S|<|Cc|H|n|R|O|T|0|1Z|IZ|r |X|—|—|Z|®|mm|O|O
O|m|>|N|<|X|S|<|c|d|n|x|O|T|o|ZIZ|r X« |—|T|®|m|m|O
O0|m| > N<|X|S|<|C|H|n|B|O|T|0|Z|IZ|r |X|«|—|T|®|m|m
moO|0|w (> |N|<|X|S|<|c|H|w|B|O|T|o|Z|Z|Ir|X|—|—|T|®|™m
nmo|0|m|> |N|<[X|S|<|c|d|n|x|o|T|o|Z|Z2|r|X|«|—|T|®
QOMm|O|0|m|>|N|<|X|S|<|C|Hd|n||0|T|o|1Z|Z|r |X|—|—|T
I|O|mmolo|m|>|N<L|X|S|<|c|H|n|x|o|T|o|Z|IZ|r|X|—|—
Si<|clHd|w|[D|O|v|o|ZIZ|r | X< |—|T|@|mmO|O|wm|>|N|<| X<
X|Si<|clH|n|H|o|T|o|Z|Z2|r|X|—|—|T|e|m|mo|o|m|>[N|<
<X|s<lc|H|n|B|O|T|o|Z|IZ|r|XR|—|—|ZT|®|MmMO|O|w|>|N

N
[}

[hlglkli[n[s[ift[n[s[m[flt[s[wlu[z[e[qg]r[s[w]y[afc]

Man kann gut erkennen, dass ein Buchstabe jedes Mal ein neues Geheim-Zeichen be-
kommt. Obwohl wir finfmal ein E im Klartext hatten, ergibt sich jedes Mal ein anderes eheim-
Symbol. Anders herum kann man aus dem mehrfachen Auftreten eines Geheim-Symbol's
nicht auf den Klartext-Buchstaben zurtickschlieien. Wir haben im Geheimtext z.B. zweimal
ein i. Jedes Mal war es aber ein anderer Klartext-Buchstabe, der verschlisselt wurde.

Im Prinzip benutzte TRITHEMIUS als Schlissel den Klartext. Mit anderen Worten: er ver-
schlusselte einen Text mit sich selbst.

Daraus ergibt sich ein Problem: ein Buchstabe wird niemals durch sich selbst kodiert. Dies
bietet eine Chance, den Code zu knacken.

Die Verwendung von Fullzeichen ist bei TRITHEMIUS eher unglnstig. Benutzt man das glei-
che Flillzeichen (s. oben: XXX), dann ergibt sich eine alphabetische Symbolfolge. Die Verwen-
dung von fortlaufenden Buchstaben (s. oben: ABCD) erzeugt auch eine charakteristische
(springende) Symbol-Folge.

Der Franzose Blaise DE VIGINERE (sprich: de wischineer,) entwickelte eine ahnliche Chiffre.
Er ordnete den Buchstaben in Abhangigkeit von ihrer Position im Klartext unterschiedliche
Chiffren zu. Nehmen wir z.B. das Schliisselwort: geheim, dann wird der erste Buchstabe des

BK_SekI+l_Python_prof.docx - 340 - (c,p) 2015 - 2026 Isp: dre

Klartextes mit CASAR7 verschlusselt, weil g an der 7. Position im Alphabet steht. Der zweite
Buchstabe wird dann mit CASAR5 (e ist an der 5. Position) usw. verschllsselt. Am Ende des
Schlisselwortes beginnt man wieder von vorn.

|

RIY[P[T[O|G|AJF[1[I[S[T[S[C[H[O[N[T[O|L|L][X]

© O N O g s~ WON =

-
-

|x|c|—|T|@|MMOI0|m|> IN<L|X|S|<|C|Hd|n|D|O|Tv|lo|Z|=2
r|X|—|—|Z|O|mMmoo|m|>|N|<[X|S|<|c|Hd|n|x|o|T|lo|Z|=
r|X|—|—|Z|®|Mmoo|m|>|N|<[X|S|<|c|d|n|x|o|T|lo|Z|I=Z
r|X|—|—|T{O|mMmoOO|w|>|N|<[X|S|<|c|d|n|x|O|T|lo|Z|Z] X

N
mm|O|0|m(>|N|< | X [S|<|C|H|w|(D|O|v|0|Z|IZ|r |X|l«|—|T|®] |X
O0|m| > |IN[<L|X|S|<|[C|H|n|x|O|T|0|Z|Z2|r |X|<|—|T|®|m|m
O|MmM|O|0|m|>|N|<|X|S|<|c|H|»n|X|O|T|0|Z|Z|r |X|—|—|T
O0|m| > |IN(<|X|S|<|C|H|n|m|Oo|T|o|Z|Z|r |X|—|—|T|®|m|m
I|O|MmoO|m|>|N<|X|S|<|cld|n|x|O|T|lo|Z|Z|r |X|—|—
Mmo0|m|> N<|X|S<|lc|d|n|xo|v|o|Zz|IZ2|r |X|—|—|T|®
O0|m| > |N[<|X|S|<|C|H|n|B|0|T|0|Z|Z|r |X|—|—|T|®|m|m
O|mimo|o|m|>|N|<|X|S|<|c|H|n|x|o|T|o|Z|Z2|r |X|«|—|T
O0|m|>|IN|<|X|S|<|C|H|n|D|0|T|0|Z|IZ|r |R|—|—|T|®|mm
IT|O|Mmoolm|>|N<|X|S|<|c|d|n|x|O|T|o|Z|Z|r |X|—|—
Mmo0|m|> IN|<|X|S|<|c|d|n|x|o|Tv|lo|Zz|Z2|r |X|—|—|T|®
O0|m| > |IN[<|X|S|<|C|H|n|m|Oo|T|o|Z|Z2|r |X|—|—|T|®|m|m
O|mmo|o|m|>|N|<|X|S|<|c|H|n|x|o|T|o|Z|Z|r |x||—|T
O|0|m(>|N|<|X|Z|<|C|H|n|B|O|T|0|Z|Z|r |X|—|—|T|®@|m|m
I|IOMMOoO0|m|> N< XS <|lcld|ln|no|T|lo|ZIZ|r|X|—|—
n|m|o|0|m|>|N|<|X|S|<|c|H|wn|B|0|T|0|Z|Z|r |X|<|—|T|®
O0|m| > |N[<|X|S|<|C|H|n|D|0|T|0|Z|Z|r |X|—|—|T|®|m|m
OmMmo|0|m|>|N|<[X|S|<|c|d|n|x|o|v|o|Z|Z|r |X|—|—|T
O|0|m|>|N|<|X|S|<|C|H|n|D|0|T|0|Z|IZ|r |X|—|—|T|®|mm
I|O|mmoo|m|>|N< X|S|<|cld|n|x|0|T|o|Z|IZ|r|x|«—|—
Tm|O|0|m(>|N|<|X|S|<|C|Hd|n|(D|O|v|o|Z|IZ|r | X |—|—|T|®] X

[N[<[x[z][<|c|Hw]=|o[v]ofz[z]-[x[[-|z[e][n|m[o]o[w]>]

-
(—
=3

lalv[f[t[blalm|e[m[m[glef[z[w[j[I[w[z][z]s|[s][p]

Die Starke dieses Verfahrens wird schon bei den Fullzeichen am Ende sichtbar. Kein X wur-
de gleichartig oder mit einer Buchstabenfolge verschlisselt. Noch besser ware es natirlich,
ganz auf die Fullzeichen zu verzichten, da sie ein guter Angriffs-Punkt fir eine Krypto-
Analyse sind. Wenn man weiss, dass am Ende sehr wahrscheinlich Xe stehen, dann kann
bei genligend Geheimtexten das Passwort teilweise geknackt werden.

Heute wissen wir, wenn man einen zum Klartext gleichlangen Schllissel verwendet und die-
sen nur ein einziges Mal benutzt, dann ist die VIGINERE-Chiffre unknackbar. Aufder natirlich
man versucht es mit einem Brute-Force-Angriff.

Man braucht also auch heute keine komplizierte Technik oder gar Computer, um absolut
sicher Texte zu verschlusseln. Das einzige Problem ist der Transport der Schlissel und die
Absprache, welcher Schissel genau benutzt werden soll.

Werden allerdings kiirze Schlisselwdrter benutzt, dann kann der Geheimtext ev. entschlis-
selt werden. Dabei ermittelt man zuerst mit dem KASISKI-Test die wahrscheinliche Schlissel-
lange. Dann zerlegt man den Text in die Teile, die mit dem gleichen Schlussel-Zeichen co-
diert wurden. Sie werden einer Haufigkeits-Analyse unterzogen. Ab hier ist es dann nur noch
Rechen- oder Such-Aufwand. Gute Code-Knacker erschlieRen daneben noch das verwende-
ten Schusselwort.

BK_SekI+II_Python_prof.docx -341 - (c,p) 2015 - 2026 Isp: dre

(!Aufgabe fiir die hdndische Arbeit!)
Aufoaben:
1. Verschliissele den folgenden Text miftels VIGENERE-Verfahven und dem
Schliisselwort "DAMENSCHUHR'"!
Mein Geheimnis ist: Ich mag gerne Tee.

2. Denke Dir nun ein neues Schliisselwort mil mindestens 8 Zeichen aus und
verschliissele damit einen Text von maximal 25 Zeichen! Die nichl bendlig-
ten Zeichen werden mit X aufgefiilll.

3. Gebe den Geheimtext und den Schliissel an Deinen Nachbarn weiler! De-
chiffviere den Geheimlext Deines Nachbarn!

[iir Experiten und zum Knobeln:

4. Der folgende Text wurde miltels VIGENERE-Verfahren verschliissell. Die
letzten — nicht gebrauchfen — Zeichen wurden mit X aufgefiillt. Wie lautet das
Passwort und wie der Klartexit?

Verbesserungen

Giovan Battista BELLASO (~ 1505 ~ 1568/81) benutzte statt der klassischen (sortierten Al-
phabete z.T. gewdirfelte Symbol-Listen (1555). So z.B. fir die Buchstaben A und R die fol-
gende Liste.

[AR| > [r[m[d[ac[nfelulp[s[b[t[d|[flgle[h[I[x][o]y]z]

(Aufgabe fiir die hdndische Arbeit!)

Aufgaben:

1. FEvrstelle Dir cine cigene Liste von 5 gewiirfelfen deulschen Alphabelen!
Ordne Sie den moglichen Schliissel-Buchstaben zu, so dass cine privale
Verschliisselungs-Tabelle entsteht!

2. Verschliissele nun mit Deiner Tabelle und einem Schliisselwort einen kur-
zen Text!

3. Tausche den Geheimlext und das Schliisselwort auf zwei verschiedenen
Wegen (schrifflich, miindlich, per elMail, ...) mit einem Kursteilnehmer!

4. Entschliissele die getauschte Nachricht!

8.19.1.x.y. Krypto-Analyse der VIGENERE-Verschliisselung

praktisch Positions-bezogene CASAR-Verschliisselung

das sich die Verschiebung mit der Lange des Schlissel's wiederholt kann man auf gleiche
Verschlisselung fur gleiche Buchstaben-Folgen setzen

Zuerst versucht man die Lange des Schlissel's zu ermitteln

KAsisKI-Test

BK_SekI+l_Python_prof.docx -342 - (c,p) 2015 - 2026 Isp: dre

Suche nach gleichen Buchstaben-Folgen und Ermittlung des Abstande zwischen den Wie-
derholungen

Schlussel-Lange kdnnte nun einer dieser Abstand oder einer der (gemeinsamen) Teiler sein
(= Prim-Faktoren-Zerlegung)

je langer die untersuchten Buchstaben-Folgen sind, umso gréRer ist die Wahrscheinlichkeit
fur die richtige Schlussel-Lange

Analyse mittels Auto-Korrelation

Zuerst wird der Text 2x hintereinander notiert und gegenseitig verschoben (? wie)
fur jede Verschiebung die Anzahl gleicher Buchstaben ermitteln

Suche nach Verschiebungen mit méglichst vielen Ubereinstimmungen

Nun fir jede Buchstaben-Gruppe des Schlissel's (?woher bekannt) die Buchstaben-
Haufigkeit ermitteln und ev. ein Diagramm erstellen

typische Haufigkeits-Analyse - Prifen ob Verschiebung der ermittelten Haufigkeit zur typi-
schen Verteilung in der Sprache stimmt

8.19.1.x. bifid-Verschliisselung

Bei der bifid-Chiffrierung wird die klassische PoLYBIOS-Chiffrierung (Substitution) durch eine
Faktionierung und eine Ruck-Chiffrierung erganzt.
Dazu werden die Koordinaten nicht hintereinander weg geschrieben, sondern in zwei Zeilen:

Nehmen wir an, unser Klartext lautet:

SEHR GEHEIM

\ 4

Praktisch wird nun jeder zu verschlisselnde Buchstabe in

EWINI=

= |I<|Or|m|>
NIS|HZ O
Wi Z|IIT|O
-I>-<J-IO—U
o |N|q|T|x|m

der Matrix gesucht und dann zuerst immer die Zeilen- und
dann die Spalten-Nummer notiert.

Aus dem S wird so:
4

3

usw. usf.

Die beiden Zeilen:

4124 212123
3532 253542

wird dann die Symbolfolge:
41242121233532253542

Mit dieser Zifferfolge wird nun eine Rulck-Verschlisselung vorgenommen. D.h. die ersten
zwei Ziffern sind die Koordninaten

41 24 21 21 23 35 32 25 35 42

fur den ersten Geheim-Buchstaben:

BK_SekI+II_Python_prof.docx -343 - (c,p) 2015 - 2026 Isp: dre

Daraus ergibt sich ein Geheimtext, der auch Haufigkeits-

e a|blc|d|e]|1
Analysen stand halt: f Ta | h|i K 1 2
. |l Im|n|jo|p]| 3
qiffhpmkpr q e — 1 4
tlwi x|ylz]|5

11213145

Wie in symmetrischen verfahren ublich 1Rt sich die Entschlisselung durch das Umkehren
des Verfahrens erreichen.

Zuerst wandeln wir den Geheimtext wieder in die Koordina-

¢ . a|blc|d|e]|1
en um: flalh|[i[k]|2
41 24 21 21 23 35 32 25 35 42 l ijm/njlo}p 3

q ¥ S 3 | 4

Dann wird die reine Ziffernk Vi iw[x|ylz]5
ann wird die reine Ziffernkette 1T T2 13 45

41242121233532253542

in der Mitte getrennt, um de Fraktionierung riickgangig zu machen:

4124 212123

3532 253542

Die Koordinaten oben und unten in den zwei Zeilen sind nun AlBICIDIET 1

wieder die Basis fir die Rick-Verschlisselung in den Klar-

FIG|H|I | K| 2
text. LIM|N|O|P]3
Aus 43 wird so wieder der ursprungliche Klartext-Buchstabe QRS o— 4
S. =
In dieser Form gehen wir die ndchsten Paare durch und er- \1/ V2V); Z g 5
halten den vollstandigen Klartext zurtck:

SEHR GEHEIM
Bei der Umsetzung in Python sollten wir jetzt deutlich planvoller vorgehen.
Da wir nun fir Chiffrieren
und Dechiffrieren immer function chiffPolybios (polybios, zeichen) :
jeweils eine POLYBIOS-
Chiffrierung und - return koord
Dechiffrierung brauchen,
ist die Nutzung von Funk- function dechiffPolybios (koord, polybios):
tion fast nicht mehr zu :
return zeichen
umgehen.

Aufgaben:

1. Planen Sie ein Programm zur Chiffrierung und Dechiffrierung nach dem
bifed-Verfahren als Grob-Struktogramm!

2. Leiten Sie aus dem Grob-Shruklogramm cin Funklions-orientiertes Python-
Programm ab, in dem Sie dann Schrill-weise die Funklionen mit Leben fiil-
len!

2
.

BK_SekI+lI_Python_prof.docx -344 - (c,p) 2015 - 2026 Isp: dre

BK_SekI+II_Python_prof.docx -345 - (c,p) 2015 - 2026 Isp: dre

8.19.1.x. ADFGX-Verschliisselung

in einer erweiterten 6x6-Form auch ADFGVX
basiert auf der POLYBIOS-Chiffre

der offizielle Name war "Geheimschrift der Funker 1918" oder kurz Bst. | MORSE-
"GedeFu 18" : Zeichen
der Name ADFGX stammt von den Allierten, die die auffalligen 3 __
Funkspriiche nach den verwendeten Buchstaben charakterisierten F S—
damals naturlich immer manuell durchgefuhrt G = -
die Auswahl der Buchstaben wurde so gewahlt, dass die MORSE- v ——
Zeichen sich besonders gut voneinander unterscheiden lieRen X Tt =
entwickelt vom deutschen Nachrichten-Offizier Fritz NEBEL (1891 - 1977)

Z|Y | X|W|V
verwendet wird als Basis das POLYBIOS-Quadrat UlTls RIQ 3
wieder ohne das J PIOINIMILIT
auch die Reihenfolge der Buchstaben wird gedreht K| I |H|G|F|ag

E|D|C|B|A]|X

a|d|] flg]lx
desweiteren wird ein Schllsselwort verwendet VIEIRISICIa
als Beispiel hier: Verschliisselung HILIUINIGId
dieses sollte optimaler-weise schon lang sein und alle Buch- 2k]

, Q|PIO|M|K]|g

staben nur einfach enthalten I TEID B A
sollten Buchstaben doppelt vorkomm,en werden sie im Ein- 97 X
satz einfach weggelassen a g X
damit bleibt VERSCHLUNG {Uibrig
das restliche Alphabet wird dann dahinter geschrieben
als Nachstes erfolgt die POLYBIOS-typische Substitution VIEIRI|S Fe¥ a
durch Beschriftung der Zeilen und Spalten (Koordinaten in HILlulNlald
der Matrix) Z Y [X [W[T][+
Soll z.B. der Klartext: QPO MIK]|g
SEHR GEHEIM ; Z [f’ z i‘ x

verschlisselt werden, dann wird aus dem S der Zwischen-
Code ag.
Nachdem der Klartext so codiert wurde, erhalten wir:

ag ad da af dx ad da ad xa gg

Um die Angreifbarkeit gegen Haufigkeits-Analyse zu verbessern wird nun noch eine zweite
Stufe der Verschlisselung genutzt.

Dazu wird ein zweites Schlisselwort (hier: Krypto) verwendet. Dieses Mal wird Ublicher-
weise auf das Weglassen doppelter Buchstaben verzichtet. Das Verfahren funktioniert aber
auch mit dem Weglassen. Wir verwenden hier jetzt nur ein kurzes Wort, da ja auch unser
Zwischtext relativ kurz ist. Ubliche Schliisselwortlangen sind hier 15 bis 22 Zeichen.

BK_SekI+lI_Python_prof.docx - 346 - (c,p) 2015 - 2026 Isp: dre

Den Schlisselwort-Buchstaben wird nun ihrer Position im

klassischen Alphabet entsprechent eine Reihenfolge zuge-

ordnet. Da im Alphabet das K aus Krypto der erste Buchsta-

be ist, erhalt es die Spalten-Nummer 1 usw. usf.

In die neue Tabelle wird nun der Zwischen-Code Zeilen-
weise notiert.

@ (o |+ka &0

X ool | <

Q QX || T

- (X [| |on|—
oo oo |NO

Qa0 | |=X

Die fehlenden Zeichen werden ausgefillt. Hier die Buchsta-
ben des Geheim-Alphabetes in umgekehrter Reihenfolge.

Das Erzeugen des zu sendenden Geheimtextes erfolgt nun durch Auslesen der Spalten ent-
sprechend der (aus dem 2. Schiusselwort) abgeleiteten Reihenfolge.
Also wird zuerst die Spalte K und dann O usw. usf. hintereinander notiert.

aadg adad dxdg gfag daxf adax

In typischer Funker-Manier werden die Buchstaben in Flnfer-Gruppen uUbertragen, was feh-
lende oder falsch erkannte Zeichen leichter erkennen laft.

aadga daddx dggfa gdaxf adax

Auch hier kénnen die fehlenden Buchstaben beliebig erganzt werden. Z.B. kadnnten wir noch
ein a ranhangen. Damit sendet der Funken dann 25 Zeichen:

aadga daddx dggfa gdaxf adaxa

Zur Dechiffrierung geht man den umgekehrten Weg durch das Verfahren.

Zuerst werden die Funfer-Gruppen aufgeldst und die Zeilen-Anzahl fir die Transpositions-
Tabelle aus der Buchstaben-Anzahl und der Schlusselwort-Lange berechnet. Bei 25 Zeichen
Geheimtext und der Schlusselwort-Lange von 6 Zeichen ergeben sich 4 Zeilen (6 x 4 = 24 <
25).

Somit wird aus dem ungruppierten Geheimtext jetzt einer, der 4er Gruppen enthalt:

aadg adad dxdg gfag daxf adax a
Das Schlusselwort muss jetzt natirlich bekannt sein, damit die richtige Spalten-Reihenfolge

ermittelt werden kann.
Die

Dabei bleiben die Uberzahligen Buchstaben in der letzten

KIR|Y|P|T
Spalte hangen und werden einfach ignoriert. 1141635 (2)
Im zweiten Schritt werden wieder die Koordinaten rekonstru- a ?: 3 dle Z
iert. Dazu wird die Hilfs-Tabelle wieder Zeilen-weise in 2er 3 o g i .
[:
Gruppen ausgelesen el ol
ag ad da af dx ad da ad xa gg xg fd d
Zum Schluf3 rekonstruieren wir aus den Koordinaten wieder o=
) . . . V| |E|R|S *€1 a
die ursprunglichen Buchstaben. Aus dem ag wird so wieder HILIulIMNlGd
das S usw. usf. Z Y [X W1 T[T
QP OIM|K]|g
| F| DI B|A]| x
a|d]| flg]x

gebrochen durch die Krypto-Analyse des fanzésischen Georges PAINVIN (1918)

BK_SekI+II_Python_prof.docx - 347 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Verandern Sie die Verschliisselung so, dass mil einem 6x6-Quadrat fiiv alle
Buchslaben und Ziffern gearbeilef werden kann! Probieren Sie es einmal mit
einem Pariner un gegenseitiger Nachrichlen-Ubertragung aus!

2. Enltwickeln Sie ein Python-Programm, welches das ADFGVX-Verfahren
umselzl! Der Klartext und die beiden Schliisselworter sollen eingebbar sein!
Alle Zwischen-Schrilte bzw. —Tabellen sollen anzeigbar sein. Im fertigen
Programm sollten diese dann abschaltbar sein oder auskommentiert werden!

2

2.

8.19.1.x. trifid-Verschliisselung

von Franzosen Felix DELASTELLE (1840 - 1902) entwickelt
1902 beschrieben

arbeitet mit drei kleineren Polybios-ahnlichen Tabellen

dadurch ergeben sich flr jeden Buchstaben 3 Koordinaten (Matrix, Zeile, Spalte)
diese Trigramme

Das Klartext-Alphabet kann

: o i Matrix 1 Matrix 2 Matrix 3
hier schon mit einem Schliis-

wort verteilt einaet 1123 1123 112 |3
werden. Der Ubersichtichkett AL A B[C 1 [ATJ[K[L] [4]S]T[U
verwe Hier ein unverschlissel- g CD; E| lI: § I\F/,I g g § ¥ VZV >_:
tes Alphabet.

Durch die drei 3x3 Tabellen kommen wir nun auch auf 27 mdgliche Symbole. Da verwenden
wir das vollstandige Alphabet und ein Sonderzeichen, was z.B. als Leerzeichen dienen kénn-
te.

Das Vorgehen ist wieder aquivalent zur POLYBIOS-Chiffre. Nur erhalten wir auf3er den beiden
Koordinaten auch noch die Matrix-Nummer.

Verschlusseln wir dieses Mal:

RICHTIG GEHEIM

Nun wird das R durch das 3 : :
Trigramm 233 codiert. Dieses Matrix 1 Matrix ¢ Matrix 3
wird wieder gleich auf drei 1123 1]2)3 L2
Zeilen verteilt: B AIBIC i1/J1KlR S T1U
' 2| D|EJF 2 M|N\O 2| V|W[X
S|GIH] I 3 Q'R 3|Y|Z |+

2
3
3

Mit den anderen Symbolen gehen wir genauso vor. Das Leerzeichen ersetzen wir durch ein
+. Insgesamt ergibt sich dann:

21113131111212
33131333232132
33322131222331

BK_SekI+lI_Python_prof.docx -348 - (c,p) 2015 - 2026 Isp: dre

Als nachstes sollen Blocke erstellt werden. Ublich sind 5 bis 7 Spalten als ein Block. Wir
wahlen hier die 5 als Block-Gréfie. Damit ergibt die folgende Struktur:

21113 13111 1212
33131 33323 2132
33322 13122 2331

Der letzte Block wird durch ein beliebiges Zeichen erweitert. Ich wahle hier das — eigentlich
ungustige — Leerzeichen.

21113 13111 12123
33131 33323 21323
33322 13122 23313

Der nachste Schritt ist spezifisch fur das trifed-Verfahren. Die Blocke werden — jeder fir sich
— Zeilen-weise in neue Trigramme zerlegt. Im ersten Block habe ich das durch unterschiedli-
che Farben gekennzeichnet:

21113 13111 12123
33131 33323 21323
33322 13122 23313

Diese neuen Trigramme verteilen wir wieder auf 3 Zeilen:

21313 11331 12133
13132 31312 23321
13332 13232 12233

und verschlusseln mit —den Matrix 1 Matrix 2 Matrix 3

urspriinglichen Tabellen zu- 1123 11213 11273
rack: 1alblec 11k 1|s|t]u
. 2 dle|f 2 m|nj|o 2 v | w]|X
jiuiw gczue dghxu 3 g h|i 3 plqlr 3| ylz|+

Dieser Geheimtext halt einer Haufigkeits-Analyse gut stand.

Die Dechiffrierung dreht das Matrix 1 Matrix 2 Matrix 3
Verfahren einfach um.

. S 1123 11213 1123
Zuerst ermitteln wir die Koor- -
. . 1la|b|c 11 k|1 1(s|t]u
dinaten der Geheimtext- 2l d et 2 minlo 2 (v lwlx
Buchstaben, sortieren sie in- 3 b 3 3 "
nerhalb von Blocken wieder g ! Pl9lr ylz
um und verschlisseln zuriick.
21313 11331 12133 21113 13111 12123 21113 13111 12123
13132 31312 23321 —’ 33131 33323 21323 —’ 33131 33323 21323
13332 13232 12233 33322 13122 23313 33322 13122 23313

' 211131311112123
331313332321323
333221312223313

BK_SekI+II_Python_prof.docx -349 - (c,p) 2015 - 2026 Isp: dre

Am Schluf} folgt nun die Ruck-
Verschllisselung mittels der
Matrizen zum Klartext:

Aus dem Trigramm 233 wird
so wieder der Klartext-Buch-
stabe R.

Der so rekonstruierte Klartext:

RICHTIG GEHEIM+

Matrix 1 Matrix 2 Matrix 3
123 1[2\3 123
1|{A[B]C 1] J[K\n 1/S|T|U
2|D|E|F 2 M[N\OQ 2| V|W[|X
3/G|H]|I 3 €1 R 3|y|z]|+

unterscheidet sich nur durch zusatzlich angefugte Plus-/Leer-Zeichen.

Fir ein Python-Programm kdénnte
man sicher wieder mehr-
dimensionale Felder benutzen
(= 6.6. Vektoren, Felder und
Tabellen).

Hier scheint mir eine Chiffren-
Tabelle — bzw. zwei — auf der
Basis von Dictonary's vielleicht
glnstiger.

alternativ mit Tupeln der drei Ko-
ordinaten

Eine strukturierte Liste ware
ebenfalls moglich. Hier spart man
sich dann auch die doppelte Dar-
stellung in zwei Dictonary's.

Hier sind mehrere Varianten
denkbar.

trifedChiff={
"A": 111,
"B": 112,
}
trifedDechiff={

111: "A",
112: "B",

}

trifedChiff={
"A": [1,1,1],

trifed={
{"a",[1,1,11},
{"s8", [1,1,2]1},
}

trifed={
{"A",lll},
{"B",112},
}

trifed={
{"a",1,1,1},
{"s",1,1,2},

}

BK_Sekl+Il_Python_prof.docx

-350 -

(c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Vereinbaren Sie im Kurs ein reichlich langes Schliisselwort fiir die Diclory-
Struktur!

2. Erstellen Sie nun ein Programm, dass die tifed-Ver- und Enischliisselung
zeigt! Als Block-Grofe verwenden wir die 3, um auch Zahlen-Operationen
fiir die Transposition zu ermoglich!

3.

fiir das gehobene Anspruchsniveau:

4. Setzen Sie das tifed-Verfahven ohne Einschriankungen um! Es sollen so-
wohl das Schliisselwort fiir die drei Malvizen sowie die Block-Grofe frei
gewahlt werden kdénnen!

BK_SekI+II_Python_prof.docx -351- (c,p) 2015 - 2026 Isp: dre

8.19.1.x. Four-Square-Verschliisselung

von Franzosen Felix DELASTELLE (1840 - 1902) entwickelt

benutzt als Basis-Alphabet Buchstaben-Paare (Digraphen, Bigramme)

Substitutions-Chiffre

damit werden aus den 26 Monographen (Monogramme) 676 Digraphen, die nun deutlich
schwierger durch Haufigkeits-Analysen angreifbar sind

hierfur waren auch sehr lange Texte notwendig

Zur Ver- und Entschlisselung werden 4

A|B|C|D|E

Quadrate (daher der Name) verwendet. Je- FIGIHI1]lJ K ﬁ |r rsl ;
weils diagonal sind die Klartext- sowie die

.) - KILIM|N|O alb|d]|f]i
Geheimtext-Alphabete notiert. Im Beispiel PIRISITIU Tk m
wird, wie bei DELASTELLE auf das Q verzich- VARTADARAN: { 0P
tet. Alternativ wéare ein Verzicht auf das J WiIX|ylz
moglich.
Modernere Verfahren nutzen 6x6-Felder. flojujr}s A/BICIDIE
Dann passen auch noch die Ziffern mit hin- aje|bjc|d FIGIHIT]J
ein. glh|i]jlk KILIMIN|O
Zur Erhéhung der Verschliisselung werden I [m|nip]|t PIRISIT|U
zwei Schliisselwérter an den Anfang der Ge- viw|x|y|z VIWIX]Y|Z

heimtext-Alphabete gesetzt.
Doppelte Buchstaben werden weggelassen. Hinter den Schlisselwortern folgt das restliche
Alphabet.

Der zu verschlisselnde Klartext AIBICIDIE vielrlslc
) FIGIH[I|J hju|l|n]|g
z.B.: SEHR GEHEIM KILIMINTO al b ldlfli
. N . P/ R|S|TTU TR0 p
wird zuerst in Digraphen zerlegt: vVIiwlixTyz 0wy i
SE HR GE HE IM v — '

f (0] u < S A B—rC—TDb E

Nun wird der erste Buchstabe im oberen aje|bjc|d FIG[H|I]J
Klartext-Quadrat gesucht und der zweite aus glhjiljlk KILIM[N]|O
dem unteren. Nun werden Waagerechten I [m|n|p]|t P RISIT|U
und Senkrechten in die Geheimtext-Quadrate viw|x|y|z VIW[X[Y]|Z

gezogen und dort die Geheimtext-Zeichen
abgelesen.

Aus SE wird so pu.

Das Verfahren wird nun Digraph fur Diagraph fortgesetzt.

Aufoaben:

1. Verschliisseln Sie den Resttext!
2. Vereinbaren Sie mt cinem Pariner aus dem Kurs ein Schliisselwort-Paar
und verschliisseln Sie damit eine kurze Nachricht!

2
.

BK_SekI+l_Python_prof.docx -352 - (c,p) 2015 - 2026 Isp: dre

Da es sich um ein symmetrisches Verfahren

handelt verwenden wir die gleichen SchlUs- ';\ (83 (H: EI) E K = : rS] <
selwodrter und das inverse Verfahren fir die KILIMINITO u 9
e alb|d|f]|i
Dechiffrierung. PIR S [0 o >
Der empfangene Geheimtext wird wieder in ez f[W ')'(' = ,
Digraphen zerlegt: y
y
zB.. pu... flo|u |=++=s A—B—+C—> E
ale|b|c|d FIGIH[I |J
und dann der erste Buchstabe im oberen und glhli|j|k KILIMINJO
der zweite im untereb Geheim-Alphabet ge- | [min|p]|t P/IRISIT|U
sucht. Die Klartext-Buchstaben ergeben sich Viw|x]|y|Zz VIWIX|[Y|Z
wieder Uber die Waagerechten und Senk-
rechten.
So bekommen wir SE aus dem Klartext zurick.
In Python kdnnen wir hier mehr-
dimensionale Felder (Array's, klaroben=array (["A","B","C","D","E"],
Vektoren) nutzen (= 6.6. Vekto- ["E", .1,
ren, Felder und Tabellen).)
Die Geheimtext-Felder kdnnen geheimoben=array (["v","e", "r", "s", "c"],
natlirlich erst nach Eingabe der %%, .1,

Schlisselworter belegt werden. =

Aufoaben:

1. Tauschen Sie die verschliissellen Nachrichten (Vvom ersten Aufgabenblock)
und enlschliisseln Sie diese!

2. Schreiben Sie ein Programm, das einen cinzgebenen Text ver- bzw. ent-
schliissell! Die Schliisselworter sollen ebenfalls jeweils einzugeben sein! Als
Alphabetl benutzen wir alle Buchstaben und die Ziffern.

2
>

Aber auch Lésungen Uber verket-

tete Liste oder Tupel sind denk- klaroben={ {"A","B","C","D","E"},
bar. R
mogliche Listen }

geheimobenz{ {"V", "e", "r", "S", "C" } ,

{"", “.},

eine andere Listen-Variante mit klaroben={ {"aA",0,0}, {"B",0,1}, ..
weniger Such-Aufwand kdnnte so
aufgebaut sein geheimoben= { {"v",0,0}, {"e",0,1}, ..

BK_SekI+II_Python_prof.docx -353- (c,p) 2015 - 2026 Isp: dre

8.19.2. asymmetrische Verschlusselung

interessante Links:

http://inventwithpython.com/hackingciphers.pdf (online-Version des Buches: AL SWEIGART: Hacking
Secret Ciphers with Python)

BK_SekI+l_Python_prof.docx -354 - (c,p) 2015 - 2026 Isp: dre

http://inventwithpython.com/hackingciphers.pdf

8.20. Code verbessern und optimieren

Laufzeit wird durch viele Faktoren beeinflusst

Leistungs-Parameter des Computers / der ausfihrenden Maschine

Datenmenge
im Allgemeinen steigt der Berechnings-Aufwand nicht linear, meist expotentiell, selten Uber-
exportentiell

Lade-Technik

Laden und Arbeiten mit Daten im Speicher schneller als auf Fetsplatte
lokales Netzwerk ist noch langsamer

am langsamsten ist das Internet

Programmier-Stil / -Paradigmen
unnotige / ungunstige Befehle

Algorithmen / Algorithmen-Analyse

ungunstige Lage von nicht gebrauchten Funktions-Aufrufen inSchleifen

stattdessen speichern des Wertes in einer Variable und dann Nutzung der Variable in der
Schleife

BK_SekI+II_Python_prof.docx -355- (c,p) 2015 - 2026 Isp: dre

8.21. Test-gestiitztes Programmieren mit Python

Vorteile:

Nachteile:
[]

statische Test's
ohne Code-Ausfiihrung, z.B. tber ein CodeReview (andere Programmierer oder eine Kl se-
hen sich den Code an) oder Quell-Code-Analyse (mittels Linter)

dynamische Test's
e Unit-Test's
o z.B. PyUnit
o fuhrt abgeschlossene Einheiten, wie Funktionen oder Unit's mit Testdaten aus
und vergleicht die Ergebnisse (Wert und Zielwert)
e Integrations-Test's
o z.B. PyUnit
o testet das Zusammenspiel zwischen Funktionen, Unit's usw.
e System-Test's
o z.B. Selenium flr Webanwendungen
o Akzeptanz-Test's
o z.B. Selenium, Robot Framework
o Test's durch Auftraggeber

Grund-Gerust fiir ein Test mit PyUnit

g w N

J O

BK_SekI+l_Python_prof.docx - 356 - (c,p) 2015 - 2026 Isp: dre

O J o U b WD

e
wWwN oW

O ~J o U b w DN

e e
N E O

i
w

BK_Sekl+II_Python_prof.docx - 357 - (c,p) 2015 - 2026 Isp: dre

8.22. Konsolen-Dialoge und Dokumentation mit Jupyter-
Notebook

8.22.1. Jupyter-Notebook unter Anaconda

8.22.2. Jupyter-Erweiterung in microsoft Visual Studio Code

BK_SekI+l_Python_prof.docx -358 - (c,p) 2015 - 2026 Isp: dre

8.23. online programmieren eines Spiel's mit Replit

Q: nach einem Workshop auf OpenHPI: "Python-games in replit" Feb. 2025 (Lasse Medla, Alexander Junger)

anmelden oder registrieren bei replit.org

Sign in

8.23.1. ein neues Projekt (repl) anlegen

siehe dazu die Video's zum HPI-Kurs
"+ Create App"

"Choose a Template" > "Python"
"Title" vergeben

"+ Create App"

typische Python-Konsolen-Programmierung

Starten des Programm's mit [Run]

Autovervollstandigung: Vorschlag akzeptieren mit [Tab]-Taste

8.23.2. Erstellen eines Fenster's und Initialisierung

der pygame-

Umgebung

Import der Pygame-Bibliothek
import pygame

Initialisierung von Pygame
pygame.init ()

Initialisierung des Fensters
screen_width = 800
screen_height = 600

screen = pygame.display.set mode ([screen width, screen height])

Farbe des Spielfelds setzen
screen.fill ((100, 0, 100))

Die gesamte Spieloberfldche aktualisieren
pygame.display.flip()

BK_Sekl+ll_Python_prof.docx - 359 -

(c,p) 2015 - 2026 Isp: dre

8.23.3. Erstellen der Spiel-Schleife (Aktualisierungs-Schleife)

auch Game-Loop genannt

Import der Pygame-Bibliothek
import pygame

Initialisierung von Pygame
pygame.init ()

Initialisierung des Fensters

screen _width = 800

screen _height = 600

screen = pygame.display.set mode([screen width, screen height])

Farbe des Spielfelds setzen
screen.f£il1((100, 0, 100))

Definition der Variable fiir die Spielschleife
running = True

Spielschleife
while running:
for event in pygame.event.get(): //Abfrage der aktuellen Event-Liste
Uberpriifen, ob das Kreuz geklickt wurde
if event.type == pygame.QUIT:
running = False

Die gesamte Spieloberfldche aktualisieren
pygame.display.flip()

8.23.4. Hintergrund und Spielfiqur einbauen

notwendige Bilder Gber "Files" hochladen (in den aktuellen Arbeitsbereich (Workspace)

Import der Pygame-Bibliothek
import pygame

Initialisierung von Pygame
pygame.init ()

Initialisierung des Fensters

screen_width = 800

screen _height = 600

screen = pygame.display.set mode([screen width, screen height])

Farbe des Spielfelds setzen
#screen.fi11 ((100, 0, 100))

Definition der Variablen fir die Spielschleife
running = True

Laden des Hintergrundbildes
background_ image = pygame.image.load('background.png')

Laden des Spielfigurbildes (mit Anpassung der Groesse)
player image = pygame.image.load('player.png')

BK_SekI+lI_Python_prof.docx - 360 - (c,p) 2015 - 2026 Isp: dre

player image = pygame.transform.scale by (player image, 0.25)

Anzeigen des Hintergrundbildes
screen.blit (background image, (0, 0)) //Position obere linke Ecke

Anzeigen der Spielfigur an der Position (300,100)
screen.blit (player image, (300, 100)) //neue Position der Spielfigur

Spielschleife
while running:
for event in pygame.event.get () :
Uberpriifen, ob das Kreuz geklickt wurde
if event.type == pygame.QUIT:
running = False

Die gesamte Spieloberflédche aktualisieren
pygame.display.flip ()

8.23.5. Spiel-Figur bewegen

Import der Pygame-Bibliothek
import pygame

Initialisierung von Pygame
pygame.init ()

Initialisierung des Fensters

screen _width = 800

screen _height = 600

screen = pygame.display.set mode ([screen width, screen height])

Definition der Variablen fiir die Spielschleife
running = True

Laden des Hintergrundbildes
background image = pygame.image.load('background.png')

Laden des Spielfigurbildes
player image = pygame.image.load('player.png')
player image = pygame.transform.scale(player image, (200, 200))

Definition der Variablen fiur die x- und y-Koordinate der Spielfigur
player x = 300
player y = 100

Spielschleife

while running:
Anzeigen des Hintergrundbildes
screen.blit (background image, (0, 0))

Anzeigen der Spielfigur
screen.blit (player image, (player x, player y))

for event in pygame.event.get () :
Uberpriifen, ob das Kreuz geklickt wurde
if event.type == pygame.QUIT:
running = False

BK_SekI+II_Python_prof.docx -361 - (c,p) 2015 - 2026 Isp: dre

Alle méglichen gedriickten Tasten bekommen
keys = pygame.key.get pressed()

Priifen, ob die linke Pfeiltaste gedriickt wird und die Spielfigur in-
nerhalb des Spielfelds ist
if keys[pygame.K LEFT] and player x > 0:
Die Spielfigur nach links bewegen
player x -= 1

Prifen, ob die rechte Pfeiltaste gedriickt wird
if keys[pygame.K RIGHT]:

print ("Die rechte Pfeiltaste wurde gedriickt.")

Die gesamte Spieloberfléche aktualisieren
pygame.display.flip()

8.23.6. Verbessern / Erweitern der Bewegung + Kollisionen behandeln

Import der Pygame-Bibliothek
import pygame

Import der random-Bibliothek fir Zufall
import random

Initialisierung von Pygame
pygame.init ()

Initialisierung des Fensters

screen width = 800

screen _height = 600

screen = pygame.display.set mode([screen width, screen height])

Definition der Variablen fir die Spielschleife
running = True

Laden des Hintergrundbildes
background image = pygame.image.load('background.png')

Laden des Spielfigurbildes
player image = pygame.image.load('player.png')
player image = pygame.transform.scale by (player image, 0.5)

Laden des Apfelbildes
apple_image = pygame.image.load('apple.png')
apple_image = pygame.transform.scale by (apple image, 0.15)

Erstellen von Rechtecken fiir die Bilder der Spielfigur und des Apfels
player rect = player image.get_rect()
apple rect = apple_image.get_rect()

Definition der Variablen fiir die x- und y-Koordinate der Spielfigur
player x = screen _width / 2 - player image.get width() / 2
player y = screen_height - player image.get height()

Definition der Koordinaten des Apfels
apple x = random.randint (0, screen width - apple image.get width())
apple y = 0

BK_SekI+lI_Python_prof.docx -362 - (c,p) 2015 - 2026 Isp: dre

Spielschleife

while running:
Anzeigen des Hintergrundbildes
screen.blit (background image, (0, 0))

Anzeigen der Spielfigur
screen.blit (player image, (player x, player y))
player rect.topleft = (player x, player y)

Anzeigen des Apfels
screen.blit (apple image, (apple_x, apple y))
apple rect.topleft = (apple_x, apple y)

Auf Kollision priifen
collision = player rect.colliderect (apple_ rect)

if collision:
apple x = random.randint (0, screen width - apple_image.get width())
apple y = 0
print("Die Bilder kollidieren!")

for event in pygame.event.get():
Uberpriifen, ob das Kreuz geklickt wurde
if event.type == pygame.QUIT:
running = False

Alle moglichen gedriickten Tasten bekommen
keys = pygame.key.get pressed()

Prifen, ob die linke Pfeiltaste gedriickt wird und die Spielfigur in-
nerhalb des Spielfelds ist
if keys[pygame.K LEFT] and player x > O0:
Die Spielfigur nach links bewegen
player x -= 1

Priifen, ob die rechte Pfeiltaste gedriickt wird und die Spielfigur in-
nerhalb des Spielfelds ist
if keys[pygame.K RIGHT] and player x < screen width - play-
er image.get width():
Die Spielfigur nach rechts bewegen
player x +=1

Den Apfel abwarts bewegen
apple y +=1

Die gesamte Spieloberfldche aktualisieren
pygame.display.flip()

8.23.7. mehrere Spiel-Figuren

Import der Pygame-Bibliothek
import pygame

Import der random-Bibliothek fir Zufall
import random

Initialisierung von Pygame
pygame.init ()

BK_SekI+II_Python_prof.docx -363- (c,p) 2015 - 2026 Isp: dre

Initialisierung des Fensters

screen _width = 800

screen _height = 600

screen = pygame.display.set mode([screen width, screen height])

Definition der Variablen fiir die Spielschleife
running = True

Laden des Hintergrundbildes
background image = pygame.image.load('background.png')

Laden des Spielfigurbildes
player image = pygame.image.load('player.png')
player image = pygame.transform.scale by (player image, 0.5)

Laden des Apfelbildes
apple image = pygame.image.load('apple.png')
apple image = pygame.transform.scale by (apple image, 0.15)

Erstellen eines Rechtecks fiir das Bild der Spielfigur
player rect = player image.get rect()

Definition der Variablen fir die x- und y-Koordinate der Spielfigur
player x = screen width / 2 - player image.get width() / 2
player y = screen height - player image.get height ()

Apfelrechtecke definieren
apples = []
for i in range(5):
apple rect = apple_image.get_rect()
apple x = random.randint (0, screen width - apple_ image.get width())
apple_y = random.randint(-500, -100)
apple_rect.topleft = (apple x, apple_y)
apples.append (apple_rect)

Spielschleife

while running:
Anzeigen des Hintergrundbildes
screen.blit (background image, (0, 0))

Anzeigen der Spielfigur
screen.blit (player image, (player x, player y))
player rect.topleft = (player x, player y)

Uber alle Apfelrechtecke iterieren

for apple rect in apples:
Anzeigen eines Apfels fiir jedes Rechteck
screen.blit (apple_image, apple rect)

Den Apfel abwidrts bewegen
apple rect.y +=1

Auf Kollision priifen
collision = player rect.colliderect(apple_rect)

Wenn sie miteinander kollidieren, sollen die x- und y-Koordinaten
jedes Apfels neu gesetzt werden
if collision:
apple rect.x = random.randint (0, screen_width - app-
le _image.get_width())
apple rect.y = random.randint(-500, -100)

for event in pygame.event.get () :

BK_SekI+lI_Python_prof.docx - 364 - (c,p) 2015 - 2026 Isp: dre

Uberpriifen, ob das Kreuz geklickt wurde
if event.type == pygame.QUIT:
running = False

Alle moglichen gedrickten Tasten bekommen
keys = pygame.key.get pressed()

Prifen, ob die linke Pfeiltaste gedriickt wird und die Spielfigur in-
nerhalb des Spielfelds ist
if keys[pygame.K LEFT] and player x > 0:
Die Spielfigur nach links bewegen
player x -=1

Prifen, ob die rechte Pfeiltaste gedriickt wird und die Spielfigur in-
nerhalb des Spielfelds ist
if keys [pygame.K RIGHT] and player x < screen_width - play-
er image.get width() :
Die Spielfigur nach rechts bewegen
player x += 1

Die gesamte Spieloberflache aktualisieren
pygame.display.flip ()

8.23.8. Spielstand (Score) und Spielende

Import der Pygame-Bibliothek
import pygame

Import der random-Bibliothek fiur Zufall
import random

Initialisierung von Pygame
pygame.init ()

Initialisierung des Fensters

screen _width = 800

screen_height = 600

screen = pygame.display.set mode ([screen width, screen height])

Definition der Variablen fir die Spielschleife
running = True
game_active = True

Laden des Hintergrundbildes
background image = pygame.image.load('background.png')

Laden des Spielfigurbildes
player image = pygame.image.load('player.png')
player image = pygame.transform.scale by (player image, 0.5)

Laden des Apfelbildes
apple image = pygame.image.load('apple.png')
apple image = pygame.transform.scale by (apple image, 0.15)

Erstellen eines Rechtecks fiir das Bild der Spielfigur
player rect = player image.get rect()

BK_SekI+II_Python_prof.docx -365- (c,p) 2015 - 2026 Isp: dre

Definition der Variablen fiir die x- und y-Koordinate der Spielfigur
player x = screen width / 2 - player image.get width() / 2
player y = screen height - player image.get height ()

Apfelrechtecke definieren
apples = []
for i in range (5):
apple rect = apple image.get rect()

apple x = random.randint (0, screen width - apple image.get width())
apple y = random.randint (-500, -100)
apple rect.topleft = (apple x, apple y)

apples.append (apple rect)

score = 0
font = pygame.font.SysFont (None, 40)

Spielschleife
while running and game active:
Schleife fir die Spielmechanik/-logik
while game_ active:
Anzeigen des Hintergrundbildes
screen.blit (background image, (0, 0))

Anzeigen der Spielfigur
screen.blit (player image, (player x, player y))
player rect.topleft = (player x, player y)

Uber alle Apfelrechtecke iterieren

for apple rect in apples:
Anzeigen eines Apfels fiir jedes Rechteck
screen.blit (apple image, apple rect)

Den Apfel abwarts bewegen
apple rect.y += 1

Auf Kollision priifen
collision = player rect.colliderect (apple rect)

Wenn sie miteinander kollidieren, sollen die x- und y-
Koordinaten jedes Apfels neu gesetzt werden
if collision:
score +=1
apple rect.x
le image.get width())
apple rect.y = random.randint (-500, -100)

random.randint (0O, screen_width - app-

if apple rect.y > screen_height:
game_active = False

for event in pygame.event.get():
Uberpriifen, ob das Kreuz geklickt wurde

if event.type == pygame.QUIT:
running = False
game_active = False

Alle mdglichen gedriickten Tasten bekommen
keys = pygame.key.get pressed()

Prifen, ob die linke Pfeiltaste gedriickt wird und die Spielfigur
innerhalb des Spielfelds ist
if keys[pygame.K LEFT] and player x > O:
Die Spielfigur nach links bewegen
player x -=1

BK_SekI+lI_Python_prof.docx - 366 - (c,p) 2015 - 2026 Isp: dre

Priifen, ob die rechte Pfeiltaste gedriickt wird und die Spielfigur

innerhalb des Spielfelds ist
if keys[pygame.K RIGHT] and player x <
er image.get width() :
Die Spielfigur nach rechts bewegen
player x +=1

Score anzeigen
score_text = font.render (f"Score: {score}",
screen.blit (score_text, (10, 10))

Die gesamte Spieloberflédche aktualisieren
pygame.display.flip()

Schleife fiir das Spielende
while running and not game_active:
Text fir Game Over

screen _width - play-

True, "white")

game_over_text = font.render ("Game Over", True, "red")

Die Mitte des Bildschirms berechnen

game_over text mid x = screen_width / 2 - ga-
me_over_text.get _width() / 2

game_over_ text mid y = screen_height / 2 - ga-
me_over_ text.get_height() / 2

Game Over mittig anzeigen

screen.blit (game_over text, (game_over text mid x, ga-

me_over_ text mid_y))

Abfragen ob das X gedrickt wurde und sonst die gesamte Spielober-

fl&dche aktualisieren
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False

Die gesamte Spieloberflache aktualisieren
pygame.display.flip()

noch notv_\(. Arbeiten:
Korb mit Apfel fillen

mogliche Erweiterungen:
falsches Obst
schnellere Level
ganz andere Settings
z.B. den Apfeln ausweichen
andere Dinge sammeln oder nicht sammeln

BK_Sekl+ll_Python_prof.docx - 367 -

(c,p) 2015 - 2026 Isp: dre

9. Python, informatisch — Datenstrukturen, Klassen,
Automaten, ...

Ahnlich wie Mathematiker leben Informatiker in einer eigenen Modell-Welt. Nicht umsonst
gelten sie als Nerds oder Guru's oder was es sonst auch noch fir (bdse) Bezeichnungen flr
die liebsten Menschen der Welt gibt (;-).

Beim genauen Hinschauen sind die Modell-Objekte genau so clever, wie die unzahligen ma-
thematischen Operationen und Techniken. Wenn man irgendwelche Dinge am Computer tut,
dann werden uns viele benutzte Informatik-Modelle gar nicht so recht bewusst. Kaum einer
weiss, dass die Druck-Auftrage in einer Warteschlange verwaltet werden. Der Druck-Auftrag,
der zuerst kommt, wird auch zuerst ausgedruckt. Erst wenn einer der Auftrage den Drucker
blockiert, dann werden wir uns vielleicht die Warteschlange ansehen (Doppelklicken auf das Dru-
cker-Symbol in der Task-Leiste) und den stoérenden Auftrag dort I6schen.

Mit der Datenstruktur Baum haben wir dagegen alle schon zu tun gehabt, zumindestens,
wenn wir einen Computer mehr als einmal praktisch genutzt und Daten gespeichert haben.
Die Ordner in einem Laufwerk sind genau so eine Baum-Struktur. Aber auch die Laufwerke
selbst sind wieder eine Baum-Struktur. Sie haben die gemeinsame Wurzel "Computer".
Keller und Ringe sind wieder eher verborgene Objekte. Aber auch sie werden fir das ord-
nungsgemale bzw. gewohnte Funktionieren eines PC gebraucht.

Eine Datenstruktur ist der Informatik eine Vereinbarung zur Organisation und Speicherung
von Daten.

Eine Datenstruktur ist der Informatik eine Vereinbarung zur Organisation und Speicherung
von Daten.

Einteilung nach (maximalen) Anzahl der Nachfolger auf ein Objekt moglich

maximal ein Nachfolger:
Liste

maximal zwei Nachfolger:
Binar-Baum

beliebig viele Nachfolger:
(allgemeiner) Baum
Netz

BK_SekI+lI_Python_prof.docx - 368 - (c,p) 2015 - 2026 Isp: dre

Zuerst werden wir allerdings etwas genauer auf die sogenannten Tupel eingehen. Sie sind
keine klassische Datenstruktur oder gar ein Informatiker-Modell. Sie sind eher eine Speziali-
tat von Python.

BK_SekI+II_Python_prof.docx -369 - (c,p) 2015 - 2026 Isp: dre

9.1. Keller

auch Stack (engl. = Stapel, Haufen)
was auf dem Stapel als letztes abgeladen wird, muss als erstes wieder entnommen werden,

um z.B. an tiefer liegende / friher eingespeicherte Daten zu erreichen

bekannt z.B. aus der Rekursion (- 8.4.2. Rekursion) dort ist Kellerspeicher zwingend not-
wendig, allerdings vom Nutzer unbemerkt

Grolke einer KELLER Datenstruktur wird im Wesentlichen vom verfiigbaren / hierfir reser-
vierten Speicher bestimmt
ansonsten Anzahl der Eintrage beliebig

nur wenn Speicher des Rechners nicht mehr fir die GrofRe des Kellerspeichers ausreicht (bei
zu vielen Rekursionen), dann kommt es zum Fehler

LIFO-Speicher (Last-In-First-Out) oder Stack

alternatives Speicher-Prinzip ist die (Warte-)Schlange (= 9.9. Warteschlangen) oder der
FIFO-Speicher (First-In-First-Out)

Ein Keller- oder Stack-Datenstruktur ist eine lineare Anordnung von gleichartig zu bearbei-
tenden Daten-Obbjekten (Daten-Eintragen), die nach dem LIFO-Prinzip verwaltet werden.

zum Keller gehérenden Grund-Operationen:

nachsehen (top) = obersten Eintrag ansehen / auslesen ohne es zu entfernen
einlagern / einspeichern (push) - neues Element (oben) auf den alten Stapel legen
wegnehmen / ausspeichern (pop) = obersten Eintrag entnehmen

Stack Typ / Klasse
liste: Liste (von Objekt) Objekt
gibListe(): Liste Methoden

setzListe(liste: Liste)
istLeer(): Wahrheitswert
einspeichern(eintrag: Objekt)
ausspeichern(): Objekt
lesen(): Objekt

eine sehr einfache Implementierung eines Kellers (Stack's) Uber eine interne Liste:

BK_SekI+lI_Python_prof.docx - 370 - (c,p) 2015 - 2026 Isp: dre

def keller():
liste = []

def raus():

if not istleer():
return liste.pop()

def rein(element) :
liste.append(element)

def istleer():
return len(liste)==0

return raus, rein, istleer

REIN, RAUS, ISTLEER = keller ()
Q und Fkt.W: ???; angelehnt an Objekt-orientierter Prog.

BK_SekI+II_Python_prof.docx -371 - (c,p) 2015 - 2026 Isp: dre

Listen-basiert
push = kellerliste.append
pop = kellerliste.pop

Menli-System + Keller-Speicher mit Listen-Opp's

def anzeigenlListe (Liste) :
for elem in Liste:
print ("[",elem,"]", end=" ")
print (" |<=")

def elementeZaehlen (Liste) :
anzahl=0
for in Liste:
anzahl+=1
return anzahl

def istlLeereliste(Liste) :
anzahl=elementeZaehlen (Liste)
if anzahl==
return True
else: return False

def leerenlListe(Liste):
while not istLeereliste (Liste):
Liste.pop ()

Main

KellerSpeicher=[]

maxMenuePunkte=3

auswahl=1

while auswahl>0 and auswahl<=maxMenuePunkte:
print (n W)
print ("aktueller Keller-Speicher:")
anzeigenListe (KellerSpeicher)

print ("")

print ("Auswahl-Menidi")

print ("============")

print ("<1> .. Einspeichern (Push)")
print ("<2> .. Ausspeichern (Pop)")
print ("<3> .. Speicher leeren")
prlnt(" n)

pr1nt("<0> .. Programmende")

auswahl=-1
while auswahl<0 or auswahl>maxMenuePunkte:
auswahl=eval (input ("Ihre Wahl: "))
if auswahl==
eingabe=input ("Was soll eingespeichert werden?: ")
KellerSpeicher.append (eingabe)
elif auswahl==
if istLeereliste(KellerSpeicher):
print ("Keller-Speicher ist LEER.")
else:
ausgabe=KellerSpeicher.pop ()
print ("Element: [", ausgabe, "] aus dem Speicher gelesen
und entfernt.")
elif auswahl==
leerenlListe (KellerSpeicher)
else:
break

print ("Ende...")

BK_SekI+l_Python_prof.docx -372 - (c,p) 2015 - 2026 Isp: dre

aktueller Keller-Speicher:
<=

Auswahl-Menii

<1> .. Einspeichern (Push)
<2> .. Ausspeichern (Pop)
<3> .. Speicher leeren
<4>

<1>

<0> .. Programmende

Ihre Wahl: 1
Was soll eingespeichert werden?: 3

aktueller Keller-Speicher:
[31 I<=

etwas aufwandigere Implementierung (Q: de.wikipedia.org)
class Stack (object) :
def init (self):
self.maxindex=5
self.topindex=0
self.speicher = [0,0,0,0,0,0,0,0,0,0,0]

def isEmpty(self):
return self.topindex==
def isFull (self):
return self.topindex==self.maxindex
def push(self,element):
if not self.isFull():
self.topindex+=1
self.speicher[self.topindex]=element
def pop(self):
if not self.isEmpty():
self.topindex-=1
def top(self):
if not self.isEmpty():
return self.speicher([self.topindex]

def DisplayStack(self):
M=self.topindex

while M>0

print (" | ",self.speicher[M]," ")
M-=
print (" —— (™)

if name == " main ": #Beispiel

myStack=Stack ()

print (myStack.isFull ())

print (myStack.isEmpty ())

myStack.push (5)

myStack.push (3)

myStack.DisplayStack ()

print (myStack.isEmpty())

myStack.push (13)

myStack.DisplayStack ()

BK_SekI+II_Python_prof.docx -373 - (c,p) 2015 - 2026 Isp: dre

import random
max operation on a stack

class Node:
def init (self):
self.data = None # contains the data

class StackNode:
def init (self):
self.maxNode = None # contains the data
self.nextNode = None

class Stack:
def init (self):
self.head = None

def push(self, node):

toAdd = StackNode ()
if self.head:
toAdd.nextNode = self.head
if node.data > self.head.maxNode.data:
toAdd.maxNode = node
else:
toAdd.maxNode = self.head.maxNode
else:
toAdd.maxNode = node
self.head = toAdd

def pop(self):
toReturn = None
if self.head:
toReturn = self.head
if self.head.nextNode:
self.head = self.head.nextNode
else:
self.head = None

return toReturn

def max (self) :
return self.head.maxNode.data

stack = Stack ()

for i in range (0,10):
node = Node ()
node.data = random.randint (1,20)
print "Pushing: " + str(node.data)
stack.push (node)

print stack.max ()
Q: http://pythonfiddle.com/max-operator-to-stack/

BK_SekI+lI_Python_prof.docx -374 - (c,p) 2015 - 2026 Isp: dre

http://pythonfiddle.com/max-operator-to-stack/

9.2. Warteschlangen

FIFO-Prinzip (First In First Out)

Queue (sprich: kju)

Beispiele:

Kasse im Supermarkt

Warten beim Frisor / Arzt / ...

Abarbeitung von Uberweisungen bei einer Bank

Eine Warteschlangen- bzw. Queue-Datenstruktur ist eine lineare Anordnung von gleichartig
zu bearbeitenden Daten-Objekten (Daten-Eintragen), die nach dem FIFO-Prinzip verwaltet
werden.

zum Keller gehérenden Grund-Operationen:

nachsehen (front) = ersten Eintrag ansehen / auslesen ohne ihn zu entfernen

anhangen / einspeichern (enqueue) > neues Element (hinten) auf die alten Schlange an-
hangen / kontatenieren

entfernen / ausspeichern (dequeue) - ersten / vordersten Eintrag entnehmen

alternatives Speicher-Prinzip ist der Keller (= 9.8. Keller) bzw. der Stack (Stapel) oder der
LIFO-Speicher

Queue Typ / Klasse
liste: Liste (von Objekt) Objekt
gibListe(): Liste Methoden

setzListe(liste: Liste)
istLeer(): Wahrheitswert
einspeichern(eintrag: Objekt)
ausspeichern(): Objekt
lesen(): Objekt

fur eine Implementierung Uber eine einfache Liste:

links-orientiertes Arbeiten:
insert(0,x) zum Einspeichern (neue Liste ::= x, alte Liste) (Erweiterung links)
pop() Ausspeichern / Entnehmen des letzten Element's (Verklrzung rechts)

BK_SekI+II_Python_prof.docx -375- (c,p) 2015 - 2026 Isp: dre

rechts-orientiertes Arbeiten:

append(x) anhangen eines Eintrags an die Liste (einspeichern) (Erweiterung rechts)
pop(0) Ausspeichern / Entnehmen des 1. Element's (Verkirzung links)

Menii-System + Warteschlangen-Speicher mit Listen-Opp's

def anzeigenlListe (Liste) :
print ("->|",end=" ")
for elem in Liste:
print ("[",elem,"]",end=" ")
print (" [=>>")

def elementeZaehlen (Liste) :
anzahl=0
for in Liste:
anzahl+=1
return anzahl
Alternative
return len (Liste)

def istlLeereliste(Liste) :

anzahl=elementeZaehlen (Liste)
if anzahl==

return True
else: return False
Alternative
if len(Liste)==0: return True
return False

def leerenlListe (Liste) :
while not istLeereliste (Liste):
Liste.pop ()

Main

WarteschlangenSpeicher=[]

maxMenuePunkte=3

auswahl=1

while auswahl>0 and auswahl<=maxMenuePunkte:
print (n n)

print ("aktueller FIFO-Speicher (Warteschlange) :

anzeigenListe (WarteschlangenSpeicher)

print ("")

print ("Auswahl-Mend")

print ("============")

print ("<1> .. Einspeichern (Push)")
print ("<2> .. Ausspeichern (Pop)")
print ("<3> .. Speicher leeren")
prlnt(" n)

pr1nt("<0> .. Programmende")

auswahl=-1

while auswahl<0 or auswahl>maxMenuePunkte:
auswahl=eval (input ("Ihre Wahl: "))

if auswahl==1: # Einspeichern

eingabe=input ("Was soll eingespeichert werden?:

WarteschlangenSpeicher.insert (0, eingabe)

BK_Sekl+Il_Python_prof.docx - 376 -

(c,p) 2015 - 2026 Isp: dre

elif auswahl==2: # Ausspeichern
if istLeereliste (WarteschlangenSpeicher) :
print ("Keller-Speicher ist LEER.")

else:
ausgabe=WarteschlangenSpeicher.pop ()
print ("Element: [", ausgabe, "] aus dem Speicher gelesen
und entfernt.")
elif auswahl==3: # Speicher leeren

leerenliste (WarteschlangenSpeicher)
else: # Ende
break

print ("Ende...")

BK_SekI+II_Python_prof.docx - 377 - (c,p) 2015 - 2026 Isp: dre

9.3. Bidume

BK_SekI+l_Python_prof.docx -378 - (c,p) 2015 - 2026 Isp: dre

9.4. Graphen

siehe auch bei Listen Il
siehe auch bei Mengen - 8.3.2.4.1. ein bilBchen Graphen

BK_SekI+II_Python_prof.docx -379 - (c,p) 2015 - 2026 Isp: dre

9.5. endliche Automaten

class DFA:
current state = None;
def init (self, states, alphabet, transition function, start state,
accept states):
self.states = states;
self.alphabet = alphabet;
self.transition function = transition function;
self.start state = start state;
self.accept states = accept states;
self.current state = start state;
return;

def transition to state with input(self, input value):
if ((self.current state, input value) not in
self.transition function.keys()):

self.current state None;
return;
self.current state = self.transition function[(self.current state,
input value)];
return;

def in accept state(self):
return self.current state in accept states;

def go to initial state(self):
self.current state = self.start state;
return;

def run with input list(self, input list):
self.go to initial state();
for inp in input list:
self.transition to state with input (inp);
continue;
return self.in accept state();
pass;

states = {0, 1, 2, 3};
alphabet = {'a', 'b', 'c¢c', 'd'};

pa
Hh
(o),
-
= @

Q0O Q0P O0O0Q0®OQ0w

~
~.

~
~e

~
~e

+
Hh Hh

~
~.

o o
i

~
~e

 t f
Hh Hh Hh

~
~e

~
~.

ot
Hh Hh
L e R R e B e M B e M B B

~ 0~
Ne N

S S U P
Il

PO WNRPOWNRE O WN R
N

~e

WNhDNMDNNNNRPRPRPRRPRPRRPEROOO O
~

~

e~ — I

 t
Hh Fh

BK_SekI+lI_Python_prof.docx - 380 - (c,p) 2015 - 2026 Isp: dre

tf[(3, 'b")] = 2;
tf[(3, 'e¢")] = 3;
tE[(3, 'd")] = 0;

start state = 0;
accept states =

{2, 3};
d = DFA(states, alphabet, tf, start state, accept states);
inp program = list ('abcdabcdabced');

print d.run with input list (inp program) ;
Q: http://pythonfiddle.com/dfa-simple-implementation/

BK_SekI+II_Python_prof.docx -381 - (c,p) 2015 - 2026 Isp: dre

http://pythonfiddle.com/dfa-simple-implementation/

9.6. Keller-Automaten

9.7. TURING-Automaten

BK_SekI+l_Python_prof.docx -382 - (c,p) 2015 - 2026 Isp: dre

Abbildungen und Skizzen entstammen den folgende ClipArt-Sammlungen:
IA/

andere Quellen sind direkt angegeben.

Alle anderen Abbildungen sind geistiges Eigentum:

lern-soft-projekt: drews (c,p) 1997 — 2026 Isp: dre
fur die Verwendung aullerhalb dieses Skriptes qilt fur sie die Lizenz:

@gsie. OO CC-BY-NC-SA (e

Lizenz-Erklarungen und —Bedingungen: http://de.creativecommons.org/was-ist-cc/
andere Verwendungen nur mit schriftlicher Vereinbarung!!!

verwendete freie Software:

o Inkscape von:inkscape.org (www.inkscape.org)
e CmapTools von: Institute for Human and Maschine Cognition (www.ihmc.us)

H- (c,p) 2015 - 2026 lern-soft-projekt: drews -H
H- drews@lern-soft-projekt.de -B
H- http://www.lern-soft-projekt.de -B
H- 18069 Rostock; Luise-Otto-Peters-Ring 25 -H
H- Tel/AB (0381) 760 12 18 FAX 760 12 11 -B

BK_SekI+II_Python_prof.docx -383 - (c,p) 2015 - 2026 Isp: dre

http://de.creativecommons.org/was-ist-cc/
http://www.inkscape.org/
http://www.ihmc.us/
mailto:drews@lern-soft-projekt.de
http://www.lern-soft-projekt.de/

