

BK_SekI+II_Python_basic.docx (c,p) 2015 - 2026 lern-soft-projekt: drews

Informatik
für die Sekundarstufe I + II

- Programmieren mit Python –

Teil 1: für Einsteiger

Autor: L. Drews

Grüner Baum-Python

(s) Morelia viridis
Q: de.wikipedia.org (Mwx)

>>>
while eval(input("?:")) != 0:

 print("Stoppen",end='')

teilredigierte Version 0.11e (2026)

BK_SekI+II_Python_basic.docx - 2 - (c,p) 2015 - 2026 lsp: dre

Nutzungsbestimmungen / Bemerkungen zur Verwendung durch Dritte:
(1) Dieses Skript (Werk) ist zur freien Nutzung in der angebotenen Form durch den

Anbieter (lern-soft-projekt) bereitgestellt. Es kann unter Angabe der Quelle und /
oder des Verfassers gedruckt, vervielfältigt oder in elektronischer Form veröf-
fentlicht werden.

(2) Das Weglassen von Abschnitten oder Teilen (z.B. Aufgaben und Lösungen) in
Teildrucken ist möglich und sinnvoll (Konzentration auf die eigenen Unterrichts-
ziele, -inhalte und -methoden). Bei angemessen großen Auszügen gehört das
vollständige Inhaltsverzeichnis und die Angabe einer Bezugsquelle für das Ori-
ginalwerk zum Pflichtteil.

(3) Ein Verkauf in jedweder Form ist ausgeschlossen. Der Aufwand für Kopierleistungen, Datenträger
oder den (einfachen) Download usw. ist davon unberührt.

(4) Änderungswünsche werden gerne entgegen genommen. Ergänzungen, Arbeitsblätter, Aufgaben
und Lösungen mit eigener Autorenschaft sind möglich und werden bei konzeptioneller Passung
eingearbeitet. Die Teile sind entsprechend der Autorenschaft zu kennzeichnen. Jedes Teil behält
die Urheberrechte seiner Autorenschaft bei.

(5) Zusammenstellungen, die von diesem Skript - über Zitate hinausgehende - Bestandteile enthalten,
müssen verpflichtend wieder gleichwertigen Nutzungsbestimmungen unterliegen.

(6) Diese Nutzungsbestimmungen gehören zu diesem Werk.
(7) Der Autor behält sich das Recht vor, diese Bestimmungen zu ändern.
(8) Andere Urheberrechte bleiben von diesen Bestimmungen unberührt.

Rechte Anderer:
Viele der verwendeten Bilder unterliegen verschiedensten freien Lizenzen. Nach meinen Recherchen
sollten alle genutzten Bilder zu einer der nachfolgenden freien Lizenzen gehören. Unabhängig von
den Vorgaben der einzelnen Lizenzen sind zu jedem extern entstandenen Objekt die Quelle, und
wenn bekannt, der Autor / Rechteinhaber angegeben.

public domain (pd) Zum Gemeingut erklärte Graphiken oder Fotos (u.a.). Viele der verwen-
deten Bilder entstammen Webseiten / Quellen US-amerikanischer Ein-
richtungen, die im Regierungsauftrag mit öffentlichen Mitteln finanziert
wurden und darüber rechtlich (USA) zum Gemeingut wurden. Andere
kreative Leistungen wurden ohne Einschränkungen von den Urhebern
freigegeben.

gnu free document li-
cence (GFDL; gnu fdl)

creative commens (cc)

 od. neu … Namensnennung

 … nichtkommerziell

 … in der gleichen Form

 … unter gleichen Bedingungen

Die meisten verwendeten Lizenzen schließen eine kommerzielle (Weiter-)Nutzung aus!

Bemerkungen zur Rechtschreibung:
Dieses Skript folgt nicht zwangsläufig der neuen ODER alten deutschen Recht-
schreibung. Vielmehr wird vom Recht auf künstlerische Freiheit, der Freiheit der
Sprache und von der Autokorrektur des Textverarbeitungsprogramms microsoft ®
WORD ® Gebrauch gemacht.
Für Hinweise auf echte Fehler ist der Autor immer dankbar.

Legende:
mit diesem Symbol werden zusätz-
liche Hinweise, Tips und weiterfüh-
rende Ideen gekennzeichnet

BK_SekI+II_Python_basic.docx - 3 - (c,p) 2015 - 2026 lsp: dre

Inhaltsverzeichnis:
Seite

0. Einleitung ... 6

1. Einstieg und Grundlagen .. 9

1.1. Geschichte und Namensgebung .. 9

1.2. Warum Python? ... 10
grundlegende Python-Konzepte ... 14

2. Vorbereitung (Installation) .. 16

2.1. Python auf Windows-Rechnern ... 16

2.2. Python auf Linux-Rechnern.. 18

2.3. Python auf dem Raspberry Pi .. 18

2.5. Python auf Android-Systemen ... 18
2.5.1. Pydroid3 IDE .. 18

2.6. Python auf dem MacOS .. 19

2.7. Python auf dem Taschenrechner ... 19

2.8. Python auf Microcontrollern ... 20

2.9. Python online (ausprobieren) ... 21

3. Zugriff auf das Python-System... 22

3.1. die Python-Shell .. 22
3.1.1. Eingaben an der Shell .. 23
3.1.2. IDLE als Python-Konsole .. 23
3.1.2. fortgeschrittene Mathematik ... 25
3.1.3. mehrzeilige Eingaben an der Shell ... 26
3.1.4. mehrere Befehle in eine Zeile ... 27

3.1.2.1. Mathematik für Informatiker – binäres Rechnen .. 28
3.1.3. Eingaben und Daten merken - Variablen .. 31

3.1.3.1. besondere Variablen und spezielle Möglichkeiten für Variablen in Python ... 33

3.2. Arbeiten mit Scripten .. 36
3.2.1. Grundlagen DOS bzw. Komandozeile (Eingabeaufforderung, Terminal) 36
3.2.2. Aufruf fertiger Python-Skripte ... 37

3.3. die interne Benutzer-Oberfläche .. 39
3.3.x. Hilfe(n)! ... 39

3.4. Nutzung anderer Benutzer-Oberflächen .. 41
3.4.1. gut geeignete Editoren für die Verwendung mit Python 41

3.4.1.1. Sublime Text ... 41
3.4.1.2. Geany .. 42
3.4.1.3. Notepad++... 42
3.4.1.4. Komodo Edit .. 42

3.4.x. Eclipse .. 43
3.4.x. Spyder .. 44
3.4.x. LiClipse .. 45
3.4.x. Anaconda ... 45
3.4.x. WinPython .. 45
3.4.x. Komodo IDE ... 46
3.4.x. Thonny ... 46
3.4.x. SciTE .. 46
3.4.x. TigerJython... 47
3.4.x. Editoren im Internet – online-Editoren ... 48

3.4.x.1. w3schools.com .. 48
3.4.x.2. TigerJython .. 48
3.4.x.3. repl.it .. 49

BK_SekI+II_Python_basic.docx - 4 - (c,p) 2015 - 2026 lsp: dre

3.4.x.3. ??? .. 49
3.4.x. microsoft Visual Studio Code mit Jupyter-Erweiterung .. 50

3.5. Snap for Python .. 51
Windows ... 51
Linux ... 51
MacOS.. 51

4. erste einfache Programme mit Python .. 52

4.1. Kommentare .. 55

4.2. Planung eines Programms und Umsetzung in Python ... 56
ergänzende Bemerkungen zu Vaiablen und Daten-Typen .. 61

5. Was passiert mit dem Quelltext? ... 62

5.1. Und es geht doch! – aus dem Python-Quelltext eine EXE erstellen 65

5.2. Fehlersuche ... 66

5.3. Stil-Regeln für Python-Programmierer .. 70
Linter 72

5.4. agile Software-Entwicklung .. 72

6. grundlegende Sprach-Elemente von Python .. 74

6.1. Ausgaben ... 74
6.1.1. Anpassen von Zahlen für Ausgaben ... 79
6.1.2. formatierte Ausgaben ... 80

6.1.2.1. formatierte Ausgaben mit der format-Funktion ... 81
6.1.2.2. Verwendung von Platzhaltern in Ausgabetexten .. 83
6.1.2.3. Kombination von Platzhaltern und format-Funktion 84

6.2. Eingaben .. 86
6.2.1. unschöne Eingabe-Effekte in Python-Programmen .. 88

6.3. Verarbeitung .. 91
Operatoren ... 93

6.4. Kontrolle(n) .. 96
6.4.1. Verzweigungen ... 97

6.4.1.1. einfache Verzeigungen .. 97
einseitige Auswahl / bedingte Ausführung ... 97
zweiseitige Auswahl / vollständige Verzweigung ... 100

6.4.1.2. geschachtelte Alternativen ... 107
6.4.1.3. Mehrfach-Verzeigungen .. 110
6.4.1.4. Optimierung des Quellcode's – DRY- und EVA-Prinzip.............................. 114

6.4.2. Schleifen .. 119
6.4.2.1. bedingte Schleifen ... 120

Berechnung der Kreiszahl Pi mit der Methode von ACHIMEDES 124
Berechnung der Quadratwurzel von x nach der Formel von HERON 126
Berechnung der n-ten Wurzel .. 127
Eingabe-Kontrolle mittels Schleife ... 127

Fehler-Analyse in Schleifen .. 128
6.4.2.2. Sammlungs-bedingte Schleifen ... 132
6.4.2.3. Zähl-Schleifen .. 138
6.4.2.4. besondere Kontrollstrukturen in Schleifen .. 140
6.4.2.5. Und was ist mit nachprüfenden / Fuß-gesteuerten Schleifen? 143
6.4.2.6. Anwendungs-Beispiel: lineare Regression ... 147

Beispiel für Daten in zwei Listen .. 147

6.5. Unterprogramme, Funktionen usw. usf. .. 149
6.5.1. Allgemeines zu Funktionen in Python ... 151
6.5.2. Funktionen ohne Rückgabewerte ... 153
6.5.3. echte Funktionen – Funktionen mit Rückgabewerten 155
6.5.4. Funktionen mit Standard-Werten als Parameter ... 156

BK_SekI+II_Python_basic.docx - 5 - (c,p) 2015 - 2026 lsp: dre

6.5.5. Funktionen mit einer variablen Anzahl von Parametern 157
6.5.6. Funktionen mit Funktionen als Parameter .. 157
6.5.7. Generator-Funktionen – Funktionswerte schrittweise 158
6.5.8. Interator-Funktionen – Funktionswerte noch wieder anders 160

6.6. Vektoren, Felder und Tabellen ... 162
6.6.1. Felder mit unterschiedlichen Datentypen .. 166

6.7. ein bisschen Statistik.. 167
6.7.1. Zufallszahlen .. 167

6.8. die Python-Schlüsselwörter im Überblick ... 172

Python-Spicker ... 178
Eingabe: .. 178
(formatierte) Ausgabe: .. 178
Verzweigung: .. 178
Schleifen: .. 178
Funktion: ... 179
Bibliotheken: .. 179
Objekt / Klasse: ... 179

Literatur und Quellen: ... 180

BK_SekI+II_Python_basic.docx - 6 - (c,p) 2015 - 2026 lsp: dre

0. Einleitung

Dieser Kurs orientiert sich weniger an den speziellen Sprach-Elementen oder informatischen
Objekten, sondern mehr an einem sinnvollen Weg, erste einfache Programme zu schreiben.
Nichts ist langweiliger als sich mit theoretischen Strukturen und abgesetzten informatischen
Ideen zu beschäftigen. Wer programmieren lernen will, muss so schnell wie möglich, auch
wirklich Programme schreiben. Programmieren – der Theorie willen – ist für akademische
Kurse interessant, aber für den einfachen Einsteiger meist überfordernd. Der normale An-
fänger möchte praktisch arbeiten.

Wer's anders möchte und andere Herangehensweisen bevorzugt, dem seien einige unten
aufgeführte (unvollständige!!!) Tutorial's empfohlen. Jedes hat für sich Vorteile und Nachteile,
Stärken und Schwächen. Wobei, wirkliche Schwächen haben wohl die wenigsten! Sie haben
nur andere Konzepte und Leitlinien. Einfach mal reinschauen und prüfen, ob der Stil und die
Vorgehensweise zum eigenen Anspruch passt.
Viele Anfänger wollen erst einmal nur das Programmieren lernen. Dafür reichen die Kapitel 1
bis 6 – eventuell noch 7. In diesen Kapiteln werden die grundlegenden Python-Anweisungen
und –Techniken besprochen. Wer dann Geschmack an der Sache oder an Python gefunden
hat, dem werden die anderen Kapitel nach und nach gefallen. Aber auch hier sollte jeder
schön vorsichtig und selektiv vorgehen – besser Klasse als Masse.
Die ersten Kapitel sind sozusagen der Minimalteil dieses Skriptes, wobei auch hier schon
einzelne Seiten oder kleinere Abschnitte entfallen können. Für ein ersten Programmieren
reicht es in jedem Fall.
Später im Skript stehen bestimmte Python-Elementen und informatische Strukturen im Zent-
rum. Dabei gehen wir dann auch auf allgemeine Aspekte, Strukturen und Modelle in der Da-
tenverarbeitung ein. Nur so werden die Feinheiten von Python deutlich, der Problemblick
geschärft und einem effektiven Programmieren stehen dann alle Tore offen.
Dadurch dass viele Themen nun nochmals vertieft und erweitert behandelt werden, ergibt
sich eine nicht ganz schöne Skript-Struktur. Die Alternative wären zwei Skripte gewesen, die
dann aber wieder unhandlicher wären, wenn man mal was nachlesen, nachschlagen usw.
usf. muss.

Dieses Skript bietet in den hinteren Teilen viele Beschäftigungs-Möglichkeiten mit Python
und informatischen Sachverhalten. Ich habe versucht, die einzelnen Themen so zu bespre-
chen, dass immer jeweils nur die Anfänger-Voraussetzungen benötigt werden. Sollte doch
mal das eine oder andere Rüstzeug benötigt werden, dann wird in der Einleitung zum Kapitel
oder Abschnitt darauf hingewiesen. In dem Fall empfiehlt sich eine vorherige Bearbeitung
des oder der erwähnten Skript-Teile.
Ich weise an dieser Stelle noch einmal explizit darauf hin, dass sich niemand das ganze
Skript ausdrucken muss, auch nicht, wenn es in einer Bildungs-Einrichtung als Arbeits-
Material benutzt werden soll. Jeder kann sich aber sein persönliches Skript zusammenstel-
len, wenn er es dann wirklich ausgedruckt braucht. Beachten Sie aber die Lizenz-Hinweise
auf der 2. Seite.
Trotz alledem wird dieses Skript nicht alle Möglichkeiten von Python darstellen können.
Wenn aber etwas wichtiges fehlt, dann melden Sie sich einfach bei mir. Ich bin immer für
Neues aufgeschlossen, und wenn es etwas für viele Python-Nutzer bringt, dann nehme ich
es gerne in das Skript auf.

BK_SekI+II_Python_basic.docx - 7 - (c,p) 2015 - 2026 lsp: dre

andere Tutorials, …:
http://wspiegel.de/pykurs/pykurs.htm
http://www.a-coding-project.de/python/
http://www.python-kurs.eu/
http://www.cl.uni-heidelberg.de/kurs/skripte/prog1/html/
http://www.physik.uzh.ch/lectures/informatik/python/python-start.php
http://py-tutorial-de.readthedocs.org/de/python-3.3/index.html
https://www.hdm-stuttgart.de/~maucher/Python/html/index.html
https://cscircles.cemc.uwaterloo.ca/using-website-de/

weitere Links, …:
http://cscircles.cemc.uwaterloo.ca/dev/0-de/
https://www.python-forum.de
https://www-user.tu-chemnitz.de/~hot/PYTHON/ (viele Kniffe und extravagante Beispiele)
https://docs.python.org/ (offizielle Python-Dokumentation (engl.))

aus goole-books:
https://books.google.de/books?id=oLTyCQAAQBAJ

Warum Programmieren?

Steuern von Geräten, Computern usw. usf.
Entwickeln von Spielen, …

aber Programmieren und Programmieren Lernen erfüllt auch andere wichtige Funktionen:

man versteht, wie Programme und damit auch Computer usw. gerade so funktionieren
eigene Projekt-Ideen umsetzen
einfach nur Lernen wie man Probleme – ev. auch im Team – Lösen kann

didaktische Vorzüge von Python

kleiner Sprachumfang / wenige Konstrukte
leicht und schnell erlernbar

einfacher / nachvollziehbarer Synthax

gute Lesbarkeit des Quell-Textes
einzeilige Anweisungen

gewisse intuitive Nutzung / Programmierung möglich

zwingt zur optisch strukturierten Programmierung
notwendige Einrückungen für "Blöcke"

vorlaufende Deklarierungen sind nicht notwendig

http://wspiegel.de/pykurs/pykurs.htm
http://www.a-coding-project.de/python/
http://www.python-kurs.eu/
http://www.cl.uni-heidelberg.de/kurs/skripte/prog1/html/
http://www.physik.uzh.ch/lectures/informatik/python/python-start.php
http://py-tutorial-de.readthedocs.org/de/python-3.3/index.html
https://www.hdm-stuttgart.de/~maucher/Python/html/index.html
https://cscircles.cemc.uwaterloo.ca/using-website-de/
http://cscircles.cemc.uwaterloo.ca/dev/0-de/
https://www.python-forum.de/
https://www-user.tu-chemnitz.de/~hot/PYTHON/
https://docs.python.org/
https://books.google.de/books?id=oLTyCQAAQBAJ

BK_SekI+II_Python_basic.docx - 8 - (c,p) 2015 - 2026 lsp: dre

Variablen werden dort eingeführt, wo sie gebraucht werden

manche dieser Vorzüge werden von anderen klassischen Programmiersprachen (z.B.)
ebenfalls realisiert, sie sind aber selten so konsequent und in dieser Kombination vorhanden

BK_SekI+II_Python_basic.docx - 9 - (c,p) 2015 - 2026 lsp: dre

1. Einstieg und Grundlagen

sprich peiten oder im Deutschen auch püton

universelle, interpretierende höhere Programmiersprache

derzeit von der gemeinnützigen Python Software Foundation betreutes Entwicklungsmodell
erstellt Referenz-Umsetzung, diese heißt CPython und ist die verbreiteste Version des Py-
thon-Interpreters

1.1. Geschichte und Namensgebung

in den ersten 1990iger Jahren von Guido VAN ROSSUM entwickelt

aus einem Hobby-Projekt für die Weihnachts-Ferien entstanden
Python war als Arbeitstitel gedacht

Name wurde von VAN ROSSUM als Fan und aus Verehrung der Commedy-Truppe "Monty
Python's Flying Circus" gewählt

zuerst als Fortsetzung / Verbesserung der Sprache ABC entwickelt und für verteilte Rechner-
Architekturen gedacht

Version 1.0 war 1994 fertig

es folgten diverse Updates

im Jahr 2000 wurde Version 2.0 veröffentlicht

die Version 3.0 (auch Python 3000 genannt) erschien 2008
ist von tiefgreifenden Änderungen, Anpassungen, Vereinheitlichungen und Optimierungen
geprägt und deshalb auch nur teilweise mit der Version 2.x kompatibel

damit alte Programme (die unter Version 2.x) entwickelt wurden weiter lauffähig zu halten,
wird derzeit die Versions-Serie 2.x noch weiterentwickelt und geupdated

BK_SekI+II_Python_basic.docx - 10 - (c,p) 2015 - 2026 lsp: dre

1.2. Warum Python?

Reicht nicht eigentlich eine Programmiersprache, z.B. BASIC? Es gibt doch noch so viele
andere! Muss es noch eine mehr sein? Da sieht doch nachher keiner mehr durch!
Jede Programmiersprache hat ihr Für und Wider. Die klassische BASIC-Version ist sehr ein-
fach (zu lernen), wäre aber heutigen Programmier-Aufgaben kaum noch gewachsen. Schon
beim strukturierten Programmieren schwächelt das Programm mit seinem oft getadelten
GOTO-Befehl.
Viele Programmiersprachen entstanden, um spezifische Probleme mit ihnen zu lösen oder
die Programmiersprache sollte speziellen (oft akademischen) Konstruktions-Regeln folgen.
Heute werden noch wieder andere Kriterien bei der Bewertung einer Programmiersprache
mit hinzugezogen. Der Quellcode soll offen und erweiterbar sein und natürlich erwartet man
die Verfügbarkeit einer freien (kostenfreien) Version für Jedermann.
Hier sind einige ausgewählte Argumente (nach: /3, S. 21; /4, S. 18ff./, die für Python spre-
chen. Gegner der Sprache werden sicher genauso viele Gegenargumente finden. Dazu wei-
ter hinten ein paar Bemerkungen.
Zuerst einmal spricht für Python der kleine Umfang reservierter Wörter (Befehle usw.).

False def if raise

None del import return

True elif in try

and else is while

as except lambda with

assert finally nonlocal yield

break for not

class from or

continue global pass

Diese rund 30 Wörter sind schnell gelernt bzw. im Blick behalten.

 Python ist klein.
 Python ist leicht zu lernen.

Integer-Zahlen (ganze Zahlen) können in Python beliebig groß oder auch klein werden. In
anderen Sprachen muss man Umwege gehen oder externe Zusatz-Module (Bibliotheken)
dazu installieren bzw. in sein Programm integrieren.

Auch ansonsten sind viele gute Merkmale und Realisierungen aus anderen Sprachen über-
nommen worden. Die Summe vieler guter Merkmale macht Python schon so zu einer zu-
kunfts-weisenden Programmiersprache.
Mit PASCAL gemeinsam hat es die klare Struktur. Genauso, wie PERL kann es von sich aus
mit Listen und assoziativen Feldern als ureigene Datentypen umgehen.
Weiterhin können in Python Operatoren überladen werden. Da zieht es mit C++ u.ä. Pro-
grammen gleich.

Rolle von Python in der Programmier-Welt

Python als Skriptsprache für andere Programme, z.B. OpenOffice.org, Blender, GIMP

Python-Programme lassen sich in andere (Programmier-)Sprache einbauen

mit Python lässt sich auf Datenbanken zugreifen (Nutzung von SQL in Python)

BK_SekI+II_Python_basic.docx - 11 - (c,p) 2015 - 2026 lsp: dre

andere Programmiersprachen lassen sich in Python-Skripten verwenden
CGI-Programmierung

sehr flexible – weil nicht Typ-gebundene – Programmierung löst viele allgemeine Probleme

unterstütze Programmier-Paradigmen in Python:

• imperativ / prozedural
charakterisiert durch einfachen Code
gut für die Manipulation von Daten

• funktional
alle Aussagen werden als mathematische Gleichungen
betrachtet
dieses Paradigma ist eine gute Basis für
geht in Richtung Rekursion und Lambda-Kalkül

• Aspekt-orientiert

• Objekt-orientiert
Daten werden als Objekte mit Eigenschaften (Attributen)
gesehen
Veränderungen werden über Methoden vorgenommen
Code ist i.A. gut wiederverwendbar

• Verfahrens-orientiert
Aufgaben werden Schritt für Schritt als Interationenabge-
arbeitet
häufige Operationen werden in Unterprogramme, Proze-
duren bzw. Funktionen abgelegt
gegünstigt Squenzierungen, Iterationen, Auswahl und Mo-
dularisierung

Python ist somit eine Multi-Paradigmen-Sprache (multi-paradigm language)

Vorteilhaft ist die automatische Speicher-Bereinigung (garbage collection) am Ende der Py-
thon-Nutzung. Schon innerhalb der Programmnutzung werden die nicht mehr gebrauchten
und irgendwo neu definierten Programmier-Objekte aus dem Speicher entsorgt.
automatische Daten-Müllvermeidung

Python hat von sich aus weniger strenge Programmier-Kontrollen. Dem Programmierer gibt
das einige zusätzliche Freiheiten.
Blöcke werden in Python nicht – wie sonst häufig üblich – in BEGIN-END-Blöcke (oder ge-
schweifte Klammer etc.) notiert. Die Blockbildung erfolgt einfach durch Einrückung – also
strukturiertes Schreiben des Quelltextes. Eine Empfehlung anderer Programmiersprachen
wird hier zum Prinzip erhoben.
Die Schleifen-Konstrukte sind auf die Wiederholungs-Schleife und die vorprüfende Schleife
eingeschränkt. Das reicht völlig aus und ist auch besser zu durchschauen. Natürlich lässt
sich leicht eine nachlaufend-prüfende Schleife zusammenstellen. Aber wir werden sehen,
man kann prinzipiell mit nur einem Schleifentyp alle anderen simulieren / ersetzen – auch
wenn es nicht immer schön aussieht.
Der – von einer anderen Sprache – wechselnde Programmierer wird bei dem Begriff der
Wiederholungs-Schleife aufhorchen. Heißen die nicht eigentlich Zähl-Schleifen. Nein hier

BK_SekI+II_Python_basic.docx - 12 - (c,p) 2015 - 2026 lsp: dre

sind wirklich Wiederholungs-Schleifen gemeint, die nicht durch eine vorbestimmte Zahl an
Durchläufen beschränkt ist.

Konstanten und Variablen müssen nicht vor der Benutzung deklariert (bekanntgegeben)
werden. Sie werden einfach benutzt. Echte Konstanten sind nicht im Konzept enthalten. Le-
diglich pi und e sind definiert.

Die Datentypen werden locker gehandhabt. Prozeduren können mit unterschiedlichen Daten-
typen aufgerufen werden. Für den Programmierer ist es eher lästig z.B. eine Addition für
Ganzzahlen und für (Gleit-)Kommazahlen zu schreiben. Einmal definiert funktioniert sie für
beide Datentypen.
Einen exklusiven Datentyp für Wahrheitswerte gibt es in Python nicht. Jedem Zahlen- oder
Zeichenketten-Wert wird ein Wahrheitswert zugeordnet. Damit entfällt die sonst notwendige
Um-Rechnung bzw. Um-Deutung.
Für jede Anweisung wird in Python eine eigene Zeile benutzt. Dadurch werden Programme
übersichtlicher, aber leider auch (Seiten-)länger. Das fehlende Semikolon am Ende jeder
Programmier-Anweisung in PASCAL ist der überwiegende Anfängerfehler für Programmier-
Starter.

Ausnahme-Behandlung

verteilte Objekte (CORBA, ILU, COM (Component-Object-Model))

Netz-Protokolle

kann mit Threads und Prozessen umgehen

funktionale Programmierung

Integration externer (C-)Bibliotheken

 Python ist sehr flexibel.
 Python vereint die Vorteile vieler Programmiersprachen in sich.
 Python macht einfach Spaß.

Schwächen
gestandene Programmierer finden so manche gewohnte Programmier-Struktur nicht in Py-
thon wieder

wie gerade erwähnt machen notwendige Einrückungen und Einbefehls-Zeilen den Quelltext
aufgebauscht und auch ein bisschen unübersichtlicher und vor allem lang. Da gehen andere
Empfehlungen Funktionen, Unterprogramme usw. nur eine Seite lang zu machen – ein we-
nig in die Leere.

teilweise Probleme mit Multithreading – also dem parallelen Abarbeiten von mehreren Pro-
grammen auf einem Mehrkern-Prozessor
so etwas gehört heute zur modernen Programmierung einfach dazu

relativ langsam im Vergleich zu anderen Skript- bzw. Interpreter-Sprachen

BK_SekI+II_Python_basic.docx - 13 - (c,p) 2015 - 2026 lsp: dre

nicht ganz übliche / moderne Programm-Strukturen, wenn objektorientiert programmiert wer-
den soll

 Python verleitet zur und unterstützt Trick-Programmierung.
 Python ist in der Grundausstattung unhandlich.
 Python ist relativ langsam.
 Python hat so seine speziellen Strukturen.

BK_SekI+II_Python_basic.docx - 14 - (c,p) 2015 - 2026 lsp: dre

grundlegende Python-Konzepte

Ein Python-Programm wird vom Interpreter
ausgeführt. Es kann dabei neben den inter-
nen Funktionen auch auf solche aus ver-
schiedenen Bibliotheken zugreifen. Die Bib-
liotheken beinhalten dabei häufig gebrauchte
und allgemeine Funktionen. Man kann sich
dsie Bibliotheken als Erweiterungen von Py-
thon vorstellen. Der Python-Interpreter greift
– je nach auszuführenden Programm – auf
verschiedene Teile (Schnittstellen, Funktio-
nen) des Betriebssystem zurück. Das Be-
triebssystem bedient dann wieder die Hard-
ware. Im Normalfall kapselt das Betriebssys-
tem vom Programmiersystem ab. Dadurch
sind keine direkten Hardware-Manipula-
tionen möglich.

Python-Konzept
Q: geänd. aus /7, S. 33/

Python-Programme sind dadurch aber universell auf verschiedenen Geräten (Hardware) und
Betriebssystemen lauffähig.

BK_SekI+II_Python_basic.docx - 15 - (c,p) 2015 - 2026 lsp: dre

 Zen of Python
Python 2.7.10 (default, May 29 2015, 22:02:48)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

BK_SekI+II_Python_basic.docx - 16 - (c,p) 2015 - 2026 lsp: dre

2. Vorbereitung (Installation)

Download der Version, die zum genutzten Rechner-Typ und / oder Betriebssystem passt.
Die PythonSoftware Foundation bietet die verschiedenen Versionen über die Webseite
www.python.org an.
Unter Downloads finden Sie die klassischen Betriebssystem-Varianten und Versionen für
Betriebssysteme, von denen die meisten Computer-Nutzer noch nie etwas gehört haben. Da
die meisten verfügbaren Versionen untereinander kompatibel sind, können einmal entwickel-
te Programme auch auf völlig anderen Betriebssystemen genutzt werden. Und alle normalen
Python-Versionen sind frei und kostenlos.
Neben der originalen Pythen-Version gibt es auch andere Umsetzungen der Sprache. D.h.
die Systeme sprechen das gleiche Python, aber die Arbeits- und / oder Umsetzungs-
Programme sind in anderen Programmiersprachen geschrieben. Ein Beispiel dafür ist Jy-
thon. Es ist ein Python, dass auf einer JAVA-Umsetzung basiert. Dieses Programmier-
System stellen wir später bei den IDE's ausführlicher vor.

2.1. Python auf Windows-Rechnern

Als freie Programmiersprache einschließlich einer einfachen graphischen Benutzer-
Oberfläche (IDE) ist Python für jederman verfügbar.
Zu empfehlen ist immer eine lokale Installation auf dem Arbeitsrechner. Das ist der Standard.
So wird es nur wenige Probleme geben und die Arbeit geht flott.
Man benötigt allerdings Administrator-Rechte. Wer diese nicht hat und auch nicht bekommen
kann, muss auf eine portable Version ausweichen. Hier wird dann nichts installiert.
Meist ist dann allerdings keine Zuordnung der Datei-Typen (.py, .pyc und .pyo) vorhanden.
Man muss dann die Dateien über das "Datei" "Öffnen" aufrufen. Ein Doppel-Klick auf die
betreffenden Dateien funktioniert nicht. In WinPython gibt es aber eine Funktion, die die feh-
lenden Zuordnungen realisiert. Eine echte Installation auf dem Arbeitsrechner ist das aber
nicht.
Den Download und einige Hinweise zum portablen Charakter von WinPython findet man
unter → https://winpython.github.io/#portable. Weiter hinten (→ 3.4.x. WinPython) gehen wir
dann auch noch auf einige Besonderheiten von WinPython ein.
Eine weitere – und wohl auch die ursprüngliche – Realisierung eines portablen Python's ist
portablePython.com. Unter portablePython.com findet man leider nur noch (versteckt) eine
ältere Version (→ http://portablepython.com/wiki/Download/). Das Projekt wird wohl nicht
mehr fortgesetzt.
Die portablen Versionen können separat oder in spezielle Menü-Systeme (PortableApps-
com, IoStick, …) auf einem USB-Stick kopiert werden. Mit dem USB-Stick kann man dann an
beliebigen Windows-Rechnern arbeiten und hat auch seine Daten immer mit dabei (natürlich

nur, wenn man sie auch auf dem Stick speichert).
Bei SourceForge.net gibt es Seite mit einer sehr aktuellen Version eines Portablen Python's
(→ https://sourceforge.net/projects/portable-python/). Die Version muss heruntergeladen und
entpackt werden. Anschließend lässt sich der entpackte Ordner auf den Io-Stick oder einen
PortableApps-Stick kopieren. Das portable Apps-System erkennt die neuen Programme au-
tomatisch. Wer will, kann sie sich in die Kategorie "Entwicklung" verschieben.
Beim PStart-Menü des IoStick's ist das nicht so einfach.
Bitte vorm Editieren die alte Datei (PStart.xml) zusätzlich als PStart.org kopieren. Dann
kann man diese später wieder reaktivieren.

file:///D:/XK_INFO/BK_S.I_Info/www.python.org
https://winpython.github.io/%23portable
https://portablepython.com/
http://portablepython.com/wiki/Download/
https://sourceforge.net/
https://sourceforge.net/projects/portable-python/

BK_SekI+II_Python_basic.docx - 17 - (c,p) 2015 - 2026 lsp: dre

Ins Menü habe ich nur den IDLE- und den PyScripter-Starter aufgenommen. Das sollte für
schulische Zwecke reichen.

Auf → https://portablepython.com/wiki/Download/ gibt es ebenfalls eine Python-Distribution,
die sich für den portablen Einsatz eignet. Besonders hervorzuhenem sind die vielen – schon
integrierten – Bibliotheken. Viele davon sind für den erweiterten schulischen Einsatz sehr
wichtig. Ich denke dabei z.B. an NymPy (→ 8.6.4. Modul / Bibliothek NumPy) und Matplotlib
(→ 8.6.5. Modul / Bibliothek Matplotlib). Hier die Liste der integrierten Bibliotheken:

• PyScripter
• NymPy
• SciPy
• Matplotlib
• PyWin32
• NetworkX
• Lxml
• PySerial
• PyODBC
• PyQt
• IPython
• Pandas

https://portablepython.com/wiki/Download/

BK_SekI+II_Python_basic.docx - 18 - (c,p) 2015 - 2026 lsp: dre

2.2. Python auf Linux-Rechnern

praktisch eigentlich immer dabei
gehört zur guten Ausstattung einer Linux-Distribution

2.3. Python auf dem Raspberry Pi

Standard-Programmiersprache im Raspberry Pi

also sofort nutzbar

vollständige Implementierung

besonders interessant für Steuerungs- und Sensorik-Aufgaben
da viele Schnittstellen relativ leicht zugänglich sind, von denen der Raspberry Pi auch sehr
viele bietet
desweiteren sind diverse Ergänzungen (Zusatz-Boards, Sensoren, …) verfügbar

weiter hinten spezielle Möglichkeiten (→ 10.1. Steuerung der Hardware (RaspberryPi, Ardui-
no))

Auf dem Raspberry Pi gibt es in einigen Linux-Distributionen das Spiel "Minecraft" von
microsoft in einer kostenfreien Version. Diese Version lässt sich auch mittels Python pro-
grammieren. Einige Möglichkeiten stellen wir weiter hinten vor (→). Da die Python-
Programme praktisch recht einfach sind, bieten sich viele Möglichkeiten für das Experimen-
tieren, Spielen und Spaß-Haben.

Weiterhin gibt es auch eine Realisierung von Jython (TigerJython →) für den Raspberry Pi.

2.5. Python auf Android-Systemen

2.5.1. Pydroid3 IDE

frei nutzbar

typisch ist die etwas gewöhnungs-bedürftige Touch-Tastatur (zumindestens für Programmie-
rer mit Real-Tastatur-Feeling)
Speichern - und später auch das Öffnen funktioniert über das Ordner-Symbol. Hier muss
man dann für das Speichern einen geeigneten Platz suchen. Ich habe den "internen Spei-

BK_SekI+II_Python_basic.docx - 19 - (c,p) 2015 - 2026 lsp: dre

cher" ("InternalStorage") und dort meinen "Dokumenten"-Ordner ("Documents") ausgewählt
und hier einen "Python"-Ordner angelegt. Wenn man sich darin befindet, dann kann mittels
"Ordner benutzen" eine Quellcode-Datei angelegt werden.
Das Ausführen funktioniert über das Dreick-Symbol an der Status-Zeile unten. Es öffnet sich
die Python-Konsole und das Programm läuft ab.

Wer gleich auf der Python-Konsole arbeiten möchte, kann das über das -Menü erledigen.
Dort gibt es in der Rubrik "Run" einen entsprechenden Punkt.

Für das einfache Komprimieren des Ordners (oder einzelner Dateien) für den Ver-
sand nutze ich ZAchiver von ZDevs. Dort muss man nur den passenden Ordner
auswählen, länger auf ein Odner-Symbol drücken und dann aus dem Kontext-
Menü "Komprimieren zu *.zip" auswählen und fertig.

2.6. Python auf dem MacOS

Python3IDE

benötigt neue(ste) OS-Version

für einfache Programmier-Versuche unterwegs ausreichend

hier soll auch noch mal auf die Besonderheiten der Mac-Tastatur hingewiesen werden

die zusätzlichen Graphik-Zeichen erhält man über die [option]-Taste (statt [Alt Gr] von Stan-
dard-Tastaturen)

Installations-Anleitung:
neueste Version von der Python-Seite herunterladen (→ https://www.python.org/downloads/)
die heruntergeladene .pkg-Datei öffnen
den Anweisungen folgen

Installation eines sehr guten Text-Editor's (Sublime Text)
herunterladen der aktuellen Version von (→ https://www.sublimetext.com/3)
installieren ???

wenn die Text-Dateien ordnungsgemäß mit .py-Dateiendung versehen wird, dann kann das
Programm von der Konsole, aus dem Datei-Manager oder direkt in Sublime-Text über den
Menü-Eintrag "Build" gestartet werden

2.7. Python auf dem Taschenrechner

für den Casio FX-CG50 – ein Taschenrechner – steht neuerdings auch eine Python-App zur
Verfügung

https://www.python.org/downloads/
https://www.sublimetext.com/3

BK_SekI+II_Python_basic.docx - 20 - (c,p) 2015 - 2026 lsp: dre

Umsetzung von MicroPython

da Groß- und Klein-Schreibung in Python unterscjhieden wird, muss viel in Kleinbuchstaben
geschrieben werden
ein längerfristige Umschaltung ist mit [SHIFT] [ALPHA] A → a
(Standard wieder herstellen mit einem weiteren [ALPHA]

für mathematische Aufgaben muss die Math-Bibliothek geladen werden
from math import *
ist im Katalog schon vordefiniert, Aufruf mit [SHIFT] 4

Auch für einige Taschen- und CAS-Rechner von Texas Instruments steht ein aktuelles / ak-
tualisertes Betriebssystem mit Python zur Verfügung. Es handelt sich ebenfalls um ein
MicroPython.

auch für die Steuerung des TI-Innovator's und des TI-Rover benutzbar
extra Abschnitt, weil er als eher Microcontroller ein deutlich anderes Leistungs-Spektrum hat
(→ 10.2.4. TI-Innovator)
es können TI-Sensoren und -Aktoren, Grove-Sensoren und –Aktoren sowie auch andere
elektronische Schaltungen (z.B.: via Steckbrett) angeschlossen werden

in Frankreich ist Python verpflichtend im Unterricht, deshalb hier auch extra Material verfüg-
bar
→ TI-83 Premium CE Edition Python

https://online.flipbuilder.com/wera/jstv/ (Vorschau: Büchlein zur Python-Programmierung im
naturwissenschaftlichen Unterricht (franz.))

http://online.flipbuilder.com/wera/tvxt/ (Vorschau: Büchlein zur Python-Programmierung mit
TI-83 (franz.))

2.8. Python auf Microcontrollern

Was vor wenigen Jahren undenkbar war, ist mit der superschnellen Entwicklung von
Microcontrollern Wirklichkeit geworden. Python lässt sich zur einfachen Programmierung
dieser Geräte-Klasse verwenden. Voraussetzung ist allerdigs ausreichend RAM auf den
Bausteinen. Hier liegt meist das Problem. Die Dinger haben einfach zu wenig. Deshalb ging
es mit Arduino und Co auch noch nicht. Aber mit der breiten Verfügbarkeit und den unge-
mein günstigen Preisen von neuen Microcontrollern steht dem Einsatz von Python - aller-
dings in einer abgespeckten Version – nicht mehr viel im Wege.
Da bei MicroPython (µPython) doch einiges sehr speziell ist, besprechen wir den Einsatz
auch erst weiter hinten als extra Kapitel (→ 10.6. MicroPython für Microcontroller). Einsteiger
sollten sich erst mit dem "normalen" Python auseinandersetzen und dann später auf diesen
modernen Zug (IoT, Automatisierung, …) aufspringen.

https://online.flipbuilder.com/wera/jstv/
http://online.flipbuilder.com/wera/tvxt/

BK_SekI+II_Python_basic.docx - 21 - (c,p) 2015 - 2026 lsp: dre

2.9. Python online (ausprobieren)

→ https://repl.it/

→ http://pythonfiddle.com/

repl.i

→ https://www.programiz.com/python-programming/online-compiler/

???
→ http://pythontutor.com/

https://repl.it/
http://pythonfiddle.com/
https://www.programiz.com/python-programming/online-compiler/
http://pythontutor.com/

BK_SekI+II_Python_basic.docx - 22 - (c,p) 2015 - 2026 lsp: dre

3. Zugriff auf das Python-System

3.1. die Python-Shell

Aufruf über das "Start"-Menü oder über eine "Eingabeaufforderung"
das Startmenü ist ev. schnell durchsucht und der passende Menüpunkt gefunden.

Eine Eingabeaufforderung erhält man ebenfalls direkt über einen entsprechenden Menü-
Eintrag im "Start"-Menü bzw. – je nach Windows-Version über "Ausführen …" oder "Suchen
…" im Start-Menü. Dort gibt man "cmd" ein und bestätigt mit [Enter]. Die Freunde der altbe-
wärten Tastatur-Kürzel benutzen die Kombination [] + [R].

der Phyton-Interprter in einer Eingabeaufforderung von Windows

Die Eingabeaufforderung ist quasi eine Rudiment aus alten DOS-Zeiten. Damals mussten
alle Befehle oder Programm über die sogenannte Befehlszeile – oder auch Prompt genannt
– gestartet werden. Die Ausgaben der gestarteten Programme sahen meist nicht besser aus.
Der Start-Befehl für den Python-Interpreter lautet "python".
Das Python-System ist nun im klassischen Kommandozeilen-Modus (CLI .. command line;
Command Line Interpreter) gestartet. Auch wenn wir ein typisches Windows-fester sehen, es
handelt sich um ein DOS-ähnliches Konsolen-Programm ohne eigene Fenster-Funktionen.
Das Python-System meldet sich mit einer kurzen Versions-Anzeige und einem eigenem
Prompt. Diese besteht aus drei "Größer als"-Zeichen(">>>"). Jede Eingabe bzw. die fertige
Befehlszeile muss mit [Enter] zur Ausführung gebracht werden. Fehlende Angaben oder feh-
lerhaftes Schreiben quittiert die Eingabeaufforderung mit einer Fehlermeldung. Natürlich
kann auch ein nicht gewollter Befehl ausgeführt werden. Die Befehle sind sehr mächtig. Also
vorsicht und lieber einmal genauer prüfen, was man dort eingetippt hat. Auf der Ebene der
Eingabeaufforderung gibt es kein "Rückgängig" oder einen "Papierkorb". Da lässt sich sich
nichts rückgängig machen oder wieder hervorzaubern!
Bevor wir richtig durchstarten noch einige Bemerkungen zum Verlassen bzw. Beenden der
Shell. Zum Einen steht uns eine Funktion dafür zur Verfügung. Hinter dem Prompt geben wir
einfach exit() ein und die Shell wird nach dem obligatorischen [Enter] geschlossen. Auch ein

BK_SekI+II_Python_basic.docx - 23 - (c,p) 2015 - 2026 lsp: dre

quit() führt zum gleichen Ziel. Alternativ kann man die Tasten-Kombination [Strg] + [Z]
(oder [Strg] + [Q] oder auch, wie bei jedem Fenster [Alt] + [F4]) benutzen.
Vergisst man das Klammerpaar hinter den Befehlen exit bzw. quit, dann erhält man den
freundlichen Hinweis, wie die Shell bzw. IDLE ordnungsgemäß geschlossen wird. Danach
befindet man sich wieder auf der Konsolen-Ebene (Eingabeaufforderung) von Windows. Man
erkennt dieses am einfachen "Größer als"-Zeichen - dem Standard-Prompt der Eingabeauf-
forderung.
Auf der Konsolen-Ebene lassen sich kleine Skripte abarbeiten. Jeder Befehl, jede Zeile bzw.
jeder Befehls-Block muss allerdings einzeln eingegeben werden. Die Befehls-Eingaben ei-
nes Skriptes lassen sich auch nicht abspeichern. D.h. bei einer erneuten Anwendung müs-
sen wieder alle Anweisungen erneut eingegeben werden.
Es kommt also zu einem ständigen Wechsel zwischen Eingabe und Ausgabe. Der Nutzer
interagiert mit dem System. Wir sprechen auch vom interaktiven Modus.

3.1.1. Eingaben an der Shell

Die Shell ist quasi die Schnittstelle, um Befehle direkt an den Computer abzugeben. Die An-
weisungen werden in einer höheren Programmiersprache – hier eben Python – formuliert
und eingegeben. Die Shell übernimmt sie und übergibt sie dem Übersetzer, damit dieser sie
in Maschinen-Code – also reine Nullen und Einsen – umwandelt. Die Nullen und Einsen sind
die einzigen Arbeits-Anweisungen, die eine Computer versteht. Geht irgendetwas bei der
Eingabe oder beim Übersetzen schief, dann erhalten wir eine Fehlermeldung. In dem Fall,
dass alles ok ist, erledigt der Computer die befohlene Aufgabe – zumindestens so wie er sie
"verstanden hat".

3.1.2. IDLE als Python-Konsole

Statt der Windows-Eingabeaufforderung kann auch gleich das Programm IDLE benutzt wer-
den. Es wird mit Python ausgeliefert und installiert. Es ist zumindestens erst einmal auch
eine Konsole.
Der große Vorteil von IDLE ist, dass wir später von hier schnell in die Programmier-Ebene
hineingelangen. Die brauchen wir, um länge Anweisungs-Sequenzen abzuspeichern. IDLE
ist dann auch gleich nocht ein Programm-Starter. Damit können wir gespeicherte Anwei-
sungs-Sequenzen starten / laufen lassen. Bei IDLE handelt es sich um also um einen sehr
einfachen Programm-Editor und einen Programm-Starter.
Echte Viel-Programmierer nutzen spezielle Oberflächen (GUI's → 3.4. Nutzung anderer Be-
nutzer-Oberflächen), die neben den Editor- und Start-Funktionen noch spezielle Unterstüt-
zungen anbieten. Für Programm-Einsteiger sind sie aber erst einmal nicht notwendig.

BK_SekI+II_Python_basic.docx - 24 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Starten Sie eine Python-Shell (z.B. IDLE)!

2. Lassen Sie sich die folgenden Ausdrücke berechnen? Wird eigentlich mit

den in der Mathematik üblichen Vorrangregeln gearbeitet? Was bedeuten

diese Zeichen?: * / . , // **

a) 4 * 12 b) 16 / 8

c) 34 + 21 – 54 * (10 + 5) d) 10 + 2 * 10 + 5

e) 12 / 5 f) 5 / 2 / 3

g) 12 * 0.25 h) 12 * 1,5

i) 12 // 5 j) 2 ** 3

k) 120/4*10/5/2 l) 20 * 0.5 * (((13 – 3) + 10) * 2)

m) 3**3+3**4-3**2 n) 20 * 0.5 * {[(13 - 3) + 10] * 2}

3. Wenn sich i) und j) – oder auch andere Teilaufgaben – nicht so einfach für

Sie erschließen, dann variieren Sie einfach die Zahlen in kleinen Schritten!

4. Versuchen Sie die Aufgabe k) mit Leerzeichen zwischen den Zahlen und

Operatoren aus! Welches Ergebnis erhalten Sie nun? Welche Variante emp-

finden Sie für besser?

5. Versuchen Sie zu erklären, warum l) und n) – obwohl sie doch scheinbar

mathematisch gleichwertig sind – zu unterschiedlichen Ergebnissen / Ausga-

ben führen! Welche Schlussfolgerung muss man hier für die weitere Arbeit

mit Python ziehen?

BK_SekI+II_Python_basic.docx - 25 - (c,p) 2015 - 2026 lsp: dre

3.1.2. fortgeschrittene Mathematik

Verfügbarmachen für die Verwendung in der Konsole bzw. im selbstgeschriebenem Pro-
gramm

from math import * alle Funktionen aus math importieren
import math alle Funktionen aus math importieren

 die Funktionen können nur mit vorgesetztem Modulnamen
 benutzt werden → math.sqrt(…)

import math as M alle Funktionen aus math werden importiert und dem Namen
 M zugeordnet → Aufruf über M.sqrt(…) möglich

from math import sqrt nur die Funktion sqrt (Quadrat-Wurzel) importieren
 die Funktion kann unter dem Namen direkt benutzt werden

from math import pi nur die Konstante aus dem Modul math importieren

from math import pi as PIEH nur die Konstante aus dem Modul math importieren und
 sie unter dem Namen PIEH zur Verfügung stellen

help(math) bzw. help(M), wenn ein Import unter einem anderen Namen erfolgt (hier: M)

um sich z:B. die Beschreibung / Hilfe zu den Funktionen und Definitionen (hier: e und ) an-
zusehen

Aufgaben:

1. Finden Sie mit der Hilfe zum Modul math heraus, wie die Konstanten e und

pi (für ) genau definiert sind!

2. Was macht z.B. die Funktion gcd(…)?

BK_SekI+II_Python_basic.docx - 26 - (c,p) 2015 - 2026 lsp: dre

3.1.3. mehrzeilige Eingaben an der Shell

Im Augenblick sind unsere Eingaben an der Shell noch überschaubar. Sollen aber auf dieser
Ebene komplexere Dinge gemacht werden, dann kommt man um mehrzeilige Eingaben nicht
herum.

Geben Sie das nebenstehende Beispiel –
wie angezeigt – ein! Achten Sie auf den
Doppelpunkt am Ende der ersten Zeile!
Jede Zeile wird wie üblich mit [ENTER]
abgeschlossen.

 >>> for i in range(10):

 i

 i*i

Die Einrückungen für die 2. und 3. Zeile werden dann automatisch vorgenommen. Geben
Sie dann einmal zusätzlich ein [ENTER] ein, dann folgt eine mehrzeilige Aufgabe.
Alle drei Zeilen werden jetzt in einem Komplex abgearbeitet. Was auch immer das bedeutet,
auch sehr komplexe Aufgaben sind schon ander Shell realisierbar. Deshalb lieben viele Ad-
ministratoren Python auch so – es ist einfach und effektiv.
Die Farbigkeit der einzelnen Zeilen-Teile erklären wir später (→). Die besprochene Struktur
setzen wir ab und zu mit hellgelben Hintergrund, um die entscheidende Stelle schneller zu
finden.

Sehr lange Zeilen können durch einen
Backslash (\) – den umgekehrten Schräg-
strich auf der ß-Taste – quasi abgebrochen
und auf der nächsten Zeile fortgesetzt wer-
den. Es wird wieder automatisch eine Ein-
rückung zur Kennzeichnung der Zusam-
mengehörigkeit gemacht.

 >>> print("langer Text"+\

 "weiterer langer Text")

Bei Texten sollte man immer die Text-Begrenzer mit schreiben, ansonsten muss mit zusätz-
lichen Leerzeichen durch den Zeilenbruch gerechnet werden.
Der Backslash kann entfallen, wenn man Ausdrücke benutzt, die Klammern enthalten. Dann
müssen die Zeilen allerdings auch mit [] + [ENTER] umgebrochen werden (weicher Zei-
lenumbruch). Die endgültige Bestätigung und Ausführung erfolgt dann erst nach einem ech-
ten [ENTER].
In echten Quelltexten wird diese Notation
gerne bei Funktionen mit komplizierten oder
vielen Argumenten benutzt. Man schreibt
jedes Argument in eine neue Zeile und
kann diese dann auch schön kommentie-
ren.

 …

y=testfunktion(

 0, # Anfangswert

 100, # Endwert

 0.5) # Schrittweite

…

Aufgaben:

1. Probieren Sie das obige Beispiel in der Konsole aus! Können Sie die Aus-

gaben erklären?

2. Wandeln Sie das Miniprogramm so ab, dass die Variable d benutzt wird und

die 2. eingerückte Zeile: d*"d" lautet! Was wird dieses Programm machen?

Probieren Sie es aus?

3.

BK_SekI+II_Python_basic.docx - 27 - (c,p) 2015 - 2026 lsp: dre

3.1.4. mehrere Befehle in eine Zeile

Die Notierung mehrerer Befehle in eine Zeile ist eigentlich nicht Python-like. Jeder Befehl
bzw. jede Anweisung sollte in einer extra Zeile stehen.
U.U. werden Quell-Texte so besonders lang oder unübersichtlich. Oftmals sind die Anwei-
sungen so zusammengehörend, dass sie schon wie eine Anweisung wirken.

In solchen Fällen kann man Anweisun-
gen eines Blocks / einer Gruppe auch
Semikolon-getrennt (;) notieren.

 >>> print("Hallo ");print("Welt!")

Anweisungen, die auf Doppelpunkte folgen – also z.B. nach Einleitungen von Verzweigun-
gen oder Schleifen – können ebenfalls in der gleichen Zeile weitergeschrieben werden.

Bei Schleifen oder Verzweigungen die
später erweitert werden sollen oder
könnten, sollte man diese Notation
unbedingt vermeiden.

 >>>

Aufgaben:

1. Welche Ausgabe erwarten Sie beim obigen Einzeiler (2x print)? Probieren

Sie den Einzeiler aus! Wenn Ihre Voraussage nicht eingetroffen ist, erklären

Sie die veränderte Ausgabe!

2. Wandeln Sie das unten angegebene Programm in den drei Abschnitten in

Einzeiler für die Konsole um und lassen Sie diese Zeile dann ausführen!

1 a="#"

print(a)

2 for i in range(5,10):

 print(i)

 a=a+"*"

 print(a)

3 print(i)

print(a)

print(a+a)

3.

BK_SekI+II_Python_basic.docx - 28 - (c,p) 2015 - 2026 lsp: dre

3.1.2.1. Mathematik für Informatiker – binäres Rechnen

Na gut, eigentlich ist die Überschrift etwas hochgestapelt, aber irgendwie ist doch wieder
passend.
Im Computer werden die Zahlen im Binär-Code abgelegt. Dies gilt ganz besonders für die
ganzen Zahlen. In einer ersten Überlegung nehmen wir uns nur die natürlichen Zahlen vor,
und tun so, als würde es keine negativen geben. In Python gibt es keinen direkt dazu pas-
senden Datentyp. In PASCAL ist es z.B. der Datentyp Byte, der Zahlen von 0 bis 255 dar-
stellen kann. Für etwas größere Zahlen (0 bis 65535) gibt es dann noch den Typ Word.
In diesen Datentypen
werden den 8 Bits Binär-
Werte zugeordnet, prak-
tisch äquivalent zum
dezimalen Zahlensys-
tem.
An jeder Bit-Stelle kann

Basis: 2 (binäres, duales Zahlen-System)

 Position 7 6 5 4 3 2 1 0

 Potenz 27 26 25 24 23 22 21 20

 Positions-Wert 128 64 32 16 8 4 2 1

nun das Bit gesetzt sein – also eine 1 beinhalten – oder eben 0 sein.
Die resultierende Zahl (im Dezimal-System) ist dann die Summe der Bit-gesetzten Positi-
onswerte.
Ähnlich, wie im Dezimal-
System, wo Multiplikati-
onen und Divisionen mit
10 sehr einfach sind, so
sind im Binär-System
genau diese Berech-
nungen mit der 2 sehr
schnell realisierbar.
Dazu verwendet man
sogenannte Schiebe-
Befehle.

 Beispiel 1 0 0 1 1 0 1 1

 Potenz 27 26 25 24 23 22 21 20

 Positions-Wert 128 64 32 16 8 4 2 1

 Anwendung 128 0 0 16 8 0 2 1

 Beispiel = 155

Diese Befehle beziehen sich auch direkte Bit-Verschiebungen in den sogenannten Registern
der CPU, in der die Zahlen zur Verarbeitung zwischengespeichert werden. Nehmen wir uns
ein sehr einfaches Beispiel – die Berechnungen mit der Zahl 16.
Durch eine Links-
Verschiebung
kommt es prak-
tisch zur Verdopp-
lung (Multiplikation
mit 2) der codier-
ten Zahl.

 16 = 0 0 0 1 0 0 0 0

 Links-Verschiebung 0 0 1 0 0 0 0 0

 16 * 2= = 32

Neue Bits – hier also auf der rechten Seite – werden mit 0 gefüllt.
Nimmt man dage-
gen eine Rechts-
Verschiebung der
Bits vor, dann
kommt es zur Divi-
sion durch 2 (Hal-
bierung).

 16 = 0 0 0 1 0 0 0 0

 Rechts-Verschiebung 0 0 0 0 1 0 0 0

 16 / 2= = 8

Hier werden auf der linken Seite 0-Bits aufgefüllt.
Die Schiebe-Befehle sind direkt im Maschinen-Programm (Mikro-Code) der CPU realisiert
und deshalb besonders bei sehr großen Zahlen mit vielen Bits sehr effektiv. Typische Regis-
terbreiten heutiger CPU's liegen bei 32, 64 und 128 Bit.

BK_SekI+II_Python_basic.docx - 29 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Codieren Sie die dezimale Zahl 4952 im Binär-System. Welche Art von

CPU (8, 16, 32 od. 64 Bit Registerbreite) wäre optimal?

2. Führen Sie 3 Rechts-Verschiebungen durch! Welcher Multiplikation ent-

spricht dies? Prüfen Sie durch Rückcodieren der Binärzahl in das Dezimal-

System, ob die Berechnung exakt ist!

3. Führen Sie mit der Zahl 4952 nun 2 Links-Verschiebungen durch! Prüfen

Sie auch hier auf Exaktheit der Berechnung! Erklären Sie das auftretende

Phänomen! Um welche Art Division handelt es sich also praktisch?

Nun zur Realisierung in Python. Schiebe-Operationen werden mit doppelten Kleiner- bzw.
Größer-Zeichen (<< bzw. >>) umgesetzt. Hinter den Winkel-Zeichen folgt die Anzahl der
Verschiebungen.
Somit wäre eine Multiplikation mit Vielfachen von 2 z.B. so möglich:

 >>> 864<<4

13824

>>>

 bedeutet: 864 * (2 * 2 *2 * 2) = 864 * 16
 oder: 864 * 2 * 2 * 2 * 2

Die dreifache Teilung durch 2 erfolgt dann z.B. so:

 >>> 864>>3

108

>>>

 bedeutet: 864 / (2 * 2 * 2) = 864 * 16
 oder: 864 / 2 / 2 / 2

In den Python 3-Versionen
werden beliebig große ganze
Zahlen berechnet.
In älteren Versionen muss
dies nicht zwangsläufig auch
so erfolgen. Vielfach sind noch
Varianten mit der klassischen
Umsetzung des Minus-Vorzei-
chens im Umlauf. Dabei wir
der höchste Bit-Wert nicht als
entsprechender Wert genutzt,
sondern als Kennzeichnung
des negativen Vorzeichens.
Bei Verwendung von Schiebe-
Befehlen und auch anderen
Rechnungen mit verschiede-
nen Zahlen sollte man deshalb
auch immer die Typ-Grenzen
mit austesten.
Zu beachten ist bei der ge-
nauen Betrachtung der Werte-
Belegung, das die Nicht-
Vorzeichen-Stellen (Magnitude)
nicht die Zahl darstellen, son-
dern deren 2er-Komplement –
also die Bit-Vertauschung!

 Zahlentyp shortint (aus PASCAL)
 Position 7 6 5 4 3 2 1 0
 Potenz 27 26 25 24 23 22 21 20

 0 = 0 0 0 0 0 0 0 0

 1 = 0 0 0 0 0 0 0 1

 2 = 0 0 0 0 0 0 1 0

 3 = 0 0 0 0 0 0 1 1

 4 = 0 0 0 0 0 1 0 0

 5 = 0 0 0 0 0 1 0 1

 6 = 0 0 0 0 0 1 1 0

 7 = 0 0 0 0 0 1 1 1

 . . .

 125 = 0 0 0 0 0 0 0 1

 126 = 0 1 1 1 1 1 1 0

 127 = 0 1 1 1 1 1 1 1

 -127 = 1 0 0 0 0 0 0 0

 -126 = 1 0 0 0 0 0 0 1

 -125 = 1 0 0 0 0 0 1 0

 -124 = 1 0 0 0 0 0 1 1

 . . .

 -3 = 1 1 1 1 1 1 0 0

 -2 = 1 1 1 0 1 1 0 1

 -1 = 1 1 1 1 1 1 1 0

 0 = 0 0 0 0 0 0 0 0

Solche Zahlen-Kodierungen stellen also einen in sich geschlossenen Kreis dar!

BK_SekI+II_Python_basic.docx - 30 - (c,p) 2015 - 2026 lsp: dre

Besonders beim Umsetzen von Python-Programmen in andere Programmiersprachen, muss
die Ganzzahlen-Darstellung in der Zielsprache beachtet werden! Die meisten Programmier-
sprachen benutzen begrenzte Zahlen-Typen.

Aufgaben:

1. Überlegen Sie sich, welche Ergebnisse bei den folgenden Berechnungen zu

erwarten sind, wenn der Datentyp shortint verwendet wird!

a) 2 + 4 b) 18 + 33 c) 125 + 2
d) 120 + 13 e) 7 - 2 f) 78 - 32
g) 126 – 2 h) -124 – 2 i) -124 - 5

2. Erkunden Sie, was die Operatoren &&, || und ! bewirken! Arbeiten Sie

dazu mit kleinen Zahlen und stellen Sie sich die Eingaben und Ausgaben in

Ihren Mitschriften binär (untereinander) dar! (&& und || sind zweistellige,

innere Operatoren; ! ist ein einstelliger Präfix-Operator)

3. Probieren Sie die Operatoren mit selbstgewählten Zahlen aus und stellen

Sie diese Beispiele mit Erklärung(en) dem Kurs vor!

(binäre / duale Zahlen lassen sich in der folgenden Form eingeben:

0bdualziffern)

BK_SekI+II_Python_basic.docx - 31 - (c,p) 2015 - 2026 lsp: dre

3.1.3. Eingaben und Daten merken - Variablen

Bestimmte Zahlen sollen in unseren Python-Skripten vielleicht häufiger verwendetet werden,
aber sich auch von Skript-Aufruf zu Skript-Aufruf ändern.
Für solche Zwecke kennen wir in der Mathematik die Variablen.
Die berühmtesten sind sicher x und y. Man
versteht darunter beschrifte "Behälter" oder
"Container" in denen etwas aufbewahrt wird. In
der Informatik heißen Variablen exakt Be-
zeichner. Mitlerweile versteht man Variablen
auch als Objekte.
Man kann sich Variablen auch gut als beschrif-
tete Schubladen in einem Apotheker-Schrank
vorstellen. In den Schubladen wird etwas auf-
bewahrt – wir sagen es wird gespeichert.
Im Allgemeinen können und werden sich die
Inhalte der Schubladen ständig verändern.
Natürlich kann aber auch nichts oder irgend-
welcher Müll in den Schubladen sein.
Wichtig ist, dass wir es mit zwei Dingen zu tun
haben, einmal den beschrifteten Schubladen
mit irgendeinem Namen und zum zweiten mit
dem Inhalt der Schublade.

Apotheker-Schrank

Q: www.flickr.com (Leanne McCauley)

Natürlich gibt es Variablen auch in Python. Jeder Variable muss zuerst einmal ein Name
zugeordnet werden. Anders als in verschiedenen anderen Programmiersprachen braucht
man die Variablen vorher zu deklarieren (definieren). D.h. man muss nicht vorher sagen bzw.
zuerst festlegen, was man in der Variable abspeichern möchte (z.B. Zahlen od. Texte) und wie
groß der Inhalt werden könnte (z.B. nur ein Buchstabe oder eine Zahl mit 30 Stellen). Man
benutzt die Variablen in Python sofort.
Als Namen darf man in Python alle Namen verwenden, die mit einem Buchstaben oder ei-
nem Unterstrich beginnen. Es können zwar einige wenige Sonderzeichen eingebaut werden.
Das sollte man aber genauso vermeiden, wie die deutschen Umlaute und das "ß".
Üblicherweise sollte man passende Namen verwenden. Besonders Anfänger neigen dazu
immer die typischen Variablen-Namen – sowas wie x, y, a, b und i – zu verwenden. Für ein-
fache, kleine und übersichtliche Programme mit klarem mathematischen Konstrukten ist das
auch ok. Ansonsten sollte man sich gleich von Anfang an angewöhnen, aussagekräftige
Namen zu benutzen. In der Programmierung nennen wir solche aussagekräftigen Variablen-
Namen sprechende Bezeichner. Später - in komplizierteren Programmen – wird man das
zu schätzen wissen. Erst später – in größeren Programmen – mit solchen ausgeschriebenen
Variablen-Namen – zu beginnen, ist mit großen Umstellungs-Problemen verbunden.
Schlechte Angewohnheiten wird man nicht so schnell wieder los.
Ein weiterer wichtiger Grund für aussagekräftige Variablen-
Namen ist die Notwendigkeit, auch später mal das eigene
Programm oder ein fremdes Programm zu pflegen, zu er-
weitern, zu dokumentieren oder zu berichtigen. Das Alles
gehört heute zu den wichtigen Tätigkeiten eines Program-
mierers.Python reserviert für jede angegebene Variable ei-
nen Stück vom Speicher. In diesen wird der zugewiesene
Wert eingespeichert. Die verschiedenen Arten von Variablen
– also solche für Texte und Zahlen werden getrennt vonei-
nander gespeichert. Das muss uns aber nicht interessieren.
Für unsere Zwecke reicht es, sich den Speicher als riesigen
Stapel von Schubladen vorzustellen. Jede Schublade (Spei-
cherzelle) hat eine einzigartige, fortlaufende Adresse. Die
Schubläden sind quasi durchnummeriert.

BK_SekI+II_Python_basic.docx - 32 - (c,p) 2015 - 2026 lsp: dre

Python gibt bestimmten Speicherzellen nun den internen Variablen-Namen und bei der
Wertzuweisung mit "=" wird festgelegt, welche Zahl oder welcher Text in die Schublade ge-
tan werden soll (Initialisierung). Besser spricht man statt "ist gleich" bei einer Wertzuweisung
von "ergibt sich aus"! Das trifft den Kern genauer und später werden wir sehen, dass es sich
nicht wirklich um eine "ist gleich"-Aktion handelt.
(Praktisch können auch mehrere Zellen (Schubläden) zusammen für eine (große) Zahl oder längere Texte be-
nutzt werden. Das ändert aber nichts am Prinzip. Später werden wir uns dann auch mal anschauen, wieviel Spei-
cher für bestimmte Daten genutzt werden.)

Schauen wir uns kurz ein paar Beispiele an, um das Verfahren der Variablen-Erzeugung und
der Wert-Abspeicherung zu verstehen.
Als Beispiel wollen wir der Variable a den Wert 74 zu-
weisen.
Der Python-Übersetzer prüft bei einer Eingabe a = 74,
ob es schon eine Speicherzelle mit dem Namen a gibt.

 >>> a = 74

>>>

Falls ja, dann wird natürlich diese benutzt. In unserem
Fall gibt es sie noch nicht.
Python legt nun eine Speicherzelle – irgenwo im Spei-
cher – mit dem Namen a an. Diesen Teil nennen wir
Deklaration. In vielen Programmiersprachen muss die
Deklaration extra und vor der Benutzung erfolgen.
Unser System ist hier flexibler.

Nun wird der zweite Teil der Anweisung ausgeführt. In
die Speicherzelle a wird der Wert 74 eingespeichert.
Man spricht auch von einer Zuweisung.
Im Fall des Hauptspeichers (RAM's) bleibt dieser Inhalt
nun solange erhalten, wie der Speicher mit Strom ver-
sorgt wird oder in die Speicherzelle ein neuer Wert ge-
schrieben wird.

Vom Python-System kommt kein Feedback zurück,
wenn man mal davon absieht, dass keine Fehlermel-
dung auch schon ein (eben positves) Feedback ist.
Mit einem Aufruf der Variable zeigt Python uns den
eingespeicherten Wert an.

 >>> a

74

>>>

Dazu wird die Speicherzelle einfach einmal ausgele-
sen. Der Wert in der Zelle bleibt beim Lesen erhalten.
Diese Grundfunktionen müssen wir uns vergegenwärti-
gen, wenn wir später über das Arbeiten mit Variablen
reden. Mehr als das Anlegen, Belegen und Auslesen
einer Variable ist nicht drin.
Unter bestimmten Bedingungen sorgt das Python-System dafür,
dass nicht mehr gebrauchte Variablen aus dem Speicher entfernt
werden. Praktisch wird auch nur der Name aus der Namensliste
gestrichen, so dass hierüber kein Zugriff mehr erfolgen kann. Der
Inhalt der Speicherzelle bleibt erhalten, ist aber nicht mehr direkt
zugänglich.

Rufen wir einen Vriablen-
Namen auf, der noch nicht vom
Python-System angelegt wurde,
dann bekommen wir eine Feh-
ler-Meldung. Diese sagt aus,
dass "x" noch nicht definiert ist.
Die Variable x wurde noch nicht
ordnungsgemäß initialisiert /
deklariert.

 >>> x

Traceback (most recent call last):

 File "<pyshell#13>", line 1, in <module>

 x

NameError: name 'x' is not defined

>>>

Mit der nebenstehenden Anweisung wird die Variable x
im Speicher angelegt und ihr der Wert 0 zugewiesen.
Solcheine initiale Belegung (Anfangsbelegung) sollte
man sich für jede Variable angewöhnen.

 >>> x = 0

>>>

BK_SekI+II_Python_basic.docx - 33 - (c,p) 2015 - 2026 lsp: dre

Der genaue Ort der Speicherzelle x ist nicht wirklich
vorhersehbar. Meist erfolgt die Speicherung direkt ne-
ben den älteren Variablen.
Nun lässt sich x auch benutzen, also auslesen oder
neu belegen.
Das soll nun auch getan werden. Die Variable x soll
den gleichen Wert bekommen, wie die Variable a.

Die Anweisung besteht aus zwei Teilen. Zum Ersten
aus dem Auselesen von a und dem folgenden Einspei-
chern in x.

 >>> x = a

>>>

Viele Anweisungen werden zuerst auf der rechten Seite
vom Zuweisungs-Zeichen geklärt und dann die eigent-
liche Zuweisung erledigt.
Eine einmal angelegt Variable kann innerhalb einer
Shell-Sitzung oder innerhalb eines Programmes an
beliebiger Stelle wiederbenutzt werden. Dabei kann
man den Wert ändern, indem einfach eine neue Zuwei-
sung gemacht wird. Natürlich lässt sich der Wert jeder
Variable so oft, wie gewünscht abrufen.

Bis zur nächsten Zuweisung bleibt der Wert erhalten.
Die Benutzung der Variablen für Berechnungen verän-
dert den Wert der Variable nicht.

In Python können die "Schubladen" unterschiedlich
groß sein. Darum kümmert sich Python selbst. Zahlen
brauchen meist weniger Platz als Texte. Jeder Buch-
stabe bzw. jedes Zeichen in einem Text benötigt z.B.
mindestens 1 Byte (in modernen Rechnern auch schnell 2

Byte). Der Speicher-Bedarf für Zahlen wird später the-
matisiert (→ 8.2 Datentypen und Typumwandlungen).

 >>> aaa=25

>>> aaa

25

>>> x

74

>>> x=100

>>> x

100

>>> x+x

200

>>> x

100

Bei großen Daten-Mengen muss der Speicher-Bedarf beachtet werden. Ansonsten kann es
zu Programm-Abbrüchen kommen.

3.1.3.1. besondere Variablen und spezielle Möglichkeiten für Variablen in Python

_-Variable
im interaktiven Modus verfügbar, beinhaltet sie den letzten ausgegebenen Ausdruck

mehrere Variablen können gleichzeitig einen Wert erhalten
a = b = c = 7

Anzeige aktuell benutzter Variablen-Namen
print(dir())

x,y = pos()
einige Funktionen liefern zwei Informationen, typisch ist das bei Funktion, die Koordinaten
als Rückgabewerte liefern
hier ist es so, dass sowohl x als auch y einen eigenen Wert bekommt

BK_SekI+II_Python_basic.docx - 34 - (c,p) 2015 - 2026 lsp: dre

solche Komma-getrennte Variablen bzw. Werte werden Tupel genannt, dazu später mehr (→
9.1. Tupel)

7

Aufgaben:

1. Prüfen Sie (quasi wie ein Python-System), ob die nachfolgenden Ausdrücke

als Variablen-Namen zugelassen wären! Sollte dieses nicht so sein, dann er-

klären Sie, warum der Ausdruck kein gültiger Variablen-Name ist!

a) x b) _Input c) 4.Zahl
d) Eingabe e) eingabe f) _Eingabe_
g) X_1 h) Text.1 i) Tätigkeit
j) Anna Maria k) mAx l) E
m) =x n) x-3 o) C_?

2. Lassen Sie nun Python (auf der Konsolenebene / Shell)

die Gültigkeit der Variablen von 1. prüfen! Dazu geben

Sie zuerst eine beliebige Zuweisung (Text, Zahl, vorher

benutze Variable) ein und anschließend fragen Sie den

Wert der Variable durch die Eingabe des Variablen-

Namens ab! (Siehe nebenstehendes Beispiel!)

 >>> x=5.5

>>> x

5.5

3. Prüfen Sie (nach Python-Art), ob die nachfolgenden Ausdrücke ordnungs-

gemäße Wertzuweisungen und / oder Variablen-Benutzungen sind! Wir ge-

hen davon aus, dass vorher noch keine Eingaben gemacht worden sind (ev.

IDLE oder Shell neu starten). Machen Sie jeweils Voraussagen dazu, wel-

che Werte die einzelnen Variablen nach der Eingabe haben müssten!

a) X = 100 b) X + X c) y = X + a
d) a = (12 +3) * 2 e) bc23 = X + X + X f) x=12
g) a = X + x h) a = 12k – 4k i) 45 + 55 = Hundert
j) Tausend = 40 + 60 k) Eingabe = 2 l) Ausgabe = Eingabe
m) Masse n) _28T = _13T * 7 o) Hundert = Tausend *1

4. Starten Sie eine neue Shell! Lassen Sie nun Python (auf der Konsolenebene

/ Shell) die Gültigkeit der einzelnen Ausdrücke von 3. prüfen! (Behalten Sie

die Reihenfolge unbedingt bei!)

Etwas Verwirrung erzeugen solche Ausdrücke, wie in
der nebenstehenden Shell-Ansicht zu sehen. Sie ma-
chen mathematisch keinen Sinn – sind ja eigentlich
sogar falsch.

 >>> x = x + 1

>>>

Wenn wir uns den aktuellen Wert von x anzeigen las-
sen, dann werden wir das dahinterliegende Arbeitsprin-
zip verstehen.
In Python muss man solche Ausdrücke etwa so lesen
und verstehen:

 >>> x

201

>>>

Der (neue – zu speichernde) Wert von x ergibt sich aus dem (alten / derzeitigen / aktu-
ellen - ausgelesenen) Wert von x addiert mit 1.

 x[zu speichern] = x[aktuell] + 1

 x[zu speichern] = 200 + 1

 x[zu speichern] = 201

BK_SekI+II_Python_basic.docx - 35 - (c,p) 2015 - 2026 lsp: dre

Zuerst wird uns dieses das eine oder andere Mal ungewöhnlich vorkommen, aber nach ein,
zwei Programmen geht einem diese Denkweise ins (Programmierer-)Blut über. Das einfach
Gleichheitszeichen ist in Python also ein Zuweisungs-Zeichen (entspricht: "ergibt sich aus")
und kein mathematisches Gleichsetzungs-Zeichen!
Ähnlich kryptisch sieht der folgende Kon-
strukt aus. Wir erzeugen uns eine Variable
buchstaben und weisen der z.B. den Text
"abc" zu. Nun können wir auch eine Opera-
tion mit dem Sternchen und einer Zahl aus-
führen.

 >>> buchstaben = "abc"

>>> buchstaben = buchstaben * 3

Python akzeptiert dies seltsamerweise – für Daten von zwei verschiedenen Typen (Text und
Zahl verrechnen?) schon etwas ungewöhnlich.
Die Ausgabe zeigt das Ergebnis der Stern-
chen-Operation – es kommt zu entspre-
chend vielen Wiederholungen.

 >>> buchstaben

'abcabcabc'

>>>

Aufgaben:

1.

2. Probieren Sie mal die folgenden Anweisungen an der Konsole! Lassen Sie

sich immer die beiden Variablen zwischendurch anzeigen! Sie können die

Anweisungen (c bis e)auch mehrfach hintereinander aufrufen!

a) x = 2 c) x += 1

b) a = 1 d) a *= 2

 e) a -= x

Was machen diese "kryptischen" Anweisungen (Operationen)?

3. Geben Sie nun wieder die Anweisungen a und b von 2. ein! Was erwarten

Sie, wenn Sie vor einer Ausgabe dann noch die Operationen c bis e von 2.

ausführen? Begründen Sie Ihre Vermutung!

BK_SekI+II_Python_basic.docx - 36 - (c,p) 2015 - 2026 lsp: dre

3.2. Arbeiten mit Scripten

Sequenzen von Python-Anweisnungen lassen sich in einer Text-Datei zusammenfassen
dazu ist praktisch jeder Editor geeignet.
Damit der Python-Interpreter mit den Text-Dateien arbeitet, müssen sie die Datei-Endung .py
bekommen.
Viele Text-Editoren bieten tolle Möglichkeiten der Textbearbeitung. Wir werden einige noch
kennen lernen bzw. vorstellen (→ 3.4.1. gut geeignete Editoren für die Verwendung mit Py-
thon). Es bleibt die freie Entscheidung des Programmierers, welcher Editor für ihn am Besten
ist.
Um die Programme zu starten, müssen sie dem Python-Interpretor (unter Windows heisst er:
py.exe) übergeben werden. Der Dateityp *.py wird bei der Installation des Python-Systems
mit dem Programm py.exe verknüpft. (So wie z.B. die docx-Dateien mit dem Programm
WORD oder xlsx-Deteien mit EXCEL verbunden sind.
Läuft das Programm odnungsgemäß, ist alles ok. Sind aber Fehler im Programm, dass muss
wieder im Editor der Quell-Text geändert und gespeichert werden und dann die datei wieder
mit dem Interpreter ausprobiert werden. Das Wechseln zwischen Editor und Interpreter ist
nicht sehr praktisch, aber es funktioniert. Schöner wäre natürlich ein Programm, dass sowohl
das Editieren als auch das Testen des Programms zulässt. Solche Programme schauen wir
uns ebenfalls noch an (→ 3.4. Nutzung anderer Benutzer-Oberflächen).

3.2.1. Grundlagen DOS bzw. Komandozeile (Eingabeaufforderung, Ter-
minal)

besondere
Zeichen
usw.

Bedeutung / Verwendung Zeichen in
Linux

* Joker-Zeichen für alle möglichen (zuge-
lassenen) Zeichen

? Joker-Zeichen für ein möglichen (zuge-
lassenen) Zeichen

\ Backslash über: [Alt Gr]+[ß]
Trenner zwischen Ordnern / Verzeich-
nissen

 /

: Laufwerks-Kennzeichen (mit Buchstabe
davor)

> Umleitungs-Kennzeichen z.B. in eine
Datei

|more Begrenzung der Anzeige auf Display-
übliche Zeilen und Warten auf eine
Eingabe

"name"

ein Pfad ist die Kombination von Laufwerk und allen Ordnern und Unterordnern, die zu einer
Datei od.ä. führen.

BK_SekI+II_Python_basic.docx - 37 - (c,p) 2015 - 2026 lsp: dre

Pfade können auch beim aktuellen Ordner starten, dann beginnt er mit ./

Befehl Funktionsumfang Befehl in
Linux

cd name Wechsel eines Ordners / Verzeichnisses
mit dem angegebenen Namen

cd\ Wechsel in den Basis- / Wurzel-Ordner
des Laufwerkes

cd.. Wechsel in den höheren Ordner / in das
übergeordnete Verzeichnis

dir (ausführliche) Anzeige der Dateien und
Ordner im aktuellen Ordner / Verzeichnis

 list

dir /w Anzeige der Dateien und Ordner im ak-
tuellen Ordner / Verzeichnis in Spalten
(funktioniert nur bei durchgehend kurzen Namen)

dir *.py Anzeige aller py-Dateien (Python-
Dateien) im aktuellen Ordner

md name (auch: makedir)
Erstellen eines neuen Unter-Ordner /
Unter-Verzeichnis mit dem angegebe-
nem Namen

3.2.2. Aufruf fertiger Python-Skripte

direkt in Windows z.B. im "Arbeitsplatz" oder dem "Windows Explorer" (Datei-Explorer)
Shell braucht dabei nicht schon vorher gestartet werden
es gibt intern eine Verknüpfung der Datei-Endung / dem Dateityp .py mit dem Python-
Programm (Python-Interpreter)
Programm wird zuerst automatisch gestartet und dieses benutzt dann als nächstes die ge-
klickte Datei

praktisch reicht der Doppelklick auf eine *.py-Datei, um sie dem Programm py.exe (- dem
Python-Interpreter -) zu übergeben. Die py.exe übernimmt die Datei und führt sie aus – bes-
ser gesagt, es interpretiert die *.py-Datei.

in der Shell durch Aufruf: import skriptname
vorher u.U. das richtige Laufwerk und die richtigen Verzeichnisse und Unterverzeichnisse
auswählen

starten der geöffneten Skripte mit Taste [F5] oder über "Run" "Run Module" möglich

BK_SekI+II_Python_basic.docx - 38 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Starten Sie die Python-Shell!

2. Starten Sie die nachfolgenden Skripte aus dem vorgegebenem Ordner (wird

vom Kursleiter an die Tafel geschrieben!)!

 hello.py nutzer.py

3. Rufen Sie das Skript nutzer.py noch einmal auf und beantworten Sie die

Eingabeaufforderung anders! Warum hat sich das System die alte Eingabe

nicht gemerkt?

Auch auf der Komandozeile ist das Aufrufen von py-Dateien (Python-Quelltexten) möglich.
Sollte das Fenster der Eingabeaufforderung bzw. der Konsole gleich wieder verschwinden,
dann geben Sie beim Quelltext am Schluß einfach ein input() ein. Dieser Befehl bewirkt ein
Warten auch ein [Enter]. Alles weitere zum Befehl input() dann später genauer (→ 6.2. Ein-
gaben).

BK_SekI+II_Python_basic.docx - 39 - (c,p) 2015 - 2026 lsp: dre

3.3. die interne Benutzer-Oberfläche

GUI (Graphic User Interface) heißt IDLE (sprich: eidel) steht für "Integretad DeveLopment
Enviroment" (dt.: integregrierte / eingebaute Entwicklungs- / Programmier-Umgebung) bei
anderen Programmiersprachen wird auch nur von der IDE od. eben der GUI gesprochen

Aufgaben:

1. Starten Sie die Python-GUI IDLE!

2. Erstellen Sie sich ein neues Eingabe-Fenster! Speichern Sie dieses sofort in

Ihrem eigenen Ordner oder auf Ihrem persönlichen Datenträger ab!

Für dokumentarische Zwecke kann man sich das Ausgabe-Fenster auch abspeichern. Die-
ses lässt sich aber nicht ausführen!

über die GUI bekommen wir ein Windows-typisches Bediensystem für Python
man kann die Programmtexte Öffnen, speichern, editieren und starten

3.3.x. Hilfe(n)!

Hilfe zu einzelnen Befehlen / Schlüsselwörtern durch
help(Schlüsselwort)

Hilfe-Modus mit help() ohne Argument
keywords um die Schlüsselwörter abzufragen

False def if raise

None del import return

True elif in try

and else is while

as except lambda with

assert finally nonlocal yield

break for not

class from or

continue global pass

Hilfe-Texte zu den einzelnen Schlüsselwörtern durch Eingabe des Schlüsselwortes
verlassen des Hilfe-Modus mit quit

BK_SekI+II_Python_basic.docx - 40 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1.

x. Warum ergibt die Eingabe "help(keywords)" eine Fehlermeldung und nicht

die Liste der Schlüsselwörter?

BK_SekI+II_Python_basic.docx - 41 - (c,p) 2015 - 2026 lsp: dre

3.4. Nutzung anderer Benutzer-Oberflächen

Wer bei der Python-eigenen IDE bleiben möchte oder muss (weil er nichts anderes installiert
bekommt oder die Einarbeitung zu langwierig wäre), der überspringt einfach den Rest dieses
Abschnitts und liest bei Abschnitt 4. weiter (→ 4. erste einfache Programme mit Python)
Für diejenigen, die öfter Programmtexte eintippen und korrigieren müssen, biete ich hier ein
paar geeignete Editoren an. Also vielleicht in den ersten Abschnitt dieses Kapites noch rein-
schauen.
Später (ab → 3.4.x. Eclipse) stellen wir auch noch echte GUI's vor, die z.T. sehr Leistungs-
fähig sind und sogar bei der Fehlersuche helfen.

3.4.1. gut geeignete Editoren für die Verwendung mit Python

Bitte beachten!:
Die Auswahl und die konkrete Bewertung der nachfolgenden Editoren ist rein subjektiv.
Wer einen Lieblings-Editor hat, sollte nur kurz gegenprüfen, ob er genauso Leistungs-
fähig, wie die nachfolgend vorgestellten ist. Ansonsten gilt der Leitspruch vieler Daten-
verarbeiter:

Never touch a running system.

Klar sollte sein, dass NotePad, WordPad oder Word keine wirklich geeigneten Code-Editoren
sind. Natürlich lassen sich die entsprechenden Dateien mit ihnen erzeugen und bearbeiten,
aber richtiges Programmieren geht anders. Als Schnell- und Ausnahmsweise-Ersatz ist aber
nichts gegen die genannten Programme zu sagen. Und manchmal geht es eben nicht an-
ders.

3.4.1.1. Sublime Text

Vielfach als Allzweck-Editor gelobt.
Er kann und bietet fast alles, was
man sich als Programmierer und Sys-
tem-Betreuer wünscht.
Einen bearbeiteten Python-Code
kann man mit [Strg] + [b] an den
Python-Interpreter übergeben und
ausführen lassen.
Es gibt vom "Sublime Text"-Editor
Varianten für Windows, Linux und
den Mac. Weiterhin stehen auch
Downloads für "portable Apps"-
Umgebungen bereit

Links / Download:
www.sublimetext.com

file:///D:/XK_INFO/BK_S.I_Info/www.sublimetext.com

BK_SekI+II_Python_basic.docx - 42 - (c,p) 2015 - 2026 lsp: dre

3.4.1.2. Geany

Text-Editor
schnelle, kleine IDE
automatische Code-Vervollständigung
automatische Syntax-Hervorhebung, Formatierung
für unzählige andere Sprachen usw. geeignet

3.4.1.3. Notepad++

schlanker, schneller, freier Text-Editor
automatische Code-Vervollständigung
automatische Syntax-Hervorhebung, Formatierung
für unzählige andere Sprachen usw. geeignet
die gewünschte Sprache kann über das "Sprachen"-Menü zugewiesen werden
dadurch wird der Syntax farblich dargestellt und die Datei-Endung (Datei-Typ) für das Ab-
speichern vorbelegt
auch als portableApp verfügbar
auf dem IoStick (unter Tools) enthalten

kein Debugger

3.4.1.4. Komodo Edit

BK_SekI+II_Python_basic.docx - 43 - (c,p) 2015 - 2026 lsp: dre

3.4.x. Eclipse

Ein der weit verbreitesten universellen Entwicklungs-Umgebungen ist "Eclipse". Ursprünglich
für Entwicklungen mit Java erstellt, ist die IDE heute für eine Vielzahl von Programmierspra-
chen nutzbar. Auch für die Verwendung mit Python lässt sie sich einrichten.

notwendige Erweiterung heißt PyDev
sowohl Eclipse als auch PyDev sind freie Produkte

Eclipse in der Version Mars1 mit installiertem PyDev

ist selbst in Java geschrieben und steht dadurch auf fast allen Betriebssystemen zur Verfü-
gung
für Normalnutzer ergeben sich kaum Unterschiede auf den einzelnen Plattformen
benötigt für die Installation und das Nutzen eine Java-Runtime- oder -Entwicklungs-
Umgebung, was bei älteren Systemen zu Performance-Problemen führen kann
Java gilt zudem nicht unbedingt als ein sehr sicheres System, Java ist sehr mächtig und
eben auf allen Plattformen zuhause, zwar gibt es sehr regelmäßig Updates, aber ein Restri-
siko bleibt

Viele der typischen Programmierer-Tätigkeiten lassen sich mit Eclipse effektiver erledigen.
Aber solche mächtigen graphischen Benutzer-Oberflächen haben auch ihre Nachteile. Die
Funktions-Vielfalt und die sehr komplexe Oberfläche überfordern vielleicht den einen oder
anderen Einsteiger.

Links:
https://www1.ethz.ch/foss/news/course_python/configEclipse

https://www1.ethz.ch/foss/news/course_python/configEclipse

BK_SekI+II_Python_basic.docx - 44 - (c,p) 2015 - 2026 lsp: dre

3.4.x. Spyder

Editor und Konsole in einem gemeinsamen Fester
editieren und ausprobieren lassen sich so schneller und übersichtlicher durchführen

BK_SekI+II_Python_basic.docx - 45 - (c,p) 2015 - 2026 lsp: dre

3.4.x. LiClipse

abgespecktes Eclipse

3.4.x. Anaconda

enthält viele verschiedene Python-Bibliotheken und Hilfs-Mittel
diese sind für Anfänger erst einmal nicht so interessant
Entwicklungs-Umgebung für die wissenschaftliche Programmierung
stellt Spyder als IDE zur Verfügung
weitere - sehr verbreitete - Bereitstellung von Programmen und Kommentaren sowie Abfol-
gen / Protokolle sind die sogenannten Jupyter-Notebook's (lauf Browser-basiert, lassen Pro-
gramme, Texte, Einn- und Ausgaben zu, die auch zur Dokumentation als Ganzes gespei-
chert werden können)
es lassen sich mehrere unabhängige Programmier-Umgebungen definieren, die quasi eine
Programmierung in einer Sandbox erlauben
reibungslose Installation
kann neben dem originalen Python installiert und betrieben werden

3.4.x. WinPython

mit Debugger

stellt auch Spyder zur Verfügung
kleine Probleme mit Installation und den ausführbaren Programmen

BK_SekI+II_Python_basic.docx - 46 - (c,p) 2015 - 2026 lsp: dre

3.4.x. Komodo IDE

IDE zum Komodo Editor
kostenpflichtige Lizenz

3.4.x. Thonny

http://thonny.org/
für Windows, Mac und Linux

es gibt auch Backend für bbc micro:bit

3.4.x. SciTE

Q: https://www.scintilla.org/SciTE.html
Q: https://www.heise.de/download/product/scite-10783

BK_SekI+II_Python_basic.docx - 47 - (c,p) 2015 - 2026 lsp: dre

3.4.x. TigerJython

Jython ist nicht etwa
falsch geschreiben –
sondern ein Kunst-
wort aus JAVA und
Python. Dies soll die
spezielle Version von
Python charakterisie-
ren. Bei TigerJython
– einer Jython-Ver-
sion – handelt es sich
um eine vollständige
und voll kompartible
Python-Version. D.h.
man kann in TigerJy-
thon genau so Py-
thon-Programme
schreiben, wie im
originalen Python-
System von py-
thon.org (IDLE).

Die Übersetzung der Python-Quellcode's und die Arbeitsumgebung sind in JAVA program-
miert worden. Jython verfügt deshalb über ein universelles Zwischen-Programm, das auf
allen Geräten (Computer, Tablet, Smartphon, …) laufen kann, die JAVA können. Ein weiterer
Vorteil ist die in das Programm direkt eingebaute JAVA-virtuelle-Maschine. Das Program-
mier-System TigerJython läuft damit unanbhängig von einer lokalen JAVA-Installation.

Nachteilig ist weitgehende Orientierung von Jython an der älteren Python-2-Version.
es soll in 2020 eine Python-3-Version geben

Die Input's werden in einen Dialog ausgelagert. Das hat schon den Anstrich von Program-
mierung einer graphischen Oberfläche.
Ausgaben im unteren –Terminal-ähnlichen Bereich – etwas ungewöhnlich. Man kann die
Ausgaben aber auch auf Message-Dialoge auslagern. Damit sind die Programme dann nicht
immer 100%ig übertragbar.

Quellen und Links:
→ http://www.tigerjython.ch (offizielle Seite zu TigerJython; u.a. auch Download's)
Q: http://letscode-python.de/links.php (Link-Liste zu TigerJython; Begleitbuch zu TigerJython)
Q: http://www.python-exemplarisch.ch/index_de.php?inhalt_links=navigation_de.inc.php&inhalt_mitte=

home/de/home.inc.php (Arbeits-Material zu / mit TigerJython (u.a. mit Robotik, Microcontrollern,
IoT, MachineLearning, BigData, …)

Q: http://www.tigerjython4kids.ch ()
→ http://www.python-online.ch (online-Programmier-Umgebung für Python)

http://www.tigerjython.ch/
http://letscode-python.de/links.php
http://www.python-exemplarisch.ch/index_de.php?inhalt_links=navigation_de.inc.php&inhalt_mitte=home/de/home.inc.php
http://www.python-exemplarisch.ch/index_de.php?inhalt_links=navigation_de.inc.php&inhalt_mitte=home/de/home.inc.php
http://www.tigerjython4kids.ch/
http://www.python-online.ch/

BK_SekI+II_Python_basic.docx - 48 - (c,p) 2015 - 2026 lsp: dre

3.4.x. Editoren im Internet – online-Editoren

benötigt keine Installation, außer einem aktuellen Browser
werden ständig aktualisiert und sind praktisch immer auf dem ajtuellsten Stand

nachteilig (hinsichtlich Datenschutz) ist, dass häufig eine Anmeldung notwendig ist
konsequent Schulaccounts / Schul-eMail-Adressen nutzen und alle persönlichen Angaben
anonymisieren

3.4.x.1. w3schools.com

eine der besten Seiten; natürlich / leider alles englisch
https://www.w3schools.com/ (sehr viele Sprachen, …) ! keine Anmeldung notwendig

3.4.x.2. TigerJython

schlicht, aber alles, was man zum
eigentlichen Programmieren
braucht

Zu beachten ist, dass es sich aktu-
ell noch um eine Umsetzung von
Python 2 handelt.

→ http://www.python-online.ch (on-

line-Programmier-Umgebung für
Python / TigerJython)

http://www.python-online.ch/

BK_SekI+II_Python_basic.docx - 49 - (c,p) 2015 - 2026 lsp: dre

3.4.x.3. repl.it

bietet neben Python auch online-Programmier-Umgebungen für viele andere Sprachen
immer Editor plus Übersetzer (Interpreter)

3.4.x.3. ???

BK_SekI+II_Python_basic.docx - 50 - (c,p) 2015 - 2026 lsp: dre

3.4.x. microsoft Visual Studio Code mit Jupyter-Erweiterung

etwas aufwändiges Konstrukt aus Editor (ms Visual Studio Code) und einem Desktop-Dialog
und –Dokumentations-System (Jupyter)

Nachteile

• sehr gewaltig und unübersichtlich für Anfänger

• lenkt von der eigentlichen Programmierung ab

• wenn Probleme auftauchen, ist die Ursache nicht immer der eigenen programmie-
rung zuzuordnen; es gibt weitere – zusätzliche – Fehlerquellen

• …

bietet viele Vorteile

• sehr guter und flexibler Editor

• Dialog-System (immer Wechsel zwischen Eingabe und Ausgabe) → Konsolen-bzw.
Skript-orientiertes Arbeiten

• dazu lassen sich Dokumentations-Abschnitte einfügen (Erklärungen usw. usf.)

• leichter Umstieg auf andere Programmiersprachen (die fast alle mit ms VSC editier-
bar sind)

• …

für fortgeschrittene Nutzer aber ohne weiteres empfehlenswert
sehr gut geeignet für Dialog- und Einstellungs-orientierte Sequenzen von Befehls-Ketten
(z.B. bei der Erstellung / bearbeitung von Künstlichen Netzen / Systemen zum Maschinellen
Lernen / …

bei microsoft learn gibt es dazu einen Kurs:
https://learn.microsoft.com/de-de/training/modules/

praktisches Vorgehen / Handling stellen wir im Skript-Teil 2 "Python für Fortgeschrittene" vor
(→ 8.22.2. Jupyter-Erweiterung in microsoft Visual Studio Code)

BK_SekI+II_Python_basic.docx - 51 - (c,p) 2015 - 2026 lsp: dre

3.5. Snap for Python

Python-Interface für Snap

benötigt 64bit-Betriebssystem und eine aktuelle Version von Python
Installation von Snap.py mittels

pip install snap-stanford

ev. vorher pip aktualisieren

python –m pip

für jede Betriebssystem-Plattform gibt es eine spezielle Download-Datei
in dieser ist auch eine setup.py enthalten, mit der ebenfalls eine Installation möglich ist

Windows

in der Konsole
cd in den Ordner, in dem sich das entpackte Download-Paket befindet
python setup.py install

Linux

in der Konsole
entpacken des Download-Paket's mit
tar zxvf snap-stanford-?.?.?-?.?-ubuntu?.?-x64-py3.?.tar.gz
cd in das Verzeichnis
sudo python3 setup.py install

MacOS

in der Konsole
entpacken des Download-Paket's mit
tar zxvf snap-stanford-?.?.?-?.?-macosx?.?-x64-py3.?.tar.gz
cd in das Verzeichnis
python3 setup.py install

Links:
https://snap.stanford.edu/snappy/index.html

BK_SekI+II_Python_basic.docx - 52 - (c,p) 2015 - 2026 lsp: dre

4. erste einfache Programme mit Python

Programme sind Zusammenstellungen von Anweisungen (/ Befehlen), die auf einem Compu-
ter die Lösung einer Aufgabe ermöglichen sollen. Man könnte Programme auch als Umset-
zungen von Algorithmen auf Computer verstehen. Alles was algorithmierbar ist, kann auch in
ein Programm umgesetzt werden. Genauso, wie der Algorithmus, benötigt das Programm
dann auch noch bestimmte Hardware / Werkzeuge zum Hantieren der bearbeiteten Objekte.
Algorithmen und Programme sind quasi die Arbeitsvorschriften zur Erfüllung einer Aufgabe.
Die Folgen von Anweisungen werden i.A. in spezielle Dateien geschrieben, die Quellcode
(Quell-Texte) genannt werden. Diese werden dann zur weiteren Bearbeitung, Korrektur usw.
erst einmal abgespeichert.

Definition(en): Programm
Ein Programm (Maschinen-Programm, Computer-Programm) ist die für die Maschine bzw.
den Computer nutzbare / ausführbare Folge von Befehlen, Anweisungen usw. zur gezielten
Bearbeitung von Daten oder die Steuerung von Aktoren.

Definition(en): Algorithmus
Ein Algorithmus ist eine eindeutige, zum Ziel führende Handlungs-Vorschrift zur Bearbeitung
einer Aufgabe.

Ein Algorithmus ist eine Sammlung / Folge systematischer und logischer Regeln und Vor-
gehensweisen, die zur Lösung einer Aufgabe führen.

Definition(en): Quelltext (eines Programms)
Ein Quelltext ist eine spezielle Umsetzung eines oder mehrerer Algorithmen in eine Pro-
grammiersprache.
Neben den Anweisungen für die Maschine enthalten (gute) Quelltexte auch zusätzliche Hinweise / Kommentare
für den menschlichen Bearbeiter / Leser.
(Der Quelltext muss vor der Benutzung durch die Maschine / den Computer zuerst in eine für ihn verständliche
Codierung umgesetzt werden (mit → Compiler oder Interpreter).)

Um ein Programm zu schreiben bzw. einen Quelltext einzugeben, müssen wir uns in IDLE
ein neues Fenster ("File" "New File") öffnen. Jetzt sind wir quasi auf der Editor-Ebene. Den
Text unseres Programms können wir in beliebiger Reihenfolge und Art und Weise erstellen.
Am Schluß des Editieren (Veränderns) kommt dann die Stunde der Wahrheit und wir lassen
Python testen, ob der Programmtext als Programm taugt.
Bevor aber nun wild editiert und programmiert wird, kümmern wir uns zu allererst um das
Abspeichern des Quelltextes. Mit "File" "Save As …" kommen wir zu einem klassischen Da-
tei-speichern-Dialog. Die Datei sollte – wie üblich – in einem gesonderten Ordner – z.B. ei-
nem privaten Ordner – abgelegt werden. Für das regelmäßig Speichern ist jeder selbst ver-
antwortlich. Als schnelle Tasten-Kombination kann man sich hierfür [Strg] + [s] merken.

BK_SekI+II_Python_basic.docx - 53 - (c,p) 2015 - 2026 lsp: dre

Jedes Programm folgt dem EVA-Prinzip. EVA steht hier nicht für eine freundliche Mitschüle-
rin, sondern für den grundlegenden informatischen Dreiklang:

Eingabe – Verarbeitung – Ausgabe

Gute Programmierer bauen diese Struktur auch im Quelltext ihrer
Programme nach.
Der Ablauf eines Programms sollte immer vorgeplant werden.
Zumindestens bei etwas komplizierteren Programmen kommt
man dann nicht mehr ohne Vorplanung aus. U.U. werden bei
größeren Programm-Projekten nur bestimmte kritische Abschnitte
in passenden Schemata skizziert.
In der Programmier-Praxis gibt es zwei unterschiedliche Skizzen-
typen für geplante Programm-Verläufe. Die erste Variante sind
sogenannte Programm-Ablauf-Pläne – kurz PAP genannt. We-
gen ihres großen Platzbedarfs beim Skizzieren werden sie heute
seltener verwendet. Es gibt für Start und Stop, sowie Eingaben,
Berechnungen, Entscheidungen und Ausgaben unterschiedli-
che Symbole, die durch Verlaufs-Linien verbunden werden. Ne-
benstehend ist ein sehr PAP für das EVA-Prinzip dargestellt. Man
liesst sich in diese Pläne recht schnell ein und die Wege sind
auch gut erkennbar.
Eine moderne Alternative zu den Programm-Ablauf-Plänen sind
Struktogramme.

Bei Struktogrammen wurden unwichtige Elemente, wie
Start uznd Stopp weggelassen und alle Elemente wer-
den in Blöcke (Rechtecke) gebracht. Für Eingaben und
Ausgaben gibt es Block-Symbole mit rein- bzw. raus-
zeigenden Dreiecken.

Struktogramme sind schön kompakt und orientieren sich an der gewünschten Modul-Struktur
im modernen Software-Design. Ein Kästchen / Block kann dann später durch immer speziel-
lere / kompliziertere Blöcke ersetzt werden. Diese Entwicklungs-Technik von Programmen –
vom Allgemeinen zum Speziellen (von oben nach unten) – wird Top-down-Strategie genannt.
Sie entspricht der Deduktion (Denktechnik).
Bei der entgegengesetzten Entwicklungs-Technik geht man von fertigen / funktionierenden
Befehlen / Blöcken aus und setzt sie zu immer umfangreicheren / ziel-orientierten Program-
men zusammen (quasi: von unten nach oben). Diese Technik wird Bottom-up genannt und ent-
spricht der Induktion.
In der Programmier-Praxis werden beide Strategien verwendet. Oft passiert das auch gleich-
zeitig. Die Top-down-Technik ergibt schnell übersetzbare Programme, auch wenn diese
meist noch nicht viel leisten. An den Details muss dann Schritt für Schritt gearbeitet werden.

Die Welt der Programmierung war früher eine elitäre Sonderwelt für Freaks, Nerds oder Ge-
eks. Damals entwickelten sich die ersten Züge einer – für Laien fas unverständlichen –
Fachsprache. Heute ist die Programm-Entwicklung eine weitverbreitete Kulturtechnik. Trotz-
dem sind viele Begriffe und Zusammenhänge für Nicht-Profis schnell unverständlich. Einige
der wichtigen Zusammenhänge und Begriffserklärungen aus dieser Begriffswelt sind in der
folgenden Abbildung zu entnehmen.

BK_SekI+II_Python_basic.docx - 54 - (c,p) 2015 - 2026 lsp: dre

Q: de.wikipedia.org (VÖRBY)

BK_SekI+II_Python_basic.docx - 55 - (c,p) 2015 - 2026 lsp: dre

4.1. Kommentare

Man kann sich ruhig angewöhnen, Programme gleich von Anfang an, in die drei Abschnitte
zu teilen und mit passenden Überschriften zu versehen. Natürlich sind diese nicht wirklich
Teil des Programms. Man nennt Hilfstexte in Quelltexten, die zur Beschreibung von Befehls-
zeilen oder Programm-Strukturen dienen – Kommentare. In Python werden Kommentare
durch die Raute begonnen und nehmen dann den Rest der Zeile ein. Bei größeren und wich-
tigen Programmier-Projekten werden an den Anfang des Quelltextes auch Inhalts-, Urheber-
und Versions-Angaben notiert.
Kommentare werden – zu mindestens in der Stadard-Einstellung von IDLE – rot gedruckt.

kommentierter Quelltext Erläuterungen
======================================

Programm zur Berechnung einer Summe

Autor: Drews

Version: 0.1 (01.09.2015)

Freeware

======================================

Eingabe(n)

Berechnung der Summe (Verarbeitung)

Ausgabe(n)

 hier könnte echter
Quell-Text stehen

 hier auch wieder

Für besondere Zwecke kann man sich auch der mehrzeiligen Kommentare bedienen.

Mehrzeilige Kommentare beginnen und
enden mit drei Anführungszeichen (" " ").
Alles zwischen diesen wird nicht von Python
ausgewertet. Die Anführungszeichen werden
deshalb auch gerne benutzt, um kleinere
oder größere Quelltext-Stück von der Py-
thon-Interpretation auszuschließen.
Wenn ich z.B. einen Quelltext verbessern
möchte, dann will ich vielleicht den alten
zuerst einmal noch (sicherheitshalber) be-
halten. Ich setze einfach davor und dahinter
die Dreifach-Anführungszeichen und kann
meinen neuen Quelltext davor oder dahinter
eingeben. Ein kleiner Kommentar hilft dann
auch später zu erkennen, was alter und
neuer Quelltext war und ist. Dieser muss
aber innerhalb der beiden Dreifach-
Anführungszeichen-Gruppen stehen.

…

Ausgabe(n)

for i in range(4):

 print("")

…

…

""" alter Quellcode

Ausgabe(n)

for i in range(4):

 print("")

"""

Ausgabe(n)

for _ in range(4):

 print("")

…

Mehrzeilige Kommentare werden in der Standard-Editor-Einstellung grün eingefärbt.
Bis jetzt macht unser obiges Programm noch nichts. Trotzdem können wir es schon mal tes-
ten. Dazu speichern wir erst einmal ab (z.B. mit [Strg] + [s]) und starten den Programm-
aufruf über "Run" "Run Module" oder mit der [F5]-Taste.
Geht alles glatt bei der Übersetzung und Ausführung des Programms, meldet sich IDLE oh-
ne einen Fehlerhinweis.

BK_SekI+II_Python_basic.docx - 56 - (c,p) 2015 - 2026 lsp: dre

4.2. Planung eines Programms und Umsetzung in Python

Ausgehend vom allgemeinen EVA-Struktogramm überlegt man sich nun, welche konkreten
Eingaben, Verarbeitsschritte und Ausgaben für ein spezielles Problem notwendig sind.
Bei der Summierung wissen wir, dass wir zwei Summanden brauchen und diese zur Summe
über den +-Operator zusammengefügt werden.
Das Struktogramm ist denkbar einfach:

An dieser Stelle soll darauf hingewiesen werden, dass
Struktogramm praktisch an keine spezielle Program-
miersprache gebunden ist.
Ob wir das Struktogramm in JAVA, BASIC, PASCAL
oder eben Python umsetzen, ist sachlich egal. Vielfach
werden die Programme ganz ähnlich aussehen. Die
Feinheiten jeder Programmiersprache sind dann schnell
dazugelernt.

Struktogramm für die
Summenbildung

Umsetzung des Struktogramm "Summenbildung in die Programmiersprache …"

… BASIC … PASCAL
DIM AS INTEGER summand1, summand2

DIM AS INTEGER summe

INPUT "1. Summand:", summand1

INPUT "2. Summand:", summand2

summe=summand1+summand2

PRINT "Summe: " &summe

END

program summe;

var summand1, summnad2: integer;

var summe: integer;

begin

 write("1. Summand: ");

 readln(summand1);

 write("2. Summand: ");

 readln(summand2);

 summe:=summand1+summand2;

 writeln("Summe: ",summe);

end.

… JAVA … C
public class SummeBerechnung

{

 public static void main()

!!! falsches Programm!!!

… PROLOG … FORTH
/* ProgrammSumme */

summe(1,1).

summe(N,S):- N > 1, M is N -1,

 summe(M,ZS), S is ZS + N.

BK_SekI+II_Python_basic.docx - 57 - (c,p) 2015 - 2026 lsp: dre

… … Python

summand1=int(input("1. Summand: ")

summand2=int(input("2. Summand: ")

summe=summand1+summand2

print("Summe: ",summe)

Aufgaben:

1. Übernehmen Sie den BASIC- und den PASCAL-Quelltext jeweils auf die

linke Seite eines Blattes! Lassen Sie etwas Platz zwischen den Zeilen! Kenn-

zeichnen Sie die Abschnitte, die jeweils zu den 4 Blöcken des Strukto-

gramms gehören! Schreiben Sie zu den einzelnen Anweisungen auf, was

diese aus Ihrer Sicht machen! (Praktisch: Kommentieren Sie die Program-

me!)

2. Vergleichen Sie die Umsetzungen miteinander!

Nun können wir in unseren Programm-Rumpf (mit den
Kommentaren) schrittweise Befehle ergänzen. Sinniger-
weise fängt man bei den Eingaben an und endet bei den
Ausgaben. Aber auch andere Vorgehensweisen sind
denkbar und obliegen dem Gutdünken des Program-
miers. Jeder muss da seinen eigenen Stil finden.

Die Eingabe realisieren wir mit der input()-Funktion. Diese fragt eine Eingabe auf der Konso-
le bzw. der IDLE-Oberfläche ab.
Zuerst würde die Zeile:

…

Eingabe(n)

summand1 = input()

…

(unter dem Eingabe-Kommentar) völlig ausrei-
chen. Der Nutzer sieht auf der Konsole al-
lerdings nur einen blinkenden Cursor und
weiss gar nicht, was das Programm von ihm
will. Besser ist es einen kleinen Begleittext
mit anzugeben.

>>>

Diesen kann man in das Klammerpaar von input() notieren. Der Text selbst muss in Anfüh-
rungszeichen (" ") oder einfachen Hochkommata (' ') gesetzt werden.

…

Eingabe(n)

summand1 = input("Geben Sie den ersten Summanden ein: ")

…

BK_SekI+II_Python_basic.docx - 58 - (c,p) 2015 - 2026 lsp: dre

An dieser Stelle bietet sich ein erster echter Test unseres Programms an. Also schnell ab-
speichern (mit [Strg] + [S]) und die Abarbeitung (mit [F5]) aufrufen. Nun sollt auf der Kon-
sole der Eingabe-Hinweistext zu sehen sein und wir wissen, was wir zu tun haben.

 >>>

Sie den ersten Summanden ein:

Im Fehlerfall müssen wir wieder zum Quelltext wechsel und die Fehler beseitigen. Dann wird
wieder gespeichert und ausprobiert. Dieses muss man solange wiederholen, bis dieser Teil
des Programms funktioniert.
Dann kann man sich an den nächsten Programm-
Abschnitt machen.
Also praktisch das Gleiche noch mal für den zweiten
Summanden. Am Einfachten geht das über das Kopie-
ren der letzten Programmzeile. Wichtig ist bei Kopier-
Aktionen immer, sofort die notwendigen Änderungen
vorzunehmen. Ansonsten hätten wir zwei Programmzei-
len, die sich um die Eingabe des ersten Summanden
kümmern.
Der nächste Programmschritt – die eigentliche Verarbei-
tung der eingegebenen Daten – folgt dann unter dem
Kommentar " Berechnung der Summe (Verarbeitung)".
Die Gleichung ist sofort verständlich. Wichtig ist hier,
dass das Ergebnis immer links stehen muss. Das
Gleichheitzeichen wird unter Programmierern meist als
Ergibt-Zeichen (in Pascal z.B.: :=) bezeichnet.

Erfahrene Programmierer geben natürlich gleich mehrere Zeilen ein und testen dann.
Ein praktische Strategie ist es auch, vor der internen Verarbeitung der eingegebenen Werte eine kleine Kontroll-
Ausgabe zu programmieren. Diese kann noch ohne Texte und Formatierungen erfolgen – es geht nur darum die
Korrektheit der Eingaben zu prüfen.

…

Eingabe(n)

summand1 = input("Geben Sie den ersten Summanden ein: ")

summand2 = input("Geben Sie den zweiten Summanden ein: ")

Berechnung der Summe (Verarbeitung)

summe = summand1 + summand2

…

Da die Berechnung nicht so kompliziert erscheint, gehen
wir gleich auch noch die Ausgabe an. Wer aber unbe-
dingt will kann wieder einen Programmlauf starten. Aller-
dings wird er noch kein Ergebnis zu sehen bekommen.
Als erstes reicht uns mal die Ausgabe des Variablen-
Wertes von summe. Die Ausgabe-Funktion heißt print().

…

Ausgabe(n)

print(summe)

…

Hier ist wieder eine gute Gelegenheit das Programm zu testen, ansonsten gehen wir gleich
ans Verfeinern.

Die einfache Ausgabe einer Zahl ist wenig
informativ. Zwar können wir vielleicht aus
den beiden Eingaben so ungefähr ableiten,

>>>

BK_SekI+II_Python_basic.docx - 59 - (c,p) 2015 - 2026 lsp: dre

was berechnet wird, aber

Wer das Programm getestet hat, wird meist eine böse Überraschung erleben. Das Programm berechnet irgend-
was, aber nicht die Summe. Mathematisch scheint aber doch alles richtig zu sein. Warum es zu scheinbar fal-
schen Berechnungen kommt, klären wir gleich.

Auch bei der spärlichen Ausgabe bietet sich also ein kleiner Begleittext an, damit der Nutzer
auch genau weiss, was die Ausgabe bedeutet.

…

Ausgabe(n)

print("Die Summe ist gleich: ",summe)

…

Für echte Konsolen-Programme ergänzen wir ganz unten immer noch ein input(). Damit die
Konsole nicht gleich nach der Ausgabe geschlossen wird. Dieses input hat keinen anderen
Zweck! Es wird einfach auf ein Enter gewartet und die Konsole schließt danach.
Somit sieht unser erstes Programm insgesamt so aus:

======================================

Programm zur Berechnung einer Summe

Autor: Drews

Version: 0.1 (01.09.2015)

Freeware

======================================

Eingabe(n)

summand1 = input("Geben Sie den ersten Summanden ein: ")

summand2 = input("Geben Sie den zweiten Summanden ein: ")

Berechnung der Summe (Verarbeitung)

summe = summand1 + summand2

Ausgabe(n)

print("Die Summe ist gleich: ",summe)

Warten auf Beenden

input()

In der Gesamtansicht erkennt man auch gut das sogenannte Highlighting der verschiedenen
Programm-Elemente. Dadurch wird der Programm-Text übersichtlicher und Fehler lassen
sich etwas schneller finden.

Aufgabe:

1. Testen Sie das Summen-Programm auch mit Komma-Zahlen und Texten –

auch in Kombination untereinander und mit ganzen Zahlen! Was erhalten

Sie für Ergebnisse? Was sagt das über die Leistungen von Python aus?

2. Speichern Sie das aktuelle Programm noch einmal ab und erstellen Sie sich

dann eine weitere Kopie mit "Speichern unter …"! Verwenden Sie den Na-

men "Subtraktion.py"!

3. Verändern Sie das Programm nun so, dass es eine Subtraktion durchführt!

Verändern Sie auch alle Variablen-Namen, Ausgaben usw. usf. für das neue

Programm!

BK_SekI+II_Python_basic.docx - 60 - (c,p) 2015 - 2026 lsp: dre

Spätestens jetzt fällt uns auf, dass das Programm gar nicht exakt rechnet. Es kann zwar mit
Ganzzahlen, Kommazahlen und Texten umgehen, aber statt die Summe zu berechnen, wer-
den die Eingaben nur einfach aneinander gehängt.
Das Problem liegt nicht an der Berechnung der Summe, wie man vielleicht tippen würde.
Das Problem ergibt sich daraus, dass Windows i.A. und Python im Speziellen bei Eingaben
zuerst einmal immer einen Text liefert. Texte werden beim Summieren einfach nur hinterei-
nandergehängt – wir sagen auch verkettet.
Diesem Problem kann man nun auf zwei verschiedenen Wegen Paroli bieten. In der ersten
Variante überlassen wir Python die Arbeit der Erkennung, was eingegeben wurde. Die Funk-
tion eval() macht genau dies. Der Name steht für evaluieren / überprüfen. Die Funktion
eval() ermittelt mit einer recht guten Treffsicherheit, ob es sich bei den Eingaben und der
späteren Verarbeitung um ein Text-Ding oder um Zahlen-Verknüpfung handelt. Den Variab-
len wird dabei ein passender Datentyp (z.B. Text, Ganzzahl, Kommazahl) zugeordnet. Dazu
später noch mehr und auch, wie man die Datentypen gezielt verändern kann (→ 8.2. Daten-
typen und Typumwandlungen).

…

Eingabe(n)

summand1 = eval(input("Geben Sie den ersten Summanden ein: "))

summand2 = eval(input("Geben Sie den zweiten Summanden ein: "))

…

Aufgaben:

1. Erstellen Sie ein Struktogramm für die Produkt-Bildung von drei Faktoren!

2. Schreiben Sie ein Programm, dass aus drei einzugebenen Zahlen das Pro-

dukt berechnet! Orientieren Sie sich an dem Struktogramm von 1.! Korri-

gieren Sie eventuell das Struktogramm, wenn es Probleme beim Testen des

Programms gibt!

3. Konzipieren und realisieren Sie ein Programm, das zu einer einzugebenden

Masse in kg die Massen in mg, g und t ausgibt!

4. Erstellen Sie Struktogramm und Programm zur Berechnung von cm
2
, dm

2
,

ar, ha und km
2
 aus einer Angabe in m

2
! Die Einheiten dürfen ausgeschrie-

ben werden!

5. Erstellen Sie ein Struktogramm und dann das Programm zur Umrechnung

einer °C-Temperatur in die zugehörige KELVIN-Temperatur!

6. Ergänzen Sie das Programm von 5. noch um die Ausgabe der Temperatur

in °Ra (RANKINE) und °Ré (REAUMUR; sprich: [reo'mü:r]!

für die gehobene Anspruchsebene:

7. Gibt es eigentlich noch andere Temperatur-Skalen? Wenn JA welche und,

wenn NEIN, warum nicht. Wenn es weitere Skalen gibt, dann erweitern Sie

das Programm von 6. um diese Skalen!

Testwerte für die Temperatur-Umrechnungs-Programme:

°C °F K °Ra °Ré °C °F K °Ra °Ré

-273 -459,7 0 0 -218,5 0 10,4 273 491,4 0

 -12 10,4 261 469,8 -9,7 -17,8 0 255,4 459,7 -218,5

 126 258,8 399 718 100,7 20 67,7 293 527,4 16

 37,8 100,0 311 560 30,3 0 32 273,1 491,7 0

 -51 -59,7 222 400 41 -217,6 -359,6 55,6 100 -174

 25 76,7 298 536,4 20 125 257 398,1 716,7 100

BK_SekI+II_Python_basic.docx - 61 - (c,p) 2015 - 2026 lsp: dre

Für die Temperaturen in °Ra und °Ré werden, je nach Quelle auch °R als Einheits-Zeichen verwendet. Da dies
zu Verwechslungen führen kann, werden hier die ausführlichen und damit eindeutigen Einheiten-Symbole be-
nutzt.

Der Anwender steht immer im Mittelpunkt –
und dort steht er jedem –
und vor allem dem Programmierer –
im Weg!

ergänzende Bemerkungen zu Vaiablen und Daten-Typen

int mit einem Werte-Bereich von -9’223’372’036’854’775’808 bis 9’223’372’036’854’775’807
(-9 Trillionen bis 9 Trillionen (also knapp von -1018 bis 1018))
Das entspricht dem Maximum, was in einer 64bit-Variablen möglich ist

float für Gleitkommazahlen ebenfalls als 64bit-Variable
durch spezielle Verteilung der Bit’s für Matisse und Exponent kommt man auf einen mögli-
chen Bereich von -1,797’693’134’862’315’7*10-308 bis +2,225’073’858’507’201’4*10308

komplexe Zahlen lassen sich als Summe (besser auch in Klammern) aus reelen und imagi-
nären Teil zusammensetzen 4+5j

BK_SekI+II_Python_basic.docx - 62 - (c,p) 2015 - 2026 lsp: dre

5. Was passiert mit dem Quelltext?

Python ist eine höhere bzw. Problem-orientierte Programmiersprache
vom Menschen gut lesbar
muss für die Nutzung auf dem Computer in Maschinencode (Nullen und Einsen) übersetzt
werden, dies kann aber ein Computer wieder auch selbst realisieren; Übersetzung benötigt
Zeit und muss relativ universell erfolgen, deshalb ist der Vorgang recht langsam
meist sind die fertigen Programme dann auf verschiedenen Computer-Typen und Betriebs-
system-Welten nutzbar

Maschinen-orientierte Programmiersprachen (z.B. Assembler od. Bytecode) sind vom Men-
schen nur sehr schwer lesbar und wenig verständlich
kaum Übersetzung notwendig, deshalb meist sehr schnell und effektiv
meist auf einzelne Computer-Typen und eine Betriebssystem-Welt zugeschnitten

Übersetzung einer Programmiersprache in Maschinen-Code kann auf zwei Arten erfolgen:
entweder mit

• Interpreter Übersetzung erfolgt während der Nutzung; es werden Zeile für Zeile
(bzw. Blöcke) einzeln übersetzt und ausgeführt; bei nochmaliger
Nutzung muss wieder neu interpretiert werden; immer Quell-Text
und Interpreter (bei Python die Shell) zur Ausführung notwendig

oder

• Compiler Übersetzung erfolgt hier in einem Stück vor der Nutzung; es wird
zumeist ein echtes ausführbares Programm (EXE-Datei) erzeugt;
das ausführbare Programm kann beliebig oft und ev. auch parallel
ausgeführt werden; Nutzung ohne den Quell-Text und den Compiler
möglich

Der Compiler nimmt den ge-
samten Quell-Text und über-
setzt ihn in Maschinen-
Code. Dieser wird dann in
eine ausführbare Datei (i.A.
eine EXE) gespeichert und
kann dann beliebig oft ausge-
führt werden. Meist kann die
EXE-Datei auch weitergege-
ben werden und auf einem
anderen Rechner ausgeführt
werden. Dieser Rechner be-
nötigt kein Übersetzungs-
Programm, da der Quell-Text
ja vollständig in Maschinen-
Code übertragen wurde.

Compilierte Programme sind sehr schnell, da eine erneute Überprüfung und Übersetzung
nicht mehr notwendig ist.
Ein Interpreter geht bei der Übersetzung anders vor. Er übersetzt immer nur zusammenge-
hörende Teile des Quell-Code's und führt diese sofort aus.
Der Vorteil ist hier, dass eine ev. aufwändige Compilierung eines (großen) Programm's nicht
erfolgen muss – es wird nur der derezit gebrauchte Teil übersetzt. Geht etwas beim Überset-
zen oder in der Nutzung (z.B. Bedienfehler) schief, dann erfolgt eine Fehler-Meldung. Dies
kann sofort im Quell-Text verbessert werden und eine erneute Interpretation erfolgen.
Interpreter sind auch wesenltliche einfacher zu erstellen und deutlich kleinere Programme,
als Compiler.

BK_SekI+II_Python_basic.docx - 63 - (c,p) 2015 - 2026 lsp: dre

Der Nutzer benötigt aber bei der Interpreter-Version auch immer wieder dieses Überset-
zungs-Programm (also den Interpreter) auf seinem Rechner.
Prinzipiell ist Python eine Interpreter-Sprache. Der Quell-Text wird also während der Benut-
zung / dem Aufruf in Maschinen-Befehle umgesetzt. Aber beim genauen Betrachten wird
allerdings eine Kombination aus Compiler und Interpreter benutzt. Dadurch werden die Vor-
teile beider Übersetzungs-Techniken zusammengeführt.

Der Quell-Text wird vom Compiler-Teil des "Interpreter's" zuerst in einen Zwischen-Code
(Byte-Code) übersetzt. Dieser Code ist dann vom Interpreter lesbar. DerByte-Code selbst ist
Maschinen-unabhängig, d.h. jeder Compiler erzeugt den gleichen Byte-Code aus einem
Quell-Text. Der Byte-Code wird im Hintergrund verarbeitet. Der "normale" Nutzer übersieht
diesen Code wahrscheinlich.
Der Zwischen-Code (Byte-Code) wird dann vom Interpreter, der nun als virtuelle Maschine
fungiert, Maschinen-abhängig abgearbeitet. Für jeden Rechner mit einem anderen Betriebs-
system muss es also von Python einen speziellen Interpreter geben.
Im Detail werden die Daten / Dateien in etwa so verarbeitet. Wenn der py-Quelltext eines
Moduls oder aus einer anderen py-Datei importiert wird, dann wird eine (sichtbare) Byteco-
de-Datei abgelegt. Diese hat die Endung *.pyc. Zumeist liegen die Dateien im Unterordner
__pycache__ des Python-Systems. Die pyc-Datei kann mit dem Interpreter jedes anderen
Systems abgearbeitet werden.

Definition(en): Interpreter
Ein Interpreter ist ein Programm, das den Quelltext zur Laufzeit einliest, analysiert und aus-
führt.
Der Interpreter wird bei jeder Abarbeitung des Programms (Quelltextes) gebraucht.

Definition(en): Compiler
Ein Compiler ist ein Programm, das den Quelltext in ein für sich ausführbares Maschinen-
Programm übersetzt.
Der Compiler wird zur Abarbeitung des Programms nicht mehr gebraucht.

BK_SekI+II_Python_basic.docx - 64 - (c,p) 2015 - 2026 lsp: dre

eval(ausdruck)
interpretiert den angegebenen Ausdruck

exec(text)
interpretiert den angegebenen Text (der ein vollständiges Python-Programm sein kann) und
führt den Code aus
text kann also eine Folge von Python-Anweisungen, Importen, Funktion(sdefinietion)en usw.
usf sein

compile()

die Interpreter-Technik bringt auch einige Probleme mit sich
ein solches Problem ist die Fehl-Interpetation von Eingaben; im interaktiven Modus für den
Nutzer nachvollziehbar, bringt es den Endnutzer (ohne Kenntnis des Quell-Textes und viel-
leicht auch ohne Python-Erfahrung) leicht um den Verstand
genaueres dazu später bei den Eingaben (→ 6.2.1. unschöne Eingabe-Seiten-Effekte in Py-
thon-Programmen)

BK_SekI+II_Python_basic.docx - 65 - (c,p) 2015 - 2026 lsp: dre

5.1. Und es geht doch! – aus dem Python-Quelltext eine

EXE erstellen

PyInstaller
erzeugt eine exe-Datei, die eine Python-Laufzeitumgebung und das eigene Script / Pro-
gramm enthält
gibt es für Windows und für Linux
http://www.pyinstaller.org/

aus dem PyInstaller weiterentwickelt wurde der
McMillan's Installer
entwickelt; also gleiches Prinzip
Weiterentwicklung ???

py2exe-Modul
sehr häufig benutzt
es gibt aber bestimmte Einschränkungen, die ev. beim Programmieren beachtet werden
müssen
hat manchmal auch Probleme mit bestimmten Modulen / Bibliotheken

BK_SekI+II_Python_basic.docx - 66 - (c,p) 2015 - 2026 lsp: dre

5.2. Fehlersuche

Gleich bei den
ersten Übungen
tauchen erfah-
rungsgemäß die
ersten Fehler
beim Interpretie-
ren des Quell-
codes auf.
Manche Fehler
sind offensicht-
lich. Vor allem
dann, wenn noch
Fehler-Informa-
tionen mit aus-
gegeben werden.

zu interpretierender Quelltext

angezeigte Fehlermeldung

Hier z.B. wurde in der Zeile 1 (line 1) in der interpretierten Datei ein Namensfehler

(NameError: …) gefunden. Der Name "schreib" ist nicht definiert.

Aber manchmal ist nur ein rotes Viereck am Anfang der Zeile zu
erkennen. Die Fehlermeldung besagt aber, es handle sich um
einen Syntax-Fehler.
Besonders verzwickt wird es, wenn man auch noch sicher ist,
dass in dieser Zeile alles richtig ist. In so einem Fall lohnt immer
ein Blick in die Zeile davor. Meist ist hier der Fehler zu finden. Für
den Interpreter ist die vorherige Zeile syntaktisch noch nicht ab-
geschlossen. Die neue Zeile – in der der Fehler angezeigt wird –
ist aber eben nicht passend zur vorherigen Zeile und somit ergibt
es eine Fehlermeldung.
Die häufigsten Fehler sind fehlende Operatoren (+, -, *, /, …) oder
Operanden (Zahlen bzw. Variablen).
Als nächste Fehlerquelle kommen fehlende schließende Klam-
mern oder zu wenig öffnende in Frage.
Das Schöne ist, das uns Python die Klammernpaare im Editor
kurzzeitig nach dem Eintippen anzeigt. Sollte da mal in einer
Funktion nicht alles grau werden, dann fehlt zumeist irgendwo
eine Klammer.

Eine unschöne Sache ist auch für uns Deutsche die Umsetzung des Dezimaltrenners Kom-
ma in einen Punkt. Ein Komma hat völlig andere Wirkungen – dazu später mehr. Hier ist erst
einmal wichtig, darauf zu achten.
Ähnlich, wie bei den Klammern müssen Texte immer mit den beginnenden Zeichen – am
Besten doppelte Anführungszeichen – abgeschlossen werden.
Fehlermeldungen können
aber auch sehr kryptisch
sein. Sie sind aus der
Sicht des Interpreter ein-
deutig, aber eben nicht
aus der Sicht des Pro-
grammierers, der ausver-
sehen einen Tipp-Fehler
gemacht hat.

es handelt sich bei diesem Fehler nicht um einen "Typ"-Fehler

 sondern um eine fehlendes Mal-Zeichen vor der Klammer

BK_SekI+II_Python_basic.docx - 67 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Suchen Sie die Fehler in den folgenden Code-Ausschnitten! Berichtigen Sie

diese und probieren Sie in Python aus, ob der Interpreter den Code akzep-

tiert!

a) 23 * (3 + 2

12 + 83 -
 b) 9 + 4 3

7 * 23+4) + 8

c) 17 \ 4 * 12

21,5 * 3
 d) .5 + 4 * 3

-3*+5*,333333

e) print('Hallo Nutzer!") f) PRINT(21 + "E")

2. Erstellen Sie ein kleines Python-Programm mit mindestens 5 Fehlern! Dru-

cken Sie das Programm zweimal aus und korrigieren Sie auf einem Blatt die

Fehler (→ Lösungsblatt)!

3. Tauschen Sie das 2. Blatt einem Nachbarn und korriegieren Sie dessen feh-

lerhaftes Programm!

4. Vergleichen Sie die gefundenen Fehler mit dem Lösungsblatt!

Den Prozess der Fehlerbereinigung nennt man auch Debuggen (dt.; engl.: debugging). Der
Begriff besagt, dass die Läuse / Käfer (engl.: bugs) aus dem Quelltext bzw. dem fertigen
Programm entfernt werden.
Man unterscheidet technisch zwischen:

• Syntax-Fehlern praktisch Fehler in der Rechtschreibung des
Quelltextes

• Laufzeit-Fehlern sind Fehler, die erst beim Ausführen des Pro-
gramm auftreten

• logische und semantische Fehler sind inhaltliche Fehler oder auch grammatikali-
sche Fehler im Quell-Text

Debugging ist echte Detektiv-Arbeit. Manche Fehler sind wahre Künstler im Verstecken und
Verschleiern der wirklichen Fehlerstellen. Ab und zu muss man sich einfach aus der Arbeits-
ebene lösen und von oben auf das Programm schauen. Auch das Pause-Machen oder
Schlafen-Gehen hat sich als Wunderwaffe gegen Programmierfehler herausgestellt.
Heute gibt es sogenannte Debugger – Programme, die zu mindestens eine große Menge
klassischer Programmierfehler in Quelltexten finden. Letztendlich wird aber immer der
Mensch die letzte prüfende Instanz sein. Somit obliegt es immer ihm, ob ein Programm feh-
lerarm ist. Wirklich richtig fehlerfrei wird man wohl kein komplexes Programm je hinbekom-
men.
Jedes Programm sollte immer erst frei gegeben werden, wenn seine Funktionsweise vom
Programmierer verantwortet werden kann.
Leider planen viele Programmierer für das Debuggen zu wenig Zeit ein. Ein guter Orientie-
rungswert sind ein Drittel der gesamten Programmierzeit. Das erste Drittel geht für die Kon-
zeption und den Algorithmen-Entwurf drauf und das nächste für die Quelltext-Erstellung.
Bleibt die Dokumentation übrig. Dafür muss man noch mal ein Drittel einplanen. Und damit
sind wir da, wo fast alle Programmier-Projekte enden – in der deutliche Überschreitung der
Zeit-Vorgaben.

Ein Programm ist dann korrekt,
wenn es zu jeder zulässigen Eingabe

eine korrekte Ausgabe produziert.

BK_SekI+II_Python_basic.docx - 68 - (c,p) 2015 - 2026 lsp: dre

Das impliziert, dass man beim Testen alle zulässigen Eingaben durchlaufen müsste und die
vom Programm produzierten Ausgaben mit anderen Referenzwerten vergleichen müsste.
So etwas ist aber maximal bei kleinen Programmen mit wenigen Eingaben / Ausgaben
machbar. In der Praxis wird man sich mit einer gut gewählten Menge von Eingaben und
Ausgaben zufrieden geben müssen. Besonders effektiv ist die Test-Menge an Eingabe- und
Ausgabe-Paaren, wenn diese zufällig ausgewählt werden. Dann besteht zu mindestens eine
gewissen Wahrscheinlichkeit, dass das Programm ordnungsgemäß funktioniert.

Aufgaben:

1. Prüfen Sie zuerst auf dem Papier die folgenden Programme! Finden Sie die

Fehler und berichtigen Sie diese sinnvoll!

a) print "Sternenreihe"

for i in range 1, 11

 print(i = , i)

 print(i#*

Programmende

print(ende)

b) input(Dein Name:

print " " #Eingabe lautete:

print(name)

print "fertig"

input()

2. Diskutieren Sie die Fehler und Berichtungen mit einem Partner aus dem

Kurs!

3. Tippen Sie nun den korrigierten Quelltext ein und probieren Sie ihn aus!

Finden Sie noch weitere Fehler des Originaltextes, Ihrer Korrekturen oder

durch die (durch Sie getätigte) Eingabe?

BK_SekI+II_Python_basic.docx - 69 - (c,p) 2015 - 2026 lsp: dre

Bei fehlerhaften Python-Programmen werden häufig die folgenden Fehler angezeigt:

• SyntaxError besagt, das Elemente von Phyton nicht richtig geschrieben oder
angeordnet (z.B. fehlende schließende Klammern) worden sind
(praktisch Rechtschreib- bzw. Grammatik-Fehler)
der (fehlerhafte) Quellcode lässt sich nicht in ein ausführbares Pro-
gramm (Maschinencode) übersetzen
häufig fehlt ein Doppelpunkt oder es fehlen schließende Klammern
oder die Ende-Kennzeichen von Texten

• NameError zeigt an, dass eine Variable benutzt wird, der vorher noch kein Wert
zugewiesen wurde
häufig wurde der Variablen-Name nur falsch geschrieben und die
Groß- und Kleinschreibung nicht beachtet
weiterhin tritt der Fehlertyp auf, wenn eine Funktion aufgerufen /
benutzt wird, die nicht definiert oder importiert wurde

• IdentationError ist ein Einrückungsfehler; entweder wurden keine notwendigen Ein-
rückungen vorgenommen oder die Einrückungen sind unterschied-
lich groß
durch einheitliches Benutzen von Tab-Stop's bzw. Leerzeichen
(empfohlen werden 4) leicht zu korrigieren und zu vermeiden

• ValueError tritt immer dann auf, wenn zwar der richtige Daten-Typ verwendet
wurde, aber der Inhalt (Wert = engl.: value) nicht für die Funktion
usw. geeignet ist

• TypeError wird angezeigt, wenn für eine Operation / Funktion Daten eines
nicht geeigneten bzw. zugelassenen Typ's verwendet oder überge-
ben wurden
tritt auch auf, wenn eine Eingabe (standardmäßig ein Text) an eine
Rechen-Operation oder –Funktion übergeben wird
z.B. kann eine Funktion, die ein ganze Zahl erwartet nicht mit einer
Kommazahl oder einem Text aufgerufen werden

• ImportError weist darauf hin, dass die Bibliothek / das Modul oder die spezifi-
zierten Funktionen nicht verfügbar sind oder falsch geschrieben
wurden

BK_SekI+II_Python_basic.docx - 70 - (c,p) 2015 - 2026 lsp: dre

5.3. Stil-Regeln für Python-Programmierer

Warum denn nun schon Vorschriften zum richtigen Schreiben von Python-Prgrammen – wir
haben doch noch gar nicht richtig programmiert?! Natürlich ist der Einwand richtig. Viele der
nachfolgenden Regeln und Vorschriften hören sich für einen Anfänger völlig abgehoben an.
Aber – wer nicht von Anfang an die wichtigen Regeln einhält, der wird sich später nur schwer
umgewöhnen.
Im Normalfall wird die Einhaltung der Vorschriftung und Stil-Regeln von den Kursleitern bei
der Bewertung von Programmen mit beachtet. Also wundern Saie sich nicht, wenn ein super
funktiuonierendes Programm nicht die volle Punktzahl bekommt, weil es einfach nicht lesbar
und verständlich ist.
Ein anderer Programmierer oder z.B. der Kursleiter sind Personen, die ein Programm ein-
fach nur lesen. Sie müssen und können nicht zwangsläufig die Gedankengänge des Pro-
grammierer's verstehen. Programmieren ist heute zudem immer Team-Arbeit. Das Lesen
von Programmen passiert deutlich häufiger als das Schreiben und Korrigieren. Deshalb
müssen Programme immer auch für fremde Leser verständlich angelegt und geschrieben
werden.
Versetzen Sie sich in die Lage Ihres späteren Arbeitgebers oder eines Arbeitgebers. Da pro-
grammiert ein Programmierer einfach drauf los und erzeugt auch funktionierende Program-
me. Nun muss irgendetwas umgestellt werden oder ein Fehler ist aufgetaucht und muss kor-
rigiert werden. Und nun liegt da ein Quelltext vor Ihnen, mit dem niemand etwas anfangen
kann, weil er unübersichtlich oder kryptisch unverständlich geschrieben ist. Die übliche Re-
aktion ist: Das Programm wird neu geschrieben, das dauert genausolange, wie den alten
Code aufzubröseln. Was ist das für eine Resourcen-Verschwendung. Kosten über Kosten,
nur weil so ein Neunmalklug den Angeber spielen will. So geht es also nicht.
In der PEP 8 ("Python Enhancement Proposal #8) sind viele Stil-Regeln empfohlen (→
https://www.python.org/dev/peps/pep-0008/). Für uns Anfänger gelten Sie als Gesetze.
Hier die wichtigen Regeln:

Leer-Räume (Leer-Zeichen):

• für Einrückungen Leer-Zeichen verwenden (statt Tabulator)

• Einrückungen immer um 4 Zeichen

• Zeilen-Länge unter 80 Zeichen

• definierte Klassen und Funktionen werden mit 2 Leerzeilen von einander getrennt

• innerhalb einer Gruppe (z.B. Funktionen einer Klasse, zusammengehörende Funktionen)
wird nur eine Leerzeile benutzt

• Funktions-Aufrufe und Feld-Indizies ohne Leerzeichen innerhalb der Klammern (maximal
ein Leerzeichen zwischen den Einzel-Objekten)

• ein Leerzeichen vor und hinter dem Zuweisungszeichen (=)

• ein Leerzeichen vor und hinter dem Vergleichszeichen (z.B.: ==)

keine Leer-Räume:

• zwischen Funktionsnamen und der öffnenenden Klammer

• hinter einer öffnenden Klammer, vor einer schließenden Klammer

• vor einem Doppelpunkt (von Verzweigungen und Schleifen)

Bezeichner:

• Variablennamen, Funktionen, Attribute in Kleinbuchstaben (ev. mit Unterstrichen)

• geschützte Attribute mit führendem Unterstrich

• private Attribute mit führendem doppelten Unterstrich

• Klassen und Exceptions mit Großbuchstaben beginnend (und ev. auch intern für Wörter-
beginn)

• Modul-weite Konstanten vollständig in Großbuchstaben

https://www.python.org/dev/peps/pep-0008/

BK_SekI+II_Python_basic.docx - 71 - (c,p) 2015 - 2026 lsp: dre

Ausdrück und Anweisungen:

• keine einzeiligen if-Anweisungen, for- und while-Schleifen

• keine einzeiligen Exceptions

• Vorrang für from xxx import yyy (statt import yyy)

• Reihenfolge der Importe (zuerst Standard-Module, dann Fremdanbieter-Module, zuletzt
eigene Module); möglichst alphabetisch sortiert

• Test auf eine leere Liste, leere Felder, leere Werte mit somelist (nicht mit len(..) == 0
usw.)

weitere Empfehlungen / Regeln:

• gleichartige Programm-Abschnitt (besonders, wenn sie häufiger verwendet werden) als
Funktionen auslagern

• komplizierte Ausdrücke in Funktionen auslagern

• Teil-Listen und Elementzugriff auf Listen über :-Notierung (Slicing)

• möglichst keine else-Blöcke nach for- oder while-Schleifen

• alle Blöcke in Exceptions nutzen

Bemerkungen zur verwendeten Schreibung in diesem Skript:
Ich bin bemüht die Regeln so gut wie möglich einzuhalten. Viele Programme sind schon
älter und werden nach und nach umgestellt. Das kostet viel Zeit, Zeit, die ich derzeit erst
einmal lieber für inhaltliche Erweiterung aufwenden möchte. Das andersartige Schreiben
von Bezeichnern etc. ist zuerst einmal ein Schönheitsfehler.

Die Exaktheit eines Programms geht bei mir vor Schönheit.
Für Hinweise auf dringend notwendige Umstellungen und echte Fehler bin ich immer dankbar.

Aufgaben:

… folgen später, hier Verweise für Voreilige:

→
→
→

Grob-Gliederung eines Programm's

• ev. Kommentare zum Programm / zur Datei Leistung des Programm's
Autor
Datum
Version
Lizenz

Leerzeile mindestens

• Importe

Leerzeile mindestens

• Funktions-Definitionen ev. mit Kommentaren

2 Leerzeilen mindestens

• (Haupt-)Programm / Initialisierung möglichst mit Kommentar z.B.: #MAIN

BK_SekI+II_Python_basic.docx - 72 - (c,p) 2015 - 2026 lsp: dre

Linter

Ein Linter ist ein Programm, das Programm-Code analysiert und geeignete Kommentare
zurückgibt.
Es werden dabei:

• Code-Formatierungen

• sinnlose Code-Zeilen

• mögliche, unbeabsichtige Fehler-Quellen

betrachtet.
Linter ergeben immer nur Empfehlungen. Besser als Linter sind menschliche Korrektoren. In
der Praxis arbeiten Programmierer in Zweier-Team. Einer programmiert und der andere
schaut dem ersten über die Schulter.

5.4. agile Software-Entwicklung

mehr eine Arbeits-Einstellung für Pro-
grammierer, als Programmier-Regeln

PDCA-Zyklus

Q: agilemanifesto.org

BK_SekI+II_Python_basic.docx - 73 - (c,p) 2015 - 2026 lsp: dre

Q: agilemanifesto.org

BK_SekI+II_Python_basic.docx - 74 - (c,p) 2015 - 2026 lsp: dre

6. grundlegende Sprach-Elemente von Python

Nicht dass Sie beim Betrachten des ersten Unterabschnittes denken, ich habe das EVA-
Prinzip schon wieder vergessen oder nicht richtig verstanden. Nein, die Umsortierung für die
einzelnen Kapitel (Eingabe – Verarbeitung – Ausgabe) erfolgt hier aus praktischen Gründen.
Damit man mit dem Nutzer kommunizieren kann, müssen z.B. Informationen auf dem Bild-
schirm erscheinen. Die Ausgaben sind dafür passende Programm-Elemente. Eigentlich im-
mer soll irgendetwas (zum Testen) ausgegeben werden. Und das sind zuerst auch nur Zwi-
schenwerte und Rohergebnisse. Später werden die Daten dann Nutzer-freundlich präsen-
tiert.
Deshalb verwende ich hier also die unorthodoxe Reihenfolge: Ausgaben (→ 6.1. Ausgaben)
– Eingaben (→ 6.2. Eingaben) – Verarbeitung (→ 6.3. Verarbeitung).

6.1. Ausgaben

Einige Möglichkeiten der Ausgabe mit dem Befehl bzw. der Funktion print haben wir uns bei
den ersten einfachen Programmen (→ 4. erste einfache Programme mit Python) schon an-
gesehen.
Nun wollen wir uns weitere Feinheiten ansehen und auch einige zusätzliche Ausgabe-
Möglichkeiten kennenlernen.
Trotzdem werden hier nur die wichtigsten / praktischsten Möglichkeiten aufzeigen. Für mehr
empfehle ich die Hilfe, die viele andere Variationen und Möglichkeiten beschreibt. Der
print()-Befehl bietet viele Gelegenheiten, sich eine gut verständliche, ordnungsgemäß ge-
staltete Ausgabe zu produzieren.
So lassen sich viele ein-
zelne Teilbereiche (qua-
si die Argumente) durch
Kommata abgrenzen.
Jeder ist für sich wieder
weiter differenzierbar.
Letztendlich läuft es da-
rauf hinaus, entweder
eben nur eine (print mit

nur einem Argument) oder
mehrere Texte zu erstel-
len.
Zahlen und Berechnun-
gen lassen sich Komma-
getrennt ebenfalls in
einer Ausgabe unter-
bringen. Es kann dabei
frei gemischt werden.

 >>> print("Hallo ", "Nutzer!")
Hallo Nutzer!

>>>

 >>> name="Klaus"

>>> print("Hallo ", name, ", wie geht's?")
Hallo Klaus, wie geht's?

>>>

 >>> a=5

>>> print("Hallo ", name, ", 2*",a," ist ",2*a)
Hallo Klaus, wie geht's?

>>>

 >>> print("Hallo ", name, ", 2*",a," ist ",2*a)
Hallo Klaus, 2* 5 ist 10

>>>

Jetzt könnte man natürlich auf die Idee kommen, die etwas gewöhnungsbedürftigen Ausga-
ben aus Texten und Zahlen in einzelne print()-Anweisungen zu stecken.

BK_SekI+II_Python_basic.docx - 75 - (c,p) 2015 - 2026 lsp: dre

Überdichtlicher ist das
in jedem Fall:
Aber – und da steckt
der Teufel im Detail –
jede print-Anweisung
erzeugt am Ende den
schon erwähnten Zei-
lenumbruch.

 >>> print("Hallo "); print(name); print(", 2*"); …
Hallo

Klaus

, 2*

5

ist

10

>>>

Die print()-Anweisungen erzeugen immer eigenständige Zeilen. Dagegen gibt es zwar einen
Trick, den schauen wir uns genauer an, wenn wir die Standard-Möglichkeiten besprochen
haben.
Durch die Komma-Trennung werden die einzelnen Ausgaben separiert und einzeln abgear-
beitet. Texte eben sofort angezeigt, Zahlen ausgegeben und Berechnungen erst ausgeführt
und dann ausgedruckt.
Häufig möchte man sich die Ausgabe-
Zeile in Ruhe zusammenbasteln und
dann als Ganzes über den Variblen-
Aufruf oder von der print()-Anweisung
anzeigen lassen.
Dazu müssen alle Teile in Text-Form
vorliegen – auch Zahlen oder Berech-
nungen (gemeint sind natürlich die Er-
gebnisse).

 >>> nutzer="Klaus"

>>> zeile="Hallo " + nutzer + "!"

>>> zeile

'Hallo Klaus!'

>>> print(zeile)

Hallo Klaus!

>>>

Die Zahlen oder eben Berechnungs-Ergebnisse lassen sich mittels str()-Anweisung in eine
Zeichenkette umwandeln.
Das ist später in graphischen Benut-
zungsoberflächen ebenfalls so gefordert.
Die verschiedenen Zeichenketten wer-
den dann mittels +-Operator verketten,
aneinanderreihen oder konkatenieren.
 Der *-Operator sorgt für eine Wiederho-
lung der Zeichenkette.

 >>> aufgabe="5 x 2= "

>>> zeile=aufgabe + str(5*2)

>>> print(zeile)

5 * 2 = 10

>>>

 >>> strichzeile="- "*10

>>> print(strichzeile)

- - - - - - - - - -

>>>

Aufgaben:

1. Lassen Sie in der Konsole die folgenden Anzeigen erscheinen!

a) Der eigene Name als nutzer gespeichert und in der folgenden Form ausgegeben:
nutzer, hallo nutzer!

b) Die folgende Zeile aus einzelnen Wörtern zusammengesetzt und mit der print()-
Anweisung angezeigt!
Hallo lieber Nutzer, jetzt geht es los!

c) Die Zeile aus Einzelnworten (jeweils eine Variable!) zusammengesetzt gespei-
chert als zeile! Die Wiederholungen der Pluszeichen vorher mit dem *-Operator
bilden! Die Variable zeile dann 2x mit sich selbst konkateniert!
+ + + aktuelle Nachricht + + +

d) Aufgabe und Ergebnis: 10 + 7 * 3
e) Aufgabe und Ergebnis: 22 (34-18) – (4 + 6) / 2

2. Legen Sie sich einen "Python-Spiker" an! Auf diesem können Sie den Syn-

tax notieren! (Es sind aber keine längeren Programm-Beispiele erlaubt!)

BK_SekI+II_Python_basic.docx - 76 - (c,p) 2015 - 2026 lsp: dre

Jede Ausgabe mit print() bewirkt ja mit der schließenden Klammer einen Zeilen-Umbruch.
Das ist bei vielen Programmen aber gar nicht erwünscht. Vielfach will man mehrere Teil-
Ausgaben in einer Zeile hintereinander machen.
Im nachfolgenden – etwas vorgreifenden (!) – Programm-Beispiel (mit einer Schleife / Wie-
derholung) wird mehrfach ein print() gemacht.

FABONACCHI-Funktion bis 10 mit Tupeln

f1, f2 = 0, 1

while f2 < 10:

 print(f2)

 f1, f2 = f2, f1 + f2

input()

Uns interessiert hier nur die Zeile mit der print-Anweisung. Die Berechnungen wurden hier
mit Absicht extra kryptisch gewählt, um nicht anderen Besprechnungen vorzugreifen.

Jedes Mal nach der Ausgabe von f2 wird eine neue Zeile
begonnen. Bei sehr vielen Ausgaben ist schnell der untere
Rand des Ausgabe-Bildschirms erreicht und die oberen
Zahlen verschwinden am oberen Rand.
Um diese platzaufwändige Ausgabeform zu verhindern,
dass nach jeder print-Ausgabe ein Zeilenumbruch ge-
macht wird, kann im print()-Befehl die end-Anweisung
eingebaut werden.

>>>

1

1

2

3

5

8

Sie verhindert den Zeilenumbruch und stellt eine Möglichkeit bereit, zwischen den verschie-
den Print-Ausgaben einen Zwischentext auszugeben

FABONACCHI-Funktion bis 1000 mit Tupeln

f1, f2 = 0, 1

while f2 < 1000:

 print(f2, end=' .. ')

 f1, f2 = f2, f1 + f2

input()

 >>>

1 .. 1 .. 2 .. 3 .. 5 .. 8 .. 13 .. 21 .. 34 .. 55 .. 89 .. 144 .. 233

.. 377 .. 610 .. 987 ..

Man muss nun aber auch beachten, dass im obigen Programm bisher niemals ein Zeilenum-
bruch gemacht wird. Den braucht man aber auch das eine oder andere Mal – z.B. eben nach
Schleifen, die selbst keine Ausgaben mit Zeilen-Umbrüchen enthalten.

Mit der end-Angabe nehmen wir praktische eine Steuerung der Ausgabe vor.
Auf Wusch kann aber auch ein Zeilchen-Umbruch eingesteuert werden. Dazu benutzt man
als Steuersequenz \n.

\' bzw. \", um die Zeichen selbst innerhalb von Texten
/ Zeichenketten ausgeben zu können
\n für die Erzeugung mehrzeiliger Texte, quasi als Zei-
lenumbruch (#D)
Zeichenketten können auch in Paare von drei Hoch-
kommata bzw. Anführungszeichen gesetzt werden,
dann ist eine extra Notierung von Zeilenumbrüchen (\n)
nicht notwendig.

 print("""\

Hauptmenü:

 - [O]ptionen

 - [S]tart

 - [E]nde

""")

So können also Texte über mehrere Zeilen notiert und ausgegegeben werrden.

BK_SekI+II_Python_basic.docx - 77 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Verändern Sie das FIBONACCHI-Programm so, dass statt der zwei Punkte

zwischen den Reihen-Gliedern nun die Zeichen-

Sequenz " =-= " ausgegeben wird!

2. Im nebenstehenden Programm fehlen (an den Fra-

gezeichen-Positionen) die print-Befehle. Erweitern

Sie das Programm so, dass ein Ausdruck:

Summen-Reihe: 0, 1, 3, … fertig!

entsteht!

summe = 0

n = 0

?

while n < 100:

 summe += n

 ?

 n += 1

?

input()

3.

6.1.1. Ausgaben mit Platzhaltern

In Programmen kommt es sehr häufig vor, dass man immer die gleichen Ausgaben oder
Ausgaben nach einem bestimmten Muster machen muss. Hierfür kann man Texte / Strings
mit Platzhaltern verwenden. Diese kann man sich wie die Freistellen in einem Lücken-Text
vorstellen. In Python muss die Lücke aber einen Namen bekommen, damit das System
weiss, an welche Stelle die Lücke ist was in diese geschrieben werden soll.
Den eigentlichen Lückentext kennzeichnen wir durch ein f vor dem Text / String. Die Lücke
selbst wird durch geschweifte Klammern

name = "Hans"

lueckentext = f"Hiermit begrüßen wir Dich, {name}, zu Phyton"}

print(lueckentext)

Aufgaben:

1. Überlegen Sie sich, was bei den Programmen passiert, wenn man das f vor

dem Lückentext vergisst?

2. Probieren Sie es einfach mal aus!

3. Erstellen Sie eine Befehls-Sequenz / ein Programm, das einen beliebigen

Namen in den Text nach dem Muster "Hallo Jule!" einfügt!

In einem Lückentext können mehrere Lücken vorkommen und auch mehrfach der gleiche
Wert in unterschiedliche Lücken eingesetzt werden.
Lücken, in die der gleiche Inhalt geschrieben werden soll, bekommen den gleichen Bezeich-
ner. Hier im Beispiel ist dies name.

name = "Hans"

lueckentext = f"Hallo {name}! Wer kennt {name} schon?"}

print(lueckentext)

BK_SekI+II_Python_basic.docx - 78 - (c,p) 2015 - 2026 lsp: dre

Für unterschiedliche Inhalte müssen unterschiedliche Bezeichner benutzt werden. Im nächs-
ten Beispiel sind das die bezeichner name und vorname.

vorname = "Hans"

name = "Müller"

l_text = f"Hallo {vorname}! Wer kennt {vorname} {name} schon?"}

print(l_text)

Aufgaben:

1. Erstellen Sie eine Befehls-Sequenz / ein Programm, das einen beliebigen

Namen in den Text nach dem Muster "Jeder kennt Jule. Hallo Jule!" einfügt!

2. Eine Ausgabe soll nach dem Muster "Ein Apfel, zwei Äpfel, drei Äpfel , …,

viele Äpfel." für beliebige Objekte / Substantive dienen! (Hier in der männ-

lich bzw. sächlichen Form. Es kann aber auch gerne der Text für weibliche

Substantive geschrieben werden.)

3. Erstellen Sie zusätzlich eine englisch-sprachige Ausgabe! Die Objektnamen

bleiben gleich

In Ausgaben können zusätzliche Angaben gemacht werden. Besonders häufig benötigt man
einen gewollten oder eben nicht gewollten Zeilen-Umbruch. Auch andere Behandlungen des
Endes eines print()-Befehl's sind möglich.

end="\n" normaler Zeilen-Umbruch nach der Ausgabe

(muss nicht angegeben werden)

end="\n\n\n" mehrere Zeilen-Umbrüche hintereinander (hier
3)

end="" kein Zeilen-Umbruch, der nächste print()-
Befehl erzeugt Ausgabe direkt dahinter

sep=" " beschreibt die Trennzeichen-Sequenz zwi-
schen Komma-getrennten Ausgaben eines
print()-Befehl's
(ein Leer-Zeichen ist Standard, der nicht extra
angegeben werden muss)

sep="__"

setzt zwischen die Ausgaben-Teile zwei Unter-
striche (z.B.)

BK_SekI+II_Python_basic.docx - 79 - (c,p) 2015 - 2026 lsp: dre

6.1.1. Anpassen von Zahlen für Ausgaben

hierzu gehört z.B. das Runden von Zahlen
auf die genaue Beschreibung der Zahlen-Typen kommen noch (→ 8.2.1. Zahlen)

round()
Runden einer Gleitkommazahl (Zahl mit Nachkomma-Stellen) → Ergebnis bleibt eine Gleit-
kommazahl

int()
Erzeugen einer Ganzzahl (Zahl ohne Komma-Stellen) aus einer Fließkomma-Zahl (Gleit-
komm-Zahl) oder einer Zeichenkette (Achtung!: Zeichenkette muss die exakte Notierung
einer Zahl (also z.B. einen Punkt als Dezimal-Trenner) enthalten, sonst gibt es einen Laufzeitfehler)
Strategie zu Abfangen solcher Laufzeitfehler später (→ 8.14. Behandlung von Laufzeitfehlern – Exception's)

float()
Erzeugen einer Gleitkomma-Zahl aus einer Zeichenkette (oder aus einer Ganzzahl)
Achtung! Laufzeitfehler bei Zeichenketten möglich!

str()
Umwandlung einer Zahl in eine Zeichenkette (z.B. zum Verketten von Texten mit berechne-
ten Zahlen)

Aufgaben:

1. Erstellen Sie ein Programm, in dem jede Ziffer als Text-Variable gespei-

chert ist! Weiter soll dann eine Verkettung der Variablen erfolgen! Dazu

werden zuerst die geraden Ziffern-Text-Variablen verkettet und dann als

Text sowie als umgewandelte Ganzzahl ausgegeben!

2. In einer erwiterten Version des Programms soll nun eine Zeichenkette aus

den ungeraden Ziffern-Variablen gebildet werden! Die Zeichen-Kette der

geraden Ziffern soll dann hinter die ungeraden Ziffern konkateniert werden!

Zwischen beiden Ketten soll ein Punkt gesetzt werden! Die gebildete Zei-

chenkette sowie die Umwandlung in eine Fließkommazahl soll ausgegeben

werden!

3. Zuguter Letzt soll noch die Fließkommazahl wieder zurück in einen Text

gewandelt werden! Gibt es da Veränderungen in der Ausgabe?

BK_SekI+II_Python_basic.docx - 80 - (c,p) 2015 - 2026 lsp: dre

6.1.2. formatierte Ausgaben

In Python gibt es – wie in vielen Maschinen-näheren Programmiersprachen – mindestens
zwei prizipiell unterschiedliche Ausgabe-Formatierungs-Systeme. Bei der einen werden in
den Ausgabetext einfach an der passenden Stelle sogenannte Platzhalter eingesetzt. Weiter
hinten in der Ausgabe-Anweisung folgen dann in einer Liste die auszugebenen Variablen
oder Berechnungen. Diese Variante stellen wir gleich (→ 6.1.1.2. Verwendung von Platzhal-
tern in Ausgabetexten) vor. Problematisch ist diese Variante bei Erweiterungen oder Ände-
rungen der Ausgaben. Da geht schnell was durcheinander. Da sie aber sehr kompakt ist,
wird sie von vielen Programmierern gerne benutzt.
Bei der zweiten Variante der Ausgabe-Formatierung werden die auszugebenen Teile – wenn
gewünscht – einzeln über eine spezielle Funktion (→ 6.1.1.1. formatierte Ausgaben mit der
format-Funktion) formatiert. Diese format()-Funktion ist sehr Leistungs-fähig und kann
schnell rein und raus genommen werden. Auch spezielle Anpassungen sind leicht gemacht
und ausprobiert und das ohne die anderen Ausgaben-Teile zu beeinflussen. So kann man
z.B. erst einmal mit "normalen" Ausgaben arbeiten und diese dann später schrittweise ver-
bessern.
Quasi eine Kombination aus beiden obigen Varianten ist Variante 3 in Python. Hier definiert
man sich zuerst einen Text mit speziellen Platzhaltern. Dies sind jetzt geschweifte Klammern
{ } . Irgendwann später kann man dann den "Lücken"-Text mit Inhalten (Lücken-Füllung)
ausgeben (→ 6.1.2.3. Kombination von Platzhaltern und format-Funktion).

BK_SekI+II_Python_basic.docx - 81 - (c,p) 2015 - 2026 lsp: dre

6.1.2.1. formatierte Ausgaben mit der format-Funktion

Mir persönlich erscheint die format()-Funktion die übersichtlichste Form der Formatierung.
Man weiss, wo was steht und wie es genau formatiert werden soll. Zudem ist der Quelltext
noch gut lesbar.
Bei der format()-Funktion wird der auszugebene Ausdruck als erstes Argument übergeben
und als zweites ein Format-Text. Der Format-Text beschreibt die Formatierung der Ausgabe.
Die fertig zusammengestellt format()-Funktion steht dann anstelle der einfachen Ausgabe im
print()-Befehl. Dadurch kann man auch zuerst einmal ohne format() auskommen und diese
Funktion dann später für eine schönere Ausgabe ergänzen.

Ausgabedaten Format-Text
Format-
Spezifizierer

Erklärung Bemerkungen

Text
String
str

"15s" der Text wird linksbündig
geschrieben und es sind 15
Zeichen dafür reserviert

wenn es mehr Zeichen werden,
dann werden diese ausgeschrie-
ben, die Formatierung ist dann
aber quasi hinfällig

ganze Zahlen
int

"8d"
"8n"

die Zahl wird rechtsbündig
geschrieben, dafür sind 8
Ziffern-Positionen reserviert

Komma-Zahlen
Gleitkomma-
Zahlen
float

"12.3f" die Zahl wird rechtsbündig
notiert, insgesamt sind 12
Zeichen reserviert, wobei 3
Positionen Nachkomma-
Stellen sind

voreingestelte Genauigkeit liegt
bei 6 Nachkommastellen

Binärzahl "4b"

Oktalzahl "10o"

Hexadezimal-
Zahl
hex

"x"

Hexadezimal-
Zahl
hex

"X" wie oben, nur dass Großbuch-
staben verwendet werden

Zeichen
Charakter
char

"c"

 "8" meint ganze Zahl, sonst wie
oben

Exponenten-
Zahl
wiss. Zahl

"e"

 g

 G

 F

from math import sqrt

fkt_name="Wurzel"

argument=2

fkt_wert=sqrt(argument)

print("Die",format(fkt_name,"12s"),

 "von",format(argument,"6d"),

 "ist gleich",format(fkt_wert,"12.3f"),".")

BK_SekI+II_Python_basic.docx - 82 - (c,p) 2015 - 2026 lsp: dre

 >>>

Die Wurzel von 2 ist gleich 1.414 .

Weiterhin lassen sich mit der format()-Funktion die Reihenfolgen von Elementen manipulie-
ren. Exakterweise müssten wir hier eigentlich gleich die Objekt-orientierte Schreibung
.format() benutzen. Ein Objekt-orientierter Zugriff wird hier aber noch nicht so offensichtlich,
so dass wir hier erst einmal darüber hinwegsehen. Später – nach dem Einstieg in die Objekt-
orientierte Programmierung (→ 8.11. objektorientierte Programmierung) – wird dann das
Spezifische dieser Notierung auch eher klar.

print("Ein {1} steht in der {2} des {0}.".format("Hauses" ,"Baum", "Nä-

he"))

Die in den geschweiften Klammern angegebenen Nummern verweisen auf die in der Argu-
mentliste von .format() angegebenen Texte.

Somit ergibt sich der gesamte Aus-
gabetext aus den verschiedenen
Textteilen.

>>>

Ein Baum steht in der Nähe des Hauses.

Sind die Argumente so angeordnet, wie sie eingesetzt werden sollen, dann kann sogar auf
die Nummerierung verzichtet werden.
In den geschweiften Klammern dürfen nach der Positionsangabe auch mit Doppelpunkt ge-
trennt weitere Formatierungs-Texte folgen. So bedeutet {4:8d} , dass die Ausgabe des vier-
ten format()-Argumentes gemeint ist und für diesen 8 Zifferstellen reserviert werden.
Eine weitere Variation ist die Benutzung von Funktions-internen Variablen / Referenzen.

print("Die {subjekt} {praedikat} die {objekt}.".format(subjekt="Katze",

praedikat= "frisst", objekt="Maus"))

 >>>

Die Katze frisst die Maus.

Praktisch ist diese Anwendung der format()-Funktion schon ein Mischding zwischen der
funktionallen Formatierung und der im nächsten Abschnitt besprochen Ausgabe mit Platzhal-
tern.

Aufgaben:

1. Gegeben ist eine Aufgabe, die in Textform vorliegt "3 + 5 * 4". Mittels einer

print()-Anweisung soll der folgenden Text formatiert (mit Platzhaltern) aus-

geben werden. An die passenden Stellen sind die Aufgabe und das Ergebnis

zu integrieren!

 Das Ergebnis zur Aufgabe ??? lautet ???.

2. Erstellen Sie ein Programm, dass ein fixes Bank-Guthaben von 100 Euro

für die nächsten drei Jahre mit 0,5425% p.a. verzinst! Der Zins soll jeweils

ausgezahlt werden. Die Ausgabe wird im Geld-typischer Format erwartet!

Für jedes Jahr soll die Ausgabe separat mit allen relevaten Angaben in einer

Zeile erfolgen!

3. Verändern Sie das Programm so, dass der Zins auf das Konto gutgeschrie-

ben wird!

BK_SekI+II_Python_basic.docx - 83 - (c,p) 2015 - 2026 lsp: dre

6.1.2.2. Verwendung von Platzhaltern in Ausgabetexten

Eine ältere Ausgabe-Technik arbeitet mit dem sogenannten %-Operator. Er wird auch
String-Modulo-Operator genannt.
Für diese Ausgabe-Formatierung werden innerhalb des Ausgabetextes Platzhalter unterge-
bracht, die dann im hinteren Teil der print()-Anweisung durch konkrete Variablen oder Aus-
drücke ersetzt werden.

from math import sqrt

fkt_name="Wurzel"

arg=2

fkt_wert=sqrt(argument)

print("Die %12s von %6d ist gleich %12.3f." % (fkt_name,arg,fkt_wert))

 >>>

Die Wurzel von 2 ist gleich 1.414.

>>>

Diese Art der Text-Ausgabe – also die Nutzung des %-Operators – sollte aber nicht mehr
eingesetzt werden. Irgendwann soll der %-Operator aus dem Funktions-Umfang von Python
entfernt werden.

Aufgaben:

1. Gegeben ist eine Aufgabe, die in Textform vorliegt "3 + 5 * 4". Statt der

Zahlen sollen natürlich Variablen eingesetzt werden. Mittels einer print()-

Anweisung soll der folgenden Text formatiert (mit %-Operator) ausgeben

werden. An die passenden Stellen sind die Aufgabe und das Ergebnis zu in-

tegrieren!

 Das Ergebnis zur Aufgabe ??? lautet ???.

2.

BK_SekI+II_Python_basic.docx - 84 - (c,p) 2015 - 2026 lsp: dre

6.1.2.3. Kombination von Platzhaltern und format-Funktion

Für die mehrfache Verwendung ein und desselben Textes für Ausgaben, bei der nur be-
stimmte Werte aktualisiert werden müssen, bietet sich die dritte Variante für formatierte Aus-
gaben an.
Dazu definiert man sich einen Text, wie dass im nachfolgenden Quelletext mit der Variable
text gemacht wurde.

text = "Das Ergebnis lautet: {}."

An die Stelle mit den beiden geschweiften Klammern ({ }) soll später dann ein konkreter
Wert ausgegeben werden.
Ein kleines Test-Programm könnte also z.B. so aussehen:

text = "Das Ergebnis lautet: {}."

erg = 4 + 31

print(text.format(erg))

neuesErgebnis = erg * erg

print(text.format(neuesErgebnis))

Wir verwenden den vordefinierten Text für zwei
Ausgaben von zwei unterschiedlichen Berech-
nungen (sehr informativ ist das im Beispiel natür-
lich nicht!).
Diese Variante ist auch sehr praktisch, wenn man

 >>>

Das Ergebnis lautet: 35.

Das Ergebnis lautet: 1225.
>>>

ein Programm für unterschiedliche Nutzer-Sprachen erstellen will.
Auch Korrekturen / Verbesserungen am Ausgabe-Text lassen sich schnell an einer einzigen
Stelle erledigen.
Mittels mehrerer geschweifter Klammern und entsprechen vilen Argumenten in der format()-
Funktion können beliebig viele Sachverhalte aussgegeben werden. Der Text lässt sich uni-
versell für verschiedene Ausgaben benutzen.

text = "Die herausgesuchten Daten sind {}, {} und {}."

erg = "aaa"

print(text.format(erg,erg+"a",erg+"b"))

…

wert = 1

print(text.format(wert-1,wert,wert+1))

In die geschweiften Klammern kann man auch noch die (minimale) Anzahl von Zeichen für
die Ausgabe festlegen. Diese Anzahl wird in die geschweifte Klammer hinter einem Doppel-
punkt notiert.
{:4} ist somit ein Platzhalter für exakt vier Zeichen.

BK_SekI+II_Python_basic.docx - 85 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erweitern Sie Ihren "Python-Spicker" um die

Möglichkeiten von formatierten Ausgaben!

2. Lassen Sie Python auf der Console die neben-

stehende Pseudografik erstellen! Dabei dürfen

die anzuzeigenden Text-Teile immer nur die

gleichen Symbole enthalten sein (siehe oberste

Zeile: 3 Texte (verschieden unterlegt)).

 ^

 / ^ \

 / / # \ \

 / / \ \

 / / - - - - - \ \

 | + - + |

 | | | |

 | | | |

 # # # # # # # # #

3. In einem Programm sollen 3 Zahlen

als x1, x2 und x3 vorgegeben (oder

eingegeben werden) – z.B.: 7, 24,

285! Für diese Zahlen soll dann die

nachfolgende Tabelle erstellt wer-

den!

 x | x * x | x * x + x

-------+-----------+-----------

 7 | 49 | 56

 24 | 576 | 600

 285 | 81225 | 81510

4. Passen Sie Ihr Programm von 3. so an, dass eine saubere Trennung zwi-

schen Eingaben (Vorgaben), Verarbeitung (Berechnungen) und Ausgaben

eingehalten wird! (also keine Berechnungen in den Ausgaben oder im Aus-

gabebereich!)

für die gehobene Anspruchsebene:

5. In einem Programm sollen 3 Zahlen

als x1, x2 und x3 vorgegeben (oder

eingegeben werden) – z.B.: 7, 24,

285! Für diese Zahlen soll dann die

nachfolgende Tabelle erstellt wer-

den! (PI definieren wir uns mit

3,14159)

 x | x * 2.5 | x * x * PI

-------+---------+--------------

 7 | 17.5 | 153.938

 24 | 60.0 | 1809.556

 285 | 712.5 | 255175.648

6. Erstellen Sie ein Programm nach dem Muster von Aufgabe 2, bei dem ne-

ben der Tür links und rechts noch ein Fenster zu sehen ist! (Das Dach kann

auf der gebenen Höhe flach ausgeführt werden → Satteldach.)

BK_SekI+II_Python_basic.docx - 86 - (c,p) 2015 - 2026 lsp: dre

6.2. Eingaben

Eingaben dienen zur Entgegennahme von Nutzer-Interaktionen. Im Normalfall wird ein Pro-
gramm zuerst einmal anzeigen (ausdrucken), was der Nutzer nun als nächstes eingeben soll
bzw. welche Interaktion von ihm erwartet wird.
Obwohl Eingaben ohne jedwede Anzeige auf dem Bildschirm funktionieren, gehört es zum
guten Programmierstil die Eingabe mindestens mit einer kurzen Ausgabe zu kombinieren.
Bei der Vielzahl von Programmen ist es einfach eine Notwendigkeit mit dem Nutzer sinnvoll
zu kommunizieren. Nur ein blinkender Cursor (Prompt) kann alles bedeuten und lässt zu
viele Möglichkeiten für eine "Fehlbedienung" des Programms.
In unserem Einführungs-Beispiel (→) tauchte schon der allgegenwärtige input()-Befehl auf.
Für die Konsole ist er quasi die einzige Möglichkeit direkt mit dem Nutzer zu interagieren.
In graphischen Programmen kommen dann die Maus-Aktionen und die verschiedenen Be-
dien-Elemente der Benutzer-Oberflächen (Options-Kästchen, Auswahllisten, Schaltflächen,
…) dazu.
Praktisch jede Eingabe muss einer Variable zugewiesen werden. Damit ergibt sich folgen-
des Schema:

variable = input()

Näheres zu Variablen (/Objekt-Bezeichnern) haben wir schon weiter vorn besprochen (→
3.1.3. Eingaben und Daten merken - Variablen).
Auf der linken Seite vom Zuweisungs-Operator steht eine Variable, deren ursprünglicher
Wert nun durch den Wert aus einer Eingabe überschrieben wird. Python unterscheidet nicht
nach den Daten-Typen. Eingaben werden werden praktisch in Roh-Form gespeichert.
Ausnahmen sind Input's, bei denen einfach nur auf eine (beliebige) Eingabe gewartet wird.
So etwas haben wir schon am Schluss des Beispiel-Programms verwendet.
Im folgenden Programm-Schnipsel wird zwar für den Programmierer klar, wofür die Einga-
ben dienen sollen, aber der Nutzer sieht nichts anderes als den Prompt.

…

wert_x = input()

wert_y = input()

…

 3

4

Als Argument kann und muss man – zumindestens aus kommunikativen Gründen – einen
Aufforderungstext mit angeben.

wert_x = input("Geben Sie den x-Wert ein: ")

wert_y = input("Geben Sie den y-Wert ein: ")

Jetzt wird jedem Nutzer klar(er), was er zu
tun hat.

Geben Sie den x-Wert ein: 3

Geben Sie den y-Wert ein: 4

Eine indirekte Eingabe von Daten ist z.B. über Dateien möglich. Diese werden z.B. zu geeig-
neten Zeitpunkten eingelesen und ausgewertet.

BK_SekI+II_Python_basic.docx - 87 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Lassen Sie in einem Programm den Umfang eines beliebigen Vierecks aus

den 4 einzugebenen Seiten-Längen berechnen! Verwenden Sie die Bezeich-

nungen a, b, c und d für die Seiten!

2. Für die Berechnung der Fläche eines rechtwinckligen Dreieck's sollen die

Seiten mittels sinnvoller Eingabe erfasst werden und das Ergebnis in einem

ordentlichen Satz angezeigt werden!

3. Berechnen Sie für eine Kreis mit einem einzugebenen Radius den Umfang

und die Fläche! Verwenden Sie eine passende Nutzer-Führung!

4. Realisieren Sie ein Programm, dass für einen unbedarften Nutzer das Vo-

lumen eine zylindrischen Tank's mit Halbkugel-Enden aus den Abmessun-

gen des Tank's berechnet! Versuchen Sie mit möglichst wenigen Eingaben

auszukommen!

für die gehobene Anspruchsebene:

5. Von einem zylindrischen Tank mit Halbkugel-Enden sind die Höhe bzw.

Länge und der Durchmesser bekannt. Der Besitzer (– vielleicht ein einfacher

Bauer –) möchte wissen, wieviele Liter der Tank enthält, wenn er:

a) flach liegt und halb gefüllt ist

b) flach voll befüllt ist

c) senkrecht steht und nur die untere Halbkugel voll ist

d) außer der oberen Halbkugel voll befüllt ist

e) der zylindrische Teil zu einem Drittel befüllt ist

(Die Eingabe und Aussagen sollen für den Besitzer verständlich formuliert

sein.)

6.

Eingaben von Texten ist immer sehr aufwändig. Vor allem beim Testen von Programmen
kann das schnell nervig werden. Längere Text können aus einer Text-Datei (Typ-Endung
.txt) eingelesen werden.

dateiName = "Beispiel.txt"

with open(dateiName) as datei: # with sorgt auch für das Schließen der Datei am

 # Ende

 inhalt = datei.read()

dateiName = "Beispiel.txt"

with open(dateiName) as datei:

 inhalt = datei.read().splitelines() # zerlegt inhalt in Zeilen (gespeichert

 als Liste von Strings

falsche Eingaben können über Schleifen (→ 6.4.2. Schleifen) solange immer wieder abgear-
beitet werden, bis die Eingabe den Anforderungen entspricht

eine weitere Möglichkeit der Kontrolle sind excetion's (→  Python - professionell)

BK_SekI+II_Python_basic.docx - 88 - (c,p) 2015 - 2026 lsp: dre

6.2.1. unschöne Eingabe-Effekte in Python-Programmen

Betrachten wir ein kleines Beispiel-Programm. Es soll eine Eingabe entgegennehmen und
mit einem Korrekturfaktor k multiplizieren und dann ausgeben. Mit unseren Programmier-
Kenntnissen bekommen wir das schon hin:

k=5

x=input("Geben Sie einen Wert für x ein: ")

y=x*k

print("Ihr korrigiertes x ist : ",y)

Ein erster Programm-Test zeigt gleich ein
Problem: die Multiplikation von 9 und 5
ergibt eigentlich 45 und nicht – wie ange-
zeigt – 99999.

 Geben Sie einen Wert für x ein: 9

Ihr korrigiertes x ist: 99999

>>>

Benutzt man z.B. 7 als Faktor k, dann bekommen wir als Ergebnis z.B.: 9999999. Statt die
Eingabe als Zahl zu verwenden, ist die Eingabe scheinbar ein Text, der mit k eben k-mal
wiederholt / konkateniert wird (s.a. →).

Aufgaben:

1. Testen Sie das Programm mit verschiedenen Ganz- und Fließkomma-

Zahlen für k und bei den Eingaben! Dokumentieren Sie k, die Eingaben und

die Ergebnisse / Fehlermeldungen (nur Fehler-Typ) in einer Tabelle!

Nun gibt es grundsätzlich zwei Methoden, um wirklich Zahlen "einzugeben". Bei der ersten
Methode nehmen wir den Text und wandeln ihn gezielt in eine Zahl von dem Typ um, den wir
brauchen. Dazu benutzen wir z.B. die Funktion int(). Diese erwartet als Klammerwert einen
Text – also z.B. unsere Eingabe – und liefert eine ganze Zahl zurück.

k=5

x=input("Geben Sie einen Wert für x ein: ")

y=int(x)*k

print("Ihr korrigiertes x ist : ",y)

Nun stimmt das Ergebnis – zumindestens
entsprechend unseren Erwartungen.
Für die Umwandlung in eine Fließkomma-
zahl benutzt man float().

 Geben Sie einen Wert für x ein: 9

Ihr korrigiertes x ist: 45

>>>

Bei dieser Methode gibt es zwei Probleme: Zum Ersten müssen wir schon vorher wissen,
welchen Zahlentyp wir benötigen. Zum Anderen können bei fehlerhaften Eingaben Laufzeit-
fehler eintreten, die das Programm zum Absturz bringen. Als Lösung gibt es das try…except-
Konstrukt, welches wir später behandeln (→ 8.14. Behandlung von Laufzeitfehlern – Excep-
tion's).
für einen übersichtlichen Code können die Typ-Wandlungs- und die Eingabe-Funktion auch
ineinander geschachtelt notiert werden. Jedem Programmierer wird dann sofort klar, dass
hier z.B. eine Fließkommazahl eingegeben wird.

k=5

x=float(input("Geben Sie einen Wert für x ein: "))

y=x*k

print("Ihr korrigiertes x ist : ",y)

BK_SekI+II_Python_basic.docx - 89 - (c,p) 2015 - 2026 lsp: dre

Bei der zweiten Umwandlungs-Variante überlassen wir Python die Arbeit. Die Funktion eval()
übernimmt – zumindesten für Zahlen – die ordnungsgemäße Interpretation von Eingaben.

k=1.25

x=eval(input("Geben Sie einen Wert für x ein: "))

y=x*k

print("Ihr korrigiertes x ist : ",y)

Der erste Programm-Test mit einem
neuen Gleitkomma-k läuft ordnungsge-
mäß. Die Zahlen werden so verrechnet,
wie wir uns das gedacht haben.

 Geben Sie einen Wert für x ein: 12

Ihr korrigiertes x ist: 15.0

>>>

Nun testen wir unser Programm mit einer bewußten Fehl-Eingabe. Ein Buchstabe ist so eine
Fehl-Eingabe.

Geben Sie einen Wert für x ein: m

Traceback (most recent call last):

 File "D:/XK_INFO/BK_S.I_Info/EingabeSeitenEffekte.py", line 2, in <module>

 x=eval(input("Geben Sie einen Wert für x ein: "))

 File "<string>", line 1, in <module>

NameError: name 'm' is not defined

>>>

Die Eingabe z.B. des Buchstaben m bringt eine Fehlermeldung. Angezeigt wird die etwas
unverständliche Meldung, dass m nicht definiert sei,
Was passiert aber, wenn man nun eine Eingabe tätig, die schon eine interne Variable dar-
stellt?

Jetzt akzeptiert Python das k scheinbar
und rechnet auch irgendwas aus. Beim
genauen Hinsehen bemerken wir, dass
Python jetzt die vorweg definierte Kon-
stante k (als zu verwendender Faktor)
auch in der Eingabe akzeptiert.

 Geben Sie einen Wert für x ein: k

Ihr korrigiertes x ist : 1.5625

>>>

Der Nutzer weiss gar nichts von seinem Glück. Auf seinem Bildschirm ist niemals ein Hin-
weis auf die Konstante k und deren Wert aufgetaucht.
Was sagt uns das nun für unserer weiters Arbeiten? Man sollte niemals nur einzelne Buch-
staben als Variablen-Namen verwenden. Längere – sprechende – Namen sind weniger stör-
anfällig. Sie werden wohl kaum unbewußt oder als einfacher Eingabe-Fehler vom Nutzer
verwendet.

faktor_k=1.25

eingabe_x=eval(input("Geben Sie einen Wert für x ein: "))

ausgabe_y = eingabe_x * faktor_k

print("Ihr korrigiertes x ist : ",ausgabe_y)

Jetzt müsste ein Nutzer schon den Ausdruck faktor_x eingeben, damit der Seiten-Effekt
auftritt. Wenn er das tut, dann wohl mit voller Absicht und dann können wir auch davon aus-
gehen, das der Nutzer genau diese Eingabe im Programm haben will.
Auch müssen wir uns immer sehr genau um die Interpretation der Eingaben kümmern. Ein-
gaben sollten immer gleich auf ihre Gültigkeit überprüft werden. In den Tiefen eines verarbei-
tenden Programms später noch Daten-Typ-Fehler zu finden, ist dann sehr aufwendig.

BK_SekI+II_Python_basic.docx - 90 - (c,p) 2015 - 2026 lsp: dre

Bei der Abfrage / Eingabe und der folgenden Typ-Umwandlung kann aber eine weiteres
Problem auftauchen. Der Nutzer gibt eine Zahl als Wort (also String) ein oder verwendet
nicht-zugelassenene Zeichen (z.B. ausversehen einen Doppelpunkt).
Nun lässt sich der Eingabe-String nicht in eine Zahl konvertieren. Python quittiert dies mit
einer Value-Fehlermeldung. Die Reaktion auf solche Fehler, die erst während des Pro-
gramm-Laufes auftreten (="Laufzeit-Fehler") kann man durch eine gezielte Fehler-
Behandlung kompensieren. Dazu muss man die mögliche Fehler-Quelle vorher abstecken
und einigen zusätzlichen Quell-Code einbauen. Dazu später mehr. Für unsere ersten Pro-
grammier-Versuche sind solche Strukturen zu sperrig. Wir gehen in den nächsten Kapiteln
davon aus, dass die Eingaben Typ-grecht erfolgen.
Wie man die Laufzeit-Fehler in Python abfängt zeigen wir dann im Abschnitt → 8.15. Be-
handlung von Laufzeitfehlern – Exception's.
Natürlich kann man von anfangan solche Strukturen einbauen. Das empfehle ich aber nur für
fortgeschrittene Programmierer, die von einer anderen Programmiersprache zu Python um-
steigen.

Aufgaben:

1. Erstellen Sie ein Programm, dass zuerst zwei (ganze) Zahlen abfragen soll

und dann ein einfaches Opperationszeichen (Rechenopperation: + - * /)!

Das Programm soll dann (nur!) die vollständige Rechenaufgabe - einschließ-

lich dem Gleichheitszeichen - ausgeben! Speichern Sie sich das Programm

gut ab, wir wollen es später noch um die Berechnung des Ergebnisses er-

gänzen!

2. Durch ein Programm sollen drei Paare von Werten - immer jeweils eine

ganze und eine reele Zahl - eingegeben werden. Die Zahlen sollen in einer

geeigneten Pseudografik-Tabelle angezeigt werden. Unter der Tabelle - mit

in die Tabelle eingebunden - sollen die Spalten-Summen und -Durchschnitte

berechnet und in jeweils einzelnen Tabellen-Zeilen angezeigt werden! Ach-

ten Sie darauf, dass ein unbedarfter Nutzer die Tabelle verstehen kann! Ma-

chen Sie sich vorher eine Skizze, wie die Ausgabe aussehen soll!

3.

BK_SekI+II_Python_basic.docx - 91 - (c,p) 2015 - 2026 lsp: dre

6.3. Verarbeitung

Der Verarbeitungs-Teil eines Programmes enthält alle Operationen, wel-
che die eingegebenen Daten in die Ergebnisse umwandelt. Saclich liegt
der Verarbeitungs-Teil nach dem EVA-Prinzip zwischen Eingaben und
Ausgaben.

Häufig sind Verarbeitung und Ausgabe stark miteinander verwoben, so dass keine exakte
Trennung vorgenommen wird. Im Vorgriff auf spätere Programme und eine Funktions-
orientierte Programmierung sollte man sich zwingen, Verarbeitung und Ausgabe bestmöglich
voneinander zu trennen.
Die einfachste Form von Daten-Verarbeitungen sind Funktionen. In IDLE erkennen wir sie an
der violetten Text-Hervorhebung.
Sachlich lassen sich Funktionen in mehrere Gruppen einteilen. Für die Programmierung ist
vor allem wichtig, ob eine Funktion Argumente benötigt oder hat. Nur wenn die Anzahl und
Art (Datentyp) der Argumente stimmt, kann das Programm funktionieren. Entweder findet die
Syntax-Prüfung des Übersetzers schon Fehler, ansonsten gibt es u.U. einen Laufzeitfehler.
Die zweite wichtige – ebenfalls Syntax-relevante Unterscheidung ergibt sich aus möglichen
Rückgabewerten einer Funktion. Manche liefern keine Ergebnisse zurück – sie können sepa-
rat in einer Befehlszeile stehen. Funktionen mit Rückgabewerten benötigen einen Abnahmer
für ihre zurückgelieferten Daten. Das kann entweder eine Variable sein, oder der Rückgabe-
wert wird direkt (als Argument oder Verknüpfungswert) weitergenutzt.

 an Funktion übergebene Daten

 ohne Argument mit Argument(en)

v
o

n
 F

u
n

k
ti

o
n

(z
u

rü
c
k

)
g

e
li

e
fe

rt
e
 D

a
te

n

ohne
Rückgabewert

Funktion führt einfache
Aufgabe aus

Funktion führt einfache Aufgabe in
Abhängigkeit von einem oder meh-
reren Argumenten aus

Aufruf:
funktion()

Aufruf:
funktion(argument { , argument })

Beispiel(e):

Beispiel(e):

mit
Rückgabewert

Funktion führt einfache
Aufgabe aus und liefert
einen Rückgabewert
Rückgabewert muss direkt
benutzt oder einer Variab-
le übergeben werden

Funktion führt einfache Aufgabe in
Abhängigkeit von einem oder meh-
reren Argumenten aus und liefert
einen Rückgabewert
Rückgabewert muss direkt benutzt
oder einer Variable übergeben wer-
den

Aufruf:
variable = funktion()

Aufruf:
var = funktion(arg { , arg })

Beispiel(e):

Beispiel(e):

{ inhalt } … ev. beliebige Wiederholung von inhalt möglich (0 bis x-mal)

BK_SekI+II_Python_basic.docx - 92 - (c,p) 2015 - 2026 lsp: dre

Funktionen lassen sich vielfältig kombinieren. Zur Ver-
anschaulichung benutzen wir gerne Rechtecke oder Blö-
cke. Eine Funktion für sich ist ein Block.

Mehrere Funktionen lassen sich durch Verknüpfungen –
das sind eben Addition, Subtraktion, Multiplikation und
Division – gefühlt zu einer Funktion vereinen.
In einigen Programmiersprachen kommen weitere Ver-
knüpfungs-Funktionen hinzu. Statt des Verknüpfungs-
Symbol (Kreis) kommen +, - , * und / zum Einsatz.

Eine weitere Kombinations-Möglichkeit ist die Schachte-
lung. Dabei wird eine Funktion anstelle eines Argumen-
tes eingesetzt. Natürlich muss dies eine Funktion sein,
die einen passenden Rückgabewert besitzt.

Dagegen ist eine Überschneidung von Funktionen nicht
zulässig. Praktisch ist diese auch kaum eingebbar. Sie
existiert nur gefühlt für den Programmierer. Der Pro-
gramm-Übersetzer wird die "Gesamt-"Funktion falsch
zusammensetzen und warscheinlich wird der Konstrukt
auch fehlerhaft reagieren.

Einfache Berechnungen – also die Verknüpfungen – erfordern immer saubere Anweisungen.
Die meisten Programmiersprachen orientieren sich an üblichen mathematischen Ausdrü-
cken. Nur die Zuweisung zu einer Variable zum Speichern des Ergenisses oder die Erset-
zung der Berechnung in einer print()-Anweisung sind aus mathematischer Sicht nicht ganz
logisch.
In der/den nachfolgenden Tabelle(n) sind die wichtigsten Operatoren zusammengestellt.

BK_SekI+II_Python_basic.docx - 93 - (c,p) 2015 - 2026 lsp: dre

Operatoren

Ope-
rator

Name Beschreibung Beispiel Ergebnis

= ergibt sich
aus

Zuweisung

+ Plus Addition

- Minus Subtraktion

* Mal Multiplikation

** Exponent
"hoch"

Potenz-Rechnung
Potenzierung

@ Matrizen-Multiplikation

/ Durch (echte) Division
Division ohne Rest

// Durch ganzzahlige Division
Division mit Rest

% Modulo
Modulus

Rest der ganzzahligen Division

+/- Vorzeichenwechsel / Vorzei-
chen

+= 1 Inkrement Addition von 1 zu einer Zahl

+= Addition des rechten Aus-
drucks zum linken und spei-
chern im linken Ausdruck

-= 1 Dekrement Subtraktion von 1 von einer
Zahl

-= Subtraktion des rechten Aus-
drucks vom linken und spei-
chern im linken Ausdruck

*= Multiplikation des linken Aus-
drucks mit dem rechten und
speichern im linken Ausdruck

/= Division / Teilen des linken
Ausdrucks durch den rechten
und speichern im linken Aus-
druck

~ Bit-weise NOT / NICHT

% String-Formatierung

BK_SekI+II_Python_basic.docx - 94 - (c,p) 2015 - 2026 lsp: dre

Ope-
rator

Name Beschreibung Beispiel Ergebnis

if ..
else..

 WENN-DANN-SONST
Verzweigung

if .. elif ..
else ..

 Mehrfach-Auswahl

or OR / ODER (BOOLEsche Lo-
gik)

and AND / UND (BOOLEsche Logik)

not x NOT / NICHT (BOOLEsche Lo-
gik)

in
not in

 Inklusion bzw.
Nicht-Inklusion

is
is not

 Identität (Übereinstimmung)
bzw. Nicht-Identität

< kleiner als

<= kleiner oder gleich

> größer als

>= größer oder gleich

!= ungleich

== Gleichheit / gleich

| Bit-weise OR / ODER

^ Bit-weise XOR / XODER

& Bit-weise AND / UND

<< Bit-weise Links-Verschiebung

>> Bit-weise Rechts-Verschie-
bung

Sie lassen sich entsprechend der klassischen Rangordnung kombinieren. Dadurch ergibt
sich folgende aufsteigende Rangfolge (Operator-Prezedenz):

lambda → if..else → or, and → not → in, not in, is, is not, <=, <, >, >=, <=, ==,
!= → |, ^, & → <<, >> → +, - → *, @, /, //, % → +/-x, ~x → **, xy, → await x
→ x(..), x[..] , x.attribute → (..), [..], {..}

Der Syntax beschreibt die zulässigen Anweisungs-Konstrukte. In der Programmierung haben
sich verschiedene Syntax-Darstellungen (Syntax-Diagramme) durchgesetzt. Eine – die
EBNF (erweiterte BACKUS-NAUR-Form) lässt sich relativ gut verstehen.
Dabei sind die Zeilen immer Definitionen, die mit einem Begriff und dem Ergibt-Symbol ::=
beginnen. Dann folgt die syntaktische Definition. Diese kann weitere zu definierende Begrif-
fe, Anweisungen der Programmiersprache und Steuerzeichen (Metasprachsymbole) enthal-
ten. Anweisungen der Programmiersprache sind sogenannte Terminale. Sie müssen genau
so geschrieben werden. in den folgenden EBNF-Zeilen sind die Terminale immer klein ge-
schrieben, so wie die Sprachelemente von Python genutzt werden müssen. Zusätzlich be-
nutze ich noch eine blaue Schriftfarbe.
Die zu definierenden Begriffe nennt man Nicht-Terminale. Für sie muss es in der EBNF-
Darstellung mindestens eine Definitions-Zeile geben. In den folgenden EBNF-Zeilen schreibe
ich die Nicht-Terminale immer mit einem Großbuchstaben beginnend.
In der EBNF sind noch bestimmte zusätzliche Symbole zugelassen, die Alternativen, Optio-
nen und Wiederholungen kennzeichnen.
Eine erste EBNF-Zeile könnte lauten:

Anweisung ::= break | Term

BK_SekI+II_Python_basic.docx - 95 - (c,p) 2015 - 2026 lsp: dre

Diese Zeile wird folgendermaßen gelesen:

(Das Nicht-Terminal / Der Platzhalter) Anweisung ergibt sich aus (dem Terminal / Schlüs-
selwort) break oder dem / einem (Nicht-Terminal / Platzhalter) Term. (Term ist dabei noch zu

definieren!)

Der senkrechte Strich (|) steht also für eine Alternative. Eines der aufgezählten Elemente
muss es aber sein.

Anweisung ::= Variable = Variable

Anweisung ::= Variable = Variable Operator Variable | Term

Operator ::= "+" | "-" | "*" | "/" | "%"

Aufgaben:

1.

2. Jetzt ist es eine gute Gelegenheit den "Python-Spiker" in eine EBNF-Form

zu bringen!

3.

BK_SekI+II_Python_basic.docx - 96 - (c,p) 2015 - 2026 lsp: dre

6.4. Kontrolle(n)

In den seltensten Fällen ist ein Pro-
gramm ein glatter Durchlauf – also
eine Sequenz. Häufig müssen Ent-
scheidungen gefällt oder bestimmte
Programmteile häufiger wiederholt
werden. So etwas wird in Programmen
durch sogenannte Kontroll-Strukturen
erledigt. Praktisch kennt man in der
Programmierung zwei grundsätzliche
Arten:

• Verzweigungen
oder Alternativen

der Programm-Ablauf spaltet sich – ev. nur zeitweise – in
mindestens zwei verschiedene Verarbeitungswege auf

• Wiederholungen
oder Schleifen

bestimmte Abschnitte des Programm-Ablaufs können / müs-
sen mehrfach abgearbeitet werden

Zu den Kontroll-Strukturen gehören wohl auch die Exceptions. Diese spezielle Art von Ver-
zweigungen für das Abfangen von Laufzeitfehlern besprechen wir weiter hinten (→ 8.15.
Behandlung von Laufzeitfehlern – Exception's). Für Anfänger reichen zuerst einmal die ande-
ren Kontroll-Strukturen.
Die Grund-Strukturen sind in den verschiedenen Programmier-Sprachen – ganz unterschied-
lich – meist durch sehr spezielle Varianten untersetzt. Wie wir sehen werden, kann man die
Strukturen anderer – vielleicht lieb-gewordener Programmier-Sprachen – durch die wenigen
Python-eigenen alle ersetzen. Vielleicht bietet die aktuelle Programmier-Sprache ja auch
mehr, als man bisher gewohnt war?

BK_SekI+II_Python_basic.docx - 97 - (c,p) 2015 - 2026 lsp: dre

6.4.1. Verzweigungen

Wenn zwei alternative Wege in einem Programm zur Verfügung stehen, dann muss eine
Entscheidung gefällt werden, welcher der Wege nun genommen werden soll / muss.
Genau nach diesem Prinzip werden Verzweigungen in Programm realisiert. Zur Verdeutli-
chung schreibe ich den einleitenden Satz dieses Abschnittes noch mal etwas Entschei-
dungs-betont:

 WENN zwei alternative Wege in einem Programm zur Verfügung stehen,
 DANN muss eine Entscheidung gefällt werden, welcher der Wege nun
 genommen werden soll / muss.

Und für die erfahreneren Computer-Nutzer auch ganz ausführlich:

 WENN zwei alternative Wege in einem Programm zur Verfügung stehen,
 DANN muss eine Entscheidung gefällt werden, welcher der Wege nun
 genommen werden soll / muss,
 SONST wird der andere genommen.

In fast jeder Programmier-Sprache lautet die Programm-Struktur für Alternativen deshalb
auch:

 IF Bedingung
 THEN Alternative1
 ELSE Alternative2

wobei der ELSE-Zweig i.A. optional ist
– also bei Bedarf einfach weggelassen
werden kann. In dem Fall geht es dann
gleich hinter der Alternative1 weiter.

Eine vollständige Verzweigung wird auch zweiseitig genannt, eine ohne ELSE-Zweig heißt
einseitige Verzweigung.

6.4.1.1. einfache Verzeigungen

einseitige Auswahl / bedingte Ausführung

Weil die weitere Ausführung des Pro-
gramms bzw. seiner Teile von der Be-
dingung abhängt, spricht man bei Ver-
zweigungen auch von bedingter Aus-
führung.
Wieder andere sprechen von einseiti-
ger Auswahl.
Python vereinfacht für uns die Struktur
ein wenig. Da hinter der Bedingung
immer der THEN-Zweig kommt, wird
auf die gesonderte Schreibung von
THEN verzichtet.

BK_SekI+II_Python_basic.docx - 98 - (c,p) 2015 - 2026 lsp: dre

Wollen wir z.B. eine Division programmieren, dann ist das sicher kein allgemeines Problem:

…

Division

zaehler = 4

teiler = 0

print("Division von",zaehler," und",teiler,": ",zaehler/teiler)

Bei diesem Beispiel kommt es aber zu einem Laufzeit-Fehler - ev. sind jetzt alle unseren
anderen Daten verloren.
Da die Division durch Null nicht definiert ist, müssen wir diese abfangen. Wir führen die Divi-
sion dazu nur durch, wenn der Teiler ungleich Null ist. In Python ist das zugehörige Symbol
für ungleich !=.

…

Division

zaehler = 4

teiler = 0

bedingte Ausführung

if teiler != 0:

 print("Division von",zaehler," und",teiler,": ",zaehler/teiler)

…

Ein Struktogramm würde eine solche bedingte Ausführung
so darstellen. Dabei steckt in der Symbolik auch schon
der Teil, der im alternativen Fall ausgeführt werden soll.
Dieser existiert aber bei bedingten / einseitigen Ausfüh-
rungen / Alternativen nicht.

Der Block besteht also aus mindestens zwei Zeilen. Der Kopf-Teil (obere Zeile) enthält die
Frage (Bedingung sowie die Antwort-Möglichkeiten. Die schrägen Linien grenzen die Ant-
wort-Möglichkeiten ab. In der zweiten Zeile folgt der Block mit den Anweisungen für den be-
schriebenen Fall. Dieser Block kann intern wieder beliebig weiter struktoriert werden. Ein
nicht benutzter Teil bzw. Block (, der auch nicht erreichbar ist), wird durchgestrichen / ge-
kreuzt.
Der Nutzer weiss nun allerdings nichts davon, dass die Division gar nicht durchgeführt wur-
de. Eventuell muss er darüber informiert werden. Dies machen wir natürlich nur, wenn der
Teiler gleich Null ist. Das Python-Symbol für die Gleichheit ist ==.

…

Division

zaehler = 4

teiler = 0

bedingte Ausführung

if teiler != 0:

 print("Division von",zaehler," und",teiler,": ",zaehler/teiler)

if teiler == 0:

 print("Division (durch Null) nicht möglich!")

…

BK_SekI+II_Python_basic.docx - 99 - (c,p) 2015 - 2026 lsp: dre

Ganz ähnlich lassen sich alle diskreten Fragestellungen programmieren. Als Beispiel hier
mal die Unterscheidung in positive und negative Zahlen:

…

Alternative

if eingabe>=0:

 print("Die Zahl ist positiv.")

if eingabe<0:

 print("Die Zahl ist negativ.")

…

Aufgaben:

1. Zeichnen Sie das Struktogramm für die vollständige Bearbeitung der Divisi-

on mit zwei if-Anweisungen!

2. Erstellen Sie ein Programm, das für eine einzugebene (ganze) Zahl prüft, ob

es sich um eine gerade oder ungerade Zahl handelt!

3. Erstellen Sie ein Programm, das die Teilbarkeit einer einzugebenen Zahl

durch die Teiler 2 bis 5 testet! (Es wird Wert auf eine klare Nutzerführung

und –Information gelegt!)

4.

Python lässt auch kombinierte Vergleiche zu:

5 < 9 <= 13 ergibt True (Prüfung erfolgt bezüglich der 9)

BK_SekI+II_Python_basic.docx - 100 - (c,p) 2015 - 2026 lsp: dre

zweiseitige Auswahl / vollständige Verzweigung

Schauen wir uns einige Beispiele an, um das Prinzip und die Notation in Python zu verste-
hen.
Im ersten Fall wollen wir einfach testen, ob eine eingegebene Zahl positiv oder negativ ist.
Die Bedingung ist also klar, wir müssen nur tes-
ten, ob die Eingabe ≥0 ist. In Python werden bei
Kombinationen von Vergleichs-Operatoren, wie
"<" bzw. ">" und "=" die Zeichen so hintereinan-
der weg geschrieben, wie man es spricht. An-
sonsten reichen die einfachen Kleiner- oder
Größer-Operatoren. Für Gleichheit muss ein
doppelte Gleichheitszeichen verwendet werden
damit keine Verwechslung mit dem einfachen
Gleichheitszeichen als Zuweisung entstehen
kann.

Struktogramm-Ausschnitt für den Test

auf eine positive Zahl

Für Ungleichheit verwendet Python die Zeichen-Kombination "!=".
Natürlich testen wir nachfolgend nicht auch noch ab, ob die Eingabe negativ ist. Dieses
ergibt sich automatisch. Lediglich wenn die 0 noch extra herausgefiltert werden soll, dann ist
ein weiterer Test notwendig. Alternativ kann man auch eine Mehrfachverzweigung (→
6.4.1.2. Mehrfach-Verzeigungen)benutzen.
Aus dem oberen Struktogramm-Ausschnitt und dem
nebenstehend abgebildeten Block können wir die
allgemeine Symbolik erkennen.
Im unteren Bereich sind die Blöcke bzw. Blockfol-
gen für die Alternativen angeordnet. Darüber – über
beide hinweg - thront der Entscheidungs-Block.
Dieser Block ist durch schräge Linien in drei Berei-
che geteilt.

Der obere Bereich, der sich nach unten verengt, enthält die Entscheidungs-Frage oder auch
die Bedingung bzw. die Alternativfrage. Diese muss für den Computer immer so gestellt wer-
den, dass eine eindeutige "JA / NEIN"- oder "WAHR / FALSCH"-Entscheidung getroffen
werden kann. In vielen Büchern oder Skripten finden sich auch die englisch-sprachigen Ent-
sprechungen "YES / NO" bzw. "TRUE / FALSE".
Die meisten Programmiersprachen testen nur auf das Zutreffen der WAHR-Bedingung, alle
anderen Fälle sind dann automatisch FALSCH.
Die Verzweigungs-Struktur beginnt in Python mit if gefolgt von der Bedingung. Der Bedin-
gungsteil wird dann durch einen Doppelpunkt abgeschlossen.

…

Alternative

if eingabe>=0:

 print("Die Zahl ist positiv.")

else:

 print("Die Zahl ist negativ.")

…

Nach der Eingabe des Doppelpunktes am Ende der Bedingungs-Zeile wird in der nächsten
Zeile automatisch eingerückt. Weitere THEN-Anweisungen müssen ev. mit [Tab] eingerückt
werden. So können weitere Befehle folgen, die ebenfalls erledigt werden sollen, wenn die
Zahl positiv ist.
Gibt es einen ELSE-Zweig, dann wird dieser durch das Schlüsselwort else eingeleitet. Auch
hier muss ein Doppelpunkt folgen.
Die Befehle des ELSE-Zweiges müssen ebenfalls eingerückt werden.
Kommen dann wieder Befehle, die ungeteilt bearbeitet werden soll, dann wird wieder einmal
zurückgerückt. Dieses muss mindestens bis auf die Ebene des IF bzw. des ELSE erfolgen.

BK_SekI+II_Python_basic.docx - 101 - (c,p) 2015 - 2026 lsp: dre

Im nachfolgenden Code-Schnipsel ist die Bedingung anders gestellt. Dadurch tauschen
THEN- und ELSE-Zweig.

…

Alternative

if eingabe<0:

 print("Die Zahl ist negativ.")

else:

 print("Die Zahl ist positiv.")

…

Welche Variante man nutzt ist mehr Geschmackssache. Üblicherweise beginnt man mit dem
Teil (als THEN-Zweig), den man sicher codieren kann.
Betrachten wir noch einen ähnlichen klassischen
Fall mit zwei Alternativen. Eine bereitgestellte Zahl
(hier: eingabe) soll daraufhin bewertet werden, ob
sie gerade oder ungerade ist.
Eine erste Inspiration bringt uns vielleicht auf die
Idee mit dem Test der letzten Ziffer. Handelt es
sich um 0, 2, 4, 6 oder 8, dann handelt es sich ja
bekanntermaßen um eine gerade Zahl.

So ein Test lässt sich programmieren, aber er ist einfach zu aufwendig. Dazu müsste man
die Zahl in eine Zeichenkette wandeln, das letzte Zeichen extrahieren und dann den Ziffern-
test durchführen.
Nun könnte man auch verleitet sein, es mal mit der normalen Division zu probieren. Dabei
wird man feststellen, dass es x-mal gut geht, aber ab und zu eine fehlerhafte Bewertung auf-
tritt.
Das liegt daran, dass bei einer normalen Division (von Python aus) immer eine Kommazahl
(auch Gleitkommazahl genannt) herauskommt. Diese werden vom System i.A. meist in der
7. od. 8. Nachkommastelle gerundet. Und auch, wenn es eigentlich ein endliche rationale
Zahl (?,0 bzw. ?,5) werden müsste, entstehen durch die interne Zahlen-Darstellung immer
Rundungsfehler.

Diese sind aber kaum vorauszusehen. Weitere Probleme,
die praktisch die gleiche Ursache haben, können bei sehr
großen Zahle auftauchen, da diese dann in die Exponen-
ten-Schreibung überführt werden. Dieses ist praktisch
immer mit Rundungen verbunden.

>>>

>>>

Aus der Zahlen-Theorie wissen wir, dass wir nur die Teilbarkeit mit 2 prüfen müssen. Beson-
ders einfach geht das mit der ganzzahligen Division. Bleibt ein Rest, dann ist die Zahl unge-
rade. Geht die Division glatt auf, dann ist die Zahl gerade.

Deshalb bleibt nur die Modulo-Division (ganzzahlige Division).
Der Operator ist das Prozent-Zeichen. Als Ergebnis erhält
man den Rest der Division. Das testen wir zuerst mal
schnell an der Konsole für die Teilbarkeit durch 3 für die
Zahlen 4, 5, 6 und 7: Für eine echte Teilbarkeit – wie z.B.
bei der 6 – ist der Rest gleich 0. Damit können wir unser
Programm prima testen:

 >>> 4 % 3

1

>>> 5 % 3

2

>>> 6 % 3

0

>>> 7 % 3

1

>>>

…

Alternative

if eingabe % 2 == 0:

 print("Die Zahl ist gerade.")

else:

 print("Die Zahl ist ungerade.")

…

BK_SekI+II_Python_basic.docx - 102 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Korrigieren Sie das Temperatur-Umrechnungs-Programm um ein Abfangen

von Temperaturen, die nicht möglich sind!

2. Erstellen Sie ein "super geheimes" Programm, das die Summe und die Dif-

ferenz zweier einzugebener Zahlen multipliziert! Erweitern Sie das Pro-

gramm dann um einen Passwortschutz! Nur wer das Passwort richtig ein-

gibt, darf die "super geheime" Berechnung durchführen lassen.

3. Erstellen Sie ein Programm, das die Teilbarkeit einer einzugebenen Zahl

durch die Teiler 11 bis 20 testet! (Es wird Wert auf eine klare Nutzerfüh-

rung und –Information gelegt!)

4. Erstellen Sie ein Struktogramm und ein Programm, dass für eine einzuge-

bende Zimmer-Temperatur in Grad Celcius ausgibt, in welchem Tempera-

tur-Bereich der Eingabewert liegt!

Eine Ausgabe soll anzeigen, ob die Temperatur über 20 °C bzw.

gleich/darunter ist! Als zweites soll eine Fein-Differenzierung erfolgen:

Temperaturen unter 19 °C werden als “zu kalt“, über 22 °C als “zu warm“

eingestuft. Von 19 bis 20 °C soll “kühl“ ausgegeben werden. Für über 20

bis 21 °C gilt die Temperatur als “ok“. Im Restbereich ist sie “angenehm“.

Verarbeitung (Bewertung der Eingabe) und Ausgaben sollen abgesetzt hin-

tereinander erfolgen (klassisches EVA-Schema)!

Nutzer- und Wartungs-Freundlichkeit wird ebenfalls erwartet.

5. Schreibe eine kleine "Tank-App", die aus dem Tank-Fassungsvermögen,

dem aktuellen Tankstand (Eingabe in 10%-Schritten), der Entfernung bis

zur nächsten Tankstelle (in km) und dem Durchschnittsverbrauch (in l /

100 km) eine Empfehlung gibt, ob jetzt getankt werden sollte oder ob noch

bis zur nächsten Tankstelle genug Benzin im Tank ist!

Verbessern Sie die App dahingehend, dass noch 10% Reserve eingeplant

sind!

6. Erstellen Sie ein Programm, dass zu einer erreichten Punktzahl bei einer

Arbeit die Bewertung als Note ermittelt! Die mindestens notwendigen Pro-

zentwerte sind: für ein "5" 9%; für eine "4" 36%; für eine "3" 55%; für eine

"2" 70% und für eine "1" 85%. Erstellen Sie das Programm mit möglichst

wenigen Entscheidungen / Verzweigungen!

7. Entwickeln Sie ein Programm, dass für eine einzugebene Zahl ermittelt, ob

diese gerade oder ungerade ist!

für die gehobene Anspruchsebene:

8. Erstellen Sie ein Programm mit mehreren aufeinanderfolgenden Abschnit-

ten, das für eine einzugebene Zahl die nachfolgenden Bedingungen prüft!

a) Zahl ist größer als 20 b) Zahl ist maximal 23

c) Zahl ist kleiner oder größer als 0 d) Zahl ist kleiner als -273,15

e) ist die Wurzel aus der Zahl größer als 10

(Für jeden Test ist eine vollständige, informative Ausgabe zu realisieren!

Beginnen Sie mit der Bedingung, die Ihnen am Leichtesten erscheint!)

9. Bekommen Sie ein Programm für die Testung auf gerade/ungerade Zahl

hin, in dem doch nur ein THEN-Zweig (einer Verzweigung) benutzt wird?

(Es gibt zwei grundsätzlich unterschiedliche Lösungen, die praktisch auf

dem gleichen Prinzip beruhen. Finden Sie beide?)

BK_SekI+II_Python_basic.docx - 103 - (c,p) 2015 - 2026 lsp: dre

Die Bedingungs-Testung in Python ist sehr einfach gestrickt und lässt dadurch viele Verein-
fachungen zu, die aber einen Quelltext u.U. schwieriger lesbar machen. Entweder man nutzt
Kommentare oder zwingt sich doch, den vollständigen Code zu notieren.
Als FALSCH (False) gilt in Python:

• nummerische NULL-Werte (0; 0L; 0.0; 0.0+0.0j)

• der BOOLEsche Wert: False (Achtung! Schreibung beachten!)

• leere Zeichenketten

• leere Listen oder Tupel

• leere Dictionary's

• der spezielle (Nichts-)Wert: None (Achtung! Schreibung beachten!)

Alle anderen Werte werden automatisch als WAHR (True) interpretiert.
Zu Anfang ist das etwas gewöhnungsbedürftig. Aber nach zwei, drei Programmen erscheint
das irgendwie urlogisch.

Ausdrücke oder
Konstrukte

Beschreibung (weitere)
Beispiel

Wahrheits-
Wert

0 per Definition FALSCH (False) False

0.0 per Definition FALSCH (False) False

alle anderen
Zahlen

somit immer WAHR (True)
ist ja schließlich etwas

2
5.2
-3

True
True
True

10 + 5 - 15 die Berechnung ergibt Null → und
die ist per Definition FALSCH

 False

21 * 17 ergibt Wert ungleich Null → WAHR True

3.0 / 0.5 ergibt Wert ungleich Null → WAHR True

"Text" enthält Text / etwas → WAHR True

"" enthält nichts → FALSCH False

[1, 2, 3, 4] nicht-leere Liste True

[] leere Liste False

[[]] Liste mit einer leeren Liste → also ist
es eine nicht-leere Liste

 True

BK_SekI+II_Python_basic.docx - 104 - (c,p) 2015 - 2026 lsp: dre

In der nachfolgenden Tabelle sind viele logische Operatoren und Ausdrücke zusammenge-
stellt, die allesamt – so oder so ähnlich – als Bedingungen in Verzeigungen dienen können.
Gleiches gilt für die später behandelten Schleifen (→ 6.4.2. Schleifen).

Ope-
rator

Name Beschreibung Beispiel Wahrheits-
Wert

< kleiner (als) 4 < 6
2 < 1

True
False

<= kleinergleich 5 <= 5
6 <= 5

True
False

>= größergleich 3 >= 2
1 >= 2

True
False

> größer (als) 5 > 4
10 > 50

True
False

== gleich 2+3 == 5
4 == 6
'abc' == 'abc'

True
False
True

!= ungleich 12 != 13
2 != 1+1
'abc' != 'abc'

True
False
False

is ist / (ist) iden-
tisch

 True
False

not nicht / (Nega-
tion) / NICHT

logisches Nicht; Negation 3 is not 4

not 0

True
False
True

or ODER logisches Oder; Disjunktion a > 10 or b >= 3 True
False

and UND logisches Und; Konjugation True
False

^ XOR exklusives ODER (1 == 2) ^ (2 == 1)
(1 == 2) ^ (2 == 2)

False
True

& bitweise UND

| bitweise ODER

Mit logischen Operatoren lassen sich viele mehrstufigen Verzweigungen verkleinern, wenn
es wirklich nur wenige Alternativen gibt.
Ein häufig vorkommendes Problem sind Nutzer-Eingaben von Einzel-Buchstaben oder klei-
nen Texten, die sowohl mit kleinen oder großen Buchstaben geschrieben werden könnten.
Nehmen wir als Beispiel die Abfrage eines JA durch die Eingabe entweder von "J" oder "j".

…

Eingabe

eingabe = input("Wollen Sie weiter machen <j,J,n,N>: "))

Alternative mit mehreren Bedingungen

if eingabe == "J" or eingabe == "j":

 print("ok! Sie haben es so gewollt.")

else:

 print("Na dann eben nicht!")

…

BK_SekI+II_Python_basic.docx - 105 - (c,p) 2015 - 2026 lsp: dre

Solche logischen Verknüpfungen lassen sich auch immer umdrehen. Deshalb gilt auch der
folgende Programm-Text, der exakt das Gleiche leistet:

…

Eingabe

eingabe = input("Wollen Sie weiter machen <j,J,n,N>: "))

Alternative mit mehreren Bedingungen

if not (eingabe == "J" or eingabe == "j"):

 print("Na dann eben nicht!")

else:

 print("ok! Sie haben es so gewollt.")

…

Das NOT wandelt das Ergebnis des in Klammern stehenden Ausdrucks in das Gegenteil.
Durch das Tauschen von THEN- und ELSE-Zweig kommt wieder das Selbe als Ergebnis
heraus.
Es gibt keine wirklich gültigen Regeln, wie ein Programmierer die Bedingungen und die
Zweige der Alternative verwendet. Empfohlen wird immer eine typisch intuitive (menschlich
logische) Anordnung. Da leere Zweige nicht zugelassen sind, muss also der THEN-Zweig
auch mit mindestens einer Anweisung gefüllt werden. Deshalb ist es am Sinnigsten, die Be-
dingungen auch so zu formulieren, dass zu mindestens der THEN-Zweig benutzt wird.
In ganz seltenen Fällen ist es so – zu mindestens scheint es so – dass der THEN-Zweig
nicht gebraucht wird und man unbedingt den ELSE-Zweig programmieren muss. Bei solchen
Problemchen kann man sich dadurch helfen, dass man in den nicht benutzten Zweig eine
sinnfreie Anweisung schreibt. Python ist zufrieden und wir haben unsere Logik beibehalten
können. Diesen Trick kann man auch anwenden, wenn man einen Zweig einer Alternative
erst einmal nicht weiter programmieren möchte, aber die Stelle für später schon mal vorse-
hen möchte. Man sollte solche Stellen dann durch Kommentaren kennzeichnen.
Leider reichen auch nur Kommentare in den Zweigen nicht aus, der Interpreter meckert diese an und erwartet
unbedingt eine Anweisung!

…

Eingabe

a=eval(input("Eingabe= "))

Alternative mit nicht benutztem THEN-Zweig

if a >= 2:

 # nicht benutzter THEN-Zweig

 sinnfrei=1

else:

 print("Zahl erfüllt die Bedingung nicht")

…

Die Python-Lösung für leere Anweisungen ist das Schlüsselwörtchen pass. Damit wird eine
Anweisung ausgeführt, die absolut nichts bewirkt, außer vielleicht ein paar Millisekündchen
vergehen zu lassen.
Wohl als einzige Programmiersprache lässt Python Ausdrücke, wie die folgenden zu:

0 >= anzahl <=100 # zulässige Anzahl von 0 bis 100
not (10 < alter < 67) # z.B. ermäßigter Eintritt ins Sportstadion (als Kind und Rentner)
a < b == c # a muss kleiner als b sein und b gleichgroß wie c

BK_SekI+II_Python_basic.docx - 106 - (c,p) 2015 - 2026 lsp: dre

Mehrere Verzweigungen können sauber ineinander verschachtelt werden. Dabei dürfen die
ELSE-Zweige sich nicht überschneiden und die Einrückungen müssen eingehalten werden.

…

Alternative

if eingabe == 0:

 print("Die Zahl ist Null.")

else:

 if eingabe > 0:

 print("Die Zahl ist positiv.")

 else:

 print("Die Zahl ist negativ.")

…

Probieren Sie z.B. mal den folgenden fehlerhaften (!) Code aus:

…

Alternative

if eingabe == 0:

 print("Die Zahl ist Null.")

 if eingabe > 0:

 print("Die Zahl ist positiv.")

else:

 print("Die Zahl ist negativ.")

…

!!!:
Fehler-
hafter
Quell-
Code!!!

Aufgaben:

1. Was läuft hier falsch? Analysieren Sie den Quelltext!

2. Schreiben Sie die Alternative so um, dass zuerst die negativen Zahlen aus-

sortiert werden!

Listen / Collection's lassen sich auch gemeinschaftlich analysieren:

boolListe = [True, False, False, True, True]

all(boolListe) ergibt False, da zwei Elemente nicht wahr sind

any(boolListe) ergibt True, da mindestens ein Element wahr ist

sum(boolListe) ergibt 3, weil drei wahre Werte in der Liste enthalten sind

 (True wird als 1 gespeichert, False als 0)

Schaltjahr-Prüfung nit kombinierten logischen Operatoren

jahr = int(input("Welches Jahr soll geprüft werden: "))

if jahr % 4 == 0 and jahr % 100 != 0 or jahr % 400 == 0:

 print(jahr,"ist ein Schaltjahr")

else:

 print(jahr,"ist KEIN Schaltjahr")

BK_SekI+II_Python_basic.docx - 107 - (c,p) 2015 - 2026 lsp: dre

6.4.1.2. geschachtelte Alternativen

Eine klassische Einsatz-Variante für Alternativen ist die Unterscheidung von vier Gruppen
anhand von zwei Eigenschaften. Im nachfolgenden Beispiel sind das die "Erwachsenen" ab
der Altersgrenze 14 Jahre und die Unterscheidung nach dem Geschlecht für eine zu konstru-
ierende Anrede:

…

Eingabe der Personendaten

vorname=input("Geben Sie den Vornamen der Person ein: ")

name=input("Geben Sie den Nachnamen der Person ein: ")

alter=eval(input("Geben Sie das Alter der Person ein: "))

maennlich=input("Ist die Person männlich <j,J,n,N>: ")

Definition einer Altersgrenze für die Anrede-Form

altersgrenze=14

Anrede entscheiden und zusammenstellen

if maennlich == "j" or maennlich == "J":

 if alter >= altersgrenze:

 anrede="Sehr geehrter Herr "+vorname+" "+name

 else:

 anrede="Lieber "+vorname

else:

 if alter >= altersgrenze:

 anrede="Sehr geehrte Frau "+vorname+" "+name

 else:

 anrede="Liebe "+vorname

Ausgabe

print()

print("Anrede:")

print(anrede)

…

Für die Anrede-Konstruktion sind nur das Alter und das Geschlecht zu unterscheiden. Der
Name selbst wird dann nur für die Ausgabe gebraucht.
Im Programm-Text wurden die zweiten – inneren / geschachtelten – (Neben-)Verzweigungen
dunkler unterlegt. Für ein Testen der ersten (Haupt-)Verzweigung kann man anstelle der
Neben-Verzweigung erst einmal eine kleine print()-Anweisung setzen.

 >>>

Geben Sie den Vornamen der Person ein: Monika

Geben Sie den Nachnamen der Person ein: Mustermann

Geben Sie das Alter der Person ein: 29

Ist die Person männlich <j,J,n,N>: n

Anrede:

Sehr geehrte Frau Monika Mustermann

>>>

BK_SekI+II_Python_basic.docx - 108 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Bei einem Ausverkauf gibt es 20% auf die ausgezeichneten Preise. Weiter-

hin wird bei einem Umsatz von 100 Euro nochmal 5% Rabatt und bei 200

Euro extra 15 % Rabatt gewährt.

Erstellen Sie ein Programm, dass aus der normalen Preissumme den zu

zahlenden Betrag ermittelt! Weiterhin soll angezeigt werden, wieviel der

Kunde gespart hat und wieviel Mehrwertsteuer im Endpreis enthalten ist.

Für alle Waren gilt der normale Steuersatz von 19%.

2. Die Anakonda-Bank hat die folgenden Zins-Konditionen:

a) bei einem Guthaben werden 1,5% Zinsen p.a. (pro Jahr) dem Guthaben

zugeschlagen

b) Guthaben über 5000 Euro erhalten 2,5 % Zinsen p.a.

c) bis 1000 Euro Schulden gibt es den Dispokredit mit 5 % Zins p.a.

d) bei größeren Schulden gilt der übliche Kreditzins von 7,5 % p.a.

Ein Python-Programm soll für einen einzugebenen letztjährigen Kontostand

den aktuellen zurückliefern! (Im Verlaufe des Jahres erfolgten keine Ein-

oder Auszahlungen!)

3. Dem Programmierer des folgenden Programm's sind diverse Fehler unter-

laufen. Finden und korrigieren Sie diese

 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Programm zur Interpretation von

 Farbkodierungen an Signalleinen

 Rettungsdienste / Einsatztauchen

 alle 10 m ein Leder-Läppchen

 nach je 2m Markierung in:

 schwarz, weiss, rot, gelb #

Eingabe

leder=eval(input("durchgelaufene Leder-Läppchen: ")

letzteFarbe=input("letzte durchgelaufene Farbe: ")

Verarbeitung

fehler==0

if letzteFarbe=="schwarz";

 laenge=2

elif Farbe=="weiss":

 laenge=4

elif letzteFarbe=="rot":

 laenge=4

elif letzteFarbe="grün":

 leange=8

else

Fehler=1

Auswertung

if Fehler==1:

 write("Es ist ein Fehler aufgetreten!

 if leder > 0:

 print("mind.",leder*10,"m durchgelaufen")

else:

 gesamt=leder+10*laenge

 print "es sind","gesamt","m durchgelaufen"

BK_SekI+II_Python_basic.docx - 109 - (c,p) 2015 - 2026 lsp: dre

komplexe und / oder weitere Übungs-Aufgaben zu Alternativen:

1. Erstellen Sie sich eine dreispaltige Tabelle in Ihrem Hefter! In die erste

Spalte kommen die nachfolgenden Ausdrücke! Die zweite Spalte wird mit

"Kopf-Computer" und die dritte mit "Python" überschrieben! Überlegen Sie

sich dann, welches logisches Ergebnis (True oder False oder kein Wert

(weil (syntaktisch) falsch)) bei den einzelnen Ausdrücken herauskommt und

tragen Sie das Ergebnis in die Spalte "Kopf-Computer" ein! Überprüfen Sie

dann alle Ausdrücke an der Konsole von Python! Die Ergebnisse kommen

in die Spalte "Python" der Tabelle. Wie richtig lagen Sie?

a) 3 == 3 b) 456 <= 289 c) 4 == '4'

d) 5 == 3+2 e) "Eingabe" == 0 f) "Name" <= "Vorname"

g) 8.0 == 8 h) "Hallo!" == "Hallo! "

i) "Ei" is "Ei" j) a = 23 k) 24 // 8 == 4

l) 5 in [2, 3, 5, 7] m) 4 not in [9, 3, 2, 4 ,6, 8, 13, 1, 99]

n) "Bio" not in ["Astro", Bio, "Chem", "Deu", "Bio, Ma", "Info", SK]

2. Der pH-Wert zeigt den Charakter einer Lösung an. Dabei sind pH-Werte

kleiner als 7 ein Zeichen für saure Lösungen, bei Werten über 7 sprechen

wir von basischen Lösungen. Ist der pH genau 7, dann gilt die Lösung als

neutral.

Erstellen Sie ein Programm, dass aus dem pH-Wert den Charakter der Lö-

sung ermittelt!

3. Für die Koordinaten eines Punktes (x- und y-Wert) soll ermittelt werden, in

welchem Quadranten des kartesischen Koordinatensystems der Punkt ein-

zuzeichnen ist!

4. Ein Programm soll für die einzugebende Zimmer-Temperatur in °C ausge-

ben, ob es zu warm oder zu kalt ist! Als optimaler Wert wurde 21 °C festge-

legt.

5. Verändern Sie das Programm von 4. so, dass die optimale Temperatur als

Variable (Konstante) vorne im Quelltext definiert und auch im weiteren Pro-

gramm genutzt wird! Speichern Sie das Programm unter einem geänderten

Namen ab!

6. Verändern Sie das Programm von 4. so, dass der Richtwert durch das Pro-

gramm abgefragt wird! Der Richtwert darf nicht größer als 25 und nicht

kleiner als 15 °C sein!

7. Im nachfolgenden Programm sind dem Programmierer diverse Stil-Fehler

unterlaufen. Korrigieren Sie diese!

 1

2

3

4

5

6

7

a=input()

a=int(a)

if a>273:

 if a<373: print("flüssig")

 else: print("gasförmig")

else: print("fest")

BK_SekI+II_Python_basic.docx - 110 - (c,p) 2015 - 2026 lsp: dre

6.4.1.3. Mehrfach-Verzeigungen

Neben den einfachen Verzweigungen kennen viele Programmiersprachen Mehrfach-
Verzweigungen. Meist lautet das Schlüsselwort dann SWITCH, CASE oder so ähnlich. Py-
thon geht bei den Mehrfach-Verzweigungen einen ganz einfachen Weg – es erweitert ein-
fach die "normale" Verzeigung.
Im nächsten Beispiel sollen eine Schulnote, die als Ziffer eingegeben wird, in die Textform
umgesetzt werden.
Das Struktogramm für diese Mehrfach-Verzweigung sieht so aus:

Der Quellcode in Python ist eine erweiterte if-Struktur. Vor dem optionalen beendenden else
können beliebig viele elif's eingefügt werden. Sie stehen für immer jeweils einen Ausgang
aus der Mehrfach-Verzweigung.

…

Mehrfach-Alternative

if eingabe == 1:

 print("sehr gut")

elif eingabe == 2:

 print("gut")

elif eingabe == 3:

 print("befriedigend")

elif eingabe == 4:

 print("ausreichend")

elif eingabe == 5:

 print("mangelhaft")

elif eingabe == 6:

 print("ungenügend")

…

Im Allgemeinen ist ein Abschluss mit einem else besser.
Dann kommt immer etwas bei der Mehrfach-Verzweigung heraus und man kann effektiver
nach Fehlern forschen. Das zugehörige Struktogramm würde dann so aussehen:

BK_SekI+II_Python_basic.docx - 111 - (c,p) 2015 - 2026 lsp: dre

Und das zugehörige Python-Programm sähe dann so aus:

…

Mehrfach-Alternative

if eingabe == 1:

 print("sehr gut")

elif eingabe == 2:

 print("gut")

elif eingabe == 3:

 print("befriedigend")

elif eingabe == 4:

 print("ausreichend")

elif eingabe == 5:

 print("mangelhaft")

else:

 print("ungenügend")

…

 >>>

Note (als Ziffer): 4

Note in Textform:

ausreichend

>>>

Diese Form der Mehrfach-Verzweigung birgt ein großes Risiko. Vergißt man bei komplizier-
teren Bedingungen z.B. bestimmte Grenzen oder Randbedingungen, dann kann man seinen
Programm-Ablauf immer im ELSE-Bereich wiederfinden. Nehmen wir als einfaches Beispiel
die Bewertung von Temperaturen (mit Nachkommastellen. Auf den ersten Blick sieht der
nochfolgende Quelltext unproblematisch aus, aber der Teufel steckt hier im Detail:

…

Mehrfach-Alternative

if temp < 19.0:

 print("zu kalt")

elif temp > 19 and temp < 20:

 print("kühl")

elif temp > 20 and temp < 22:

 print("angenehm")

else:

 print("zu warm")

…

Während die erste Eingabe (hier
19,4) noch ein exaktes Ergebnis
liefert, versagt unser Programm bei
19,0 °C.
Das Problem wird deutlich, wenn wir
einmal mit 19,0 die Mehrfach-
Verzweigung durchgehen:

 >>>

aktuelle Zimmer-Temperatur [°C]: 19.4

kühl

>>>

aktuelle Zimmer-Temperatur [°C]: 19.0

zu warm

>>>

Die Bedingung (<19) in der startenden IF-Anweisung wird mit FALSE beantwortet und somit
in der ersten ELIF-Anweisung weiter gemacht. Die Bedingungen treffen einzeln und in der
UND-Verknüpfung nicht zu, also wird auch die Auswahl-Mölichkeit übersprungen. Genau
geht es der 19,0 in der zweiten ELIF-Anweisung. Was bleibt, ist der ELSE-Zweig. Hier wird
die Wertung "zu warm" kreiert. Ähnliches passiert z.B. auch bei der Eingabe von 20,0.
Das Problem sind hier die nicht direkt aneinander anschließenden Bereiche. Wir haben im-
me kleine Lücken – hier 19 und 20 – die nicht erfasst werden und dann im ELSE-Zweig lan-
den.

BK_SekI+II_Python_basic.docx - 112 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Berichtigen Sie die Mehrfach-Verzweigung zur Temperatur-Bewertung so,

dass keine Lücken mehr auftreten!

2. Im einem "anderen" vorgelagerten Programm-Teil wird definiert, wo genau

diese Grenzen sein sollen. Der Nutzer kann seine Präferenzen also vorher

festlegen. Die Auswertung soll dann die aktuelle Temperatur, die Bereichs-

Grenzen und die Bewertung anzeigen! (z.B.:

die aktuelle Tempertur 20,8 °C liegt im Bereich von 20,5 bis 22,3 °C und ist somit: angenehm

3. Trennen Sie sauber Eingabe, Verarbeitung (Bewertung) und Ausgabe! (In-

nerhalb der Ausgabe (am Ende des Programms) darf keine Verarbeitung

mehr erfolgen, sondern wirklich nur noch die Ausgabe der Texte / Daten!

Ganz mutige und sehr von sich eingenommene Programmierer verzichten auch noch auf
den ELSE-Zweig – da kann man ja immer schön mit "Kopieren"-"Einfügen" arbeiten.

…

Mehrfach-Alternative

if temp < 19.0:

 print("zu kalt")

elif temp > 19 and temp < 20:

 print("kühl")

elif temp > 20 and temp < 22:

 print("angenehm")

elif temp > 22:

 print("zu warm")

…

Nun versagt unser Programm dann
vollends. Im Fall der 19 oder 20 °C
wird gar keine Bewertung angezeigt.
Solche Fehler mit nur wenigen Test-
Daten zu finden, gelingt nur selten.
Besser ist der folgende Weg:

 >>>

aktuelle Zimmer-Temperatur [°C]: 19.4

kühl

>>>

aktuelle Zimmer-Temperatur [°C]: 19.0

>>>

Alle Bereiche werden mit IF- bzw. ELIF-Zweigen bearbeitet. Der ELSE-Zweig wird für ein
Sammeln der nicht ausgewerteten Daten genutzt – quasi als Fehler-Topf:

…

Mehrfach-Alternative

if temp < 19.0:

 print("zu kalt")

elif temp > 19 and temp < 20:

 print("kühl")

elif temp > 20 and temp < 22:

 print("angenehm")

elif temp > 22:

 print("angenehm")

else: # nicht ausgewertete Fälle

 print("es ist ein Fehler aufgetreten!")

 print("Melden Sie diesen bitte dem Programmierer!")

…

BK_SekI+II_Python_basic.docx - 113 - (c,p) 2015 - 2026 lsp: dre

Nun wird bei einem durch-
rausenden Wert (hier: 20,0) auf
einen Fehler hingewiesen.
Wenn der Fehler vielleicht auch
erst beim Anwender auffällt, die
Verarbeitung an sich erzeugt
wenigstens keinen Unsinn.

 >>>

aktuelle Zimmer-Temperatur [°C]: 18.4

zu kalt

>>>

aktuelle Zimmer-Temperatur [°C]: 20.0

es ist ein Fehler aufgetreten!

Melden Sie diesen bitte dem Programmierer!

>>>

Exkurs: Mehrfach-Verzeigung – anders dargestellt

Nebenstehend ist ein Algorithmus zur Umsetzung von
Noten (in Ziffern) in die zugehörigen Wort-Urteile als
Programm-Ablauf-Plan dargestellt. Sachlich ent-
spricht dieses PAP dem letzten Struktogramm.
Insgesamt sieht man bei beiden Darstellungen, dass
man bei größeren Algorithmen schnell an die graphi-
schen Grenzen stößt.
Viele (ältere / gestandene) Programmierer schwören
auf die guten alten PAP's. In der modernen Pro-
grammierung und Algorithmik wird eher auf Strukto-
gramme oder Pseudo-Programm-Text gesetzt.
Ein entscheidender Vorteil der Darstellungen als PAP
oder Struktogramm ist auf alle Fälle, dass man quasi
mit dem Finger den Ablauf nachvollziehen kann. Das
geht bei den PAP's noch besser, als bei den Strukto-
grammen.
Die Darstellung in Pseudocode spart richtig Platz –
ist aber immer schon stark an einer (bestimmten)
Programmiersprache angelehnt. Als Pseudosprachen
werden dann meist stark vereinfachte Programmier-
sprachen gewählt, die besonders im akademischen
Bereich weit verbreitet sind, wie z.B. Pascal.
Da schon so etwas wie Programmtext vorliegt, ist
eine Fehlersuche oder Prüfung des Algorithmus stark
von den Programmier-Erfahrungen abhängig und
somit nicht unbedingt zielführend.

Pseudotext einer Mehrfachauswahl:

PAP zur Mehrfachauswahl
eingabe = INPUT(Notenziffer)

case eingabe of

1: PRINT(sehr gut)

2: PRINT(gut)

3: PRINT(befriedigend)

4: PRINT(ausreichend)

5: PRINT(mangelhaft)

ELSE PRINT(ungenügend)

Leider gehört eine CASE-Anweisung nicht zu Python. Wir müssen uns also mit Behelfs-Strukturen
begnügen.

BK_SekI+II_Python_basic.docx - 114 - (c,p) 2015 - 2026 lsp: dre

6.4.1.4. Optimierung des Quellcode's – DRY- und EVA-Prinzip

Das DRY-Prinzip (don't repeat yourself) besagt, dass man möglichst alle Dinge nur einmal in
einem Programm codiert. Auch späteres erneutes Programmieren sollte vermieden werden.
Für einen Anfänger ist dies zuerst etwas schwierig. Er muss sich noch zu viel auf seinen
Code konzentrieren. Aber spätestens, wenn ein funktionierender Code vorliegt, sollte man
sich um eine Anpassung an die informatischen Prinzipien kümmern. Nerdigen Code wird
man später nicht wirklich in ein Team einbringen und für einen selbst wird es auch sehr unef-
fektiv, immer das Gleiche mehrfach zu codieren.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

// Schaltjahr-Programm

eingabe = input("Schaltjahr-Prüfung für Jahr?: ")

jahr = int(eingabe)

if jahr < 0:

 print("es muss ein positives Jahr sein!")

else:

 if jahr % 4 == 0: // ?durch 4 teilbar

 if jahr % 100 == 0: //? durch 100 teilbar

 if jahr % 400 == 0: // ?durch 400 teilbar

 println("kein Schaltjahr")

 else:

 println("ist Schaltjahr")

 else: // ? %100

 println("ist Schaltjahr")

 else: // ? %4

 println("kein Schaltjahr")

Auf den ersten Blick ist es ein ordentliches Programm. Was den Informatiker stört, sind die
mehrfachen Ausgaben. Würde man das Programm für eine andere Sprache umschreiben
wollen, dann müsste man auch wieder doppelt arbeiten. Weiterhin ist die Mischung aus Ver-
arbeitung und Ausgabe ungünstig. Beide Bereiche sollten möglichst vollständig voneinander
getrennt werden. Dann kann man die Ausgabe auch in unterschiedlicher Form erledigen,
z.B. wie bisher üblich auf der Konsole, oder in einer graphischen Oberfläche.
Sollte unser Schaltjahr-Problem noch einige weitere Male im Programm auftauchen, dann
müssen wir auch wieder mehrfach den Code notieren oder reinkopieren. Derzeit haben wir
noch keine echte Lösung dafür, aber mit Funktionen (→ 6.5. Unterprogramme, Funktionen
usw. usf.) wird das später bestens gehen. Derzeit überlegen wir uns nur, wie man die Infor-
mation von der Verarbeitung zur Ausgabe transportiert. Wir wollten ja wissen, ob es sich um
ein Schaltjahr handelt oder nicht. Also handelt es sich eigentlich um einen Wahrheitswert.
Genau so eine Variable nutzen wir nun. Auch das Auftreten eines Fehlers erfassen wir nur,
merken uns diesen und geben ihne dann u.U. später aus.

BK_SekI+II_Python_basic.docx - 115 - (c,p) 2015 - 2026 lsp: dre

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

// Schaltjahr-Programm

//Eingabe

eingabe = input("Schaltjahr-Prüfung für Jahr?: ")

jahr = int(eingabe)

//Verarbeitung

ist_schaltjahr = False

fehler = 0

if jahr < 0:

 fehler = 1

else:

 if jahr % 4 == 0: // ?durch 4 teilbar

 if jahr % 100 == 0: //? durch 100 teilbar

 if jahr % 400 == 0: // ?durch 400 teilbar

 ist_schaltjahr = False

 else:

 ist_schaltjahr = True

 else: // ? %100

 ist_schaltjahr = True

 else: // ? %4

 ist_schaltjahr = False

//Ausgabe

if fehler > 0:

 println("Es ist ein Fehler aufgetreten.")

else:

 if ist_schaltjahr:

 println(jahr," ist ein Schaltjahr")

 else:

 println(jahr," ist kein Schaltjahr")

Natürlich müssen wir unser Programm gründlich testen. Dabei werden wir merken, dass es
nicht ganz exakt arbeitet.

Aufgaben:

1. Recherchieren Sie, welche Regeln zu den Schaltjahren in den verschiedenen

Kalendern festgelegt wurden!

2. Korrigieren Sie Ihr Programm, so dass es ordnungsgemäß funktioniert!

3. Prüfen Sie Ihr Programm mit mindestens 10 weiteren Jahres-Zahlen, die Sie

im Kurs gemeinsam auswählen, um möglichst viele Sonder-Fälle zu testen!

BK_SekI+II_Python_basic.docx - 116 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen Sie ein Programm zur eindeutigen Interpretation eines pH-Wertes!

(Es gilt: unter 2: sehr sauer; von 2 bis unter 4: sauer; von 4 bis unter 7: schwach sauer;

7 ist neutral; … entsprechend für die basische Seite (es brauchen nur Werte von 0 bis 14
betrachtet werden, bei Werten außerhalb soll ein Hinweis auf "ungewöhnliche Werte" ge-

gegeben werden))

2. Wählen Sie eine eigene – mindestens 5-stufige Skala und setzen Sie diese in

ein Bewertungs-Programm um!

3. Öffnen Sie sich Ihr gespeichertes Programm von 6.2.1. (Eingabe von zwei

Zahlen und eines Operationszeichens) und ergänzen Sie nun die Berech-

nung und Ausgabe des Ergebnisses der Gleichung!

4. Erstellen Sie ein Programm, dass den BMI für Jungen und Mädchen be-

rechnet und getrennt bewertet!

5. Gesucht ist ein Hilfs-Programm für die Bestandsaufnahme (Biologie, Öko-

logie), um den Deckungsgrad zu bewerten (z.B. nach Tafelwerk Cornelsen

S. 160)!

6. Planen (Struktogramm) und entwickeln Sie ein Programm, dass aus zwei

Winkeln und der dazwischen liegenden Seite die restlichen Seiten und den

dritten Winkel berechnet. Weiterhin soll das Programm den Umfang und die

Fläche ermitteln! Bei der Ausgabe der Daten nach dem EVA-Prinzip (also

erst geschlossen am Ende des Programms) sollen auch Hinweise auf beson-

dere Eigenschaften des Dreiecks angezeigt werden (z.B.: rechtwinkliges

oder / und gleichseitig usw. usf.)!

7. Erstellen Sie ein Programm zur feineren Interpretation des pOH-Wertes!

(Hinweis: Der pOH-Wert ist quasi der Gegenwert zum pH-Wert aus der Sicht der Basen.
Er berechnet sich u.a. auch 14 = pH + pOH.)
über 13: extrem sauer, 13 .. 11 stark sauer; von 11 bis über 9: mäßig sauer; von 9 bis
über 7: schwach sauer; 7 ist neutral; von 7 bis über 5 schwach basisch; 5 .. 3 mäßig ba-

sisch; von 3 bis über1 stark basisch; unter 1 extrem basisch)

BK_SekI+II_Python_basic.docx - 117 - (c,p) 2015 - 2026 lsp: dre

komplexere Aufgaben (zu Verzweigungen):

1. Erweitern Sie das letzte Zensuren-Programm so, dass fehlerhafte Eingaben

– also negative Zahlen oder Zahlen größer 6 – mit einem Fehler-Hinweis

quittiert werden. Überlegen Sie sich zwei grundsätzlich verschiedene Mög-

lichkeiten!

2. Programmieren Sie eine Variante der No-

ten-Textausgabe, in der nur einfache Ver-

zweigungen (also keine Mehrfach-

Verzweigungen) vorkommen! Wieviele if's

brauchen Sie?

3. Finden Sie die Fehler im nebenstehenden

Quelltext! (Die Reihenfolge der Noten (4, 1,

6, …) soll beibehalten werden!)

4. Prüfen Sie Ihre Korrekturen in einem einfa-

chen – selbst geschriebenen – Python-

Programm!

…

Mehrfach-Alternative

if eingabe == 4:

 print("ausreichend")

elif eingabe = 1:

 print("sehr gut")

else eingabe == 6:

 print("mangelhaft")

if eingabe <> 3:

 print("ungenügend ")

elif eingabe == 5:

 print("ausreichend ")

else:

 print("ungenügend")

…

5. In einem Programm soll durch Eingabe der Farbe und des Wertes (als Text)

einer Spielkarte (des französischen Blattes) die passende Spielkarte aus dem

deutschen Skatblatt ermittelt werden!

6. Bestimmen Sie für ein einzugebenes Jahr, ob es sich um ein Schaltjahr han-

delt, oder nicht! Es gelten die folgende Regel:

Ein Jahr ist ein Schaltjahr, wenn es ohne Rest durch 400 teilbar ist oder

wenn es durch 4, aber nicht durch 100 teilbar ist.

7. Einer Person soll ein oder mehrere Attribut(e) zugeordnet werden! Dazu

gelten die folgenden Rahmen:

• bis 1 Jahr alt: Säugling; Kleinkind bis 4 Jahre; Vorschulkind bis 6;

Schulkind bis 12; Jugendlicher bis 18; dann Erwachsener

• volljährig / nicht volljährig

• Rentner ab 67

8. Durch ein Programm soll eine Spielkarte aus dem französischen Blatt (Ka-

ro, Herz, Pik und Kreuz mit jeweils 7 bis 10, Bube, Dame, König, Ass)

über Ja/Nein-Fragen erfragt werden! Planen Sie ein Programm, dass mit

möglichst wenig Fragen (für den Nutzer) auskommt! Wieviele if's brauchen

Sie?

9. Erstellen Sie ein Programm, dass zu einer erreichten Punktzahl bei einer

Arbeit die Bewertung als Note ermittelt! Die mindestens notwendigen Pro-

zentwerte sind: für ein "5" 9%; für eine "4" 36%; für eine "3" 55%; für eine

"2" 70% und für eine "1" 85%. Erstellen Sie das Programm mit einer

IF..ELIF..ELSE-Struktur!

BK_SekI+II_Python_basic.docx - 118 - (c,p) 2015 - 2026 lsp: dre

für die gehobene Anspruchsebene:

10. Wie kann man das Programm zu Aufgabe 9 so anlegen, dass es gut wart-

bar / änderbar für andere Prozentwerte wird?

11. Das Programm von Aufgabe 9 bzw. 10 soll so umgebaut / erweitert wer-

den, dass auch die Punktwertung für die Sekundarstufe II angezeigt wird!

Die Fein-Einteilung muss nicht in einer IF..ELIF..ELSE-Struktur erfolgen!

Angaben in % und als Minimum: 1: (96; 90; 85); 2: (80; 75; 70); 3: (65; 60; 55);
 4: (50; 45; 36); 5 (27; 18; 9)

BK_SekI+II_Python_basic.docx - 119 - (c,p) 2015 - 2026 lsp: dre

6.4.2. Schleifen

In vielen Fällen müssen bestimmte Pro-
gramm-Abschnitte mehrfach erledigt wer-
den. Die Quelltexte mehrfach hintereinander
zu kopieren, wäre eine erste Möglichkeit. Sie
empfiehlt sich aber schon deshalb nicht, weil
Fehler-Korrekturen extrem aufwändig wür-
den. Häufig weiss der Programmierer auch
gar nicht genau, wie oft die Anweisungen
wiederholt werden müssen.

Eine Struktur, um Wiederholungen zu realisieren sind die sogenannten Schleifen – oder wie der

Schweizer sagt: Schlaufen. Aufgrund bestimmter Bedingungen werden die – in der Schleife lie-
genden – Anweisungen (Schleifen-Körper) so oft durchlaufen, bis die Arbeit erledigt ist. In
der Programmierung unterscheiden wir Schleifen mit vorbestimmten Durchlaufzahlen – die
sogenannten Zähl-Schleifen – von den bedingten Schleifen.
Die bedingten Schleifen (Bedingungs-kontrollierten Schleifen) werden nochmals dahingehend un-
terschieden, wo die Bedingung geprüft wird. Das kann vor dem Durchlauf des Schleifen-
Körpers erfolgen. Dann sprechen wir von Kopf-gesteuerten Schleifen. In anderer Literatur
werden sie auch vorprüfende Schleifen genannt.
Wird dagegen erst am Ende der Schleife geprüft, dann nennt man die Schleife Fuß-gesteuert
oder nachprüfend. Hierbei ist zu beachten, dass der Schleifen-Körper mindestens einmal
durchlaufen wird, bevor die Bedingungs-Prüfung am Fuß der Schleife erreicht wird.

DRY-Prinzip
don't repeat yourself

BK_SekI+II_Python_basic.docx - 120 - (c,p) 2015 - 2026 lsp: dre

6.4.2.1. bedingte Schleifen

Das Konzept der bedingten Ausführung von bestimmten Programm-Teilen (→ 6.4.1. Ver-
zweigungen) kann nun auch auf Schleifen bzw. Wiederholungen angewendet werden. Statt
den if bei den Verzweigungen verwenden wir nun das Schlüsselwörtchen while. Nach dem
Durchlauf des eingerückten Programm-Abschnittes kehrt das Programm zur while-Stelle
zurück und testet erneut, ob ein weiterer Durchlauf notwendig / möglich ist.
Ist die Bedingung nicht erfüllt, dann wird die Schleife
nicht durchlaufen. Das Programm setzt dann mit der
Bearbeitung der – nach der Schleife – folgenden An-
weisungen fort. Das kann natürlich auch schon beim
ersten Mal der while-Bedingung passieren. Das
Struktogramm einer kopfgesteuerten Schleife – so
nennt man die while-Schleifen auch – sieht aus, wie
ineinander geschachtelte Rechtecke.
Der Schleifen-Körper also der Teil, der innerhalb der
Schleife immer wieder abgearbeitet werden soll, kann
ein sehr komplexer Blockteil sein.
Da sind Sequenzen, genauso wie Verzweigungen,
aber auch neue Schleifen erlaubt. Sie müssen nur
sauber ineinander verschachtelt werden. Ein Über-
lappen ist nicht zulässig!
Für die Entwicklung von Programmen mit mehrfach
geschachtelten Schleifen empfiehlt sich zuerst einmal
die Top-down-Entwicklungstechnik. Es wird also zu-
erst die äußertes Schleife programmiert.

Struktogramm: Kopf-

gesteuerte Schleife

zulässige Schachtelung von Schleifen

In diese können / sollten kleine Ausgaben hinein ge-
baut werden. Funktioniert die Schleife können die
Kontrollausgaben auskommentiert werden und dann
die innere Schleife hinzugefügt werden.
Läuft alles, dann können alle Hilfs-Ausgaben gelöscht
werden.

unzulässige Schachtelung

Wie sieht eine Schleifen-Struktur in Python aus? Als Beispiel wählen wir hier eine klassische
Programmierer-Aufgabe – das Abtesten, ob eine bestimmte Eingabe zulässig ist. Solange
das nicht so ist, soll der Nutzer wiederholt zur Eingabe aufgefordert werden.

…

Eingabe mit Gültigkeitstest

eingabe=-1 # Vorgelegung mit falschem Wert,

 # damit man in die Schleife kommt

while eingabe <0 or eingabe > 100:

 eingabe=eval(input("Geben Sie eine Zahl zwischen 0 und 100 ein: "))

…

 >>>

Geben Sie eine Zahl zwischen 0 und 100 ein: 123

Geben Sie eine Zahl zwischen 0 und 100 ein: -5

Geben Sie eine Zahl zwischen 0 und 100 ein: 67

>>>

Eine etwas schönere Variante mit einem Fehler-Hinweis könnte z.B. so aussehen:

BK_SekI+II_Python_basic.docx - 121 - (c,p) 2015 - 2026 lsp: dre

…

Eingabe mit Gültigkeitstest

eingabe_ok=False # Vorgelegung mit falschem Wert

while not eingabe_ok: # ausführlich: eingabe_ok == True

 eingabe=eval(input("Geben Sie eine Zahl zwischen 0 und 100 ein: "))

 if eingabe < 0 or eingabe > 100:

 print("... Bitte den Wertebereich beachten!")

 else:

 eingabe_ok=True

…

 >>>

Geben Sie eine Zahl zwischen 0 und 100 ein: 123

... Bitte den Wertebereich beachten!

Geben Sie eine Zahl zwischen 0 und 100 ein: -5

... Bitte den Wertebereich beachten!

Geben Sie eine Zahl zwischen 0 und 100 ein: 67

>>>

Die beiden obigen Programmteile sollte man sich merken und damit alle typischen einge-
grenzten Eingaben kontrollieren. Ansosnten droht ev. die Gefahr eines Programm-Absturzes
mitten in der Arbeit. Hier sind dann die Ursachen u.U. schwer aus der Fehlermeldung her-
auszufiltern.

BK_SekI+II_Python_basic.docx - 122 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen Sie ein Programm, das solange die Eingabe wiederholt, bis eine

Zahl eingegeben wird, die kleiner als 0 oder größer als 100 ist!

2. Erweitern Sie das Programm von 1 so, dass die Summe, die Anzahl und der

Mittelwert der eingegebenen (richtigen) Zahlen berechnet und angezeigt

wird!

3. Erstellen Sie ein Programm, dass solange eingegebene Zahlen testet, bis

eine 0 eingegeben wird! Dabei sollen die folgenden Tests durchgeführt wer-

den und sachlich korrekte Ausgaben gemacht werden!

(Denken Sie sich im Kurs ein Set aus Testzahlen aus, die jeder für seine

Programmtests nutzen muss!)

a) Zahl ist größer als 333

b) Zahl ist ungerade und durch 3 teilbar

c) Zahl ist gerade, größer als 28 und durch 7 und 4 teilbar

4. In einer Schüler-Verwaltungs-Software bekommt jeder Schüler eine fünf-

stellige ID-Nummer. Diese beginnt niemals mit einer 0. Erstellen Sie ein

Programm, dass eine eingegebene Zahl darauf testet, ob sie eine gültige ID

ist!

5. Mit der Funktion len(zeichenkette) kann man die Länge der Zeichenkette

ermitteln. Die Funktion liefert die Anzahl der Zeichen in der Zeichenkette

zurück. Erstellen Sie ein einfaches Programm, dass für eine einzugebene

Zeichenkette deren Länge ermittelt und ausgibt und anzeigt, ob es sich um

eine gültige Eingabe handelt (Zeichenkette besitzt mindestens 3, aber nicht

mehr als 25 Zeichen.)

Aber auch Berechnungen z.B. für Tabellen werden zumeist mit Schleifen aufgebaut. So
könnte es z.B. gefordert sein, in einer Tabelle x, x2 und x3 für 10 aufeinander folgende Werte
zu berechnen und als Tabelle zusammenzustellen.

===

Programm zur Tabellierung von x-Quadrat

und x-Kubik

Autor: Drews

Version: 0.1 (01.10.2015)

Freeware

======================================

print("Tabellierung von x-Quadrat und x-Kubik")

print("======================================")

print("")

Eingabe(n)

x_wert=eval(input("Geben Sie den Startwert für x ein: "))

Ausgabe(n)

print(" x x² x³")

Berechnung / Verarbeitung / Ausgabe

schleifenzaehler=0

while schleifenzaehler < 10:

 print(x_wert, x_wert*x_wert, x_wert*x_wert*x_wert)

 x_wert+=1

 schleifenzaehler+=1

Warten auf Beenden

input()

BK_SekI+II_Python_basic.docx - 123 - (c,p) 2015 - 2026 lsp: dre

 >>>

Tabellierung von x-Quadrat und x-Kubik

======================================

Geben Sie den Startwert für x ein: 5

 x x² x³

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

11 121 1331

12 144 1728

13 169 2197

14 196 2744

>>>

Die Werte in der "Tabelle" stehen zwar getrennt da, aber so eine Ausgabe entspricht noch
nicht wirklich unserem Tabellen-Verständnis. Durch wenige Änderungen und einer Version
der format-Funktion bekommen wir das aber recht einfach hin:

…

Ausgabe(n)

print(" x | x² | x³")

print("---------+----------+----------")

Berechnung / Verarbeitung / Ausgabe

schleifenzaehler=0

while schleifenzaehler < 10:

 print(format(x_wert,"8d"),"|",format(x_wert*x_wert,"8d"),

 "|",format(x_wert*x_wert*x_wert,"8d"))

…

 >>>

Tabellierung von x-Quadrat und x-Kubik

======================================

Geben Sie den Startwert für x ein: 5

 x | x² | x³

---------+----------+----------

 5 | 25 | 125

 6 | 36 | 216

 7 | 49 | 343

 8 | 64 | 512

 9 | 81 | 729

 10 | 100 | 1000

 11 | 121 | 1331

 12 | 144 | 1728

 13 | 169 | 2197

 14 | 196 | 2744

>>>

Was die format()-Funktion alles leistet und welche Möglichkeiten zur Formatierung von Aus-
gaben sie liefert, haben wir uns schon angesehen (→ 6.1. Ausgaben). Hier nur noch mal
kurz zur Erinnerung: Die Text-Angabe als 2. Argument in der format()-Funktion bewirkt eine
Ausgabe eines ganzzahligen Wertes mit insgesamt 8 Ziffernstellen.

Typische Anwendungen für bedingte Schleifen sind Interationen. Da man bei den eigentlich
unendlichen Berechnungen irgendwann mal Schluss machen muss und will, braucht man ein
passendes Schleifen-Abbruch-Kriterium. Häufig nutzt man die Differenz zum vorlaufenden
berechneten Wert. Wenn dieser eine bestimmte Grenze – meist e (Epsilon) genannt – unter-
schreitet, dann ist man mit der Genauigkeit zu frieden. Genau so verfährt man, wenn sich der

BK_SekI+II_Python_basic.docx - 124 - (c,p) 2015 - 2026 lsp: dre

berechnete Wert nicht mehr von seinem Vorgänger unterscheidet. Bei Computersystemen
muss man aber beachten, dass eine Gleichheit bei den Werten nicht heißen muss, dass der
Wert auch stimmt. Vielfach ist es nur die Genauigkeit des Systems, die uns in Ausführung
der weiteren Interationen begrenzt.
Als Beispiel für die Nutzung von Epsoílon als Abbruch-Kriterium nehmen wir die Methode
von ARCHIMEDES zur Berechnung von Pi.

Berechnung der Kreiszahl Pi mit der Methode von ACHIMEDES

zugrundeliegende Formel: 𝑥𝑛+1 =

import math

epsilon = 1e-20 # Genauigkeit

Initialisierungen

x = 4

y = 2*math.sqrt(2)

zaehler = 0

Interationsschleife

while x-y > epsilon:

 x1 = 2*x*y /(x+y)

 y = math.sqrt(x1*y)

 x = x1

 zaehler += 1

print("interierte Kreiszahl Pi = ",format((x+y)/2,"2.30f"))

print("geforderte Genauigkeit e = ",format(epsilon,"2.30f"))

print(" ---> nach: ",zaehler," Interationen")

print(" zum Vergleich System-Pi = ",format(math.pi,"2.30f"))

 >>>

interierte Kreiszahl Pi = 3.141592653589792671908753618482

geforderte Genauigkeit e = 0.000000000000000000010000000000

 ---> nach: 26 Interationen

 zum Vergleich System-Pi = 3.141592653589793115997963468544

>>>

Bei Schleifen, deren Durchlauf von einer Bedingung abhängig ist, kann es passieren, dass
genau die Bedingung immer zutrifft. So etwas passiert z.B. schnell mal bei einer unbedacht
angegebenen Bedingung. Man erhält eine Endlosschleife. Diese kann nur durch einen äuße-
ren Eingriff beendet werden.
Trotz alledem gibt es natürlich Aufgaben, die immerzu wiederholt werden sollen. In so einem
Fall kann man mit

while True:

 SchleifenAnweisungen

genauso eine Endlosschleife programmieren. Diese Schleife würde niemals enden, da die
Bedingung für die nächste Wiederholung ja immer wahr (=True) ist.
Endlosschleifen kann man durch ein wohlgesetztes break in der Schleife beenden. Das
break würde sich vielleicht aus einer prüfenden Verzeigung ergeben.
Das würde natürlich auch mit eben einer solchen Bedingung im Schleifen-Kopf den gleichen
Effekt haben.
Richtig effektiv und auch sinnvoll – wenn auch nicht schön – sind Schleifen, die von mehre-
ren verteilten Bedingungen im Schleifen-Körper abhängig sind. Diese alle in den Schleifen-

BK_SekI+II_Python_basic.docx - 125 - (c,p) 2015 - 2026 lsp: dre

Kopf zu platzieren kann unmöglich sein. Dann bieten sich break's an irgendwelchen geeig-
neten Stellen an.

while True:

 SchleifenAnweisungen

 …

 if Bedingung1: break

 …

 if Bedingung2: break

 …

 …

 if Bedingungn: break

 SchleifenAnweisungen

BK_SekI+II_Python_basic.docx - 126 - (c,p) 2015 - 2026 lsp: dre

Berechnung der Quadratwurzel von x nach der Formel von HERON

zugrundeliegende Formel: 𝑥𝑛+1 =
1

𝑛
 ((𝑛 − 1)𝑥𝑛 +

𝑎

𝑥𝑛
𝑛−1

)

Wurzel-Berechnung nach HERON (interativ)

x = eval(input("Aus welcher Zahl soll die Quadratwurzel berechnet werden?: "))

xi = eval(input("Interations-Startwert x0: "))

print()

print("Iteration | Näherungswert")

print("----------+-------------------")

i = 0

xj = xi

while i == 0 or xi != xj: # mind. 1x in Schleife ; Abbruch wenn keine Diff.

 i+=1

 xi = xj

 xj = (xi + x / xi) / 2

 print(format(i,"5d"),' | ',format(xi,"3.15f"))

print(format(i+1,"5d"),' | ',format(xj,"3.15f"))

print("fertig")

 >>>

Aus welcher Zahl soll die Quadratwurzel berechnet werden?: 23

Interations-Startwert x0: 5

Iteration | Näherungswert

 1 | 5.000000000000000

 2 | 4.800000000000000

 3 | 4.795833333333333

 4 | 4.795831523313061

 5 | 4.795831523312719

 6 | 4.795831523312719

fertig

>>>

Die WHILE-Schleife wird also mindestens 1x betreten, weil ja der Zähler i zu Anfang 0 ist.
Später ist dann nur noch die zweite Bedingung entscheidend. Hier wird gepüft, ob der gera-
de berechnete Nachfolgewert (noch) ungleich dem Vorgängerwert ist. Solange wird weiter
interiert.
Aus weiser Voraussicht sollte man aber eine weitere Grenze einziehen. Das könnte die
Auswertung der Differenz der beiden Interartionswerte sein. Bei sehr geringem Abstand ist
die Berechnung vielleicht schon genau genug für unsere Zwecke. Eine andere Mölichkeit ist
es, die Anzahl der Interations-Runden zu beschränken. Wenn z.B. nach 1'000 Interationen
noch kein eindeutiges Ergebnis vorliegt, dann wird pro forma abgebrochen, damit der Rech-
ner u.U. nicht ewig rechnet. Die Abbruchzahl ist ein Erfahrungswert und sollte nicht zu nied-
rig angesetzt werden. Somit änder sich nur die Zeile mit dem WHILE:

…

while i == 0 or (i<1000 and xi != xj):

…

BK_SekI+II_Python_basic.docx - 127 - (c,p) 2015 - 2026 lsp: dre

Berechnung der n-ten Wurzel

Das obige Programm-Muster benutzen wir nun, um die n. Wurzel einer Zahl zu berechnen.

zugrundeliegende Formel: 𝑥𝑛+1 =
1

𝑛
 ((𝑛 − 1)𝑥𝑛 +

𝑎

𝑥𝑛
𝑛−1

)

n. Wurzel-Berechnung nach HERON (interativ)

x = eval(input("Aus welcher Zahl soll die n. Wurzel berechnet werden?: "))

n = eval(input("Potenz n der Wurzel: "))

xi = eval(input("Interations-Startwert bzw. Schätzwert x0: "))

print()

print("Iteration | Näherungswert")

print("----------+-------------------")

i = 0

xj = xi

while i == 0 or (i<1000 and xi != xj):

 i+=1

 xi = xj

 xj = ((n-1) * xi + x / (xi**(n-1))) / n

 print(format(i,"5d"),' | ',format(xi,"3.15f"))

print(format(i+1,"5d"),' | ',format(xj,"3.15f"))

print("fertig")

Bei anderen Interationen bricht man immer nach einer bestimmten Anzahl von Durchläufen
ab. Das wäre dann aber ein klassischer Fall für eine Zählschleife (→ 6.4.2.3. Zähl-Schleifen).
Die Berechnung vieler Fraktale basiert auf diesem Prinzip.

Eingabe-Kontrolle mittels Schleife

derzeit wohl noch nicht verständlich, aber ein gutes Mittel um z.B. Ganzzahl-Eingaben zu
erzwingen

wert = None # wert bekommt einen internen Wert, der für NICHTS steht

while not isinstance(wert, int): # wiederholt solange bis der eingegebene wert

 vom Typ int ist

 wert = input("Gib eine Zahl ein: ") # eigentliche Eingabe

 try # versuchsweise Durchführung der nächsten Zeilen

 wert = int(wert) # Umwandeln des Eingabe-Strings in eine Zahl

 except ValueError:

 print("Es sind nur Ziffern zugelassen!")

BK_SekI+II_Python_basic.docx - 128 - (c,p) 2015 - 2026 lsp: dre

Fehler-Analyse in Schleifen

Schleifen stellen häufig große Fehler-Quellen dar. Eine einfache Variante ist die Anzeige von
Werten vor und nach der Schleife.
Die zusätzlichen Anzeigen sollten unbedingt mit Kommentaren versehen werden, damit man
sie nachher wieder gezielt entfernen oder auskommentieren kann.

anz=0
sum=0
print("anz=",anz) #für Tests später auskommentieren # print("anz=" …

print("sum=",sum) #für Tests # print("sum=" …

while anz<3:
 sum=sum+anz
 anz=anz+1
print("anz=",anz) #für Tests
print("sum=",sum) #für Tests
anz=0

Vor allem die Vorgänge innerhalb der Schleifenkörper werden schnell zum MysteriWm. wel-
cher Wert wird da wirklich bei einem Durchlauf verrechnet?
Will man allerdings auch die Schleifen-Variablen verfolgen, dann bleibt einem nur die Anzei-
ge von Werten innerhalb der Schleife. Für Test-Zwecke kann man dann vielleicht die Anzahl
der Durchläufe künstlich herabsetzen. Wenn's mit den kleinen Zahlen läuft, dann kann man
sich auch an die größeren wagen und ev. nur noch spezielle Werte anzeigen (z.B. mit Be-
dingung).

anz=0
sum=0
while anz<3:
 sum=sum+anz
 anz=anz+1
 print("anz=",anz) #für Tests später auskommentieren
 print("sum=",sum) #für Tests
anz=0

Nicht jeder Algorithmus kann so ohne weiteres implementiert werden. Auch der Eingriff in
laufende Systeme ist nicht so ohnen weiteres möglich. Oft steht auch nur ein Struktogramm
od.ä. zur Verfügung. An diesem soll dann die Funktionsfähigkeit geprüft werden.
In vielen Fällen helfen Verfolgungs- bzw. Variablen-Protokolle beim Finden von Fehlern.
Wir gehen hier mal davon aus, dass uns der Algorithmus nur als Quell-Text vorliegt und wir
diesen offline prüfen müssen.

anz=0
sum=0
while anz<3:
 sum=sum+anz
 anz=anz+1
anz=0

BK_SekI+II_Python_basic.docx - 129 - (c,p) 2015 - 2026 lsp: dre

In einer ersten Version extrahieren wir die kritischen Befehle der Schleife und ordnen sie
horizonzal an.

Befehle while anz<3: sum=sum+anz anz=anz+1

Das bietet den Vorteil, dass eine Schleifen-Situation immer in einer Zeile dargestellt wird. Bei
vielen Befehlen innerhalb des Schleifenkörpers wird diese Darstellungs-Variante aber auch
schnell sehr breit und unübersicht.
Als nächstes analysieren wir die Eintritts-Bedingungen – also welche Werte vor der Schleife
vorliegen.

Befehle while anz<3: sum=sum+anz anz=anz+1

Eintritt sum=0 anz=0

Nun gehen wir Durchlauf für Durchlauf durch die Schleifen-Befehle. Beim ersten Durchlauf
erhalten wir:

Befehle while anz<3: sum=sum+anz anz=anz+1

Eintritt sum=0 anz=0

1. Durchlauf 0 < 3 sum=0 + 0 anz=0 + 1 Hilfe / Berechn.

true 0 1

Der obere Teil (also die Berechnung über der Strichel-Linie) ist vor allem für die ersten ver-
suche / Durchläufe als Hilfe zu empfehlen. Zuoft glaubt man etwas programmiert zu haben,
was aber gar nicht in den Befehlen ausgedrückt wird. Man kann die Ausdrücke ja auch nur
mit Bleistift schreiben, um so die wesentlichen Inhalte – also die Variablen-Werte – deutlicher
erkennen zu können.
Nach und nach ergänzt man nun die Zeilen für die nächsten Durchläufe:

Befehle while anz<3: sum=sum+anz anz=anz+1

Eintritt sum=0 anz=0

1. Durchlauf 0 < 3 sum=0 + 0 anz=0 + 1

true 0 1

2. 1 < 3 sum=0 + 1 anz=1 + 1

true 1 2

3. 2 < 3 sum=1 + 2 anz=2 + 1

true 3 3

4. 3 < 3

false

Beim 4. Durchlauf erhalten wir beim WHILE-Ausdruck ein false zurück. Damit wird die
Schleife nicht mehr ausgeführt und wir können die restliche Zeile streichen

4. 3 < 3

false

BK_SekI+II_Python_basic.docx - 130 - (c,p) 2015 - 2026 lsp: dre

Das gesamte Protokoll sieht dann für unser Beispiel so aus:

Befehle while anz<3: sum=sum+anz anz=anz+1

Eintritt sum=0 anz=0

1. Durchlauf 0 < 3 sum=0 + 0 anz=0 + 1

true 0 1

2. 1 < 3 sum=0 + 1 anz=1 + 1

true 1 2

3. 2 < 3 sum=1 + 2 anz=2 + 1

true 3 3

4. 3 < 3

false

Austritt sum=3 anz=3

Bei Schleifen mit vielen Befehlen kann man sich ev. auf die Befehle mit den interessierenden
Variablen beschränken. Aber Achtung, es müssen alle Befehle enthalten sein, die in irgend-
einer Form mit den zu beobachtenden Variablen zusammenhängen!
Als erste Vereinfachung kann man dann auf die Hilfen mit den Vergleichen und Berechnun-
gen verzichten.
Ist man dann etwas geübter in der Ana-
lyse von Schleifen-Variablen, dann bietet
sich ein weiter vereinfachtes Protokoll
an. Hierbei wird auf die einzelnen Be-
rechnungen usw. verzichtet und nur
noch die Variable und ihr Wert notiert.
Allerdings ist hier immer sehr gründlich
zu arbeiten.

 Durchlauf Bedingung sum anz

 vorher --- 0 0

 1 true 0 1

 2 true 1 2

 3 true 3 3

 4 false --- ---

 danach 3 3

Aufgaben:

1. Analysieren Sie zuerst die nachfolgende Schleife ohne Hilfsmittel! Welche

Werte erwarten Sie beim Schleifen-Austritt? Begründen Sie!

1 prod=0
2 sum=0
3 anz=0
4 offset=2
5 while anz<=5:
6 anz=anz+1
7 sum=sum+anz
8 prod=prod*anz+offset

2. Erstellen Sie sich ein Verfolgungs-Protokoll für alle Variablen!

3. Vergleichen Sie Ihre Erwartungs-Werte mit den Daten aus dem Protokoll!

Wenn Sie sich vertan haben, versuchen Sie zu ergründen, an welcher Stelle

Sie einen Denkfehler gemacht haben!

BK_SekI+II_Python_basic.docx - 131 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Verändern Sie das Programm zur Tabellen-Erzeugung für Quadrate und

Kubike so, dass statt 10 Zeilen nun 20 Zeilen ausgegeben werden!

2. Ändern Sie das Programm zur Tabellen-Erzeugung für Quadrate und Ku-

bike so, dass x nicht in 1er Schritten steigt, sondern immer in 4er Schritten!

3. Erstellen Sie ein Programm, dass neben den Doppelten und dem Vierfachen

auch die Hälfte in einer Tabelle mit 15 Zeilen zusammenstellt! Der format-

Text für Zahlen mit Kommastellen lautet z.B.: "10.3f" für 10 Ziffern-

Positionen (insgesamt) mit 3 Nachkommastellen

4. In einer 20-zeiligen Tabelle soll ein Programm zu a und seinen Nachfolgern

die Wurzel, die Sinus und Tangens-Werte ausgeben! Die Funktion für die

Wurzel-Berechnung heißt sqrt(), die für den Sinus sin() und die für den

Tangens tan(). Die Funktionen sqrt(), sin() und tan() werden durch die Zei-

le: from math import * als eine der ersten Zeilen im Programm bereitge-

stellt (Nutzung eines Moduls).

5. Erstellen Sie ein Programm, dass die große Mal-Folge für eine einzugebene

Zahl zwischen 1 und 20 – also z.B. für die 2: 11 x 2, 12 x 2, 13 x 2, …, 20

x 2 berechnet und zeilenweise als Gleichungen ausgibt!

6. Entwickeln Sie das Nimm-Spiel in Python für zwei menschliche Spieler:

Gegeben ist ein Menge Streichhölzer (z.B. 23). Beide Spieler nehmen ab-

wechselnd 1 bis 3 Hölzer weg. Derjenige, der den letzten Streichholz neh-

men muss, hat verloren.

7. Programmieren Sie das Nimm-Spiel für einen Spieler gegen den Computer!

Der Nutzer darf auswählen, wer beginnt. Überlegen Sie sich eine Strategie

(für den Computer-Spieler), wie man praktisch ab einer bestimmten Situati-

on nicht mehr verlieren kann!

8. Wandeln Sie das letzte Nimm-Spiel so ab, dass sowohl die Maximalzahl

entnehmbarer Hölzer als auch die Anfangszahl (mindestens 5 mal größer als

die Maximalentnahme) vom menschlichen Spieler gewählt werden kann!

für die gehobene Anspruchsebene:

9. Programmieren Sie das Spiel "Groker" für einen Spieler gegen den Compu-

ter (der Computer verfolgt die nachfolgende Taktik: (den Quellcode über-

nehmen Sie so oder mit geänderten Variablennamen in Ihr Programm))

BK_SekI+II_Python_basic.docx - 132 - (c,p) 2015 - 2026 lsp: dre

6.4.2.2. Sammlungs-bedingte Schleifen

ebenfalls Kopf-gesteuert
besondere Form in Python
Sammlungs-bedingte Schleifen beginnen mit dem Schlüsselwörtchen for, welches in ande-
ren Sprachen typischerweise für Zählschleifen verwendet wird. In Python ist hier einfach
mehr möglich!

wenige andere Programmiersprachen bieten ein ähnliches Konzept

Sammlungen können Aufzählungen und Listen sein. Den Bezug zwischen der Zähl-
Schleifen-Anweisung und der Aufzählung wird über das Schlüsselwörtchen in hergestellt.
Die Schleifen-Anweisung arbeitet dann eben alle Werte in der Sammlung ab.
Eine Aufzählung beinhaltet Werte in einem runden Klammer-Paar (), bei einer Liste sind die
Werte in eckige Klammer [] notiert. Die Werte selbst sind Komma-getrennt.
Die Unterschiede zwischen Aufzählungen (exakt: Tupel genannt) und Listen sind für uns hier
nicht relevant. Diese besprechen wir dann später.

Countdown

for wert in (10, 9, 8, 7, 6, 5, 4, 3, 2, 1):

 print(wert)

print("Start")

Warten auf Beenden

input()

>>>

10

9

8

7

6

5

4

3

2

1

Start

>>>

Auch hier brauchen wir eine Schleifen-Variable. Bei uns ist das dieses Mal wert. In dieser
Variable steckt die Kennung für den konkreten Schleifen-Durchlauf. Die Kennungen werden
nach und nach der Aufzählung entnommen und abgearbeitet.
Die Aufzählung kann auch in einer Variable gespeichert werden. Das mach Sinn, wenn man
diese öfter benötigt.

werte = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

Countdown

for wert in werte:

 print(wert)

print("Start")

Warten auf Beenden

input()

Man kann sogar bei der Variablen-Zuweisung auf die Klammern verzichten. Aber gerade bei
unübersichtlichen Sammlungen sollte man die Grenzen sauber abstecken.

BK_SekI+II_Python_basic.docx - 133 - (c,p) 2015 - 2026 lsp: dre

im Schleifen-Kopf kann auch auf eine Liste (Sammlung) zurückgegriffen werden, die Ele-
mente-weise abgearbeitet wird
Für unsere Zwecke hier reicht es zu wissen, dass Listen aus Komma-getrennten Elementen
in eckige Klammer bestehen. Eine Liste kann einer Variable zugeordnet werden. Weitere
Listen-Operationen erklären wir später (→ 8.2.3. Listen, die I. – einfache Listen, 9.7. Listen,
die II. – objektorientierte Listen).

Definition der Listen

faecherliste=["Biologie","Deutsch","Informatik","Mathematik","Sport"]

namensliste=["Arendt","Bauer","Meiser","Lehmann","Meyer","Schulz",

 "Wagner","Zander"]

zeilenweise Ausgabe der Namensliste

for name in namensliste:

 print(name)

Warten auf Beenden

input()

>>>

Arendt

Bauer

Meiser

Lehmann

Meyer

Schulz

Wagner

Zander

>>>

Aufgaben:

1. Ändern Sie das Programm so ab, dass die Fächer zeilenweise ausgegeben

werden!

2. Lassen Sie das Programm nun Fächer und Namen für sich jeweils zeilen-

weise ausgeben!

3. Überlegen Sie sich, wie Sie die Fächer in einer Zeile hintereinander ausge-

ben könnten!

Während Listen veränderlich sind, also z.B. geleert, erweitert oder Elemente daraus gelöscht
werden können, sind Tupel (Aufzählungen) unveränderlich. Man kann also ein Tupel als
konstante Liste verstehen.
Intern ist die Verarbeitung von Tupel etwas schneller, als die der Listen. Wenn man also fes-
te Aufzählungen hat, dann sollte man zu Tupel greifen. Für alle anderen Fälle sind Listen
immer die richtige Wahl. Mit Hilfe von Tupeln lassen sich auch gut Gruppen von Variablen
bzw. Werten programmieren. Ein schönes Beispiel ist die Berechnung neuer Punkt-
Koordinaten als x-y-Paar (→ (x, y) = ….).

BK_SekI+II_Python_basic.docx - 134 - (c,p) 2015 - 2026 lsp: dre

===

Programm zur Erstellung einer Schüler-

Fächer-Tabelle

Autor: Drews

Version: 0.1 (01.10.2015)

Freeware

======================================

Definition der Listen

faecherliste=["Biologie","Deutsch","Informatik","Mathematik","Sport"]

namensliste=["Arendt","Bauer","Meiser","Lehmann","Meyer","Schulz",

 "Wagner","Zander"]

Schleife zur Erzeugung eines Tabellen-Kopfes mit mehreren Fächern

und weiterer Hilfs-Texte

tabellenkopf_zeile="Name "

zeilen_linie="------------"

leerspalten=""

for fach in faecherliste:

 tabellenkopf_zeile=tabellenkopf_zeile+" | "+format(fach,"12s")

 zeilen_linie=zeilen_linie+"-+-------------"

 leerspalten=leerspalten+" | "

Ausgabe des Tabellenkopfes

print(tabellenkopf_zeile)

print(zeilen_linie)

Erzeugung und Ausgabe des Zeilen-Teils

for name in namensliste:

 print(format(name,"12s")+leerspalten)

Warten auf Beenden

input()

>>>

Name | Biologie | Deutsch | Informatik | Mathematik | Sport

-------------+--------------+--------------+--------------+--------------+-------------

Arendt | | | | |

Bauer | | | | |

Meiser | | | | |

Lehmann | | | | |

Meyer | | | | |

Schulz | | | | |

Wagner | | | | |

Zander | | | | |

Aufgaben:

1. Übernehmen Sie den oberen Quelltext in Ihr Python-System!

2. Drucken Sie sich den Text einmal aus und nummerieren Sie die Zeilen be-

ginnend bei 1 durch!

3. Kommentieren Sie Quelltext zeilenweise aus!

für die gehobene Anspruchsebene:

4. Eine Klasse soll in die richtige Zelle der Tabelle eingetragen werden! Dazu

liegen die Daten in der Form: eintrag=["Deutsch","Lehmann","10c"] vor.

für FREAK's:

5. Es liegt eine Liste von Einträgen für die Lehrer-Fach-Tabelle vor. Alle Ein-

träge sollen richtig eingeordnet werden!

eintraege=[["Deutsch","Lehmann","10c"] , ["Biologie","Meyer","7a"] , …]

BK_SekI+II_Python_basic.docx - 135 - (c,p) 2015 - 2026 lsp: dre

Hat man zwei Listen, dann kann man diese auch gemeinsam durchlaufen. Dazu gibt man als
Lauf-Variablen für jede Liste eine spezielle Variable Komma-getrennt an und die Listen wer-
den mit der zip()-Funktion miteinander verbunden.
Die Durchläufe orientieren sich an der kürzeren Liste.

Definition der Listen

faecherliste=["Biologie","Deutsch","Informatik","Mathematik","Sport"]

lehrerliste=["Arendt","Bauer","Meiser","Lehmann","Meyer"]

Schleife zur Erzeugung der Lehrer-Fächer-Paare

for fach,lehrer in zip(faecherliste,lehrerliste):

 print(format(lehrer,"12s"),format(fach,"12s"))

 >>>

Arendt Biologie

Bauer Deutsch

Meiser Informatik

Lehmann Mathematik

Meyer Sport

Aufgaben für die gehobene Anspruchsebene:

1. In die obige Fächer-Lehrer-Tabelle soll eine passende Klasse an die richtige

Stelle eingetragen werden! Die einzutragende Information liegt als kleine

Liste ["Deutsch", "Lehmann", "9a"] vor.

2. Erweitern Sie das Programm so, dass es mehrere Einträge auswerten und

an die richtige Position eintragen kann! Die Informationen liegen als Liste

von Listen vor! Z.B.:

 [["Deutsch", "Bauer", "10c"], ["Deutsch", " Wagner", "11b"], ["Biologie", "Meyer", "7b"]]

3. Erstellen Sie sich drei Listen für Hauptstädte, Länder und Einwohner (Rei-

henfolge beachten) für 10 Staaten!

a) Geben Sie eine Komma-getrennte Liste der Länder aus!

b) Zeigen Sie die Liste der Hauptstädte an!

c) Erstellen Sie eine Tabelle aus Hauptstädten, Ländern und Einwohnern!

d) Geben Sie für jedes zweite Land die Daten in Form eines Satzes aus!

4. Überlegen Sie sich, was das folgende Programm leistet! Geben Sie den

Code dann in Python ein und prüfen Sie, ob Sie mit Ihrer Vorüberlegung

recht hatten!

Definition der Aufzählung

zahlenliste= (4,6,7,9,13,102)

Verarbeitung der Aufzählung

for zahl in zahlenliste:

 print(zahl," --> ",zahl*zahl)

Warten auf Beenden

input()

BK_SekI+II_Python_basic.docx - 136 - (c,p) 2015 - 2026 lsp: dre

um sich z.B. alle Objekt-Namen aus einem Modul (einer Bibliothek) anzeigen zu lassen,
kann man die Funktion dir() benutzen

import math

for obj in dir(math):

 print(obj)

auch Zeichenketten sind iterierbar:

for buchstabe in zeichenkette:

 print(buchstabe)

mit Tupeln in einer abzuarbeitenden / Sammel-Liste kann man in der Schleife auch mit meh-
reren Iteratoren (Lauf-Variablen) arbeiten:

for a, b, c in [(2,5,9), (2,3,2), (1,5,9), (2,5,1), (3,7,9)]:

 print(a * b + c)

die Kombination von Schleifen und darin genutzten Funktionen lassen sich mit der map()-
Funktion zusammenfassen
das ergibt kompakten, aber schwer lesbaren Code
in der Praxis sind map-basierte Programme effektiver als die originalen / expandierten

orginal:
liste = ["abcdef","ghij","klmnopqrt","rstuvwxyz"]

elementLaenge = []

for element in liste:

 elementLaenge.append(len(element))

ergibt die Liste (elementLaenge): [6, 4, 9, 9]

komprimiert mit map():
elemenLaenge = list(map(len, liste))

map() erwartet die zu nutzende Funktion (nur den Namen!) und das zu nutzende Objekt
(Liste od.ä.)

das Gegenstück zu map() ist die filter()-Funktion
auch sie erwartet eine zu verwendende Funktion und eine Liste von zu nutzenden Objekten
hier muss die Funktion aber unbedingt einen Boolean-Wert zurückliefern, bzw. das Funkti-
ons-Ergebnis wird als bool betrachtet!

sollen vor map und filter keine Funktionen definierte werden (worden sein), dann kann man
kurze Berechnungen etc. über die anonyme Funktion lambda direkt in die map()- bzw.
filter()-Funktion notieren:
… list(map(lambda x: x = x+1, zahlenListe)

… list(filter(lambda x: x < 100, zahlenListe)

BK_SekI+II_Python_basic.docx - 137 - (c,p) 2015 - 2026 lsp: dre

ändert man (Sammlungs-)Listen od.ä. innerhalb der Schleife, dann ist zu beachten, dass
Python sich über einen internen Index durch die Liste hangelt, wenn ein Element der Liste
entfernt wird, merkt Python das nicht, es arbeitet mit dem nächsten Index-Element weiter
besser ist es, eine neue Ergebnis-Liste anzulegen und dort die Ergebnisse Element-weise
sammeln

BK_SekI+II_Python_basic.docx - 138 - (c,p) 2015 - 2026 lsp: dre

6.4.2.3. Zähl-Schleifen

Zähler-kontrollierte Schleife

von Programmier-Anfängern besonders gerne benutzte Struktur, da alles sehr gut unter Kon-
trolle erscheint
später werden dann die WHILE-Schleifen häufiger genutzt, da sie viel mehr Kontrolle und
Flexibilität bieten

for Zählvariable in range(…):

range(Grenze)
erzeugt eine Liste von Elementen von 0 bis Grenze; Grenze selbst ist nicht erhalten

zeilenweise Ausgabe des Schleifenzählers

for i in range(10):

 print(i)

Warten auf Beenden

input()

Die Verwendung solcher Schleifen-Variablen, wie i, j, k usw. usf.
haben sich unter Programmierern eingebürgert. Solange die Va-
riablen auch nur in der Schleife verwendet werden, ist das auch
ok. Braucht man die Werte für andere Zwecke – ev. auch weiter
hinter einer Schleife, dann sollte man sprechende Namen benut-
zen.
Die ungewöhnliche Zählung – beginnend bei 0 – ist in vielen Pro-
grammiersprachen üblich. Man gewöhnt sich schnell daran.
Um den echten Schleifen-Durchlauf zu erhalten reicht ein einfa-
ches i+1.

 >>>

0

1

2

3

4

5

6

7

8

9

>>>

range(Untergrenze,Obergrenze)
erzeugt eine Liste von Untergrenze bis Obergrenze; Obergrenze ist ebenfalls nicht mit im
Bereich!
die Liste wird dann quasi wie in einer Sammlungs-orientierte Schleife abgearbeitet, die zwi-
sche den Grenzen liegenden Werte, werden online erzeugt

Ruft man range() mit drei Argumenten auf, dann stehen diese für Untergrenze, Obergrenze
und Schrittweite.

range(Untergrenze,Obergrenze,Schrittweite)

mit den drei Parametern lassen sich auch absteigende Folgen erstellen:

range(Obergrenze, Untergrenze, neg_Schrittweite)

um Fließkommazahlen in eine Liste zu bekommen, benötigt man eine eigene Funktion; die
range()-Funktion liefert hier keine Lösung. Dazu mehr bei der Besprechung von Funktionen
(→ 6.5.2. echte Funktionen – Funktionen mit Rückgabewerten).

BK_SekI+II_Python_basic.docx - 139 - (c,p) 2015 - 2026 lsp: dre

wird die Laufvariable nicht innerhalb der Schleife gebraucht, dann kann man in Python auch
einen Unterstrich (_) quasi als imaginäre Laufvariable benutzen
ist Python-like aber nicht immer schön zu lesen

Aufgaben

1. Erzeugen Sie eine formatierte Tabelle mit x, dem Quadrat und dem Kubik

von x für 20 Zeilen – ausgehend von einem einzugebenen Startwert für x –

mittels Zählschleife!

2. Erstellen Sie einzelne (kleine) Programme, welche die nachfolgenden Mus-

ter in der Anzeige nur mittels Zählschleifen erzeugen!

a) *

**

…

b) *

*

**

*

**

…

c) *

*#

#

##

…

 bis 30 Sterne in der
letzten Reihe

 bis 10 Sterne in der
letzten Reihe

 bis 20 Zeichen in der
letzten Zeile

BK_SekI+II_Python_basic.docx - 140 - (c,p) 2015 - 2026 lsp: dre

6.4.2.4. besondere Kontrollstrukturen in Schleifen

Mit einer else-Anweisung nach dem Schleifen-Körper
zur Gruppierung einer Anweisungs-Folge, die direkt nach der Schleife abgearbeitet werden
soll, wird / kann mit break übersprungen werden
oft gar nicht notwendig, da hinter der Schleife die normalen folgenden Anweisungen folgen
quasi handelt es sich um eine Alternative, die unter bestimmten Bedingungen nach den
Schleifendurchlauf abgearbeitet werden sollen

Das Schlüsselwörtchen
continue zum Abbruch
der Anweisungs-Folge im
Schleifen-Körper und
(Rück-)Sprung zum
Schleifen-Kopf, um einen
neuen (nächsten, nächst-
folgenden) Schleifen-
durchlauf zu starten

break zum vollständigen
Abbruch der Schleife
einschließlich des ELSE-
Zweiges

Die besprochenen Kontrollstrukturen für Schleifen sollten sparsam und nur mit Bedacht be-
nutzt werden. Sie machen den Quellcode unübersichtlich und schwer verständlich.
Bewährte Schleifen-Konstrukte sollten nur angetastet werden, wenn sie ihre Funktion nicht
mehr erfüllen.
Quellcodes werden aber durch sie kompakter und u.U. effektíver

bei Verwendung der besonderen Schleifen-Abbrüche und Verbiegungen sollte man immer
gut kommentieren. Viele Programmierer sind saubere Kontrollstrukturen gewohnt und
schnell mit außergewöhnlichen Strukturen überfordert (weil ungewohnt).
Außerdem sollte man genau prüfen, mit welchen Werten die in den Schleifen benutzten Va-
riablen nach einer Schleifen-Veränderung herauskommen. Da gibt es schnell böse Überra-
schungen!

Will man z.B. eine Schleife unendlich oft durchlaufen lassen (z.B. Eingabe-Kontrollen, Tasta-
tur-Abfragen bei laufenden Programmen), dann braucht man meist doch irgendwo einen
Notausgang
mit break lässt sich das relativ einfach und verständlich realisieren
Nehmen wir eine bedingte Schleifee, die immer wahr ist. Von sich aus wird sie niemals en-
den.

BK_SekI+II_Python_basic.docx - 141 - (c,p) 2015 - 2026 lsp: dre

…

while True:

 # auszuführender Code

 …

 # Ende des auszuführenden Codes in der Schleife

hier kommt die Programm-Abarbeitung niemals!

…

D.h. hinter der Schleife kann beliebiger Code oder Unsinn folgen, dieser kann nicht erreicht
werden und wird also nie ausgeführt oder interpretiert.
Einen Austieg aus dieser Schleife kann man durch ein break erreichen. Dazu wird im Nor-
malfall irgendwo in der Schleife eine Bedingung (z.B. Tasten-Druck oder das Überschreiten
einer Grenze) abgetestet und im Falle des Eintretens mit einem break die Abarbeitung hinter
der Schleife fortgesetzt (dann datf da natürlich kein Unsinn mehr stehen!).

…

while True:

 # auszuführender Code

 …

 if bedingung:

 break

 …

 # Ende des auszuführenden Codes in der Schleife

restliches Programm (nach break)

…

Man kann natürlich mehrere breaks in die Schleife integrieren. Die Abarbeitung der restli-
chen Schleife wird immer sofort unterbrochen und hinter der Schleife forgesetzt.
Will man die Schleife ordnungsgemäß am Ende des Schleifen-Körpers verlassen dann kann
man den folgenden Code-Rahmen verwenden.

…

abbruch=False

while not abbruch:

 # auszuführender Code

 …

 if bedingung:

 abbruch=True

 …

 # Ende des auszuführenden Codes in der Schleife

restliches Programm

(nach vollständigem Durchlauf der Schleifenanweisungen)

…

BK_SekI+II_Python_basic.docx - 142 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen Sie ein Struktogramm für ein Programm, dass solange einzugebe-

ne Zahlen addiert bis ein 0 eingebenen wird!

2. Prüfen Sie das Struktogramm auf Korrektheit, indem Sie die folgenden Zah-

len "eingeben"! Legen Sie sich dazu eine Variablen-Tabelle an, die am Ende

jedes Schleifendurchlauf die Variablen-Belegung dokumentiert!

 12, 56, 2, 21, 76, 0, 41

3. Realisieren Sie das Programm entsprechend dem Struktogramm!

4. Prüfen Sie mit der obigen Test-Liste und Ihrer Variablen-Tabelle! (Sie

können zur Kontrolle am Ende der Schleife auch eine print-Anweisung ein-

bauen! Diese kann dann später auskommentiert werden!)

5. Erstellen Sie ein Programm, dass immer das Quadrat und die Wurzel zu

einer eingegeben Zahl ausgibt (Ausgabe in Satzform!)! Die Eingabe soll so-

lange wiederholt werden, bis eine Zahl eingegeben wird, die kleiner als 0

oder größer als 1000 ist!

6. Erstellen Sie ein Programm. dass die Summe der fortlaufenden Zahlen ab

einer einzugebenen Zahl berechnet und damit abbricht, wenn das 100fache

der eingegebenen Zahl erreicht wird. Wie lautet die letzte aufaddierte Zahl,

ohne dass die Grenze überschritten wurde?

BK_SekI+II_Python_basic.docx - 143 - (c,p) 2015 - 2026 lsp: dre

6.4.2.5. Und was ist mit nachprüfenden / Fuß-gesteuerten Schleifen?

Für Eingabe-Kontrollen möchte man als Programmierer
gerne Fuß-gesteuerte Schleifen nutzen. Sie müssen
mindestens einmal durchlaufen werden und dürfen nur
verlassen werden, wenn am Ende die Prüfung der Ein-
gabe überstanden wurde.
In Python gibt es keine expliziten Fuß-gesteuerten
Schleifen-Konstrukte.

Struktogramm: Fuß-
gesteuerte Schleife

Das wird von vielen Programmiern als Nachteil empfunden. Ändern können wir es aber nicht,
also passen wir uns durch kleine Tricksereien einfach an.
Der nachfolgende Quell-Text zeigt eine Möglichkeit, eine nachlaufende Prüfung zu realisie-
ren.

…

pseudo-nachprüfende Schleife

while 1: # oder: True

 Schleifeninhalt

 # quasi nachlaufende Prüfung

 if Bedingung: break

…

Dieses Prinzip kann man beliebig abwandeln. Es bleiben natürlich Kopf-gesteuerte Schlei-
fen, aber gefühlt sind es annehmbare Kompromisse.

Aufgaben:

1. Erstellen Sie ein Programm, dass mit einer nachgebildeten Fuß-gesteuerten

Schleife die Eingabe testet! Die Eingabe darf nur verlassen werden, wenn

ein Großbuchstabe zwischen K und (einschließlich) R eingegeben wurde!

Zur Kontrolle soll die Eingabe am Schluss des Programm noch einmal aus-

gegeben werden.

BK_SekI+II_Python_basic.docx - 144 - (c,p) 2015 - 2026 lsp: dre

diverse Aufgaben zum Thema "Schleifen":

x.

x. Erstellen Sie ein Programm, dass die Anzahl der echten Teiler einer natürli-

chen Zahl ausgibt!

x. Eine eingegeben Ziffernfolge (liegt im üblichen Format der INPUT-

Funktion als Text vor) soll auf die Stellenzahl geprüft werden! Führende

Nullen sind vorher zu entfernen!

x. Geben Sie für alle natürlichen Zahlen zwischen 1 und 50 die Anzahl der

echten Teiler aus! (OEIS → A000005)

x. Gesucht ist die Zahl - beginnend mit 1 und endend mit 200 - mit den meis-

ten Teilern! Wieviele Teiler sind es?

x. Erstellen Sie auf einem kariertem Blatt Papier aus den vorgegebenen Code-

Schnipseln ein Programm, welches die fortlaufende Summe aus einzugebe-

nen Werten (Ganzzahlen) berechnet und anzeigt! Die Eingabe und Sum-

men-Bildung soll mit der Eingabe einer Null beendet werden!

(Vereinbarung: Auf dem kariertem Papier erfolgt eine notwendige Einrü-

ckung mit mindestens zwei Kästchen!)

eingabe = -1 print("Berechnung der fortlaufenden Summe von Ganzzahlen")

print("aktuelle Summe:",summe) eingabe = int(eingabe) print()

print() summe = 0 print("Abbruch mit Eingabe von 0")

summe = summe + eingabe eingabe = input("neuer Wert: ")

while not eingabe == 0: input("Programm-Ende bestätigen")

x. Erstellen Sie ein Programm, dass die monatliche Abzahlung eines Kredites

darstellt! Einzugeben sind Darlehens-Betrag (Kredit-Betrag), (monatlichen)

Kreditzins und die monatliche Rate. Stellen Sie quasi tabellarisch die Num-

mer der monatlichen Zahlung, den gezahlten Betrag (Tilgung) und den Rest-

Kredit dar!

x. Ein sehr großen Kulturgefäß mit Nährmedium wird am Anfang des Arbeits-

tages (08:00 Uhr) mit einem Bakterium beimpft. Bakterien teilen sich durch-

schnittlich alle 20 min. Wieviele Bakterien könnte die Laborantin nach 8

Stunden (16:00 Uhr) im Kulturgefäß vorfinden? Schätzen Sie vorher die

Zahl und schreiben Sie diese an die Tafel!

x. Auf dem Bildschirm sollen für eine einzugebene Zahl zwischen 3 und 12

nacheinander die folgenden Muster erzeugt werden! (hier z.B. für 3:)

 #

 # #

x. Auf dem Bildschirm sollen für eine einzugebene Zahl zwischen 3 und 12

nacheinander die folgenden Muster erzeugt werden! (hier z.B. für 3:)

 A

 A A

A A A

|\

--

|\|\

|\|\|\

1

2 1

3 2 1

x. Die DNA besteht aus 4 Nukleotiden Adenosin (A), Cytosin (C), Guanin (G)

und Thymin (T). Für eine Aminosäure eines zu bildenden Eiweißes werden

immer 3 Nukleotid (Triplett) benutzt. Lassen Sie ein Programm alle mögli-

chen Triplett-Kombinationen anzeigen und durchzählen!

BK_SekI+II_Python_basic.docx - 145 - (c,p) 2015 - 2026 lsp: dre

(Frage nebenbei: Wie viele Aminosäuren könnten damit codiert werden?)

Zusatz:

Zu welchem Ergebnis würde man kommen, wenn statt dem Triplett eine 4er

Kombination (Quartett) benutzt würde?

x.

für die gehobene Anspruchsebene:

x. Erstellen Sie auf einem kariertem Blatt Papier aus den geeigneten Code-

Schnipseln ein Programm, welches das fortlaufende Produkt aus einzugebe-

nen Werten (Ganzzahlen) berechnet und anzeigt! Die Eingabe und Produkt-

Bildung soll mit der Eingabe einer Null beendet werden!

(Vereinbarung: Auf dem kariertem Papier erfolgt eine notwendige Einrü-

ckung mit mindestens zwei Kästchen!)

eingabe = -1 print("Berechnung des fortlaufenden Produktes von Ganzzahlen")

print("aktuelles Produkt:",summe) print("Abbruch mit Eingabe von 0") print()

if produkt != 0: while produkt > 0: eingabe = input("neuer Wert: ")

produkt = produkt + eingabe if eingabe != 0: eingabe = int(eingabe)

produkt = eingabe * produkt eingabe = int(input("neuer Wert: "))

print("aktuelle Summe:",produkt) input("Programm-Ende bestätigen") print()

while not eingabe == 0: print("aktuelles Produkt:",produkt) summe = 0

produkt = eingabe + 2 eingabe = ganzzahl(Eingabe) Produkt = 1

x. Erstellen Sie ein Programm, dass für einen einzugebenen Zahlen-Bereich

(hier z.B.: 8 bis 14) den folgenden Histogramm-ähnlichen Ausdruck er-

zeugt!

(hinter der Zahl in senkrechten Strichen

ein Stern, wenn es sich um eine Prim-

zahl handelt; jede Raute steht für einen

Teiler, ein Punkt für Nicht-Teiler; der

Stern in Klammern hinter dem Histo-

gramm zeigt an, ob die Teileranzahl

selbst eine Primzahl ist)

 8 | |##.#...#

 9 | |#.#.....#(*)

 10 | |##..#....#

 11 | * |#.........#(*)

 12 | |####.#.....#

 13 | * |#...........#(*)

 14 | |##....#......#

fertig

x. Aus der einzugebenen Höhe der Pyra-

miden (hier z.B.: 5) und einer Buchsta-

bennummer innerhalb des Alphabet's

(hier: 20 ; nicht höher als 26 zugelas-

sen!) sollen die folgenden 3 Zeichen-

Pyramiden erstellt werden!

(in der letzten Pyramide gilt: für Buch-

staben mit ungerader Nummer werden

immer die gezählt ungeraden Zeichen

ausgegeben (also für C (Buchstabe 3)

die 1. und 3. Position), für die geraden

Buchstabennummern immer die gezählt

geraden Positionen (also für D die 2.

und 4.))

T

TT

TTT

TTTT

TTTTT

A

B B

C C C

D D D D

E E E E E

A

 B

C C

 D D

E E E

fertig

x. Erstellen Sie ein Programm, dass für einen Satz / eine Text-Zeile prüft, ob

es sich um ein echtes oder ein einfaches Pangramm handelt! (Echte

Pangramme müssen alle Zeichen des Alphabet's genau einmal enthalten.

BK_SekI+II_Python_basic.docx - 146 - (c,p) 2015 - 2026 lsp: dre

Gemeint sind hier die Buchstaben. Satz-Zeichen werden ignoriert! Einfache

Pangramme müssen nur jeden Buchstaben mindestens einmal enthalten.)

 Test: "Fix, Schwyz!", quäckt Jürgen blöd vom Paß. → ist echtes u. einf. Pangramm
 Prall vom Whisky flog Quax den Jet zu Bruch. → ist einfaches Pangramm

x. Stellen Sie ein Struktogramm oder Linien-Diagramm für einen Algorithmus

auf, der prüft, ob eine Zeichenkette ein Isogramm ist! Dabei müssen die

verwendeten Zeichen immer gleichoft vorkommen!

 Test: Otto → Isogramm; ernst → Isogramm; Heizölrückstoßabdämpfung → Isogr.
 Anne → kein Isogramm; Stamm → kein Isogramm

für absolute Freak's:

x. Informieren Sie sich, was ein "selbstdokumentierendes Pangramm" ist! Rea-

lisieren Sie ein Programm, dass den Sachverhalt an einem String testet!

BK_SekI+II_Python_basic.docx - 147 - (c,p) 2015 - 2026 lsp: dre

6.4.2.6. Anwendungs-Beispiel: lineare Regression

In der experimentielle Forschung werden wir
immer wieder mit Datensätzen konfrontiert,
für die auf den ersten Blick nicht klar ist, ob
zwischen zwei größen ein Zusammenhang
existiert. Gerade bei wenigen Daten struen
die Messwerte doch sehr häufig.

Mit der sogenannten Regression kann geprüft werden, ob es einen Zusammenhang gibt
oder eben nicht.
Der einfachste Fall ist die lineare Regression. Hierbei wird getestet ob zwischen zwei größen
ein linearer Zusammenhang existiert. Dabei nutzt man die Methode der kleinsten fehler-
Quadrate. In dieser wird die Gerade so berechnet, dass die Abweichungen – exakt deren
Quadrate – möglichst klein sind.

Für eine lineare Funktion vom allgemeine Typ y = m x + n ergibt sich für:

 𝑚 =
𝑗 ∙ ∑(𝑥 ∙ 𝑦) − ∑ 𝑥 ∙ ∑ 𝑦

𝑗 ∙ ∑ 𝑥2 − (∑ 𝑥)2

und für:

 𝑛 =
∑ 𝑦 − 𝑚 ∙ ∑ 𝑥

𝑗

wobei j die Anzahl der Daten-Paare ist.
Beim Analysieren der beiden Formeln fällt auf, dass mehrere Summen gebraucht werden.
Diese können entweder beim Durchlaufen der Daten-Liste oder eines Array's gebildet wer-
den. Aber auch wenn man die Daten quasi online eingeben will / muss, lassen sich die
Summen gut bilden. Am Ende werden diese dann zu m und n verrechnet.

Beispiel für Daten in zwei Listen

x_werte = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

#Ziel: 4x+3

y_werte =[2.9, 7.2, 10.9, 15.3, 18.6, 23.0, 27.4]

#Ziel: x^2 (Quadrate)

#y_werte = [0.0, 1.1, 1.9, 8.9, 16.2, 25.0, 36.3]

j = len(x_werte) # WertePaar-Zähler

if len(y_werte)!=j:

 print("Fehler: ungleiche Anzahl x- und y-Werte")

else:

 sum_x = 0

 sum_y = 0

 sum_xy = 0

 sum_x2 = 0

 for i in range(j):

 sum_x += x_werte[i]

 sum_y += y_werte[i]

 sum_xy += x_werte[i]*y_werte[i]

 sum_x2 += x_werte[i]*x_werte[i]

 print("Summe X:",sum_x," Summe Y:",sum_y," Summe X*Y:",sum_xy,

 " Summe X*X:",sum_x2)

 m = (j*sum_xy-sum_x*sum_y)/(j*sum_x2-sum_x*sum_x)

 n = (sum_y - m*sum_x)/j

 print("Anstieg m:",m," Schnitt der Abszisse n:",n)

BK_SekI+II_Python_basic.docx - 148 - (c,p) 2015 - 2026 lsp: dre

Wir bekommen so eine Gerade. Ob diese aber einen echten Zusammenhang darstellt oder
einfach nur blind berechnet ist, kann mittels Korrelations-Koeffizienten r berechnet werden.

 𝑟 =
∑(𝑥 − 𝑥̅) ∙ ∑(𝑦 − 𝑦̅)

√∑(𝑥 − 𝑥̅)2 ∙ ∑(𝑦 − 𝑦̅)2

Somit erweitern wir den Else-Zweig:

 mx = sum_x/j

 my = sum_y/j

 sum_dx = 0

 sum_dy = 0

 sum_dxy = 0

 for i in range(j):

 sum_dx += x_werte[i]-mx

 sum_dy += y_werte[i]-my

 sum_dxy += (x_werte[i]-mx)*(y_werte[i]-my)

 print("Summe Abweichungen X:",sum_dx," Summe Abw. Y:",sum_dy,

 " Summe Produkt Abw. XY:",sum_dxy)

 r = (sum_dx*sum_dy)/math.sqrt(sum_dx*sum_dx*sum_dy*sum_dy)

BK_SekI+II_Python_basic.docx - 149 - (c,p) 2015 - 2026 lsp: dre

6.5. Unterprogramme, Funktionen usw. usf.

normaler Programm-Aufbau
Anweisungen bzw. Blöcke praktisch immer in einer
mehr oder weniger langen Sequenz
die elementaren Blöcke dürfen dabei ohne weiteres
Schleifen oder Verzweigungen sein

letztendlich kommt man immer wieder auf die Grund-
Sequenz zurück

manche Sequenz-Abschnitte wiederholen sich. Das
ist schon mit einem erhöhten Aufwand verbunden.
Entweder die Abschnitte werden noch mal geschrie-
ben oder einfach kopiert.

Beim wiederholten Schreiben können – neue / weitere
– Fehler auftreten. Beim Kopieren kann man ev. ver-
gessen, das Variablen wieder neu gestartet werden
müssen oder – weil sie noch woanders benutzt wer-
den – sie einer Umbenennung bedürfen.
Problematisch ist es auch, wenn sie die Abschnitte
als Fehler-behaftet herausstellen. Dann muss man
ev. sehr komplexe Änderungen an mehreren Stellen
im Programm vornehmen. Das geht meist schief. Ir-
gendwas wird vergessen oder Fehler-behaftet verän-
dert.
Das Finden eines Fehlers gestaltet sich aber relativ
einfach, da man die betreffende Stelle gut identifizie-
ren kann.

Günstiger wäre / ist es, jeden Programm-Teil nur
einmal zu schreiben. Braucht man dann den speziel-
len Sequenz-Teil, ruft man ihn auf und kehrt danach
wieder zur Haupt-Sequenz zurück.
Solche Teil-Sequenzen werden Unter-Programme,
Prozeduren und / oder Funktionen genannt. Einige
Programmiersprachen unterschieden noch etwas
genauer zwischen den verschiedenen Arten. Das ist
für uns in Python nicht relevant. Hier gibt es nur Funk-
tionen.
Funktionen (Neben-Sequenzen) werden vor dem ei-
gentlichen Haupt-Programm (meist Main genannt)
festgelegt.

BK_SekI+II_Python_basic.docx - 150 - (c,p) 2015 - 2026 lsp: dre

Beim Abarbeiten des Programms wird dieser Teil
zuerst einmal übersprungen.
Das Interpretieren beginnt bei der Haupt-
Sequenz.Trifft der Interpreter auf einen Unterpro-
gramm-Aufruf, so sucht er dessen Definition und
führt die enthaltenen Anweisungen aus.

Danach wird mit der nächsten Anweisung im Haupt-
Programm fortgesetzt..

Praktisch hat der Interpreter nur einen Umweg ge-
macht. Sprünge in einem Programm brauchen sehr
wenig Rechenzeit.
Auf dem Rücksprung (in Abb. purpur) können aus
dem Unter-Programm noch sogenannte Rückgabe-
Werte mitgegeben werden. Das kann man sich als
Ergebnis der Funktion (des Unter-Programm's) vorstellen.
Beim nächsten Unterprogramm-Aufruf passiert das
Gleiche wieder. Das Unter-Programm wird ange-
sprungen und abgearbeitet. Dannach wird wieder
hinter dem Unter-Programm-Aufruf fortgesetzt.

Denkt man sich alle Teile so, wie sie abgearbeitet
wurden direkt hintereinander, dann ergibt sich die
gleiche Sequenz, wie bei einer Unter-Programm-
freien Sequenz (Abb. rechts).
Vergleichbare Programme mit oder ohne Unter-
Programme (mit gleicher Leistung) sind also äquivalent.

BK_SekI+II_Python_basic.docx - 151 - (c,p) 2015 - 2026 lsp: dre

6.5.1. Allgemeines zu Funktionen in Python

Funktionen in Python bestehen immer aus einem Namen und einem direkt folgendem run-
dem Klammer-Paar (()). Der Name muss eindeutig sein und folgt den Regeln der Benun-
nung von Variablen (→). Namen von eingebauten Funktionen dürfen nicht verwendet wer-
den. Eingebaute Funktionen können nicht ersetzt oder wie Programmierer gerne sagen
überschrieben werden.
Jede Funktion muss vor dem ersten Benutzen definiert werden. Dazu benutzt man das
Schlüsselwort def. Die Definition kann im selben Quell-Text erfolgen oder als Import durch
eine Bibliothek (→).
Der Anweisungs-Teil wird hinter einem Doppelpunkt (:) eingerückt notiert. Die Funktion ist
beendet, wenn die Einrückung wieder aufgehoben wird.
I.A. wird empfohlen Funktionen relativ klein zu gestalten. Eine Seite Quell-Text sollte nicht
überschritten werden. Komplexe Funktionen dürfen natürlich auch länger sein. Meist kann
man aber wieder kleinere Funktionen auslagern.

Vorteile von Funktionen

• verbesserte Struktur des Programm's

• Vermeidung von Code-Dopplungen

• Erleichterung der Code-Pflege und
Fehler-Bereinigung

• einfache Wiederverwendbarkeit

• erleichtertes Verständnis des Quell-
Textes

•

•

•

•

Funktionen gehören zur Klasse function

Der Gültigkeits-Bereich (Scoping) von Variablen ist abhängig von ihrer Erst-Deklaration (ers-
te Wert-Belegung).
In einer Funktion angelegte Variablen gelten nur innerhalb der Funktion. Die lokales Anlage
hat Vorrang vor einer globalen Anlage. Ihre Instanz wird nach dem Verlassen der Funktion
automatisch gelöscht. Man kann auch später nicht mehr auf deren Wert zugreifen.
Globale – also außerhalb der Funktion definierter – Variablen gelten auch innerhalb. Es dür-
fen aber keine Funktions-interne Neudefinitionen vorhanden sein.
Werden einer Funktion bei den Parametern eine Variable übergeben, dann wird deren Wert
der Parameter-Variablen zugeordnet. Die Parameter-Variable kann bedenkenlos benutzt
werden.
Die Argument-Variable (äußere bzw. globale Variable) sollte innerhalb der Funktion nicht
verändert werden!

BK_SekI+II_Python_basic.docx - 152 - (c,p) 2015 - 2026 lsp: dre

Im Zweifelsfall sollte man sich die Werte vor, innerhalb und nach dem Funktions-Aufruf auch
mal anzeigen lassen. Die Anzeigen können dann später auskommentiert werden.

BK_SekI+II_Python_basic.docx - 153 - (c,p) 2015 - 2026 lsp: dre

6.5.2. Funktionen ohne Rückgabewerte

in anderen Programmiersprachen Prozeduren oder Unterprogramme genannt.
Im Wesentlichen geht es um das Einsparen des Eintippens von Quelltexten. Will man 10x an
verschiedenen Stellen in einem Programm genau das Gleiche machen, dann müsste man
den Quelltext dafür eben 10x an die passende Stelle schreiben oder bestenfalls kopieren. Ist
im Code ein Fehler, muss man alle 10 Stellen wiederfinden und den Quelltext einzeln korri-
gieren. Da sind Fehler vorprogrammiert.
In den meisten Programmiersprachen werden häufig gebrauchte Programm-Abschnitte an
einer bestimmte Stelle ausgelagert. Meist ist dies sehr weit vorne im Quell-Text oder in sepa-
raten Dateien (Units, Module, Bibliotheken …). Die Funktionen oder Verweise auf andere
müssen vor ihrem Aufruf notiert sein. Der Interpreter muss ja schließlich wissen, was er ma-
chen soll. Die Funktionen brauchen unbedingt Namen, unter denen man dann später die
ausgelagerten Programm-Abschnitte aufrufen kann.
Im Allgemeinen wird man in den Rückgabe-freien Funktionen irgendwo eine Ausgabe pro-
grammieren müssen. Damit werden Funktionen aber nur noch eingeschränkt nutzbar. Nicht
immer ist auch eine sofortige Ausgabe gewünscht. Viel besser ist es, den berechneten Wert
an das aufrufende Programm zurückzugeben (→ 6.5.3. echte Funktionen – Funktionen mit
Rückgabewerten). Soll sich das doch um die Ausgabe kümmern.

entsprechen den Prozeduren oder Unter-Programmen anderer Programmiersprachen
Programmteile, die an mehreren Stellen im Programm gebraucht werden, sind in einem extra
Abschnitt definiert

Hier steht die Ersetzungs-Funktion im Vordergrund. Der Funktions-Aufruf ist ein Bezeichner
für einen Programm-Abschnitt (Unter-Sequenz), die mehrfach in einem Programm gebraucht
wird oder eine komplexere Aufgabe erfüllt. Solche komplexeren Aufgaben hat man vielleicht
schon mal in einem anderen Programm zusammengestellt und getestet. Nun kopiert man sie
einfach in das neue Programm – entweder direkt (wenn nur 1x gebraucht) oder als Unter-
Programm für den mehrfachen Gebrauch.

bei Fehlern, Änderungen, Anpassungen usw. ist nur die Korrektur an einer Stelle notwendig

Es gibt auch Argument-freie Funktionen.
Für ihre Ausführung sind keine weiteren
Informationen aus dem aufrufenden
Programm notwendig. In Python kenn-
zeichnet man solche Funktionen durch
ein leeres Klammer-Paar.

 >>> def trennzeile():

 print("------------------")

>>> for i in range(5):

 print(i)

 trennzeile()

0

1

2

3

4

>>>

BK_SekI+II_Python_basic.docx - 154 - (c,p) 2015 - 2026 lsp: dre

die Einhaltung der Anzahl Argumente ist für die Programmierung wichtig, da hier der Über-
setzer (Compiler bzw. Interpreter) sofort auf Übereinstimmung prüft
Nichtübereinstimmung – auch bei der Art der übergebenen Daten (Datentypen) wird sofort
als Syntax-Fehler gekennzeichnet.

Aufgaben:

1. Erstellen Sie ein Tabellen-Programm für die Berechnung des großen En-

Mal-Eins! Der Nutzer soll eine Anfangszahl (1. Faktor) und einen Multipli-

kator (2. Faktor zwischen 11 und 20) angeben. Die Tabelle soll nach jedem

Wert einen Zwischen-Linie enthalten, die über eine passende Funktion er-

zeugt wird!

2. Ein Programm soll 5 Zahlen multiplizieren! Die Zahlen sollen immer nach-

einander eingegeben werden und grundsätzlich zwischen 0 und 100 liegen.

Eine nachfolgende Eingabe soll immer mindestens so groß sein, wie die

letzte Eingabe! Die Ausgabe eines oder mehrerer Fehler-Texte soll über ei-

ne oder mehrere Funktionen erfolgen!

3. Erstellen Sie ein Programm, dass nur aus drei Funktionen besteht! Diese

sollen Kopf(), Koerper() und Fuss() heißen! Kopf() und Fuss() enthalten nur

allgmeine Text-Ausgaben, wie den Programm-Titel und eine kurze Pro-

gramm-Beschreibung bzw. eine Ende-Hinweis. Das eigentliche Programm

soll in Koerper() stecken und dort den Durchnitt aus einzugebenen Noten

berechnen! Eingabe-Ende ist eine Null. Bei Noten-Eingaben größer 6 bzw.

8 (für die Gesamtschule) soll ein Fehler-Text erscheinen!

4. Erstellen Sie ein Programm, dass die Punkt-Wertungen der Oberstufe ver-

arbeiten kann! Legen Sie den Abbruch-Wert für die Eingabe selbstständig

fest!

BK_SekI+II_Python_basic.docx - 155 - (c,p) 2015 - 2026 lsp: dre

6.5.3. echte Funktionen – Funktionen mit Rückgabewerten

klassische Interpretation des Begriff
nehmen wir sin x

die Sinus-Funktion benutzt das Argu-
ment x (Funktionsargument, x-Wert) zur
Berechnung des resultierenden Funkti-
onswertes (y-Wert, abhängige Größe).
Dieser kann dann anstelle des Funkti-
ons-Ausdrucks eingesetzt werden.

 >>>

3.0

3.5

>>>

In Python – und den meisten Programmiersprachen ist es notwendig, den oder die Parame-
ter in Klammern hinter dem Funktionsnamen aufzuzählen.

die Variablen, die in der Funktions-Definition angegeben werden, heißen Parameter
die Werte, die beim Aufruf der Funktion mitgegeben werden, heißen Argumente
in den normalen Fällen muss die Anzahl der Argumente beim Aufruf, genausogroß sein, wie
die Anzahl der Parameter bei der Definition der Funktion

klassische Form der Funktion – sie liefert (mindestens) einen Funktionswert zurück

…

Quadrat-Funktion

def quadrat(parameter):

 return argument**2

…

…

Quadrat-Funktion

def quadrat(arameter):

 quadratzahl = argument * argument

return quadratzahl

…

Im Abschnitt zu den Zählschleifen (→ 6.4.2.3. Zähl-Schleifen) habe ich darauf hingewiesen,
dass es leider nicht möglich ist, sich mit der Funktion range() eine Liste mit Gleitkommazah-
len zu erstellen. Hier definieren wir uns nun eine Hilfsfunktion floatrange(), die genau das
kann:

…

range-Funktion für Gleitkommazahlen

def floatrange(start, ende, schrittweite=1.0):

 floatliste=[]

 neuer_wert=float(start)

 while neuer_wert < ende:

 floatliste.append(neuer_wert) # anhängen des letzten Wertes,

 # der durch die Bedingung kommt

 # nächsten (ev. möglichen) neuen Wert erstellen

 neuer_wert=neuer_wert+schrittweite

 return floatliste

…

BK_SekI+II_Python_basic.docx - 156 - (c,p) 2015 - 2026 lsp: dre

…

Typ-unabhängige Additions-Funktion

def summe(parameter1, parameter2):

 return parameter1 + parameter2

…

die mystery-Funktion:

def mystery(x):

 f = [0,4,0,3,2]

 while x > 0:

 x = f[x]

 # print(x,end=' ')

 # print()

 return "fertig"

 >>>

Mit welchem Argument(-Wert) endet diese Funktion nie?
Es ist die 3 – probieren Sie es aus!

Aufgaben:

1. Wie könnte man die mystery-Funktion so absichern, dass sie auch bei Ar-

gumenten über 4 noch ordnungsgemäß startet? Welche Werte führen dann

zu unendliche Schleifen-Arbeit?

2. Erstellen Sie ein Rahmen-Programm, dass die mystery-Funktion für einen

einzugebenen Werte-Bereich prüft!

def funktions_name(Parameter(-Liste)):
 # Funktions-Inhalt
 return Rückgabe-Wert

ergebnis_variable = funktions_name(Argument(-Liste))

6.5.4. Funktionen mit Standard-Werten als Parameter

hinter dem Parameter in der Funktions-
Deklaration wird mit einem Zuweisungs-
Zeichen der Standard-Wert angegeben

dieser wird verwendet, wenn keine An-
gabe für den Parameter getätigt wird
wird dagegen ein Wert angegeben, dann
überschreibt er den Standard-Wert

 def ausgabe(x = 'ok'):

 print("Ergebnis ist ",x)

Main

ausgabe()

ausgabe("fehlerhaft")

BK_SekI+II_Python_basic.docx - 157 - (c,p) 2015 - 2026 lsp: dre

6.5.5. Funktionen mit einer variablen Anzahl von Parametern

z.B. print()
funktioniert ohne, mit einem und auch vielen Argumenten

def funktionsname(ArgumentZaehler=anzahl, *variableArgumente): …

Funktionen können auch Listen oder Tupel usw. zurückgeben

import math

def loeseQuadratGleichungPQ(p,q):

 hilf = math.sqrt(p**2/4 – q)

 nullstellen = (-p/2 + hilf, -p/2 – hilf)

 return nullstellen

6.5.6. Funktionen mit Funktionen als Parameter

 def ausgabe(x):

 print("x = ",x)

def tue(fkt):

 fkt(17)

Main

tue(ausgabe)

 >>>
x = 17

>>>

z.B. bei Maus-Eingaben gebraucht (→ 8.8.10.2. Maus-Eingaben)

Aufgaben:

1.

2. Erstellen Sie ein Programm, dass eine Begrüßung für den Nutzer ausgibt!

Der Name der Nutzers soll vorher eingeben werden und der Funktion, die

willkommen() heißen soll, übergeben werden.

3.

BK_SekI+II_Python_basic.docx - 158 - (c,p) 2015 - 2026 lsp: dre

6.5.7. Generator-Funktionen – Funktionswerte schrittweise

Manchmal braucht man keine Liste von Werten eines Bereiches (→ range()-Funktion), son-
dern die Werte sollen immer Schritt-weise zurückgeliefert werden – quasi immer bei jedem
Aufruf der nächste gültige Wert. Dazu gibt es Python die Möglichkeit sogenannte Generator-
Funktionen zu definieren. Die dazu benötigten Schlüsselwörter von Python hießen yield und
next.

…

range-Generator-Funktion für Gleitkommazahlen

def generatorfloatrange(start, ende, schrittweite=1.0):

 neuer_wert=float(start)

 while neuer_wert < ende:

 yield neuer_wert # zurückliefern des Wertes (quasi: return)

 # nächsten (ev. möglichen) neuen Wert erstellen

 neuer_wert=neuer_wert+schrittweite

 # hier kein return!!!

…

Das Benutzen der Generatorfunktion erfolgt in zwei Abschnitten. Zuerst muss er Generator
zugeordnet werden. Dazu wird eine Laufvariable mit der Funktion gleichgesetzt. Das ent-
spricht im Prinzip einer Bekanntmachung. Erst wenn jetzt mit next() ein Wert abgerufen wird,
erzeugt die Generator-Funktion den ersten Funktionswert. Bei jedem weiteren next()-Aufruf
bekommt man den nächstfolgenden Wert zurückgegeben.

…

aktwert=generatorfloatrange(3.0,4.5,0.5)

print(next(aktwert))

print(next(aktwert))

 >>>

3.0

3.5

>>>

Ein Problem tritt auf, wenn man einen Wert "zuviel" abruft. Hier kommt es zu einem Laufzeit-
fehler, der aber abfragbar ist (StopInteration → 8.13. Behandlung von Laufzeitfehlern –
Exception's).

…

aktwert=generatorfloatrange(3.0,4.5,0.5)

print(next(aktwert))

print(next(aktwert))

print(next(aktwert))

print(next(aktwert))

 >>>

3.0

3.5

4.0

Traceback (most recent call last):

 File "floatrange-funktion.py", line 29, in <module>

 print(next(aktwert))

StopIteration

BK_SekI+II_Python_basic.docx - 159 - (c,p) 2015 - 2026 lsp: dre

Das muss das aufrufende Programm realisieren. Wird die Generator-Funktion in einer for-
Schleife verwendet, dann kommt es zu einem regulären Schleifenabbruch (ohne Laufzeitfeh-
ler). Für for-Schleifen braucht man aber ganzzahlige Werte.
Um Gleitkommazahlen in einer Schleife zu verwenden, muss man auf while zurückgreifen
und dann aber auch das Abbruchkriterium selbst definieren.

…

start=3.0

ende=5.5

schritt=0.5

bereichswert=generatorfloatrange(start, ende, schritt)

wert=next(bereichswert)

while wert < ende-schritt*2:

 print(wert)

 wert=next(bereichswert)

 >>>

3.0

3.5

4.0

>>>

Aufgaben:

1. Programmieren und testen Sie eine Generator-Funktion zaehlen(bis) für

das Hochzählen von 0 bis zum Bis-Wert!

2. Schreiben und testen Sie eine Generator-Funktion countdown(start) für

das Runterzählen bis 0!

3.

BK_SekI+II_Python_basic.docx - 160 - (c,p) 2015 - 2026 lsp: dre

6.5.8. Interator-Funktionen – Funktionswerte noch wieder anders

Die Rückgabewerte einer Funktion müssen aber nicht immer berechnet werden. Vielfach soll
der Wert aus einer Liste (Menge) kommen, deren Werte immer der Reihe nach genutzt wer-
den sollen.
Das folgende Beispiel einer Wochentags-Funktion liefert mit jedem Aufruf den nächsten Wo-
chentags-Namen in abgekürzter Form.
Dazu definieren wir zuerst eine passende Liste und weisen diese dann mit der Standard-
Funktion iter() einer Laufvariablen (einem Interator) zu.

 >>> wo_tage=["Mo","Di","Mi","Do","Fr","Sa","So"]

>>> akt_tag=iter(wo_tage)

>>>

Die eigentliche Werte-Erzeugung erfolgt mit next(). Dabei wird bei jedem Aufruf immer der
nächst-folgende Wert zurückgeliefert.

 >>> next(akt_tag)

'Mo'

>>> next(akt_tag)

'Di'

>>> next(akt_tag)

'Mi'

>>> next(akt_tag)

'Do'

>>> next(akt_tag)

'Fr'

>>> next(akt_tag)

'Sa'

>>> next(akt_tag)

'So'

>>>

Das geht solange gut, wie Werte in der Liste vorhanden sind. Beim Versuch nach dem letz-
ten Element noch ein abzurufen, erhalten wir einen StopInteration-Fehler.
Nun müssen bzw. können wir den Interator neu initialisieren und schon kann es wieder von
vorne losgehen.

 >>> next(akt_tag)

Traceback (most recent call last):

 File "<pyshell#11>", line 1, in <module>

 next(akt_tag)

StopIteration

>>> akt_tag=iter(wo_tage)

>>> next(akt_tag)

'Mo'

Eine Liste kann von mehreren Interatoren benutzt werden. Jeder Interator zählt eigenständig
für sich weiter.

BK_SekI+II_Python_basic.docx - 161 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Gegeben ist eine Liste von Farben für ein Etikett. Schreiben Sie ein Pro-

gramm, dass immer nach Eingabe einer ungeraden Zahl die Farbe wechselt.

(Die Eingaben sollen unendlich oft möglich sein. Der Laufzeit-Abbruch am

Ende der Liste soll zuerst einmal der Programm-Ausstieg darstellen.)

 (gelb, rot, blau, weiß, grün)

2. Erstellen Sie nun ein Programm, dass Etiketten erstellt, deren Farben sich

immer wieder wiederholen! (Als Abbruch soll die Eingabe einer Null die-

nen.)

3. Nun brauchen wir ein Programm, dass Etiketten mit wechselnder Farbe

(siehe Aufgabe 1.) und einer immer wieder neuen Beschriftung erzeugt.

 (ABC, DEF, GHI, JKL, MNO, PQR, STU, VWX, YZ_)

4. Überlegen Sie sich, wieviele verschiedene Etiketten möglich sind! Schreiben

Sie ein Test-Programm, dass mindestens 20 mehr Aufrufe der Funktion er-

zeugt und anzeigt!

für die gehobene Anspruchebene:

5. Gesucht sind sogenannte befreundte Zahlen (auch: amicable numbers,)!

Dabei ergibt die Summe der echten Teiler der einen Zahl jeweils die andere.

Wie geht die Reihe weiter?

(erste Glieder der Reihe: (220,284), (1184,1210), (2620,2924), …)

BK_SekI+II_Python_basic.docx - 162 - (c,p) 2015 - 2026 lsp: dre

6.6. Vektoren, Felder und Tabellen

Tabellen sind super Strukturen, um Daten geordnet zu speichern. In Programmiersprachen
nennt man die Tabelle üblicherweise Felder (Array's). Es gibt eindimensionale Felder, die
Vektoren heißen und mehrdimensionale Felder ohne spezielle Namen.
In Felder werden Daten des gleich Datentyps gespeichert. Der Zugriff erfolgt i.A. über die
Zeilen- oder Spalten-Nummern. Man nennt diese Indices. Bei Feldern ist im Vergleich zu
Listen keine spätere Erweiterung möglich. Die Größe bleibt so, wie sie einmal definiert wur-
de.

 vektor = [1,2,3,4,5,6]

vektor → 1 2 3 4 5 6
Eintrag-Nr.

Index
0 1 2 3 4 5

range für automatische Füllung / Erzeugung einer Liste / eines Vektors

Elementanzahl über Funktion len() abrufbar

Zugriff auf Einzel-Elemente über vektor[Elementnummer]

Zugriff auf Bereiche über :
: alleine steht für alle Elemente

where um Indizes anhand einer Bedingung auszuwählen

vektor1 → 1 2 3 4 5 6
Eintrag-Nr.

Index
0 1 2 3 4 5

vektor2 → 1 4 9 16 25 36
Eintrag-Nr.

Index
0 1 2 3 4 5

feld = array([1,2,3,4,5,6],[1,4,9,16,25,36])

Belegung Zeilen-weise mit gleicher Elementanzahl
wenn ungleichviele Elemente in der Dimension, dann bieten sich mehrdimensionale Listen
an (also kein array-Schlüselwort!)

feld → 0 1 2 3 4 5 6

 1 1 4 9 16 25 36
Eintrag-Nr.

Index
0 1 2 3 4 5

Zugriff auf Einzel-Elemente über feld[ElementnummerX,ElementnummerY] oder
feld[ElementnummerX] [ElementnummerY]

BK_SekI+II_Python_basic.docx - 163 - (c,p) 2015 - 2026 lsp: dre

aus dem numpy-Modul kommen:

arange(start, ende, schrittweite)
automatisches Füllen eines Feldes mit Integer- oder Float-Werten

frange(start, ende, schrittweite)
automatisches Füllen eines Feldes mit Float-Werten

linspace(start, ende, schritte)
automatisches Füllen eines Feldes mit Float-Werten

Besonderheit bei numpy: der Teilbereichs-Operator (Slicing-Operator) erzeugt nur eine Sicht
(ein view) auf das Original-Array
(anders bei Listen, wo ein neues Listen-Objekt erzeugt wird!)
ändert man die Sicht-Elemente, so ändert man auch die Original-Daten und umgekehrt

feld[start : ende : schrittweite]

für große Array's braucht man dann aber unbedingt die Bibliothek numpy, um effektiv zu ar-
beiten

import numpy as npy
feld2dm0= npy.zeros((zeilen,spalten))

feld2dm1 = npy.ones((zeilen, spalten,ebene))

feld = { }
zeilen = 4
spalten = 6
for spa in range(zeilen):
 for zei in range(spalten):
 feld[zei,spa] = 0

oder als (zweidimensionale) Listen-Konstruktion:

feld = []
zeilen = 4
spalten = 6
for spa in range(spalten):
 feld.append(range(zeilen))
 for zei in range(zeilen):
 feld[zei][spa] = 0

Kontroll-Ausdruck:
print(len(feld), feld)

Listen-Konstruktionen von Feldern haben den Vorteil, dass sie variabel sind, also auch er-
weitert werden können; klassische Felder (Array's) eben nicht
Nachteil ist der relativ hohe Ressourcen-Bedarf

BK_SekI+II_Python_basic.docx - 164 - (c,p) 2015 - 2026 lsp: dre

Veranschaulichung einiger Array-Operationen

import numpy as npy

feld = npy.zeros((7,9))

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

wert = feld[4][3]

oder

wert = feld[4,3]

 3

4

sicht = feld[3:4, :]

3

4

sicht = feld[:, 7:8]

 7 8

sicht = feld[:2, 4:]

 4

2

sicht = feld[4:, :]

4

sicht = feld[::, ::2]

sicht = feld[::3, ::4]

BK_SekI+II_Python_basic.docx - 165 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Erstellen Sie ein Programm, dass nach Abfrage des Stichproben-Umfanges

die Einzelwerte der Stichprobe erfasst und statistisch auswertet! (Das Pro-

gramm wird auf maximal 100 Werte beschränkt.) Es sollen die folgenden

statistischen Maße berechnet werden!:

a) arithmetrisches Mittel (arithmetrischer Mittelwert)

b) Standardabweichung

c) Minimum

d) Maximum

e) maximale Abweichung vom Mittelwert

f) prozentuale Abweichung vom Mittelwert

g) Streuung

2. Erweitern Sie das Programm von Aufgabe 1 um eine Umsortierung in eine

aufsteigend geordnete Reihe! Ermitteln Sie nun auch den Median und die

Quantillen!

3. Das Programm von 1. oder 2. soll noch um eine Häufigkeits-Analyse erwei-

tert werden! Der Nutzer soll dazu die Anzahl der Gruppen vorgeben kön-

nen (maximal 10) und die untere Grenze soll nach dem Vorschlag vom Pro-

gramm (Minimum) entweder diesen Wert benutzen oder einen anderen ein-

zugebenen Wert benutzen. Ähnlich ist mit der Spannweite der Gruppen zu

verfahren! Die Ausgabe soll aus einer Tabelle (Gruppen-Nr., untere grenze,

obere Grenze, Anzahl Werte, prozentualer Anteil) erfolgen!

4. Realisieren Sie die Ver- und Entschlüsselung nach dem Four-Square-

Verfahren (nach DELASTELLE)! (→ 8.19.1.x. Four-Square-Verschlüsselung)

BK_SekI+II_Python_basic.docx - 166 - (c,p) 2015 - 2026 lsp: dre

6.6.1. Felder mit unterschiedlichen Datentypen

-*- coding: utf-8 -*-

mehrdimensionale Arrays mit Python 2.2, die für

ihre Elemente wechselnde Variablentypen zulassen

class varioarray(dict):

 def __init__(self, maxtupel, dummy = ' '):

 dict.__init__(self)

 self.max = maxtupel

 self.dimension = len(self.max)

 self.dummy = dummy

 def test(self, index):

 if len(index) <> self.dimension:

 print 'dimension error'

 return 1 == 2

 for i in range(0, self.dimension):

 if (index[i] > self.max[i]) or (index[i] < 0):

 print 'overflow error'

 return 1 == 2

 return 1 == 1

 def __getitem__(self, index):

 if self.has_key(index):

 return dict.__getitem__(self, index)

 else:

 if self.test(index): return self.dummy

 def __setitem__(self, index, wert):

 if self.test(index):

 dict.__setitem__(self, index, wert)

Beispiel:

m = varioarray([5, 6, 2], 'None')

"""

das Setzen des Dummys ist nicht zwingend

im constructor ist ' ' voreingestellt

wie bei üblichen Feldinitialisierungen

könnte er auch den Wert Null bekommen

"""

m[1, 2, 1] = '$$$$$' # hier als Zeichenkette

m[1, 6, 1] = -12345 # hier als Integer

print 'Definierte Groesse: ', m.max

print "Dimensionen:", m.dimension

print "Die wirklichen Einträge: ", m

print

s = ''

print 'Beispielzeile [1, x, 1], x von 0 bis 6:'

for i in range(0, 7):

 print m[1, i, 1],

print s

wait = raw_input('enter')

 # kleine Bremse für das Kommandozeilenfenster :-)

Q: http://www.way2python.de/

BK_SekI+II_Python_basic.docx - 167 - (c,p) 2015 - 2026 lsp: dre

6.7. ein bisschen Statistik

6.7.1. Zufallszahlen

Kommen die Sechsen bei einem Würfel eigentlich immer genauso häufig, wie die anderen
Zahlen. Also wenn ich Mensch-ärgere-nicht spiele, dann immer nicht. Glaube ich zu mindes-
tens.
Es ist mal eine schöne Aufgabe die Gültigkeit des Gesetzes von den großen Zahlen (in der
Statistik) mit einem echten Würfel-Experiment zu überprüfen. Mit Schüler-Gruppen habe ich
das mal machen lassen – und so "überraschend" es für alle war, das Gesetz stimmt. Je häu-
figer man würfelt, umso genauer tritt die erwartete Häufigkeit von einem Sechstel für die
Sechs und natürlich auch für jede andere Zahl auf.
Zum Testen, ob die Schüler auch wirklich würfeln, hatte ich einigen
Teams einen besonderen Würfel untergejubelt. Der hatte eine kleine
Veränderung. Der Punkt von der Eins war angebohrt und dort eine
kleine Madenschraube platziert.

Schnell waren die Gruppen erkannt, die geschummelt hatten!

Aufgabe:

1. Stellen Sie eine Hypothese auf, was sich durch die Manipulation verändert!

2. Welches Ergebnis erwarten Sie für ein unmanipuliertes Würfeln von 200

Würfen? Begründen Sie Ihre Vermutung!

3. Würfeln Sie mit einem echten (nicht manipulierten) Würfel 200 mal und er-

fassen Sie die Würfe in einer Zähltabelle!

Sie können die Würfe auch in das Programm "Statistik-String.py" eintragen!

4. Fassen Sie die Ergebnisse aller Kursteilnehmer zusammen! Sind die Ergeb-

nisse des Experimentes nun dichter am Erwartungswert? Berechnen Sie da-

zu die prozentuale Abweichung jedes 200er Experimentes und der Zusam-

menfassung!

Nun wollen wir mit Python würfeln. Damit wir eine Zufalls-Funktion zur Verfügung gestellt
bekommen müssen wir eine zusätzliche Zeile an den Anfang des Programms schreiben.
Dadurch wird ein Modul geladen. Genaueres dazu finden Sie bei → 8.4. Module.
Zum ersten Testen reicht auch die Konsole:

Wenn Sie das nebenstehende Auspro-
bieren, werden Sie ev. ein anderes Er-
gebnis bekommen.

 >>> import random

>>> random.randint(1,6)

4

Die Zufalls-Funktion randint() liefert hier eine Zufallszahl zwischen 1 und 6. Beachten Sie,
dass hier die obere Grenze mit eingeschlossen ist!
Mittels einer Schleife lassen wir uns mal 20 "Würfe" anzeigen:

import random

for zaehler in range(1,20+1): # +1, weil range oberer Grenze ausschließt

 print(random.randint(1,6), end=' ')

 >>>

6 6 3 6 2 5 1 4 2 5 6 2 1 4 2 1 5 4 1 2

>>>

BK_SekI+II_Python_basic.docx - 168 - (c,p) 2015 - 2026 lsp: dre

Nun interessiert uns natürlich, ob von allen möglichen Zahlen auch gleichviel gewürfelt wer-
den. Ich verwende zum Merken ein Feld – hie konkret einen eindimensionales – also einen
Vektor. Wir brauchen für jede mögliche Augenzahl ein Merkplatz.
Eigentlich würde man jetzt ein Vektor mit der Länge 6 definieren. Der Nachteil ist, dass bei
jedem Speichern die Merkposition ausgerechnet werden muss, weil die Felder immer mit
dem Index 0 beginnen und wir müssten dann die Würfe mit einer Eins unter dem Index 0 und
die Würfe mit einer Zwei unter Index 1 usw. usf. speichern. Das verwirrt schnell und ist eine
Fehlerquelle.
Güstiger ist die Speicherung der Würfe mit einer Vier z.B. auch unter Index 4. Der Null-Index
kann ja für andere Zwecke benutzt werden, z.B. zum Zählen der Würfe insgesamt. Dann hat
man alles schön zusammen gespeichert.
Also definieren wir das Feld mit sieben Positionen so:

haeufigkeit=([0,0,0,0,0,0,0])

Dabei werden die Werte der einzelnen (sieben) Zellen auf 0 als Startwert gesetzt. Das Feld
mit dem Index 0 – also haeufigkeit[0] wird zum Zählen der Würfe genutzt.

import random

haeufigkeit=([0,0,0,0,0,0,0])

anzahlwuerfe=1000

while haeufigkeit[0]<anzahlwuerfe:

 haeufigkeit[random.randint(1,6)]+=1

 haeufigkeit[0]+=1

for zaehler in range(0,6+1):

 print(haeufigkeit[zaehler],end=' ')

Wird ein bestimmter Wert gewürfelt, so wird der zugehörende Feld-Eintrag über genau die-
sen Wert als Index gefunden und um eins erhöht (Operator: +=).

Zum Schluss wird das Feld noch schnell
ausgedruckt.

 >>>

1000 174 180 160 155 153 178

>>>

Wer es bei der Ausgabe auch Feld-orientiert haben möchte kann die letzte Schleife entfer-
nen und die print()-Anweisung so notieren:

…

print(haeufigket)

… und wir erhalten tatsächlich ein Vek-
tor.

 >>>

[1000, 162, 169, 164, 177, 163, 165]

>>>

Unter Zuhilfenahme eines zweiten Feldes erfassen wir den Erwartungswert für die Häufigkeit
jedes Wurfes und die Abweichung bei jedem einzelnen Wert:

BK_SekI+II_Python_basic.docx - 169 - (c,p) 2015 - 2026 lsp: dre

import random

haeufigkeit=([0,0,0,0,0,0,0])

anzahlwuerfe=1000

while haeufigkeit[0]<anzahlwuerfe:

 haeufigkeit[random.randint(1,6)]+=1

 haeufigkeit[0]+=1

for zaehler in range(0,6+1):

 print(format(haeufigkeit[wert],"6d"),end=' ')

print()

erwartung=([anzahlwuerfe/6,0,0,0,0,0,0])

print(format(erwartung[0],"5.2f"),end=' ')

for wert in range(1,6+1):

 erwartung[wert]=haeufigkeit[wert]-erwartung[0]

 print(format(erwartung[wert],"6.2f"),end=' ')

Die Anzeige wurde
format-technisch ein
bisschen angepasst,
damit die Werte or-
dentlich zueinander
stehen.

 >>>

 1000 156 175 158 186 152 173

166.67 -10.67 8.33 -8.67 19.33 -14.67 6.33

>>>

In weiteren Feldern lassen sich nun auch andere Häufigkeits-bezogene statistische Kenn-
werte abspeichern. Da bietet sich z.B. die relative Häufigkeit an:

…

print()

rel_haeufigkeit=([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

for wert in range(0,6+1):

 rel_haeufigkeit[wert]=haeufigkeit[wert]/anzahlwuerfe

 print(format(rel_haeufigkeit[wert],"7.3f"),end=' ')

print()

 >>>

 1000 175 188 172 171 144 150

 166.67 8.33 21.33 5.33 4.33 -22.67 -16.67

 1.000 0.175 0.188 0.172 0.171 0.144 0.150

Spätestens ab hier müssen wir uns um die Beschriftung kümmern, da nun nicht mehr deut-
lich wird, was da im Einzelnen berechnet und angezeigt wurde.

BK_SekI+II_Python_basic.docx - 170 - (c,p) 2015 - 2026 lsp: dre

Aufgaben:

1. Verbessern Sie das kleine Würfel-Statistik-Programm so, dass die Anzeigen

verständlich werden!

2. Erweitern Sie nun das Programm um die prozentuale Abweichung vom Er-

wartungswert und der prozentualen Abweichung von der erwarteten relati-

ven Häufigkeit! Warum sind die zusammengehörenden Werte immer gleich?

(Tipp: Das Prozentzeichen lässt sich gut in der print-Option end unterbrin-

gen (end='%'), aber man könnte es auch am Ende der Zeile als Einheit aus-

geben!)

3. Verändern Sie das Programm nun so, dass man beliebige Würfel (4er, 5er,

… bis 10er) einsetzen kann!

4. Passen Sie nun das Programm auch noch so an, dass beliebige Wurfzahlen

(max. 1'000'000) möglich sind! (Das Überschreiten der Zeilen bei der Wahl

vielflächiger Würfel ignorieren wir hier mal!

für Interessierte:

5. Wie heißen eigentlich die Körper der ungewöhnlichen "Würfel"?

für die gehobene Anspruchsebene:

6. Informieren Sie sich, wie man z.B. bei etwas umfangreicheren Reihen her-

ausbekommen kann, ob die Werte echt erwürfelt wurden oder sich der Nut-

zer die Werte nur mal so "zufällig" hat einfallen lassen!

Oft braucht man in der Statistik aber Zufalls-Werte zwischen 0 und 1. Hierfür nutzen wir die
Funktion random() aus der Bibliothek random.

from random import random

for i in range(10):

 print(random())

Wenn Sie das obige Programm ausprobieren sollten,
dann erhalten Sie ganz sicher andere Werte. Das ist
schließlich Sinn und Zweck eines Zufalls-Generators
(Würfel's).
Neben den Häufigkeiten müssen wir in der Statistik
auch vielfach die Kennwerte für bestimmte Gruppen
von Werten berechnen. Zu den bekanntesten Kennwer-
ten gehören sicher der Mittelwert und die – vielen Nut-
zern sehr imaginär anmutende - Standardabweichung.
Was auch immer ihr Wert aussagen soll?
Ein typisches Beispiel ist die Messung der Masse eines
Körpers.

 >>>

0.8337455442781

0.1755767061503858

0.3853434899800302

0.792967393485768

0.5036802632097241

0.34405052476700704

0.9737482138245568

0.1504658029464917

0.32370271239696813

0.8812756510874483

Wenn wir ins in der Praxis oft mit einer einzigen Messung zufrieden geben, ist das aus wis-
senschaftlicher Sicht zu unsicher. Man macht immer viele Messungen und betrachtet dann
den Durchschnitt.
Im folgenden Programm werden die Messwerte per Eingabe erfasst und dann sollen nach
und nach die statistischen Kennwerte dieser Reihe berechnet werden. Alternativ könnte man
natürlich die Werte auch wieder direkt im Programm in ein Feld oder eine Liste schreiben.
Vor allem beim Testen ist das wesentlich praktischer.

BK_SekI+II_Python_basic.docx - 171 - (c,p) 2015 - 2026 lsp: dre

Für die Auswertung von Experimental-Daten kommen neben den gerade betrachteten ein-
gruppigen Werten auch solche aus zwei zusammenhängenden Reihen in Betracht.

Analyse des Würfel's mittels eines Dictonary (→ Teil 2)

from random import randint

Haeufigkeit = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0}

Würfelschleife

for i in range(60):

 wurf = randint(1, 6)

 haeufigkeit[wurf] += 1

Ausgabe

print(haeufigkeit)

Testen mit 6, 60, 600, 6000, 60000, 600000
berechnen der prozentualen Abweichung von Zielwert (eines gerechten Würfel's)

BK_SekI+II_Python_basic.docx - 172 - (c,p) 2015 - 2026 lsp: dre

6.8. die Python-Schlüsselwörter im Überblick

False def if raise

None del import return

True elif in try

and else is while

as except lambda with

assert finally nonlocal yield

break for not

class from or

continue global pass

Scheinbar ist das Wörtchen access mit einer Bedeutungen belegt oder früher belegt gewe-
sen. Es sollte deshalb nur mit Bedacht verwendet werden. Vor allem sollte man es nie als
Bezeichner etc. nutzen.

False

Syntax Beschreibung

Beispiel(e) Kommentar(e)

None

Syntax Beschreibung

Beispiel(e) Kommentar(e)

True

Syntax Beschreibung

Beispiel(e) Kommentar(e)

and

Syntax Beschreibung

Beispiel(e) Kommentar(e)

BK_SekI+II_Python_basic.docx - 173 - (c,p) 2015 - 2026 lsp: dre

as

Syntax Beschreibung

Beispiel(e) Kommentar(e)

assert

Syntax Beschreibung

Beispiel(e) Kommentar(e)

break

Syntax Beschreibung

Beispiel(e) Kommentar(e)

class

Syntax Beschreibung

Beispiel(e) Kommentar(e)

continue

Syntax Beschreibung

Beispiel(e) Kommentar(e)

def

Syntax Beschreibung

Beispiel(e) Kommentar(e)

del

BK_SekI+II_Python_basic.docx - 174 - (c,p) 2015 - 2026 lsp: dre

Syntax Beschreibung

Beispiel(e) Kommentar(e)

elif

Syntax Beschreibung

Beispiel(e) Kommentar(e)

else

Syntax Beschreibung

Beispiel(e) Kommentar(e)

except

Syntax Beschreibung

Beispiel(e) Kommentar(e)

finally

Syntax Beschreibung

Beispiel(e) Kommentar(e)

for

Syntax Beschreibung

Beispiel(e) Kommentar(e)

from

Syntax Beschreibung

BK_SekI+II_Python_basic.docx - 175 - (c,p) 2015 - 2026 lsp: dre

Beispiel(e) Kommentar(e)

global

Syntax Beschreibung

Beispiel(e) Kommentar(e)

if

Syntax Beschreibung

Beispiel(e) Kommentar(e)

import

Syntax Beschreibung

Beispiel(e) Kommentar(e)

in

Syntax Beschreibung

Beispiel(e) Kommentar(e)

is

Syntax Beschreibung

Beispiel(e) Kommentar(e)

lambda

Syntax Beschreibung

Beispiel(e) Kommentar(e)

BK_SekI+II_Python_basic.docx - 176 - (c,p) 2015 - 2026 lsp: dre

nonlocal

Syntax Beschreibung

Beispiel(e) Kommentar(e)

not

Syntax Beschreibung

Beispiel(e) Kommentar(e)

or

Syntax Beschreibung

Beispiel(e) Kommentar(e)

pass

Syntax Beschreibung

Beispiel(e) Kommentar(e)

raise

Syntax Beschreibung

Beispiel(e) Kommentar(e)

return

Syntax Beschreibung

Beispiel(e) Kommentar(e)

BK_SekI+II_Python_basic.docx - 177 - (c,p) 2015 - 2026 lsp: dre

try

Syntax Beschreibung

Beispiel(e) Kommentar(e)

while

Syntax Beschreibung

Beispiel(e) Kommentar(e)

with

Syntax Beschreibung

Beispiel(e) Kommentar(e)

yield

Syntax Beschreibung

Beispiel(e) Kommentar(e)

Links:
https://docs.python.org/3.5/library/ (engl. Beschreibung / Dokumentation der Python-Library's)

https://docs.python.org/3.5/library/

BK_SekI+II_Python_basic.docx - 178 - (c,p) 2015 - 2026 lsp: dre

Python-Spicker
beliebig oft wiederholbar: {, wiederholung} optional / mögliche Ergänzung: [, option]

alternativ: variante | variante Python-Schlüsselwörter und –symbole

hilfsausdruck := reguläre Ausdrücke, Befehle, Strukturen

Eingabe:

variable = input(“Aufforderungstext“) # allgemeine / Text-Eingabe

variable = eval(input(“Aufforderungstext“)) # Zahlen-Eingabe

(formatierte) Ausgabe:

ausgabe:=wert | berechnung | “Text“ | ’Text’
print()

print(ausgabe)

print({ausgabe, } format(variable,formattext) {, ausgabe})

Bsp.: formattext .. ’12s’ ’12d’ ’12.3f’ s..String; d..dezimal (Ganzzahl); f..float (Kommazahl);
… hier mit Platz für 12 Zeichen (und 3 Dezimalstellen)

print(ausgabe, {ausgabe, } end=drucksteuerung)

 Bsp.: drucksteuerung .. ’\n’ .. Zeilenumbruch;
 .. ’zwischentext’ .. druckt Zwischentext ohne Umbruch

print("Text mit Platzhalter [%formattext] …" % (variable [, variable]))

.. formattext s.a. oben
!! Ausgabe des %-Zeichens in solchen Konstrukten mit %%

print("Text mit Platzhalter {[%platz]} [{[%12]}] …".format(variable [,variable]))

.. platz ist die Anzahl der reservierten Zeichen

Verzweigung:

if bedingung: # Einleitung und Test/Bedingung

 befehle # Then-/Dann-/Wahr-Zweig (eingerückt!!! mehrzeilig mögl.)

{elif bedingung: # zusätzliche(r) untergeordnete(r) Test/Bedingung

befehle} # untergeord. Then-/Dann-/Wahr-Zweig
[else: # optionaler Else-/Sonst-/Falsch/Rest-Zweig

Befehle]

Schleifen:

while bedingung: # while True: # Endlosschleife

 … # (meist break notwendig)

 befehle
 {continue} # Sprung zum nächsten Schleifendurchlauf /-anfang

 {befehle
 break} # Sprung hinter Schleife (noch hinter ELSE)

{else:

befehle}

for laufvariable in liste | tupel: # _ als laufvariable, wenn kein Gebrauch in

 befehle Schleife geplant

 [verzweigung : break] # vorzeitiger Abbruch der Schleife

for laufvariable in range([untere_grenze,]obere_grenze[, schrittweite]):

 befehle

BK_SekI+II_Python_basic.docx - 179 - (c,p) 2015 - 2026 lsp: dre

Funktion:

def funktionsname(argumente):

 befehle
 [return rückgabewert]

Bibliotheken:

Installation über pip (in der Console)
python –m pip install --upgrade pip (Aktualisierung von pip)

pip3 install pygame-……whl (Installation des Moduls)

(pip3 install --upgrade pygame-……whl (Aktualisieren / Überinstal

 lieren))

Verwendung im Quelltext:
import bibliothek

…
bibliothek.funktion(argumente)

from bibliothek import funktion {, funktion}

from bibliothek import *

import bibliothek as lokaler_name

z.B.: Würfeln, klassisch import random

dir(random) #Anzeige Fkt.n

from random import randint

…

x=randint(1, 6)

import random

…

x=random.randint(1, 6)

import random as rdm

…

x=rdm.randint(1, 6)

from random import *

…

x=randint(1, 6)

wichtige Bibliotheken:
math .. diverse mathematische Funktionen sys ..
re .. Arbeiten mit regulären Ausdrücken turtle .. Turtle-Graphik
datetime .. Zeit- und Datums-Funktionen pickle ..
os .. Kommunikation mit Betriebssystem ..
shutil .. Arbeiten mit Dateien und Ordner auf Shell-Ebene
sqlite3 .. Kommunikation mit einem SQLite3-Server
 ..

Objekt / Klasse:

class klassenname:

 klassenttributname=vorbelegung # übergreifend für alle Objekte/Instanzen

 def methodenname(oberklasse | self, argumente):
 pass # gestattet Klassendefinition ohne Implementierung

 def __init__(oberklasse | self, argumente): # Konstruktor

 def _methodenname_(…): # anschein-geschützte Methode (protected)

 def __methodenname__(…): # geschützte Methode (private) unsichtbar

 self.attributname=vorbelegung # Obj.-Attribut, für jede Instanz extra

 self._attributname=vorb. # anschein-geschütztes Attribut

 self.__attributname=… # geschütztes Attribut, unsicht (→ get/set !)

BK_SekI+II_Python_basic.docx - 180 - (c,p) 2015 - 2026 lsp: dre

Literatur und Quellen:

siehe letzter Teil!

Abbildungen und Skizzen entstammen den folgende ClipArt-Sammlungen:

/A/

andere Quellen sind direkt angegeben.

Alle anderen Abbildungen sind geistiges Eigentum:

 lern-soft-projekt: drews (c,p) 1997 – 2026 lsp: dre
 für die Verwendung außerhalb dieses Skriptes gilt für sie die Lizenz:

 CC-BY-NC-SA
 Lizenz-Erklärungen und –Bedingungen: http://de.creativecommons.org/was-ist-cc/
 andere Verwendungen nur mit schriftlicher Vereinbarung!!!

verwendete freie Software:

• Inkscape von: inkscape.org (www.inkscape.org)

• CmapTools von: Institute for Human and Maschine Cognition (www.ihmc.us)

 - (c,p) 2015 - 2026 lern-soft-projekt: drews -
 - drews@lern-soft-projekt.de -
 - http://www.lern-soft-projekt.de -
 - 18069 Rostock; Luise-Otto-Peters-Ring 25 -
 - Tel/AB (0381) 760 12 18 FAX 760 12 11 -

http://de.creativecommons.org/was-ist-cc/
http://www.inkscape.org/
http://www.ihmc.us/
mailto:drews@lern-soft-projekt.de
http://www.lern-soft-projekt.de/

