Informalik

fitr die Sekundarstufe I + I

- Programmieren mil Pylthon —
Teil 1: fur Einskeiger

Aulor: 1.. Drews

- o \' .

Gruner Baum-Python
(s) Morelia viridis

Q: de.wikipedia.org (Mwx)

Verarbeitung(sschritt)

eval (input("?:")) !'= 0:
print("Stoppen" ,end="")

Eingabe =T
Verarbeitung(sschriit) Hallo Welt!
Ausgabe |> Beenden |

teilredigierte Version 0.11e (2026)

BK_Sekl+Il_Python_basic.docx (c,p) 2015 - 2026 lern-soft-projekt: drews

Legende:

mit diesem Symbol werden zusatz-
liche Hinweise, Tips und weiterfiih-
rende Ideen gekennzeichnet

/ Nutzungsbestimmungen / Bemerkungen zur Verwendung durch Dritte:

(1) Dieses Skript (Werk) ist zur freien Nutzung in der angebotenen Form durch den
Anbieter (lern-soft-projekt) bereitgestellt. Es kann unter Angabe der Quelle und /
oder des Verfassers gedruckt, vervielfaltigt oder in elektronischer Form verof-
fentlicht werden.

(2) Das Weglassen von Abschnitten oder Teilen (z.B. Aufgaben und Lésungen) in
Teildrucken ist moglich und sinnvoll (Konzentration auf die eigenen Unterrichts-
ziele, -inhalte und -methoden). Bei angemessen groen Ausziigen gehort das
vollstandige Inhaltsverzeichnis und die Angabe einer Bezugsquelle fiir das Ori-
ginalwerk zum Pflichtteil.

(3) Ein Verkauf in jedweder Form ist ausgeschlossen. Der Aufwand fiir Kopierleistungen, Datentrager
oder den (einfachen) Download usw. ist davon unbertihrt.

(4) Anderungswiinsche werden gerne entgegen genommen. Erganzungen, Arbeitsblatter, Aufgaben
und Lésungen mit eigener Autorenschaft sind mdglich und werden bei konzeptioneller Passung
eingearbeitet. Die Teile sind entsprechend der Autorenschaft zu kennzeichnen. Jedes Teil behalt
die Urheberrechte seiner Autorenschaft bei.

(5) Zusammenstellungen, die von diesem Skript - Gber Zitate hinausgehende - Bestandteile enthalten,
mussen verpflichtend wieder gleichwertigen Nutzungsbestimmungen unterliegen.

(6) Diese Nutzungsbestimmungen gehoéren zu diesem Werk.

(7) Der Autor behalt sich das Recht vor, diese Bestimmungen zu &ndern.

(8) Andere Urheberrechte bleiben von diesen Bestimmungen unberihrt.

Rechte Anderer:

Viele der verwendeten Bilder unterliegen verschiedensten freien Lizenzen. Nach meinen Recherchen
sollten alle genutzten Bilder zu einer der nachfolgenden freien Lizenzen gehdren. Unabhangig von
den Vorgaben der einzelnen Lizenzen sind zu jedem extern entstandenen Objekt die Quelle, und
wenn bekannt, der Autor / Rechteinhaber angegeben.

public domain (pd) Zum Gemeingut erklarte Graphiken oder Fotos (u.a.). Viele der verwen-
deten Bilder entstammen Webseiten / Quellen US-amerikanischer Ein-
richtungen, die im Regierungsauftrag mit offentlichen Mitteln finanziert
wurden und dariber rechtlich (USA) zum Gemeingut wurden. Andere
kreative Leistungen wurden ohne Einschrankungen von den Urhebern
freigegeben.

gnu free document li-
cence (GFDL; gnu fdl)

creative commens (cc)
@Cl‘eative od. neu ® ... Namensnennung
commons

... hichtkommerziell

... in der gleichen Form

... unter gleichen Bedingungen

Die meisten verwendeten Lizenzen schlielen eine kommerzielle (Weiter-)Nutzung aus!

Bemerkungen zur Rechtschreibung:

Dieses Skript folgt nicht zwangslaufig der neuen ODER alten deutschen Recht-
schreibung. Vielmehr wird vom Recht auf kinstlerische Freiheit, der Freiheit der
Sprache und von der Autokorrektur des Textverarbeitungsprogramms microsoft ®
WORD ® Gebrauch gemacht.

Fir Hinweise auf echte Fehler ist der Autor immer dankbar.

BK_Sekl+l_Python_basic.docx -2- (c,p) 2015 - 2026 Isp: dre

Inhaltsverzeichnis:

Seite

0 0] =1 0 g ' 6
1. Einstieg und Grundlagen ... nnnnanas 9
1.1. Geschichte und Namensgebung............ccooiiiicciii e e 9
1.2. Warum Python?........ ettt s s s r e s s s s s e e e e e mma e s s e e e e 10
grundlegende Python-KONZEPLEuuuuiimiii e 14

2. Vorbereitung (Installation)..........ccoeecciiiii s 16
2.1. Python auf Windows-Rechnernccccciiiiiiinn 16
2.2. Python auf Linux-Rechnern.........cccoiiiiiiiiin 18
2.3. Python auf dem Raspberry Pi ...t 18
2.5. Python auf Android-Systemen..........ccccciiiiiiii 18
P Tt TR Yo [oo 1 TN 0 L PP 18
2.6. Python auf dem MacOS ... e e s 19
2.7. Python auf dem Taschenrechner ... e 19
2.8. Python auf Microcontrollern..........ccccciiiiiiii s 20
2.9. Python online (ausprobieren)...........iccciiiiiiirrccc e e 21
3. Zugriff auf das Python-System..........ccccciiiiii 22
3.1. die Python-Shell.......... 22
3.1.1. Eingaben ander Shell ... 23
3.1.2. IDLE als Python-KONSOIE.........ccoiiiieeeie e e 23
3.1.2. fortgeschrittene Mathematikccc 25
3.1.3. mehrzeilige Eingaben ander Shell ... 26
3.1.4. mehrere Befehle in €iN€ Zeil€.........coov i 27
3.1.2.1. Mathematik fur Informatiker — binares Rechnenccccccoiiiiinnnnnnns 28
3.1.3. Eingaben und Daten merken - Variablen...............ccccoo 31
3.1.3.1. besondere Variablen und spezielle Méglichkeiten fir Variablen in Python... 33

3.2. Arbeiten mit SCriPteNo e 36
3.2.1. Grundlagen DOS bzw. Komandozeile (Eingabeaufforderung, Terminal) 36
3.2.2. Aufruf fertiger Python-SKripte ... 37
3.3. die interne Benutzer-Oberflache............ccooiiii s 39
3.3 X HIe(N) e 39
3.4. Nutzung anderer Benutzer-Oberflachen.............ccoovmiiiinnciiiiee 41
3.4.1. gut geeignete Editoren flr die Verwendung mit Pythoncccoois 41
3.4.1.1. SUDIME TEXE ..oeiiiiiiiiiiiiiiteeeeet ittt s s sssasassnsssnnnnsnsnnnnnns 41
KR S I C1=T [PO PPPPPP 42
K G T\ [0] (=Y 0 Y= Lo 42

K o 0 S o Ta oY o 3N =T |1 SRR 42
BAX ECIPSE. e 43
B X SPYAET ...ttt et e e e e e e e e e e e e e e e 44
BUAX. LICHPSE ..o 45
K G Y g - Yoo Lo - PP 45
34X WINPYhON ..., 45

K 035 G] 1 4T To [I |5 SR 46
BAX TRONNY < 46
BUAX. SCITE .o 46
34X TIGErdYtNON. ..o 47
3.4.x. Editoren im Internet — online-Editoren.................cccc 48
X3 Ot IRV VACTTod o T Yo < oo o 48
3.4.X.2. TIGEIJYENON ...t 48
35 GG TR 1 = o | P 49

BK_Sekl+II_Python_basic.docx -3- (c,p) 2015 - 2026 Isp: dre

K O o PO PO SO PP UPPEPRPPPPRPTPRPPRI 49

3.4 .x. microsoft Visual Studio Code mit Jupyter-Erweiterung.............c..ccoovviviiiiienneennn. 50
3.5.SNap for Python et r s s 51
LA Te (o 1 SO P TP 51
0 T S 51
= Vo 1 S 51
4. erste einfache Programme mit Python............coomccciniire, 52
L N T o5 0T 4 1= 1= T O 55
4.2. Planung eines Programms und Umsetzung in Python..........cccccceviiiiiiiiiiieninnnnnnns 56
erganzende Bemerkungen zu Vaiablen und Daten-Typen...........cccovvviiiiiiiiiieeeeeenns 61
5. Was passiert mit dem Quelltext? ... 62
5.1. Und es geht doch! — aus dem Python-Quelltext eine EXE erstellen.................... 65
5.2, FEhlersuChe ... 66
5.3. Stil-Regeln fiir Python-Programmiereroooccciiiiirrrrrccrn e 70
Linter 72
5.4. agile Software-EntwicKIUNg............coiiiiiiiicccc s e 72
6. grundlegende Sprach-Elemente von Python..........cceecciiiiiiiimiircecccnn, 74
6.1. AUSGADEN.....cc o ——————— 74
6.1.1. Anpassen von Zahlen flr AUSGabeN...............uuiiiiiiiiiiiiiiiiie 79
6.1.2. formatierte AUSGADENuiiii e 80
6.1.2.1. formatierte Ausgaben mit der format-Funktion.................ccciiiiii s 81
6.1.2.2. Verwendung von Platzhaltern in Ausgabetexten..............cccooii. 83
6.1.2.3. Kombination von Platzhaltern und format-Funktion...................................... 84
07 =31 Vo - 1 o =Y o P 86
6.2.1. unschdéne Eingabe-Effekte in Python-Programmencccccooiiiiiiiiiiiiinnnnnns 88
LR T V= - 1 ¢ o 7= {1 3T 91
(O] 01=T = (o] {=Y o SRR 93
LS R o 01 o) | U= {4 96
B BV A= Y=o 11] o = o 1 97
6.4.1.1. einfache Verzeigungen ... 97
einseitige Auswahl / bedingte AUuSTUNRIUNGooiiiiii e 97
zweiseitige Auswahl / vollstdndige Verzweigungcooouiieiiiiee i 100
6.4.1.2. geschachtelte Alternativen.............ooooiiii e 107
6.4.1.3. Mehrfach-Verzeigungen ... 110
6.4.1.4. Optimierung des Quellcode's — DRY- und EVA-Prinzip.........cccccoeeveiienennnn. 114
G S T o1 1=) 1= o 119
6.4.2.1. bedingte SChIEifenooo i 120
Berechnung der Kreiszahl Pi mit der Methode von ACHIMEDEScccoovvveieiiiiinee. 124
Berechnung der Quadratwurzel von x nach der Formel von HERONccccccooviinneen. 126
Berechnung der N-ten WUIZEIoooiiiiii e 127
Eingabe-Kontrolle mittels Schleife ... 127
Fehler-Analyse in SChIGIfENuuiiiiiiiiiiiiiiiii e 128
6.4.2.2. Sammlungs-bedingte Schleifen ... 132
6.4.2.3. Zahl-Schleifen............cccooo i 138
6.4.2.4. besondere Kontrollstrukturen in Schleifen...........ccccccceeiiiiiiiiciii e, 140
6.4.2.5. Und was ist mit nachprufenden / Fu3-gesteuerten Schleifen? 143
6.4.2.6. Anwendungs-Beispiel: lineare Regression............cccceeeiiiieeeeeeeeeee 147
Beispiel flr Daten in Zwei LISTENooiiiiiiieiee e 147
6.5. Unterprogramme, Funktionen usw. USsf. ... 149
6.5.1. Allgemeines zu Funktionen in Python...........cccccocioii i, 151
6.5.2. Funktionen ohne RUCKgabewerteccoooviiiiiiii e 153
6.5.3. echte Funktionen — Funktionen mit Ruckgabewertencccccciiiiiiiiinnnnns 155
6.5.4. Funktionen mit Standard-Werten als Parameter..............cccccoiiiiiiiiiiiiiiiinnnnnns 156

BK_SekI+l_Python_basic.docx -4- (c,p) 2015 - 2026 Isp: dre

6.5.5. Funktionen mit einer variablen Anzahl von Parametern..........ccocovoeviviiveiennn.. 157

6.5.6. Funktionen mit Funktionen als Parametercoov oo, 157
6.5.7. Generator-Funktionen — Funktionswerte schrittweisecccooviviiiiiiiiiiinnnnns. 158
6.5.8. Interator-Funktionen — Funktionswerte noch wieder andersccccoueeennee... 160
6.6. Vektoren, Felder und Tabellenccoiieeiiiiiiccr s e rea s e s e s semneees 162
6.6.1. Felder mit unterschiedlichen Datentypen...........ccccccvviiiiiiiiiiiiiiiiiiiiiieeeee 166
6.7. €iN BISSChEN StatiStik.....cieuiieiieiririr i s e resreasassassnnranrmnrnsrenrenssnnsnn 167
S A =11 E=74=] 11 (=] o IR 167
6.8. die Python-Schliisselworter im UberblicK...........cccceeeeerriercrrereeseeseesesreeeseeseseenes 172
PYthoN-SpPiCKeTr ... 178
BINGabe: ... 178
(formatierte) AUSGADE:ueiiii e e e a e e e 178

V2T AT o U g o R 178
Yo a1 (Y1) o TR 178

[T U] 4 ([0 o 179

[2T{ 1[0 { aT=1 (=] 1S 179

ODJEKE / KIASSE: ...ttt anneeas 179
Literatur und QUElIEN:ceuieeiiiiirireirrrr s e e ra s rea e ra s ran s rassennrans 180

BK_Sekl+II_Python_basic.docx -5- (c,p) 2015 - 2026 Isp: dre

0. Einleitung

Dieser Kurs orientiert sich weniger an den speziellen Sprach-Elementen oder informatischen
Objekten, sondern mehr an einem sinnvollen Weg, erste einfache Programme zu schreiben.
Nichts ist langweiliger als sich mit theoretischen Strukturen und abgesetzten informatischen
Ideen zu beschaftigen. Wer programmieren lernen will, muss so schnell wie moglich, auch
wirklich Programme schreiben. Programmieren — der Theorie willen — ist fur akademische
Kurse interessant, aber fur den einfachen Einsteiger meist Uberfordernd. Der normale An-
fanger mochte praktisch arbeiten.

Wer's anders mochte und andere Herangehensweisen bevorzugt, dem seien einige unten
aufgeflhrte (unvollstandige!!!) Tutorial's empfohlen. Jedes hat fir sich Vorteile und Nachteile,
Starken und Schwachen. Wobei, wirkliche Schwachen haben wohl die wenigsten! Sie haben
nur andere Konzepte und Leitlinien. Einfach mal reinschauen und prifen, ob der Stil und die
Vorgehensweise zum eigenen Anspruch passt.

Viele Anfanger wollen erst einmal nur das Programmieren lernen. Dafir reichen die Kapitel 1
bis 6 — eventuell noch 7. In diesen Kapiteln werden die grundlegenden Python-Anweisungen
und —Techniken besprochen. Wer dann Geschmack an der Sache oder an Python gefunden
hat, dem werden die anderen Kapitel nach und nach gefallen. Aber auch hier sollte jeder
schon vorsichtig und selektiv vorgehen — besser Klasse als Masse.

Die ersten Kapitel sind sozusagen der Minimalteil dieses Skriptes, wobei auch hier schon
einzelne Seiten oder kleinere Abschnitte entfallen kdnnen. Fur ein ersten Programmieren
reicht es in jedem Fall.

Spater im Skript stehen bestimmte Python-Elementen und informatische Strukturen im Zent-
rum. Dabei gehen wir dann auch auf allgemeine Aspekte, Strukturen und Modelle in der Da-
tenverarbeitung ein. Nur so werden die Feinheiten von Python deutlich, der Problemblick
gescharft und einem effektiven Programmieren stehen dann alle Tore offen.

Dadurch dass viele Themen nun nochmals vertieft und erweitert behandelt werden, ergibt
sich eine nicht ganz schdne Skript-Struktur. Die Alternative waren zwei Skripte gewesen, die
dann aber wieder unhandlicher waren, wenn man mal was nachlesen, nachschlagen usw.
usf. muss.

Dieses Skript bietet in den hinteren Teilen viele Beschaftigungs-Moglichkeiten mit Python
und informatischen Sachverhalten. Ich habe versucht, die einzelnen Themen so zu bespre-
chen, dass immer jeweils nur die Anfanger-Voraussetzungen benétigt werden. Sollte doch
mal das eine oder andere Rustzeug ben6tigt werden, dann wird in der Einleitung zum Kapitel
oder Abschnitt darauf hingewiesen. In dem Fall empfiehlt sich eine vorherige Bearbeitung
des oder der erwahnten Skript-Teile.

Ich weise an dieser Stelle noch einmal explizit darauf hin, dass sich niemand das ganze
Skript ausdrucken muss, auch nicht, wenn es in einer Bildungs-Einrichtung als Arbeits-
Material benutzt werden soll. Jeder kann sich aber sein personliches Skript zusammenstel-
len, wenn er es dann wirklich ausgedruckt braucht. Beachten Sie aber die Lizenz-Hinweise
auf der 2. Seite.

Trotz alledem wird dieses Skript nicht alle Moglichkeiten von Python darstellen kdnnen.
Wenn aber etwas wichtiges fehlt, dann melden Sie sich einfach bei mir. Ich bin immer fir
Neues aufgeschlossen, und wenn es etwas fur viele Python-Nutzer bringt, dann nehme ich
es gerne in das Skript auf.

BK_SekI+l_Python_basic.docx -6- (c,p) 2015 - 2026 Isp: dre

andere Tutorials, ...:

http://wspiegel.de/pykurs/pykurs.htm
http://www.a-coding-project.de/python/

http://www.python-kurs.eu/
http://www.cl.uni-heidelberg.de/kurs/skripte/prog1/html/
http://www.physik.uzh.ch/lectures/informatik/python/python-start.php
http://py-tutorial-de.readthedocs.org/de/python-3.3/index.html
https://www.hdm-stuttgart.de/~maucher/Python/html/index.html
https://cscircles.cemc.uwaterloo.ca/using-website-de/

weitere Links, ...:

http://cscircles.cemc.uwaterloo.ca/dev/0-de/

https://www.python-forum.de

https://www-user.tu-chemnitz.de/~hot/PYTHON/ (viele Kniffe und extravagante Beispiele)
https://docs.python.org/ (offizielle Python-Dokumentation (engl.))

aus goole-books:
https://books.google.de/books?id=oLTyCQAAQBAJ

Warum Programmieren?

Steuern von Geraten, Computern usw. usf.

Entwickeln von Spielen, ...

aber Programmieren und Programmieren Lernen erfllt auch andere wichtige Funktionen:
man versteht, wie Programme und damit auch Computer usw. gerade so funktionieren

eigene Projekt-ldeen umsetzen
einfach nur Lernen wie man Probleme — ev. auch im Team — Losen kann

didaktische Vorzuge von Python

kleiner Sprachumfang / wenige Konstrukte
leicht und schnell erlernbar

einfacher / nachvollziehbarer Synthax

gute Lesbarkeit des Quell-Textes
einzeilige Anweisungen

gewisse intuitive Nutzung / Programmierung mdglich
zwingt zur optisch strukturierten Programmierung
notwendige Einrlickungen fur "Blécke"

vorlaufende Deklarierungen sind nicht notwendig

BK_Sekl+II_Python_basic.docx -7- (c,p) 2015 - 2026 Isp: dre

http://wspiegel.de/pykurs/pykurs.htm
http://www.a-coding-project.de/python/
http://www.python-kurs.eu/
http://www.cl.uni-heidelberg.de/kurs/skripte/prog1/html/
http://www.physik.uzh.ch/lectures/informatik/python/python-start.php
http://py-tutorial-de.readthedocs.org/de/python-3.3/index.html
https://www.hdm-stuttgart.de/~maucher/Python/html/index.html
https://cscircles.cemc.uwaterloo.ca/using-website-de/
http://cscircles.cemc.uwaterloo.ca/dev/0-de/
https://www.python-forum.de/
https://www-user.tu-chemnitz.de/~hot/PYTHON/
https://docs.python.org/
https://books.google.de/books?id=oLTyCQAAQBAJ

Variablen werden dort eingefuhrt, wo sie gebraucht werden

manche dieser Vorziige werden von anderen klassischen Programmiersprachen (z.B.)
ebenfalls realisiert, sie sind aber selten so konsequent und in dieser Kombination vorhanden

BK_SekI+l_Python_basic.docx -8- (c,p) 2015 - 2026 Isp: dre

1. Einstieg und Grundlagen

sprich peiten oder im Deutschen auch puton
universelle, interpretierende héhere Programmiersprache
derzeit von der gemeinnatzigen Python Software Foundation betreutes Entwicklungsmodell

erstellt Referenz-Umsetzung, diese heil3t CPython und ist die verbreiteste Version des Py-
thon-Interpreters

1.1. Geschichte und Namensgebung

in den ersten 1990iger Jahren von Guido VAN RossuM entwickelt

aus einem Hobby-Projekt flr die Weihnachts-Ferien entstanden
Python war als Arbeitstitel gedacht

Name wurde von VAN ROSSUM als Fan und aus Verehrung der Commedy-Truppe "Monty
Python's Flying Circus" gewahit

zuerst als Fortsetzung / Verbesserung der Sprache ABC entwickelt und fur verteilte Rechner-
Architekturen gedacht

Version 1.0 war 1994 fertig

es folgten diverse Updates

im Jahr 2000 wurde Version 2.0 veroffentlicht

die Version 3.0 (auch Python 3000 genannt) erschien 2008
ist von tiefgreifenden Anderungen, Anpassungen, Vereinheitlichungen und Optimierungen
gepragt und deshalb auch nur teilweise mit der Version 2.x kompatibel

damit alte Programme (die unter Version 2.x) entwickelt wurden weiter lauffahig zu halten,
wird derzeit die Versions-Serie 2.x noch weiterentwickelt und geupdated

BK_Sekl+II_Python_basic.docx -9- (c,p) 2015 - 2026 Isp: dre

1.2. Warum Python?

Reicht nicht eigentlich eine Programmiersprache, z.B. BASIC? Es gibt doch noch so viele
andere! Muss es noch eine mehr sein? Da sieht doch nachher keiner mehr durch!

Jede Programmiersprache hat ihr Fir und Wider. Die klassische BASIC-Version ist sehr ein-
fach (zu lernen), ware aber heutigen Programmier-Aufgaben kaum noch gewachsen. Schon
beim strukturierten Programmieren schwachelt das Programm mit seinem oft getadelten
GOTO-Befehl.

Viele Programmiersprachen entstanden, um spezifische Probleme mit ihnen zu I6sen oder
die Programmiersprache sollte speziellen (oft akademischen) Konstruktions-Regeln folgen.
Heute werden noch wieder andere Kriterien bei der Bewertung einer Programmiersprache
mit hinzugezogen. Der Quellcode soll offen und erweiterbar sein und naturlich erwartet man
die Verflugbarkeit einer freien (kostenfreien) Version fir Jedermann.

Hier sind einige ausgewahlte Argumente (nach: /3, S. 21; /4, S. 18ff./, die fur Python spre-
chen. Gegner der Sprache werden sicher genauso viele Gegenargumente finden. Dazu wei-
ter hinten ein paar Bemerkungen.

Zuerst einmal spricht fur Python der kleine Umfang reservierter Worter (Befehle usw.).

False def if raise
None del import return
True elif in try
and else is while
as except lambda with
assert finally nonlocal yield
break for not

class from or

continue global pass

Diese rund 30 Worter sind schnell gelernt bzw. im Blick behalten.

Python ist klein.
Python ist leicht zu lernen.

Integer-Zahlen (ganze Zahlen) kénnen in Python beliebig grol3 oder auch klein werden. In
anderen Sprachen muss man Umwege gehen oder externe Zusatz-Module (Bibliotheken)
dazu installieren bzw. in sein Programm integrieren.

Auch ansonsten sind viele gute Merkmale und Realisierungen aus anderen Sprachen Uber-
nommen worden. Die Summe vieler guter Merkmale macht Python schon so zu einer zu-
kunfts-weisenden Programmiersprache.

Mit PASCAL gemeinsam hat es die klare Struktur. Genauso, wie PERL kann es von sich aus
mit Listen und assoziativen Feldern als ureigene Datentypen umgehen.

Weiterhin kdnnen in Python Operatoren Uberladen werden. Da zieht es mit C++ u.a. Pro-
grammen gleich.

Rolle von Python in der Programmier-Welt

Python als Skriptsprache fiir andere Programme, z.B. OpenOffice.org, Blender, GIMP

Python-Programme lassen sich in andere (Programmier-)Sprache einbauen

mit Python Iasst sich auf Datenbanken zugreifen (Nutzung von SQL in Python)

BK_Sekl+l_Python_basic.docx -10 - (c,p) 2015 - 2026 Isp: dre

andere Programmiersprachen lassen sich in Python-Skripten verwenden
CGlI-Programmierung

sehr flexible — weil nicht Typ-gebundene — Programmierung I6st viele allgemeine Probleme

unterstitze Programmier-Paradigmen in Python:

e imperativ / prozedural
charakterisiert durch einfachen Code
gut fur die Manipulation von Daten

funktional

alle Aussagen werden als mathematische Gleichungen
betrachtet

dieses Paradigma ist eine gute Basis fur

geht in Richtung Rekursion und Lambda-Kalkul

Aspekt-orientiert

Objekt-orientiert
Daten werden als Objekte mit Eigenschaften (Attributen)
gesehen
Veranderungen werden uber Methoden vorgenommen
Code ist i.A. gut wiederverwendbar

Verfahrens-orientiert

Aufgaben werden Schritt fur Schritt als Interationenabge-
arbeitet

haufige Operationen werden in Unterprogramme, Proze-
duren bzw. Funktionen abgelegt

gegunstigt Squenzierungen, lterationen, Auswahl und Mo-
dularisierung

Python ist somit eine Multi-Paradigmen-Sprache (multi-paradigm language)

Vorteilhaft ist die automatische Speicher-Bereinigung (garbage collection) am Ende der Py-
thon-Nutzung. Schon innerhalb der Programmnutzung werden die nicht mehr gebrauchten
und irgendwo neu definierten Programmier-Objekte aus dem Speicher entsorgt.
automatische Daten-Mullvermeidung

Python hat von sich aus weniger strenge Programmier-Kontrollen. Dem Programmierer gibt
das einige zusatzliche Freiheiten.

Blocke werden in Python nicht — wie sonst haufig ublich — in BEGIN-END-Blécke (oder ge-
schweifte Klammer etc.) notiert. Die Blockbildung erfolgt einfach durch Einrlickung — also
strukturiertes Schreiben des Quelltextes. Eine Empfehlung anderer Programmiersprachen
wird hier zum Prinzip erhoben.

Die Schleifen-Konstrukte sind auf die Wiederholungs-Schleife und die vorprifende Schleife
eingeschrankt. Das reicht vollig aus und ist auch besser zu durchschauen. Naturlich [8sst
sich leicht eine nachlaufend-prifende Schleife zusammenstellen. Aber wir werden sehen,
man kann prinzipiell mit nur einem Schleifentyp alle anderen simulieren / ersetzen — auch
wenn es nicht immer schdn aussieht.

Der — von einer anderen Sprache — wechselnde Programmierer wird bei dem Begriff der
Wiederholungs-Schleife aufhorchen. Hei3en die nicht eigentlich Zahl-Schleifen. Nein hier

BK_Sekl+II_Python_basic.docx -11 - (c,p) 2015 - 2026 Isp: dre

sind wirklich Wiederholungs-Schleifen gemeint, die nicht durch eine vorbestimmte Zahl an
Durchlaufen beschrankt ist.

Konstanten und Variablen missen nicht vor der Benutzung deklariert (bekanntgegeben)
werden. Sie werden einfach benutzt. Echte Konstanten sind nicht im Konzept enthalten. Le-
diglich pi und e sind definiert.

Die Datentypen werden locker gehandhabt. Prozeduren kénnen mit unterschiedlichen Daten-
typen aufgerufen werden. Fir den Programmierer ist es eher lastig z.B. eine Addition fir
Ganzzahlen und fur (Gleit-)Kommazahlen zu schreiben. Einmal definiert funktioniert sie fur
beide Datentypen.

Einen exklusiven Datentyp flr Wahrheitswerte gibt es in Python nicht. Jedem Zahlen- oder
Zeichenketten-Wert wird ein Wahrheitswert zugeordnet. Damit entfallt die sonst notwendige
Um-Rechnung bzw. Um-Deutung.

Fur jede Anweisung wird in Python eine eigene Zeile benutzt. Dadurch werden Programme
Ubersichtlicher, aber leider auch (Seiten-)langer. Das fehlende Semikolon am Ende jeder
Programmier-Anweisung in PASCAL ist der Uberwiegende Anféangerfehler fur Programmier-
Starter.

Ausnahme-Behandlung
verteilte Objekte (CORBA, ILU, COM (Component-Object-Model))
Netz-Protokolle
kann mit Threads und Prozessen umgehen
funktionale Programmierung
Integration externer (C-)Bibliotheken
Python ist sehr flexibel.

Python vereint die Vorteile vieler Programmiersprachen in sich.
Python macht einfach SpaR.

Schwiéchen
gestandene Programmierer finden so manche gewohnte Programmier-Struktur nicht in Py-
thon wieder

wie gerade erwahnt machen notwendige Einrtickungen und Einbefehls-Zeilen den Quelltext
aufgebauscht und auch ein bisschen untbersichtlicher und vor allem lang. Da gehen andere
Empfehlungen Funktionen, Unterprogramme usw. nur eine Seite lang zu machen — ein we-
nig in die Leere.

teilweise Probleme mit Multithreading — also dem parallelen Abarbeiten von mehreren Pro-
grammen auf einem Mehrkern-Prozessor
so etwas gehdrt heute zur modernen Programmierung einfach dazu

relativ langsam im Vergleich zu anderen Skript- bzw. Interpreter-Sprachen

BK_SekI+l_Python_basic.docx -12 - (c,p) 2015 - 2026 Isp: dre

nicht ganz ubliche / moderne Programm-Strukturen, wenn objektorientiert programmiert wer-
den soll

Python verleitet zur und unterstitzt Trick-Programmierung.
Python ist in der Grundausstattung unhandlich.

Python ist relativ langsam.

Python hat so seine speziellen Strukturen.

BK_Sekl+II_Python_basic.docx -13- (c,p) 2015 - 2026 Isp: dre

orundlegende Python-Konzepte

Ein Python-Programm wird vom Interpreter

ausgefuhrt. Es kann dabei neben den inter- | Python-Programm

nen Funktionen auch auf solche aus ver- 1) 1t

schiedenen Bibliotheken zugreifen. Die Bib- Wm e

liotheken beinhalten dabei haufig gebrauchte

und allgemeine Funktionen. Man kann sich Python-Interpreter r— S
dsie Bibliotheken als Erweiterungen von Py- I—-—'::I—‘
thon vorstellen. Der Python-Interpreter greift i

— je nach auszufiihrenden Programm — auf | i |
verschiedene Teile (Schnittstellen, Funktio- H

nen) des Betriebssystem zuriick. Das Be- | Hardware |
triebssystem bedient dann wieder die Hard-

ware. Im Normalfall kapselt das Betriebssys- Python-Konzept

tem vom Programmiersystem ab. Dadurch Q: geand. aus 17, S. 33/

sind keine direkten Hardware-Manipula-

tionen mdglich.

Python-Programme sind dadurch aber universell auf verschiedenen Geraten (Hardware) und
Betriebssystemen lauffahig.

] [m]
Editor
[m[m]m]
Quelltext
Kgrane o
‘ Python-Interpreter |

i

| Betriebssystem |

it

| Hardware |

BK_SekI+l_Python_basic.docx -14 - (c,p) 2015 - 2026 Isp: dre

Zen of Python
Python 2.7.10 (default, May 29 2015, 22:02:48)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)]1 on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

BK_Sekl+II_Python_basic.docx -15- (c,p) 2015 - 2026 Isp: dre

2. Vorbereitung (Installation

Download der Version, die zum genutzten Rechner-Typ und / oder Betriebssystem passt.

Die PythonSoftware Foundation bietet die verschiedenen Versionen uber die Webseite
www.python.org an.

Unter Downloads finden Sie die klassischen Betriebssystem-Varianten und Versionen flr
Betriebssysteme, von denen die meisten Computer-Nutzer noch nie etwas gehort haben. Da
die meisten verfigbaren Versionen untereinander kompatibel sind, kénnen einmal entwickel-
te Programme auch auf vollig anderen Betriebssystemen genutzt werden. Und alle normalen
Python-Versionen sind frei und kostenlos.

Neben der originalen Pythen-Version gibt es auch andere Umsetzungen der Sprache. D.h.
die Systeme sprechen das gleiche Python, aber die Arbeits- und / oder Umsetzungs-
Programme sind in anderen Programmiersprachen geschrieben. Ein Beispiel dafir ist Jy-
thon. Es ist ein Python, dass auf einer JAVA-Umsetzung basiert. Dieses Programmier-
System stellen wir spater bei den IDE's ausfuhrlicher vor.

2.1. Python auf Windows-Rechnern

Als freie Programmiersprache einschliel3lich einer einfachen graphischen Benutzer-
Oberflache (IDE) ist Python fur jederman verfugbar.

Zu empfehlen ist immer eine lokale Installation auf dem Arbeitsrechner. Das ist der Standard.
So wird es nur wenige Probleme geben und die Arbeit geht flott.

Man bendtigt allerdings Administrator-Rechte. Wer diese nicht hat und auch nicht bekommen
kann, muss auf eine portable Version ausweichen. Hier wird dann nichts installiert.

Meist ist dann allerdings keine Zuordnung der Datei-Typen (.py, .pyc und .pyo) vorhanden.
Man muss dann die Dateien iber das "Datei" "Offnen" aufrufen. Ein Doppel-Klick auf die
betreffenden Dateien funktioniert nicht. In WinPython gibt es aber eine Funktion, die die feh-
lenden Zuordnungen realisiert. Eine echte Installation auf dem Arbeitsrechner ist das aber
nicht.

Den Download und einige Hinweise zum portablen Charakter von WinPython findet man
unter > https://winpython.qgithub.io/#portable. Weiter hinten (= 3.4.x. WinPython) gehen wir
dann auch noch auf einige Besonderheiten von WinPython ein.

Eine weitere — und wohl auch die ursprungliche — Realisierung eines portablen Python's ist
portablePython.com. Unter portablePython.com findet man leider nur noch (versteckt) eine
altere Version (= http://portablepython.com/wiki/Download/). Das Projekt wird wohl nicht
mehr fortgesetzt.

Die portablen Versionen kénnen separat oder in spezielle Meni-Systeme (PortableApps-
com, loStick, ...) auf einem USB-Stick kopiert werden. Mit dem USB-Stick kann man dann an
beliebigen Windows-Rechnern arbeiten und hat auch seine Daten immer mit dabei (natiirlich
nur, wenn man sie auch auf dem Stick speichert).

Bei SourceForge.net gibt es Seite mit einer sehr aktuellen Version eines Portablen Python's
(= https://sourceforge.net/projects/portable-python/). Die Version muss heruntergeladen und
entpackt werden. Anschlielend lasst sich der entpackte Ordner auf den lo-Stick oder einen
PortableApps-Stick kopieren. Das portable Apps-System erkennt die neuen Programme au-
tomatisch. Wer will, kann sie sich in die Kategorie "Entwicklung" verschieben.

Beim PStart-Menu des loStick's ist das nicht so einfach.

Bitte vorm Editieren die alte Datei (PStart.xml) zusatzlich als PStart.org kopieren. Dann
kann man diese spater wieder reaktivieren.

BK_SekI+l_Python_basic.docx -16 - (c,p) 2015 - 2026 Isp: dre

file:///D:/XK_INFO/BK_S.I_Info/www.python.org
https://winpython.github.io/%23portable
https://portablepython.com/
http://portablepython.com/wiki/Download/
https://sourceforge.net/
https://sourceforge.net/projects/portable-python/

Ins Menu habe ich nur den IDLE- und den PyScripter-Starter aufgenommen. Das sollte fur
schulische Zwecke reichen.

Auf > https://portablepython.com/wiki/Download/ gibt es ebenfalls eine Python-Distribution,
die sich fir den portablen Einsatz eignet. Besonders hervorzuhenem sind die vielen — schon
integrierten — Bibliotheken. Viele davon sind flr den erweiterten schulischen Einsatz sehr
wichtig. Ich denke dabei z.B. an NymPy (> 8.6.4. Modul / Bibliothek NumPy) und Matplotlib
(= 8.6.5. Modul / Bibliothek Matplotlib). Hier die Liste der integrierten Bibliotheken:

PyScripter
NymPy
SciPy
Matplotlib
PyWin32
NetworkX
Lxml
PySerial
PyODBC
PyQt
IPython
Pandas

BK_Sekl+II_Python_basic.docx -17 - (c,p) 2015 - 2026 Isp: dre

https://portablepython.com/wiki/Download/

2.2. Python auf Linux-Rechnern

praktisch eigentlich immer dabei
gehdort zur guten Ausstattung einer Linux-Distribution

2.3. Python auf dem Raspberry Pi

Standard-Programmiersprache im Raspberry Pi

also sofort nutzbar

vollstandige Implementierung

besonders interessant flir Steuerungs- und Sensorik-Aufgaben

da viele Schnittstellen relativ leicht zuganglich sind, von denen der Raspberry Pi auch sehr
viele bietet

desweiteren sind diverse Erganzungen (Zusatz-Boards, Sensoren, ...) verfigbar

weiter hinten spezielle Méglichkeiten (= 10.1. Steuerung der Hardware (RaspberryPi, Ardui-

no))

Auf dem Raspberry Pi gibt es in einigen Linux-Distributionen das Spiel "Minecraft" von
microsoft in einer kostenfreien Version. Diese Version lasst sich auch mittels Python pro-
grammieren. Einige Moglichkeiten stellen wir weiter hinten vor (-). Da die Python-
Programme praktisch recht einfach sind, bieten sich viele Mdglichkeiten fiir das Experimen-
tieren, Spielen und Spaf3-Haben.

Weiterhin gibt es auch eine Realisierung von Jython (Tigerdython -) fir den Raspberry Pi.

2.5. Python auf Android-Systemen

2.5.1. Pydroid3 IDE

frei nutzbar

typisch ist die etwas gewdhnungs-bedirftige Touch-Tastatur (zumindestens fir Programmie-
rer mit Real-Tastatur-Feeling)

Speichern - und spater auch das Offnen funktioniert tiber das Ordner-Symbol. Hier muss
man dann flr das Speichern einen geeigneten Platz suchen. Ich habe den "internen Spei-

BK_SekI+l_Python_basic.docx -18 - (c,p) 2015 - 2026 Isp: dre

cher" ("InternalStorage") und dort meinen "Dokumenten"-Ordner ("Documents") ausgewahlt
und hier einen "Python"-Ordner angelegt. Wenn man sich darin befindet, dann kann mittels
"Ordner benutzen" eine Quellcode-Datei angelegt werden.

Das Ausfihren funktioniert iber das Dreick-Symbol an der Status-Zeile unten. Es 6ffnet sich
die Python-Konsole und das Programm lauft ab.

Wer gleich auf der Python-Konsole arbeiten mdchte, kann das Uber das -MenU erledigen.
Dort gibt es in der Rubrik "Run" einen entsprechenden Punkt.

Fur das einfache Komprimieren des Ordners (oder einzelner Dateien) fir den Ver-
sand nutze ich ZAchiver von ZDevs. Dort muss man nur den passenden Ordner
auswahlen, langer auf ein Odner-Symbol driicken und dann aus dem Kontext-
Menu "Komprimieren zu *.zip" auswahlen und fertig.

2.6. Python auf dem MacOS

Python3IDE

bendtigt neue(ste) OS-Version

fur einfache Programmier-Versuche unterwegs ausreichend

hier soll auch noch mal auf die Besonderheiten der Mac-Tastatur hingewiesen werden

die zusatzlichen Graphik-Zeichen erhalt man Uber die [option]-Taste (statt [Alt Gr] von Stan-

dard-Tastaturen)

Installations-Anleitung:

neueste Version von der Python-Seite herunterladen (= https://www.python.org/downloads/)
die heruntergeladene .pkg-Datei 6ffnen

den Anweisungen folgen

Installation eines sehr guten Text-Editor's (Sublime Text)
herunterladen der aktuellen Version von (= https://www.sublimetext.com/3)
installieren ???

wenn die Text-Dateien ordnungsgemaf mit .py-Dateiendung versehen wird, dann kann das
Programm von der Konsole, aus dem Datei-Manager oder direkt in Sublime-Text Gber den
Meni-Eintrag "Build" gestartet werden

2.7. Python auf dem Taschenrechner

fur den Casio FX-CG50 — ein Taschenrechner — steht neuerdings auch eine Python-App zur
Verfugung

BK_Sekl+II_Python_basic.docx -19 - (c,p) 2015 - 2026 Isp: dre

https://www.python.org/downloads/
https://www.sublimetext.com/3

Umsetzung von MicroPython

da Grof- und Klein-Schreibung in Python unterscjhieden wird, muss viel in Kleinbuchstaben
geschrieben werden

ein langerfristige Umschaltung ist mit [SHIFT] [ALPHA] A <> a

(Standard wieder herstellen mit einem weiteren [ALPHA]

fur mathematische Aufgaben muss die Math-Bibliothek geladen werden
from math import *
ist im Katalog schon vordefiniert, Aufruf mit [SHIFT] 4

Auch fur einige Taschen- und CAS-Rechner von Texas Instruments steht ein aktuelles / ak-
tualisertes Betriebssystem mit Python zur Verfligung. Es handelt sich ebenfalls um ein
MicroPython.

auch fur die Steuerung des Tl-Innovator's und des TI-Rover benutzbar

extra Abschnitt, weil er als eher Microcontroller ein deutlich anderes Leistungs-Spektrum hat
(= 10.2.4. TI-Innovator)

es konnen TI-Sensoren und -Aktoren, Grove-Sensoren und —Aktoren sowie auch andere
elektronische Schaltungen (z.B.: via Steckbrett) angeschlossen werden

in Frankreich ist Python verpflichtend im Unterricht, deshalb hier auch extra Material verfiig-
bar
- TI-83 Premium CE Edition Python

https://online.flipbuilder.com/weraljstv/ (Vorschau: Buchlein zur Python-Programmierung im
naturwissenschaftlichen Unterricht (franz.))

http://online.flipbuilder.com/weraltvxt/ (Vorschau: Buchlein zur Python-Programmierung mit
TI-83 (franz.))

2.8. Python auf Microcontrollern

Was vor wenigen Jahren undenkbar war, ist mit der superschnellen Entwicklung von
Microcontrollern Wirklichkeit geworden. Python lasst sich zur einfachen Programmierung
dieser Gerate-Klasse verwenden. Voraussetzung ist allerdigs ausreichend RAM auf den
Bausteinen. Hier liegt meist das Problem. Die Dinger haben einfach zu wenig. Deshalb ging
es mit Arduino und Co auch noch nicht. Aber mit der breiten Verfligbarkeit und den unge-
mein gunstigen Preisen von neuen Microcontrollern steht dem Einsatz von Python - aller-
dings in einer abgespeckten Version — nicht mehr viel im Wege.

Da bei MicroPython (uPython) doch einiges sehr speziell ist, besprechen wir den Einsatz
auch erst weiter hinten als extra Kapitel (= 10.6. MicroPython fiir Microcontroller). Einsteiger
sollten sich erst mit dem "normalen" Python auseinandersetzen und dann spater auf diesen
modernen Zug (loT, Automatisierung, ...) aufspringen.

BK_SekI+l_Python_basic.docx -20 - (c,p) 2015 - 2026 Isp: dre

https://online.flipbuilder.com/wera/jstv/
http://online.flipbuilder.com/wera/tvxt/

2.9. Python online (ausprobieren)

- https://repl.it/

- http://pythonfiddle.com/

repl.i

- https://www.programiz.com/python-programming/online-compiler/

?7??
- http://pythontutor.com/

BK_Sekl+II_Python_basic.docx -21- (c,p) 2015 - 2026 Isp: dre

https://repl.it/
http://pythonfiddle.com/
https://www.programiz.com/python-programming/online-compiler/
http://pythontutor.com/

3. Zugriff auf das Python-System

3.1. die Python-Shell

Aufruf Gber das "Start"-Menu oder Uber eine "Eingabeaufforderung”
das Startmend ist ev. schnell durchsucht und der passende MenUpunkt gefunden.

Eine Eingabeaufforderung erhalt man ebenfalls direkt Uber einen entsprechenden Menu-
Eintrag im "Start"-MenU bzw. — je nach Windows-Version tUber "Ausfuhren ..." oder "Suchen
..." im Start-Men(. Dort gibt man "cmd" ein und bestatigt mit [Enter]. Die Freunde der altbe-
warten Tastatur-Kiirzel benutzen die Kombination[#]+[R].

[z C:\Windows \system32 \cmd.exe - python
Microzoft Windows [Uerszion 6.1.76611
Copyright <c> 2009 Microszoft Corporation. Alle Rechte vorbehalten.

C:sUserssdrews >python
1 <w3.5.1:37aB%cee576%?,. Dec 6 2015, B1:38:48) [MEC v.1968 32 hit <In

Tuype "help". "copyright", "credits" or "license" for more information.
e

der Phyton-Interprter in einer Eingabeaufforderung von Windows

Die Eingabeaufforderung ist quasi eine Rudiment aus alten DOS-Zeiten. Damals mussten
alle Befehle oder Programm uber die sogenannte Befehlszeile — oder auch Prompt genannt
— gestartet werden. Die Ausgaben der gestarteten Programme sahen meist nicht besser aus.
Der Start-Befehl fur den Python-Interpreter lautet "python".

Das Python-System ist nun im klassischen Kommandozeilen-Modus (CLI .. command line;
Command Line Interpreter) gestartet. Auch wenn wir ein typisches Windows-fester sehen, es
handelt sich um ein DOS-ahnliches Konsolen-Programm ohne eigene Fenster-Funktionen.
Das Python-System meldet sich mit einer kurzen Versions-Anzeige und einem eigenem
Prompt. Diese besteht aus drei "GroRer als"-Zeichen(">>>"). Jede Eingabe bzw. die fertige
Befehlszeile muss mit [Enter] zur Ausfiihrung gebracht werden. Fehlende Angaben oder feh-
lerhaftes Schreiben quittiert die Eingabeaufforderung mit einer Fehlermeldung. Naturlich
kann auch ein nicht gewollter Befehl ausgefuhrt werden. Die Befehle sind sehr machtig. Also
vorsicht und lieber einmal genauer prifen, was man dort eingetippt hat. Auf der Ebene der
Eingabeaufforderung gibt es kein "Rlckgangig" oder einen "Papierkorb". Da Iasst sich sich
nichts riickgangig machen oder wieder hervorzaubern!

Bevor wir richtig durchstarten noch einige Bemerkungen zum Verlassen bzw. Beenden der
Shell. Zum Einen steht uns eine Funktion daftr zur Verfligung. Hinter dem Prompt geben wir
einfach exit() ein und die Shell wird nach dem obligatorischen [Enter] geschlossen. Auch ein

BK_SekI+l_Python_basic.docx -22 - (c,p) 2015 - 2026 Isp: dre

quit() fihrt zum gleichen Ziel. Alternativ kann man die Tasten-Kombination [Strg] + [Z]
(oder [Strg] + [Q] oder auch, wie bei jedem Fenster [Alt] + [F4]) benutzen.

Vergisst man das Klammerpaar hinter den Befehlen exit bzw. quit, dann erhalt man den
freundlichen Hinweis, wie die Shell bzw. IDLE ordnungsgemall geschlossen wird. Danach
befindet man sich wieder auf der Konsolen-Ebene (Eingabeaufforderung) von Windows. Man
erkennt dieses am einfachen "GroRer als"-Zeichen - dem Standard-Prompt der Eingabeauf-
forderung.

Auf der Konsolen-Ebene lassen sich kleine Skripte abarbeiten. Jeder Befehl, jede Zeile bzw.
jeder Befehls-Block muss allerdings einzeln eingegeben werden. Die Befehls-Eingaben ei-
nes Skriptes lassen sich auch nicht abspeichern. D.h. bei einer erneuten Anwendung mus-
sen wieder alle Anweisungen erneut eingegeben werden.

Es kommt also zu einem standigen Wechsel zwischen Eingabe und Ausgabe. Der Nutzer
interagiert mit dem System. Wir sprechen auch vom interaktiven Modus.

3.1.1. Eingaben an der Shell

Die Shell ist quasi die Schnittstelle, um Befehle direkt an den Computer abzugeben. Die An-
weisungen werden in einer hdheren Programmiersprache — hier eben Python — formuliert
und eingegeben. Die Shell ibernimmt sie und tbergibt sie dem Ubersetzer, damit dieser sie
in Maschinen-Code — also reine Nullen und Einsen — umwandelt. Die Nullen und Einsen sind
die einzigen Arbeits-Anweisungen, die eine Computer versteht. Geht irgendetwas bei der
Eingabe oder beim Ubersetzen schief, dann erhalten wir eine Fehlermeldung. In dem Fall,
dass alles ok ist, erledigt der Computer die befohlene Aufgabe — zumindestens so wie er sie
"verstanden hat".

3.1.2. IDLE als Python-Konsole

Statt der Windows-Eingabeaufforderung kann auch gleich das Programm IDLE benutzt wer-
den. Es wird mit Python ausgeliefert und installiert. Es ist zumindestens erst einmal auch
eine Konsole.

Der grof3e Vorteil von IDLE ist, dass wir spater von hier schnell in die Programmier-Ebene
hineingelangen. Die brauchen wir, um lange Anweisungs-Sequenzen abzuspeichern. IDLE
ist dann auch gleich nocht ein Programm-Starter. Damit kdnnen wir gespeicherte Anwei-
sungs-Sequenzen starten / laufen lassen. Bei IDLE handelt es sich um also um einen sehr
einfachen Programm-Editor und einen Programm-Starter.

Echte Viel-Programmierer nutzen spezielle Oberflachen (GUI's - 3.4. Nutzung anderer Be-
nutzer-Oberflachen), die neben den Editor- und Start-Funktionen noch spezielle Unterstiit-
zungen anbieten. Fir Programm-Einsteiger sind sie aber erst einmal nicht notwendig.

BK_Sekl+II_Python_basic.docx -23- (c,p) 2015 - 2026 Isp: dre

Aufoaben:
1. Starten Sie cine Python-Shell (z.B. IDLE)!

2. Lassen Sie sich die folgenden Ausdriicke berechnen? Wird eigentlich mit
den in der Mathemalik idiblichen Vorrangregeln gearbeitet? Was bedeuten

diese Zeichen?: ~ /. , /) R

a) 4 * 12 b) 16 / 8

c) 34 + 21 - 54 * (10 + 5) d) 10 +2 * 10 + 5

e) 12 /5 fy 5/2/3

g) 12 * 0.25 hy 12 * 1,5

) 12 // 5 j) 2 **3

k) 120/4*10/5/2) 20 * 0.5 * (((13 - 3) + 10) * 2)
m) 3**3+43%%4-3%x2 n) 20 * 0.5 * {[(13 - 3) + 10] * 2}

3. Wenn sich i) und j) — oder auch andere Teilaufgaben — nicht so einfach fiir
Sie erschliefen, dann varviieren Sie einfach die Zahlen in kleinen Schritfen!

4. Versuchen Sie die Aufgabe k) mit Leerzeichen zwischen den Zahlen und
Operaloren aus! Welches Ergebnis erhallten Sie nun? Welche Variante emp-
finden Sie fiiv besser?

5. Versuchen Sie zu erklaven, warum 1) und n) — obwohl sie doch scheinbar
mathemalisch gleichwertig sind — zu unferschiedlichen Ergebnissen / Ausga-
ben fiihren! Welche Schlussfolgerung muss man hier fiiv die weilere Arvbeit
mil Python zichen?

BK_SekI+l_Python_basic.docx -24 - (c,p) 2015 - 2026 Isp: dre

3.1.2. fortgeschrittene Mathematik

Verfligbarmachen fir die Verwendung in der Konsole bzw. im selbstgeschriebenem Pro-

gramm

from math import *
import math

import math as M

from math import sqrt

from math import pi
from math import pi as PIEH

alle Funktionen aus math importieren

alle Funktionen aus math importieren

die Funktionen kdnnen nur mit vorgesetztem Modulnamen
benutzt werden - math.sqrt(...)

alle Funktionen aus math werden importiert und dem Namen
M zugeordnet > Aufruf Gber M.sqgrt(...) mdglich

nur die Funktion sqrt (Quadrat-Wurzel) importieren
die Funktion kann unter dem Namen direkt benutzt werden

nur die Konstante aus dem Modul math importieren
nur die Konstante aus dem Modul math importieren und
sie unter dem Namen PIEH zur Verfuigung stellen

help(math) bzw. help(M), wenn ein Import unter einem anderen Namen erfolgt (hier: M)
um sich z:B. die Beschreibung / Hilfe zu den Funktionen und Definitionen (hier: e und =) an-

zusehen

Aufoaben:

1. Finden Sie mit der Hilfe zum Modul math heraus, wie die Konstanlen e und
pi (fiir) genau definiert sind!
2. Was macht z.B. die Funktion gcd(...)?

BK_Sekl+ll_Python_basic.docx

-25- (c,p) 2015 - 2026 Isp: dre

3.1.3. mehrzeilige Eingaben an der Shell

Im Augenblick sind unsere Eingaben an der Shell noch Uberschaubar. Sollen aber auf dieser
Ebene komplexere Dinge gemacht werden, dann kommt man um mehrzeilige Eingaben nicht
herum.

Geben Sie das nebenstehende Beispiel — >>> for i in range(10):
wie angezeigt — ein! Achten Sie auf den i

Doppelpunkt am Ende der ersten Zeile! L

Jede Zeile wird wie ublich mit [ENTER]
abgeschlossen.

Die Einrtickungen fir die 2. und 3. Zeile werden dann automatisch vorgenommen. Geben
Sie dann einmal zusatzlich ein [ENTER] ein, dann folgt eine mehrzeilige Aufgabe.

Alle drei Zeilen werden jetzt in einem Komplex abgearbeitet. Was auch immer das bedeutet,
auch sehr komplexe Aufgaben sind schon ander Shell realisierbar. Deshalb lieben viele Ad-
ministratoren Python auch so — es ist einfach und effektiv.

Die Farbigkeit der einzelnen Zeilen-Teile erklaren wir spater (=). Die besprochene Struktur
setzen wir ab und zu mit hellgelben Hintergrund, um die entscheidende Stelle schneller zu
finden.

Sehr lange Zeilen koénnen durch einen >>> print("langer Text"+\
Backslash (\) — den umgekehrten Schrag- "weiterer langer Text")
strich auf der R-Taste — quasi abgebrochen
und auf der nachsten Zeile fortgesetzt wer-
den. Es wird wieder automatisch eine Ein-
ruckung zur Kennzeichnung der Zusam-
mengehdrigkeit gemacht.

Bei Texten sollte man immer die Text-Begrenzer mit schreiben, ansonsten muss mit zusatz-
lichen Leerzeichen durch den Zeilenbruch gerechnet werden.

Der Backslash kann entfallen, wenn man Ausdriicke benutzt, die Klammern enthalten. Dann
mussen die Zeilen allerdings auch mit [©#+] + [ENTER] umgebrochen werden (weicher Zei-
lenumbruch). Die endglltige Bestatigung und Ausfuhrung erfolgt dann erst nach einem ech-
ten [ENTER].

In echten Quelltexten wird diese Notation

gerne bei Funktionen mit komplizierten oder y=testfunktion (

vielen Argumenten benutzt. Man schreibt 0, # Anfangswert
jedes Argument in eine neue Zeile und 100, # Endwert
kann diese dann auch schén kommentie- 0.5) # Schrittweite
ren.

Aufoaben:

1. Probieren Sie das obige Beispiel in der Konsole aus! Konnen Sie die Aus-
gaben erklaren?

2. Wandeln Sie das Miniprogramm so ab, dass die Variable d benutzt wird und
die 2. eingeriicklte Zeile: d*'d" laufet! Was wird dieses Programm machen?
Probieren Sie es aus?

2
2.

BK_Sekl+l_Python_basic.docx - 26 - (c,p) 2015 - 2026 Isp: dre

3.1.4. mehrere Befehle in eine Zeile

Die Notierung mehrerer Befehle in eine Zeile ist eigentlich nicht Python-like. Jeder Befehl
bzw. jede Anweisung sollte in einer extra Zeile stehen.

U.U. werden Quell-Texte so besonders lang oder unubersichtlich. Oftmals sind die Anwei-
sungen so zusammengehdrend, dass sie schon wie eine Anweisung wirken.

In solchen Fallen kann man Anweisun- >>> print ("Hallo ");print ("Welt!")
gen eines Blocks / einer Gruppe auch
Semikolon-getrennt (;) notieren.

Anweisungen, die auf Doppelpunkte folgen — also z.B. nach Einleitungen von Verzweigun-
gen oder Schleifen — kdnnen ebenfalls in der gleichen Zeile weitergeschrieben werden.

Bei Schleifen oder Verzweigungen die >>>

spater erweitert werden sollen oder
konnten, sollte man diese Notation
unbedingt vermeiden.

Aufoaben:

1. Welche Ausgabe erwarten Sie beim obigen Einzeiler (2x print)? Probieren
Sie den Einzeiler aus! Wenn Ihre Voraussage nicht eingelvoffen ist, evkliren
Sie die veranderte Ausgabe!

2. Wandeln Sie das unfen angegebene Programm in den drei Abschnilten in
Einzeiler fiir die Konsole um und lassen Sie diese Zeile dann ausfiihren!

1 a="#"
print (a)
2 for i in range(5,10):
print (i)
a=a+"*"
print (a)
3 print (i)
print (a)
print (ata)

BK_Sekl+II_Python_basic.docx - 27 - (c,p) 2015 - 2026 Isp: dre

3.1.2.1. Mathematik fiir Informatiker — bindres Rechnen

Na gut, eigentlich ist die Uberschrift etwas hochgestapelt, aber irgendwie ist doch wieder
passend.

Im Computer werden die Zahlen im Binar-Code abgelegt. Dies gilt ganz besonders fir die
ganzen Zahlen. In einer ersten Uberlegung nehmen wir uns nur die natirlichen Zahlen vor,
und tun so, als wirde es keine negativen geben. In Python gibt es keinen direkt dazu pas-
senden Datentyp. In PASCAL ist es z.B. der Datentyp Byte, der Zahlen von 0 bis 255 dar-
stellen kann. Fir etwas gréliere Zahlen (0 bis 65535) gibt es dann noch den Typ Word.

In diesen Datentypen
werden den 8 Bits Binar-
Werte zugeordnet, prak-
tisch aquivalent zum
dezimalen Zahlensys-
tem.

An jeder Bit-Stelle kann
nun das Bit gesetzt sein — also eine 1 beinhalten — oder eben 0 sein.

Die resultierende Zahl (im Dezimal-System) ist dann die Summe der Bit-gesetzten Positi-
onswerte.

Ahnlich, wie im Dezimal-

Basis: 2 (binares, duales Zahlen-System)

Position 7 6 5 4 3 2 11 0
Potenz | 27| 28| 25| 24| 23| 22| 2| 2°
Positions-Wert | 128 | 64 | 32| 16 8 4 21 1

System, wo Multiplikati- Beispiel | 1] o] o] 1] 1] o] 1] 1]
onen und Divisionen mit

10 sehr einfach sind, so Potenz | 27| 26| 25| 24| 23| 22| 21| 20
sind im Binar-System Positions-Wert | 128 | 64| 32| 16| 8| 4| 2| 1
genau diese Berech-

nungen mit der 2 sehr Anwendung [128] 0] o] 16] 8] 0] 2] 1]
schnell realisierbar.

Dazu verwendet man Beispiel =155

sogenannte Schiebe-

Befehle.

Diese Befehle beziehen sich auch direkte Bit-Verschiebungen in den sogenannten Registern
der CPU, in der die Zahlen zur Verarbeitung zwischengespeichert werden. Nehmen wir uns
ein sehr einfaches Beispiel — die Berechnungen mit der Zahl 16.

Durch eine Links-

Verschiebung 6= o] o] o] 1] o] o] o] 0]
kommt es prak-

tisch zur Verdopp- Links-Verschiebung | 0] 0] 1] o] 0] o] 0] 0]
lung (Multiplikation

mit 2) der codier- 16*2= =32

ten Zahl.

Neue Bits — hier also auf der rechten Seite — werden mit 0 gefllt.

Nimmt man dage-

gen eine Rechts- 6= o] o] o] 1] o] o] o] 0]
Verschiebung der

Bits vor, dann Rechts-Verschiebung| 0] 0] 0] o] 1] o] o] 0]
kommt es zur Divi-

sion durch 2 (Hal- 16/2= =8

bierung).

Hier werden auf der linken Seite 0-Bits aufgefullt.

Die Schiebe-Befehle sind direkt im Maschinen-Programm (Mikro-Code) der CPU realisiert
und deshalb besonders bei sehr groRen Zahlen mit vielen Bits sehr effektiv. Typische Regis-
terbreiten heutiger CPU's liegen bei 32, 64 und 128 Bit.

BK_SekI+l_Python_basic.docx -28 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Codieren Sie die dezimale Zahl 4952 im Binar-System. Welche Art von
CPU (8, 16, 32 od. 64 Bil Registerbreile) ware oplimal?
2. Fiihven Sie 3 Rechts-Verschiebungen durch! Welcher Mulliplikation eni-
spricht dies? Priifen Sie durch Riickcodieren derv Binarzahl in das Dezimal-
System, ob die Berechnung exakt ist!
3. Fiihren Sie mit der Zahl 4952 nun 2 Links-Verschiebungen durch! Priifen
Sie auch hier auf Exaktheit der Berechnung! Evrklaren Sie das auftrefende

Phanomen! Um welche Arvt Division handell es sich also praklisch?

Nun zur Realisierung in Python. Schiebe-Operationen werden mit doppelten Kleiner- bzw.
GroRer-Zeichen (<< bzw. >>) umgesetzt. Hinter den Winkel-Zeichen folgt die Anzahl der

Verschiebungen.

Somit ware eine Multiplikation mit Vielfachen von 2 z.B. so mdglich:

>>> 864<<4
13824
>>>

bedeutet: 864 * (2*2*2* 2) =864 * 16

Die dreifache Teilung durch 2 erfolgt dann z.B. so:

>>> 864>>3
108
>>>

In den Python 3-Versionen
werden beliebig groRe ganze
Zahlen berechnet.

In <eren Versionen muss
dies nicht zwangslaufig auch
so erfolgen. Vielfach sind noch
Varianten mit der klassischen
Umsetzung des Minus-Vorzei-
chens im Umlauf. Dabei wir
der hdchste Bit-Wert nicht als
entsprechender Wert genutzt,
sondern als Kennzeichnung
des negativen Vorzeichens.
Bei Verwendung von Schiebe-
Befehlen und auch anderen
Rechnungen mit verschiede-
nen Zahlen sollte man deshalb
auch immer die Typ-Grenzen
mit austesten.

Zu beachten ist bei der ge-
nauen Betrachtung der Werte-
Belegung, das die Nicht-
Vorzeichen-Stellen (Magnitude)
nicht die Zahl darstellen, son-
dern deren 2er-Komplement —
also die Bit-Vertauschung!

Solche Zahlen-Kodierungen stellen also einen in sich geschlossenen Kreis dar!

oder: 864 *2*2*2*2

bedeutet: 864/ (2*2*2) =864 * 16

oder:864/2/2/2

Zahlentyp shortint (aus PASCAL)

Position 7 6 © 4 8 2 1 0
Potenz | 27| 26] 25| 24| 23] 22| 2] 20
= 0 0 0 0 0 0 0 0

= 0 0 0 0 0 0 0 1

= 0 0 0 0 0 0 1 0

= 0 0 0 0 0 0 1 1

= 0 0 0 0 0 1 0 0

= 0 0 0 0 0 1 0 1

= 0 0 0 0 0 1 1 0

= 0 0 0 0 0 1 1 1

125 = 0 0 0 0 0 0 0 1
126 = 0 1 1 1 1 1 1 0
127 = 0 1 1 1 1 1 1 1
-127 = 1 0 0 0 0 0 0 0
-126 = 1 0 0 0 0 0 0 1
-125 = 1 0 0 0 0 0 1 0
-124 = 1 0 0 0 0 0 1 1
3= 1 1 1 1 1 1 0 0
2= 1 1 1 0 1 1 0 1
-1= 1 1 1 1 1 1 1 0
0= 0 0 0 0 0 0 0 0

BK_Sekl+ll_Python_basic.docx

-29-

(c,p) 2015 - 2026 Isp: dre

Besonders beim Umsetzen von Python-Programmen in andere Programmiersprachen, muss
die Ganzzahlen-Darstellung in der Zielsprache beachtet werden! Die meisten Programmier-
sprachen benutzen begrenzte Zahlen-Typen.

Aufoaben:

1. Uberlegen Sie sich, welche FErgebnisse bei den folgenden Berechnungen zu
erwarten sind, wenn der Dalenlyp shortint verwendel wird!

a) 2+4 b) 18+33 c) 125+2
d) 120 +13 e) 7-2 fy 78-32
g) 126-2 h)y -124-2) -124-5
2. Erkunden Sie, was die Operaloren &&, || und ! bewirken! Arbeiten Sie

dazu mitl kleinen Zahlen und stellen Sie sich die Fingaben und Ausgaben in
Ihren Milschriffen binar (untereinander) dar! (&& und || sind zweistellige,
innere Operaloren; ! ist ein einstelliger Prafix-Operalor)

3. Probieren Sie die Operatoren mil selbslgewahllen Zahlen aus und skellen
Sie diese Beispiele mil Evklarung(en) dem Kurs vor!
(binare / duale Zahlen lassen sich in der folgenden Form eingeben:
Obdualziffern)

BK_SekI+l_Python_basic.docx -30- (c,p) 2015 - 2026 Isp: dre

3.1.3. Eingaben und Daten merken - Variablen

Bestimmte Zahlen sollen in unseren Python-Skripten vielleicht haufiger verwendetet werden,
aber sich auch von Skript-Aufruf zu Skript-Aufruf andern.

Fir solche Zwecke kennen wir in der Mathematik die Variablen.

Die berihmtesten sind sicher x und y. Man
versteht darunter beschrifte "Behalter" oder
"Container" in denen etwas aufbewahrt wird. In
der Informatik heilen Variablen exakt Be-
zeichner. Mitlerweile versteht man Variablen
auch als Objekte.

Man kann sich Variablen auch gut als beschrif-
tete Schubladen in einem Apotheker-Schrank
vorstellen. In den Schubladen wird etwas auf-
bewahrt — wir sagen es wird gespeichert.

Im Allgemeinen kdnnen und werden sich die
Inhalte der Schubladen sténdig verandern.
Natdrlich kann aber auch nichts oder irgend- o g
welcher Mll in den Schubladen sein. Apotheker-Schrk
Wichtig ist, dass wir es mit zwei Dingen zu tun Q: wwwflickr.com (Leanne McCauley)
haben, einmal den beschrifteten Schubladen

mit irgendeinem Namen und zum zweiten mit

dem Inhalt der Schublade.

Naturlich gibt es Variablen auch in Python. Jeder Variable muss zuerst einmal ein Name
zugeordnet werden. Anders als in verschiedenen anderen Programmiersprachen braucht
man die Variablen vorher zu deklarieren (definieren). D.h. man muss nicht vorher sagen bzw.
zuerst festlegen, was man in der Variable abspeichern mdchte (z.B. Zahlen od. Texte) und wie
grol3 der Inhalt werden kénnte (z.B. nur ein Buchstabe oder eine Zahl mit 30 Stellen). Man
benutzt die Variablen in Python sofort.

Als Namen darf man in Python alle Namen verwenden, die mit einem Buchstaben oder ei-
nem Unterstrich beginnen. Es kdnnen zwar einige wenige Sonderzeichen eingebaut werden.
Das sollte man aber genauso vermeiden, wie die deutschen Umlaute und das "R".
Ublicherweise sollte man passende Namen verwenden. Besonders Anfanger neigen dazu
immer die typischen Variablen-Namen — sowas wie x, y, a, b und i — zu verwenden. Fir ein-
fache, kleine und Ubersichtliche Programme mit klarem mathematischen Konstrukten ist das
auch ok. Ansonsten sollte man sich gleich von Anfang an angewdhnen, aussagekraftige
Namen zu benutzen. In der Programmierung nennen wir solche aussagekraftigen Variablen-
Namen sprechende Bezeichner. Spater - in komplizierteren Programmen — wird man das
zu schéatzen wissen. Erst spater — in gréReren Programmen — mit solchen ausgeschriebenen
Variablen-Namen — zu beginnen, ist mit groRen Umstellungs-Problemen verbunden.
Schlechte Angewohnheiten wird man nicht so schnell wieder los.

Ein weiterer wichtiger Grund fur aussagekraftige Variablen-

Namen ist die Notwendigkeit, auch spater mal das eigene

Programm oder ein fremdes Programm zu pflegen, zu er-

weitern, zu dokumentieren oder zu berichtigen. Das Alles

gehort heute zu den wichtigen Tatigkeiten eines Program-
mierers.Python reserviert fir jede angegebene Variable ei-

nen Stlick vom Speicher. In diesen wird der zugewiesene

Wert eingespeichert. Die verschiedenen Arten von Variablen

— also solche fur Texte und Zahlen werden getrennt vonei- :'Iam-mr)
nander gespeichert. Das muss uns aber nicht interessieren. '
Flr unsere Zwecke reicht es, sich den Speicher als riesigen
Stapel von Schubladen vorzustellen. Jede Schublade (Spei-
cherzelle) hat eine einzigartige, fortlaufende Adresse. Die Spelcherinhalt
Schubladen sind quasi durchnummeriert.

Adresse

1043

1041

10440

1038

{111

1038

Speicherzelle
1037

1]

1035

BK_Sekl+II_Python_basic.docx -31- (c,p) 2015 - 2026 Isp: dre

Python gibt bestimmten Speicherzellen nun den internen Variablen-Namen und bei der
Wertzuweisung mit "=" wird festgelegt, welche Zahl oder welcher Text in die Schublade ge-
tan werden soll (Initialisierung). Besser spricht man statt "ist gleich" bei einer Wertzuweisung
von "ergibt sich aus"! Das trifft den Kern genauer und spater werden wir sehen, dass es sich

nicht wirklich um eine "ist gleich"-Aktion handelt.

(Praktisch kdnnen auch mehrere Zellen (Schubldden) zusammen fiir eine (groRe) Zahl oder langere Texte be-
nutzt werden. Das andert aber nichts am Prinzip. Spater werden wir uns dann auch mal anschauen, wieviel Spei-

cher fir bestimmte Daten genutzt werden.)

Schauen wir uns kurz ein paar Beispiele an, um das Verfahren der Variablen-Erzeugung und

der Wert-Abspeicherung zu verstehen.

Als Beispiel wollen wir der Variable a den Wert 74 zu-
weisen.

Der Python-Ubersetzer priift bei einer Eingabe a = 74,
ob es schon eine Speicherzelle mit dem Namen a gibt.
Falls ja, dann wird naturlich diese benutzt. In unserem
Fall gibt es sie noch nicht.

Python legt nun eine Speicherzelle — irgenwo im Spei-
cher — mit dem Namen a an. Diesen Teil nennen wir
Deklaration. In vielen Programmiersprachen muss die
Deklaration extra und vor der Benutzung erfolgen.
Unser System ist hier flexibler.

Nun wird der zweite Teil der Anweisung ausgefuhrt. In
die Speicherzelle a wird der Wert 74 eingespeichert.
Man spricht auch von einer Zuweisung.

Im Fall des Hauptspeichers (RAM's) bleibt dieser Inhalt
nun solange erhalten, wie der Speicher mit Strom ver-
sorgt wird oder in die Speicherzelle ein neuer Wert ge-
schrieben wird.

Vom Python-System kommt kein Feedback zuruck,
wenn man mal davon absieht, dass keine Fehlermel-
dung auch schon ein (eben positves) Feedback ist.

Mit einem Aufruf der Variable zeigt Python uns den
eingespeicherten Wert an.

Dazu wird die Speicherzelle einfach einmal ausgele-
sen. Der Wert in der Zelle bleibt beim Lesen erhalten.
Diese Grundfunktionen missen wir uns vergegenwarti-
gen, wenn wir spater uber das Arbeiten mit Variablen
reden. Mehr als das Anlegen, Belegen und Auslesen

einer Variable ist nicht drin.

Unter bestimmten Bedingungen sorgt das Python-System dafir,
dass nicht mehr gebrauchte Variablen aus dem Speicher entfernt
werden. Praktisch wird auch nur der Name aus der Namensliste
gestrichen, so dass hiertber kein Zugriff mehr erfolgen kann. Der
Inhalt der Speicherzelle bleibt erhalten, ist aber nicht mehr direkt
zuganglich.

>>> a = 74
>>>
| ———
Anweisung:

deklarieren

Python-
Anwelsung:
a="T4

.'I I 1035

avei— M| =
speichern

.'I I 1035
>>> a
74
>>>
e————
Python-
Anweisung: W] =
a
lesen

C I | R

Rufen wir einen Vriablen-

X >>> x
Namen auf, der noch nicht vom

Traceback (most recent call last):

Python-System angelegt wurde, File "<pyshell#13>", line 1, in <module>
dann bekommen wir eine Feh- x
ler-Meldung. Diese sagt aus, NameError: name is not defined

dass "X" noch nicht definiert ist. >>>

Die Variable x wurde noch nicht

ordnungsgemald initialisiert /

deklariert.

Mit der nebenstehenden Anweisung wird die Variable x
im Speicher angelegt und ihr der Wert 0 zugewiesen.
Solcheine initiale Belegung (Anfangsbelegung) sollte
man sich fur jede Variable angewohnen.

>>> x =
>>>

0

BK_Sekl+Il_Python_basic.docx - 32 -

(c,p) 2015 - 2026 Isp: dre

Der genaue Ort der Speicherzelle x ist nicht wirklich
vorhersehbar. Meist erfolgt die Speicherung direkt ne- Python- .

ben den alteren Variablen. Anweisung: "|I|
Nun lasst sich x auch benutzen, also auslesen oder il ":l e

1038

neu belegen. deklarieren @ 4 toa7

Das soll nun auch getan werden. Die Variable x soll + guweisen
den gleichen Wert bekommen, wie die Variable a.

038

Die Anweisung besteht aus zwei Teilen. Zum Ersten = = = &

aus dem Auselesen von a und dem folgenden Einspei- S>>

chernin x.

Viele Anweisungen werden zuerst auf der rechten Seite

vom Zuweisungs-Zeichen geklart und dann die eigent- ,':;“,,?,g{;'u,,g: 1l o
liche Zuweisung erledigt. x=a

Eine einmal angelegt Variable kann innerhalb einer Fumersen 105

Shell-Sitzung oder innerhalb eines Programmes an
beliebiger Stelle wiederbenutzt werden. Dabei kann
man den Wert andern, indem einfach eine neue Zuwei-

sung gemacht wird. Naturlich lasst sich der Wert jeder l-|—|| Joss
Variable so oft, wie gewtlinscht abrufen.
Bis zur nachsten Zuweisung bleibt der Wert erhalten. >>> aaa=25
Die Benutzung der Variablen fir Berechnungen veran- >>> aaa
dert den Wert der Variable nicht. 22

>>> x

74

>>> x=100
In Python kdnnen die "Schubladen" unterschiedlich S>> x
grol3 sein. Darum kimmert sich Python selbst. Zahlen 100
brauchen meist weniger Platz als Texte. Jeder Buch- >>> x+x
stabe bzw. jedes Zeichen in einem Text bendtigt z.B. 200
mindestens 1 Byte (in modernen Rechnern auch schnell 2 >>> x
Byte). Der Speicher-Bedarf fiir Zahlen wird spater the- 100
matisiert (= 8.2 Datentypen und Typumwandlungen).

Bei grofien Daten-Mengen muss der Speicher-Bedarf beachtet werden. Ansonsten kann es
zu Programm-Abbrichen kommen.

3.1.3.1. besondere Variablen und spezielle Moglichkeiten fiir Variablen in Python

_-Variable
im interaktiven Modus verflgbar, beinhaltet sie den letzten ausgegebenen Ausdruck

mehrere Variablen kénnen gleichzeitig einen Wert erhalten
a=b=c=7

Anzeige aktuell benutzter Variablen-Namen
print(dir())

X,y = pos()

einige Funktionen liefern zwei Informationen, typisch ist das bei Funktion, die Koordinaten
als Rickgabewerte liefern

hier ist es so, dass sowohl x als auch y einen eigenen Wert bekommt

BK_Sekl+II_Python_basic.docx -33- (c,p) 2015 - 2026 Isp: dre

solche Komma-getrennte Variablen bzw. Werte werden Tupel genannt, dazu spater mehr (>
9.1. Tupel)

7

Aufoaben:

1. Priifen Sie (quasi wie ein Python-System), ob die nachfolgenden Ausdriicke
als Variablen-Namen zugelassen waren! Sollfe dieses nicht so sein, dann er-
kliren Sie, warum der Ausdruck kein giiltiger Varviablen-Name ist!

a) x b) _Input c) 4.Zahl
d) Eingabe e) eingabe f) __Eingabe
g X1 h) Text1 i) Tatigkeit
i) Anna Maria k) mAXx) E
m) =X n) x-3 o) C.?
2. Lassen Sie nun Python (auf der Konsolenebene / Shell) >>> X=5.5

. weegge . . o >>> X
die Giiltigkeit der Variablen von 1. priifen! Dazu geben 5 5

Sie zuersl cine beliebige Zuweisung (Text, Zahl, vorher
benutze Variable) ein und anschliefend fragen Sie den
Wert der Variable durch die Eingabe des Variablen-
Namens ab! (Siche nebenstehendes Beispiel!)

3. Priifen Sie (nach Python-Arl), ob die nachfolgenden Ausdriicke ordnungs-
gemafe Werltzuweisungen und / oder Variablen-Benulzungen sind! Wir ge-
hen davon aus, dass vorher noch keine Eingaben gemacht worden sind (ev.
IDLE oder Shell neu starfen). Machen Sie jeweils Voraussagen dazu, wel-
che Werte die einzelnen Varviablen nach derv Eingabe haben miissten!

a) X=100 b) X+X c) y=X+a

d a=(12+3)*2 e) bc23=X+X+X f) x=12

g a=XxX+x h) a=12k -4k i) 45 + 55 = Hundert

i) Tausend =40 + 60 k) Eingabe =2) Ausgabe = Eingabe
m) Masse n) 28T=_13T*7 0) Hundert = Tausend *1

4. Starten Sie eine neue Shell! Lassen Sie nun Python (auf der IKonsolenebene
/ Shell) die Giiltigkeil der einzelnen Ausdriicke von 3. priifen! (Behallen Sie
die Reihenfolge unbedingt bei!)

Etwas Verwirrung erzeugen solche Ausdriicke, wie in CC——
der nebenstehenden Shell-Ansicht zu sehen. Sie ma- 55>

chen mathematisch keinen Sinn — sind ja eigentlich
sogar falsch.

Wenn wir uns den aktuellen Wert von x anzeigen las-

: L o >>> x
sen, dann werden wir das dahinterliegende Arbeitsprin- 201
zZip verstehen. >>>

In Python muss man solche Ausdricke etwa so lesen
und verstehen:

Der (neue — zu speichernde) Wert von x erqibt sich aus dem (alten / derzeitigen / aktu-
ellen - ausgelesenen) Wert von x addiert mit 1.

x[zu speichern] = x[aktuell] + 1
X[zu speichern] = 200 + 1
X = 201

BK_SekI+l_Python_basic.docx -34- (c,p) 2015 - 2026 Isp: dre

Zuerst wird uns dieses das eine oder andere Mal ungewodhnlich vorkommen, aber nach ein,
zwei Programmen geht einem diese Denkweise ins (Programmierer-)Blut Uber. Das einfach
Gleichheitszeichen ist in Python also ein Zuweisungs-Zeichen (entspricht: "ergibt sich aus")
und kein mathematisches Gleichsetzungs-Zeichen!

Ahnlich kryptisch sieht der folgende Kon-
strukt aus. Wir erzeugen uns eine Variable
buchstaben und weisen der z.B. den Text
"abc" zu. Nun kdénnen wir auch eine Opera-
tion mit dem Sternchen und einer Zahl aus-
fuhren.

Python akzeptiert dies seltsamerweise — fur Daten von zwei verschiedenen Typen (Text und
Zahl verrechnen?) schon etwas ungewdhnlich.

Die Ausgabe zeigt das Ergebnis der Stern- S

chen-Operation — es kommt zu entspre- ' abcabeabe '

chend vielen Wiederholungen. S>>

>>> buchstaben "abc"
>>> buchstaben = buchstaben * 3

Aufoaben:
1.

2. Probieren Sie mal die folgenden Anweisungen an der Konsole! Lassen Sie
sich immer die beiden Varviablen zwischendurch anzeigen! Sie kdénnen die
Anweisungen (c bis e)auch mehrfach hinlereinander aufrufen!

a) X = 2 c) x +=1
b) a =1 d) a *=2
e) a =x

Was machen diese "kryplischen” Anweisungen (Operalionen)?

3. Geben Sie nun wieder die Anweisungen a und b von 2. ein! Was erwariten
Sie, wenn Sie vor ciner Ausgabe dann noch die Operationen ¢ bis e von 2.
ausfiihren? Begriinden Sie Ihre Vermutung!

BK_Sekl+II_Python_basic.docx -35- (c,p) 2015 - 2026 Isp: dre

3.2. Arbeiten mit Scripten

Sequenzen von Python-Anweisnungen lassen sich in einer Text-Datei zusammenfassen
dazu ist praktisch jeder Editor geeignet.

Damit der Python-Interpreter mit den Text-Dateien arbeitet, missen sie die Datei-Endung .py
bekommen.

Viele Text-Editoren bieten tolle Mdglichkeiten der Textbearbeitung. Wir werden einige noch
kennen lernen bzw. vorstellen (= 3.4.1. qut geeignete Editoren fur die Verwendung mit Py-
thon). Es bleibt die freie Entscheidung des Programmierers, welcher Editor fiir ihn am Besten
ist.

Um die Programme zu starten, mussen sie dem Python-Interpretor (unter Windows heisst er:
py.exe) ubergeben werden. Der Dateityp *.py wird bei der Installation des Python-Systems
mit dem Programm py.exe verknlpft. (So wie z.B. die docx-Dateien mit dem Programm
WORD oder xlsx-Deteien mit EXCEL verbunden sind.

Lauft das Programm odnungsgemal, ist alles ok. Sind aber Fehler im Programm, dass muss
wieder im Editor der Quell-Text gedndert und gespeichert werden und dann die datei wieder
mit dem Interpreter ausprobiert werden. Das Wechseln zwischen Editor und Interpreter ist
nicht sehr praktisch, aber es funktioniert. Schéner ware natlrlich ein Programm, dass sowohl
das Editieren als auch das Testen des Programms zulasst. Solche Programme schauen wir
uns ebenfalls noch an (= 3.4. Nutzung anderer Benutzer-Oberflachen).

3.2.1. Grundlagen DOS bzw. Komandozeile (Eingabeaufforderung, Ter-
minal)

besondere Bedeutung / Verwendung Zeichen in
Zeichen Linux
usw.
* Joker-Zeichen fur alle mdglichen (zuge-
lassenen) Zeichen
? Joker-Zeichen flur ein moéglichen (zuge-
lassenen) Zeichen
\ Backslash Uber: [Alt Gr]+[B] /
Trenner zwischen Ordnern / Verzeich-
nissen
Laufwerks-Kennzeichen (mit Buchstabe
davor)
> Umleitungs-Kennzeichen z.B. in eine
Datei
|more Begrenzung der Anzeige auf Display-
Ubliche Zeilen und Warten auf eine
Eingabe
"name"

ein Pfad ist die Kombination von Laufwerk und allen Ordnern und Unterordnern, die zu einer
Datei od.a. fihren.

BK_SekI+l_Python_basic.docx -36- (c,p) 2015 - 2026 Isp: dre

Pfade kdénnen auch beim aktuellen Ordner starten, dann beginnt er mit ./

Befehl Funktionsumfang Befehl in
Linux
cd name Wechsel eines Ordners / Verzeichnisses
mit dem angegebenen Namen
cd)\ Wechsel in den Basis- / Wurzel-Ordner
des Laufwerkes
cd.. Wechsel in den héheren Ordner / in das
Ubergeordnete Verzeichnis
dir (ausfiihrliche) Anzeige der Dateien und list
Ordner im aktuellen Ordner / Verzeichnis
dir /w Anzeige der Dateien und Ordner im ak-
tuellen Ordner / Verzeichnis in Spalten
(funktioniert nur bei durchgehend kurzen Namen)
dir *.py Anzeige aller py-Dateien (Python-
Dateien) im aktuellen Ordner
md name (auch: makedir)

Erstellen eines neuen Unter-Ordner /
Unter-Verzeichnis mit dem angegebe-
nem Namen

3.2.2. Aufruf fertiger Python-Skripte

direkt in Windows z.B. im "Arbeitsplatz" oder dem "Windows Explorer" (Datei-Explorer)
Shell braucht dabei nicht schon vorher gestartet werden
es gibt intern eine Verknupfung der Datei-Endung / dem Dateityp .py mit dem Python-
Programm (Python-Interpreter)
Programm wird zuerst automatisch gestartet und dieses benutzt dann als nachstes die ge-

klickte Datei

praktisch reicht der Doppelklick auf eine *.py-Datei, um sie dem Programm py.exe (- dem
Python-Interpreter -) zu tGbergeben. Die py.exe Ubernimmt die Datei und fihrt sie aus — bes-
ser gesagt, es interpretiert die *.py-Datei.

in der Shell durch Aufruf: import skriptname
vorher u.U. das richtige Laufwerk und die richtigen Verzeichnisse und Unterverzeichnisse

auswahlen

starten der gedffneten Skripte mit Taste [F5] oder Gber "Run" "Run Module" méglich

BK_Sekl+ll_Python_basic.docx - 37 -

(c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Starten Sie die Python-Shell!
2. Starten Sie die nachfolgenden Skriple aus dem vorgegebenem Ordner (Wird

vom Kursleiter an die Tafel geschrieben!)!
hello.py nutzer.py

3. Rufen Sie das Skripl nutzer.py noch einmal auf und beanlworten Sie die
Eingabeaufforderung anders! Warum hat sich das System die alfe Eingabe
nichl gemerkt?

Auch auf der Komandozeile ist das Aufrufen von py-Dateien (Python-Quelltexten) mdglich.
Sollte das Fenster der Eingabeaufforderung bzw. der Konsole gleich wieder verschwinden,
dann geben Sie beim Quelltext am Schluf} einfach ein input() ein. Dieser Befehl bewirkt ein
Warten auch ein [Enter]. Alles weitere zum Befehl input() dann spater genauer (= 6.2. Ein-

gaben).

BK_SekI+l_Python_basic.docx -38 - (c,p) 2015 - 2026 Isp: dre

3.3. die interne Benutzer-Oberfliche

GUI (Graphic User Interface) heif’t IDLE (sprich: eidel) steht fur "Integretad DeveLopment
Enviroment" (dt.: integregrierte / eingebaute Entwicklungs- / Programmier-Umgebung) bei
anderen Programmiersprachen wird auch nur von der IDE od. eben der GUI gesprochen

Aufoaben:
1. Starten Sie die Python-GUI IDLE!

2. Erstellen Sie sich ein neues Eingabe-Fenster! Speichern Sie dieses sofort in
IThrem cigenen Ordner oder auf Ihrem personlichen Dalenlrager ab!

Fur dokumentarische Zwecke kann man sich das Ausgabe-Fenster auch abspeichern. Die-
ses lasst sich aber nicht ausfuhren!

uber die GUI bekommen wir ein Windows-typisches Bediensystem fur Python
man kann die Programmtexte Offnen, speichern, editieren und starten

3.3.x. Hilfe(n)!

Hilfe zu einzelnen Befehlen / Schlisselwortern durch
help(Schliisselwort)

Hilfe-Modus mit help() ohne Argument
keywords um die Schliusselwdrter abzufragen

False def if raise
None del import return
True elif in try
and else is while
as except lambda with
assert finally nonlocal yield
break for not

class from or

continue global pass

Hilfe-Texte zu den einzelnen Schlisselwortern durch Eingabe des Schlisselwortes
verlassen des Hilfe-Modus mit quit

BK_Sekl+II_Python_basic.docx -39- (c,p) 2015 - 2026 Isp: dre

Aufoaben:
1.

~. Warum ergibt die Eingabe "help (keywords)" eine Fehlermeldung und nicht
die Liste der Schliisselworter?

BK_SekI+l_Python_basic.docx -40 - (c,p) 2015 - 2026 Isp: dre

3.4. Nutzung anderer Benutzer-Oberflichen

Wer bei der Python-eigenen IDE bleiben mdchte oder muss (weil er nichts anderes installiert
bekommt oder die Einarbeitung zu langwierig ware), der Uberspringt einfach den Rest dieses
Abschnitts und liest bei Abschnitt 4. weiter (= 4. erste einfache Programme mit Python)

Fur diejenigen, die 6fter Programmtexte eintippen und korrigieren mussen, biete ich hier ein
paar geeignete Editoren an. Also vielleicht in den ersten Abschnitt dieses Kapites noch rein-
schauen.

Spater (ab > 3.4.x. Eclipse) stellen wir auch noch echte GUI's vor, die z.T. sehr Leistungs-
fahig sind und sogar bei der Fehlersuche helfen.

3.4.1. qut geeignete Editoren fur die Verwendung mit Python

Bitte beachten!:

Die Auswahl und die konkrete Bewertung der nachfolgenden Editoren ist rein subjektiv.
Wer einen Lieblings-Editor hat, sollte nur kurz gegenpriifen, ob er genauso Leistungs-
fahig, wie die nachfolgend vorgestellten ist. Ansonsten gilt der Leitspruch vieler Daten-
verarbeiter:

Never touch a running system.

Klar sollte sein, dass NotePad, WordPad oder Word keine wirklich geeigneten Code-Editoren
sind. Naturlich lassen sich die entsprechenden Dateien mit ihnen erzeugen und bearbeiten,
aber richtiges Programmieren geht anders. Als Schnell- und Ausnahmsweise-Ersatz ist aber
nichts gegen die genannten Programme zu sagen. Und manchmal geht es eben nicht an-
ders.

= D:\XK_INFO\BK_5.I_Info\tabelle mit format.py - Sublime Tex - Dlll
File Edit Selecton Find View Goto Tools Project Preferences Help

tabelle mit format. py

3.4.1.1. Sublime Text

Vielfach als Allzweck-Editor gelobt.
Er kann und bietet fast alles, was
man sich als Programmierer und Sys-
tem-Betreuer wiinscht.

Einen bearbeiteten Python-Code
kann man mit [Strg] + [b] an den
Python-Interpreter Ubergeben und
ausfihren lassen.

Es gibt vom "Sublime Text"-Editor
Varianten fir Windows, Linux und
den Mac. Weiterhin stehen auch
Downloads flr ‘"portable Apps"-
Umgebungen bereit

Links / Download:
www.sublimetext.com

= Linel, Columnl Tab Size: 4 Python

BK_Sekl+II_Python_basic.docx -41 - (c,p) 2015 - 2026 Isp: dre

file:///D:/XK_INFO/BK_S.I_Info/www.sublimetext.com

3.4.1.2. Geany

Text-Editor

schnelle, kleine IDE

automatische Code-Vervollstandigung
automatische Syntax-Hervorhebung, Formatierung
fur unzahlige andere Sprachen usw. geeignet

3.4.1.3. Notepad++

schlanker, schneller, freier Text-Editor

automatische Code-Vervollstandigung

automatische Syntax-Hervorhebung, Formatierung

fur unzahlige andere Sprachen usw. geeignet

die gewlinschte Sprache kann Uber das "Sprachen"-Menl zugewiesen werden

dadurch wird der Syntax farblich dargestellt und die Datei-Endung (Datei-Typ) flr das Ab-
speichern vorbelegt

auch als portableApp verfuigbar

auf dem loStick (unter Tools) enthalten

kein Debugger

3.4.1.4. Komodo Edit

BK_SekI+l_Python_basic.docx -42 - (c,p) 2015 - 2026 Isp: dre

3.4 .x. Eclipse

Ein der weit verbreitesten universellen Entwicklungs-Umgebungen ist "Eclipse". Urspriinglich
fur Entwicklungen mit Java erstellt, ist die IDE heute fur eine Vielzahl von Programmierspra-
chen nutzbar. Auch fir die Verwendung mit Python |asst sie sich einrichten.

notwendige Erweiterung heifl3t PyDev
sowohl Eclipse als auch PyDev sind freie Produkte

& PyDev - G\musik.py - Eclipse =1 I >
File Edit Source Refactoring MNavigate Search Project Pydev Run Window Help
O-E-Le®eit-0-Q- 09 -0 -sl- o000 Quick Access || 5 | & Java (@ PyDev
[# PyDev Package Explorer 2 = B8 [F] *musikpy 52 = O
= <:'==€>| P v 1 import pygame
‘ @ test 3 pygame.init()
. & python (C:\Python34\python.exe) 4 pygame.mixer.init()

tonausgabe=pygame.mixer.Sound{ "opplaus. wav™)
tonausgabe.play()

woea @

input()

[
@

11 tenausgabe.play()
12

13 dnput()

< About Eclipse = @

Eclipse IDE for Java Developers

Version: Mars.1 Release (4.5.1)
Build id: 20150924-1200
R t— 1 (c) Copyright Eclipse contributors and others 2000, 2015, All rights reserved. Eclipse and
'_/" | the Eclipse logo are trademarks of the Eclipse Foundation, Inc,, https://www.eclipse.org/.
{ The Eclipse logo cannot be altered without Eclipse's permission. Eclipse logos are provided

1
| \yl for use underthe Eclipse logo and trademark guidelines,
e 4 https v.eclipse.org/logotm/. Oracle and Java are trademarks or registered trademarks

of Oracle anda or its affiliates. Other names may be trademarks of their respective owners, -

I

Writable Insert 12:1

Eclipse in der Version Mars1 mit installiertem PyDev

ist selbst in Java geschrieben und steht dadurch auf fast allen Betriebssystemen zur Verfi-
gung

fur Normalnutzer ergeben sich kaum Unterschiede auf den einzelnen Plattformen

bendtigt fur die Installation und das Nutzen eine Java-Runtime- oder -Entwicklungs-
Umgebung, was bei alteren Systemen zu Performance-Problemen fihren kann

Java gilt zudem nicht unbedingt als ein sehr sicheres System, Java ist sehr machtig und
eben auf allen Plattformen zuhause, zwar gibt es sehr regelmafig Updates, aber ein Restri-
siko bleibt

Viele der typischen Programmierer-Tatigkeiten lassen sich mit Eclipse effektiver erledigen.
Aber solche machtigen graphischen Benutzer-Oberflachen haben auch ihre Nachteile. Die
Funktions-Vielfalt und die sehr komplexe Oberflache Uberfordern vielleicht den einen oder

anderen Einsteiger.

Links:
https://www1.ethz.ch/foss/news/course python/configEclipse

BK_Sekl+II_Python_basic.docx -43 - (c,p) 2015 - 2026 Isp: dre

https://www1.ethz.ch/foss/news/course_python/configEclipse

3.4.x. Spyder

& Spyder (Python 3.4)

BN =)

FilemmEditawSesrmmSoucemn Ronmw BebugpmCorsol=pmiolcmiermm Help

[l Hbd » ErErdsibias %8 npE B A Ci\sers\Tester\Documents Python saipts v L =
Editor - C:Users\Tester\, spyder2-py3\temp.py & X | [Object inspactor 8 x
=] P emppy @ = source Object -8B 8

is is a temporary script file.

Here you can get help of any object by
pressing Cerl+1 in front of it, either on the
Editor or the Console.

=[12,34,45,56]

& for n in x:

9 print(n) Help can also be shown automatically after
10 writing a left parenthesis next to an object.
You can activate this behavior in Preferences
> Object Inspector.

New to Spyder? Read our &

| Objectinspector | Variable explorer | File explorer |

IPython consale & x

Console 1/A £ =
Python 3.4.3 |Anaconda 2.3.8 (32-bit)| (default, Mar 6 2015, =

12:8:17) [MSC v.1600 32 bit (Intel)]
Type "copyright”, "credits” or "license” for more information.

IPython 3.2.8 -- An enhanced Interactive Python

Anaconda is brought to you by Continuum Analytics. L
Please check out: http://continuum.io/thanks and https://anaconda.org

H -> Introduction and overview of IPython's features.

Squickref -> Quick reference.

help -> Python's oun help system.

object? -> Details about 'object', use 'object??' for extra details. | |
%guiref > A brief reference about the graphical user interface

In [1]: runfile('C:/Users/Tester/. spyder2-py3/temp.py’,
wdir="C:/Users/Tester/.spyder2-py3')

12

34

a5

56

In [2]:

| "Console | Historylog | 1Python console

Permissions: R End-of-lines: CRLF Encoding: UTF-2 Line: 18 Column: 1 Memory: 58 %

Editor und Konsole in einem gemeinsamen Fester
editieren und ausprobieren lassen sich so schneller und tbersichtlicher durchflihren

BK_Sekl+Il_Python_basic.docx

_44 -

(c,p) 2015 - 2026 Isp: dre

3.4 x. LiClipse

[T PyDev - test/main - LiClipse (UNREGISTERED) [==]=]
File Edit MNavigate Search Project Pydev Run Window Help
=~ SO -G E Sl el - Quick Access 5 | (@]
[% PyDev Package Explorer 2 = B8 main 4 = B8
== | B 1liste=[12,34,45,56] I:I
i test - 2 for item in liste:
4 e 3 print(item)

=| main

> @ python (C\Python34\python.exe)

=
L1 About Liclipse =N)

LiClipse

{c) Copyright 2013-2015 by Brainwy Software Ltda.

It's also based en Eclipse (EPL, Copyright by Eclipse Foundation),

EGit (EPL, Copyright by Eclipse Foundation)

PyDev (EPL, Copyright by Appcelerator, Inc)

Eclipse Color Theme (EPL, Copyright by Felix H. Dahlke and Roger Dudler)
StartExplarer (WTFPL 2, Copyright by Bastian Krol)

AnyEdit tools (EPL, Copyright by Andrey Loskutov)

JUnique (LGPL, Copyright by Sauron Scftware)

Seoel<

(‘_?:' Installation Details
4 »
Wiritable Insert 4:1 Syne System PYTHONPATH: (100%) [&

abgespecktes Eclipse

3.4.x. Anaconda

enthalt viele verschiedene Python-Bibliotheken und Hilfs-Mittel

diese sind fur Anfanger erst einmal nicht so interessant

Entwicklungs-Umgebung fir die wissenschaftliche Programmierung

stellt Spyder als IDE zur Verfugung

weitere - sehr verbreitete - Bereitstellung von Programmen und Kommentaren sowie Abfol-
gen / Protokolle sind die sogenannten Jupyter-Notebook's (lauf Browser-basiert, lassen Pro-
gramme, Texte, Einn- und Ausgaben zu, die auch zur Dokumentation als Ganzes gespei-
chert werden kdnnen)

es lassen sich mehrere unabhangige Programmier-Umgebungen definieren, die quasi eine
Programmierung in einer Sandbox erlauben

reibungslose Installation

kann neben dem originalen Python installiert und betrieben werden

3.4.x. WinPython

mit Debugger

stellt auch Spyder zur Verfiigung
kleine Probleme mit Installation und den ausfiihrbaren Programmen

BK_Sekl+II_Python_basic.docx -45- (c,p) 2015 - 2026 Isp: dre

3.4.x. Komodo IDE

IDE zum Komodo Editor
kostenpflichtige Lizenz

3.4.x. Thonny

http://thonny.org/
fur Windows, Mac und Linux

es gibt auch Backend fir bbc micro:bit

3.4.x. SciTE

Q: https://www.scintilla.org/SciTE.html

Q: https://lwww.heise.de/download/product/scite-10783

BK_Sekl+ll_Python_basic.docx

46 -

(c,p) 2015 - 2026 Isp: dre

3.4 .x. TigerJython

Jython ist nicht etwa ____ _—
falsch geschreiben — e seeer asti e e ioecsa
sondern ein Kunst- o <[t b| e|m]| %]

wort aus JAVA und |- ~
Python. Dies soll die

spezielle Version von
Python charakterisie-
ren. Bei Tigerdython
— einer Jython-Ver-
sion — handelt es sich
um eine vollstandige
und voll kompartible |G oy
Python-Version. D.h. o= = e
man kann in TigerJy-

thon genau so Py-
thon-Programme
schreiben, wie IM | e 5wl
originalen Python-
System von py-
thon.org (IDLE).

Die Ubersetzung der Python-Quellcode's und die Arbeitsumgebung sind in JAVA program-
miert worden. Jython verflgt deshalb Uber ein universelles Zwischen-Programm, das auf
allen Geraten (Computer, Tablet, Smartphon, ...) laufen kann, die JAVA kdnnen. Ein weiterer
Vorteil ist die in das Programm direkt eingebaute JAVA-virtuelle-Maschine. Das Program-
mier-System Tigerdython lauft damit unanbhangig von einer lokalen JAVA-Installation.

Nachteilig ist weitgehende Orientierung von Jython an der alteren Python-2-Version.
es soll in 2020 eine Python-3-Version geben

Die Input's werden in einen Dialog ausgelagert. Das hat schon den Anstrich von Program-
mierung einer graphischen Oberflache.

Ausgaben im unteren —Terminal-ahnlichen Bereich — etwas ungewohnlich. Man kann die
Ausgaben aber auch auf Message-Dialoge auslagern. Damit sind die Programme dann nicht
immer 100%ig Ubertragbar.

Quellen und Links:

-> http://www.tigerjython.ch (offizielle Seite zu TigerJython; u.a. auch Download's)

Q: http://letscode-python.de/links.php (Link-Liste zu TigerJython; Begleitbuch zu TigerJdython)

Q: http://www.python-exemplarisch.ch/index de.php?inhalt links=navigation de.inc.php&inhalt mitte=
home/de/home.inc.php (Arbeits-Material zu / mit Tigerdython (u.a. mit Robotik, Microcontrollern,
loT, MachineLearning, BigData, ...)

Q: http://www.tigerjython4kids.ch ()

-> http://www.python-online.ch (online-Programmier-Umgebung fur Python)

BK_Sekl+II_Python_basic.docx -47 - (c,p) 2015 - 2026 Isp: dre

http://www.tigerjython.ch/
http://letscode-python.de/links.php
http://www.python-exemplarisch.ch/index_de.php?inhalt_links=navigation_de.inc.php&inhalt_mitte=home/de/home.inc.php
http://www.python-exemplarisch.ch/index_de.php?inhalt_links=navigation_de.inc.php&inhalt_mitte=home/de/home.inc.php
http://www.tigerjython4kids.ch/
http://www.python-online.ch/

3.4 .x. Editoren im Internet — online-Editoren

bendtigt keine Installation, auf3er einem aktuellen Browser

werden standig aktualisiert und sind praktisch immer auf dem ajtuellsten Stand

nachteilig (hinsichtlich Datenschutz) ist, dass haufig eine Anmeldung notwendig ist
konsequent Schulaccounts / Schul-eMail-Adressen nutzen und alle persénlichen Angaben

anonymisieren

3.4.x.1. w3schools.com

eine der besten Seiten; naturlich / leider alles englisch

https://www.w3schools.com/ (sehr viele Sprachen, ...) ! keine Anmeldung notwendig

3.4.x.2. TiserJython

schlicht, aber alles, was man zum

€)=

c @

(@) wwow.python-online.ch/pyonline/FyOnline.php E

Python Online Editor

Programm: untitled py

>Robol:|NUne - » Dok »English
Bilder laden | 0 geladen Datenbank | undefined

elgentIIChen Programmleren F'.un Offnen | Neu | Speichern | Speichern unter | Modul laden
braucht 1|
Zu beachten ist, dass es sich aktu-
ell noch um eine Umsetzung von
Python 2 handelt.
- http://www.python-online.ch (on-
line-Programmier-Umgebung fur
Python / TigerJython)
=l
o oif
BK_Sekl+l_Python_basic.docx -48 - (c,p) 2015 - 2026 Isp: dre

http://www.python-online.ch/

3.4.x.3. repl.it

bietet neben Python auch online-Programmier-Umgebungen flr viele andere Sprachen
immer Editor plus Ubersetzer (Interpreter)

3.4.x.3. 222

BK_Sekl+II_Python_basic.docx -49 - (c,p) 2015 - 2026 Isp: dre

3.4.x. microsoft Visual Studio Code mit Jupyter-Erweiterung

etwas aufwandiges Konstrukt aus Editor (ms Visual Studio Code) und einem Desktop-Dialog
und —Dokumentations-System (Jupyter)

Nachteile
sehr gewaltig und unubersichtlich fir Anfanger
o lenkt von der eigentlichen Programmierung ab
e wenn Probleme auftauchen, ist die Ursache nicht immer der eigenen programmie-
rung zuzuordnen; es gibt weitere — zusatzliche — Fehlerquellen

bietet viele Vorteile
e sehr guter und flexibler Editor
o Dialog-System (immer Wechsel zwischen Eingabe und Ausgabe) - Konsolen-bzw.
Skript-orientiertes Arbeiten
e dazu lassen sich Dokumentations-Abschnitte einfiigen (Erklarungen usw. usf.)
e leichter Umstieg auf andere Programmiersprachen (die fast alle mit ms VSC editier-
bar sind)

fur fortgeschrittene Nutzer aber ohne weiteres empfehlenswert

sehr gut geeignet flr Dialog- und Einstellungs-orientierte Sequenzen von Befehls-Ketten
(z.B. bei der Erstellung / bearbeitung von Kinstlichen Netzen / Systemen zum Maschinellen
Lernen/ ...

bei microsoft learn gibt es dazu einen Kurs:
https://learn.microsoft.com/de-de/training/modules/

praktisches Vorgehen / Handling stellen wir im Skript-Teil 2 "Python fiir Fortgeschrittene" vor
(= 8.22.2. Jupyter-Erweiterung in microsoft Visual Studio Code)

BK_SekI+l_Python_basic.docx -50 - (c,p) 2015 - 2026 Isp: dre

3.5. Snap for Python

Python-Interface fir Snap

bendtigt 64bit-Betriebssystem und eine aktuelle Version von Python
Installation von Snap.py mittels

pip install snap-stanford
ev. vorher pip aktualisieren

python —m pip

fur jede Betriebssystem-Plattform gibt es eine spezielle Download-Datei
in dieser ist auch eine setup.py enthalten, mit der ebenfalls eine Installation moglich ist

Windows

in der Konsole
cd in den Ordner, in dem sich das entpackte Download-Paket befindet
python setup.py install

Linux

in der Konsole
entpacken des Download-Paket's mit

cd in das Verzeichnis
sudo python3 setup.py install

MacOS

in der Konsole
entpacken des Download-Paket's mit

cd in das Verzeichnis

python3 setup.py install

Links:
https://snap.stanford.edu/snappy/index.html

BK_Sekl+II_Python_basic.docx -51- (c,p) 2015 - 2026 Isp: dre

4. erste einfache Programme mit Python

Programme sind Zusammenstellungen von Anweisungen (/ Befehlen), die auf einem Compu-
ter die Losung einer Aufgabe ermdglichen sollen. Man kdénnte Programme auch als Umset-
zungen von Algorithmen auf Computer verstehen. Alles was algorithmierbar ist, kann auch in
ein Programm umgesetzt werden. Genauso, wie der Algorithmus, bendtigt das Programm
dann auch noch bestimmte Hardware / Werkzeuge zum Hantieren der bearbeiteten Objekte.
Algorithmen und Programme sind quasi die Arbeitsvorschriften zur Erfullung einer Aufgabe.
Die Folgen von Anweisungen werden i.A. in spezielle Dateien geschrieben, die Quellcode
(Quell-Texte) genannt werden. Diese werden dann zur weiteren Bearbeitung, Korrektur usw.
erst einmal abgespeichert.

Ein Programm (Maschinen-Programm, Computer-Programm) ist die flir die Maschine bzw.
den Computer nutzbare / ausfihrbare Folge von Befehlen, Anweisungen usw. zur gezielten
Bearbeitung von Daten oder die Steuerung von Aktoren.

Ein Algorithmus ist eine eindeutige, zum Ziel fuhrende Handlungs-Vorschrift zur Bearbeitung
einer Aufgabe.

Ein Algorithmus ist eine Sammlung / Folge systematischer und logischer Regeln und Vor-
gehensweisen, die zur Lésung einer Aufgabe fuhren.

Ein Quelltext ist eine spezielle Umsetzung eines oder mehrerer Algorithmen in eine Pro-

grammiersprache.

Neben den Anweisungen fir die Maschine enthalten (gute) Quelltexte auch zusatzliche Hinweise / Kommentare
fur den menschlichen Bearbeiter / Leser.

(Der Quelltext muss vor der Benutzung durch die Maschine / den Computer zuerst in eine fir ihn verstandliche
Codierung umgesetzt werden (mit > Compiler oder Interpreter).)

Um ein Programm zu schreiben bzw. einen Quelltext einzugeben, mussen wir uns in IDLE
ein neues Fenster ("File" "New File") 6ffnen. Jetzt sind wir quasi auf der Editor-Ebene. Den
Text unseres Programms kdnnen wir in beliebiger Reihenfolge und Art und Weise erstellen.
Am Schlul} des Editieren (Veranderns) kommt dann die Stunde der Wahrheit und wir lassen
Python testen, ob der Programmtext als Programm taugt.

Bevor aber nun wild editiert und programmiert wird, kimmern wir uns zu allererst um das
Abspeichern des Quelltextes. Mit "File" "Save As ..." kommen wir zu einem klassischen Da-
tei-speichern-Dialog. Die Datei sollte — wie Ublich — in einem gesonderten Ordner — z.B. ei-
nem privaten Ordner — abgelegt werden. Fir das regelmafig Speichern ist jeder selbst ver-
antwortlich. Als schnelle Tasten-Kombination kann man sich hierfur [Strg] + [s] merken.

BK_Sekl+l_Python_basic.docx -52- (c,p) 2015 - 2026 Isp: dre

Jedes Programm folgt dem EVA-Prinzip. EVA steht hier nicht fir eine freundliche Mitschiile-
rin, sondern fir den grundlegenden informatischen Dreiklang:

Eingabe — Verarbeitung — Ausgabe

Gute Programmierer bauen diese Struktur auch im Quelltext ihrer

Programme nach. (stat)

Der Ablauf eines Programms sollte immer vorgeplant werden.

Zumindestens bei etwas komplizierteren Programmen kommt Y

man dann nicht mehr ohne Vorplanung aus. U.U. werden bei / Eingabe /
grélReren Programm-Projekten nur bestimmte kritische Abschnitte

in passenden Schemata skizziert. Y

In der Programmier-Praxis gibt es zwei unterschiedliche Skizzen- [Verarbeitung(sschriny)|
typen flir geplante Programm-Verlaufe. Die erste Variante sind

sogenannte Programm-Ablauf-Plane — kurz PAP genannt. We- ¢

gen ihres groRen Platzbedarfs beim Skizzieren werden sie heute / Ausgabe /
seltener verwendet. Es gibt fur Start und Stop, sowie Eingaben, :

Berechnungen, Entscheidungen und Ausgaben unterschiedli- Y
che Symbole, die durch Verlaufs-Linien verbunden werden. Ne- @

benstehend ist ein sehr PAP fiir das EVA-Prinzip dargestellt. Man
liesst sich in diese Plane recht schnell ein und die Wege sind
auch gut erkennbar.

Eine moderne Alternative zu den Programm-Ablauf-Planen sind
Struktogramme.

Bei Struktogrammen wurden unwichtige Elemente, wie Eineab
gabe
Start uznd Stopp weggelassen und alle Elemente wer- - -
den in Blocke (Rechtecke) gebracht. Fiir Eingaben und Verarbeitung(sschritt)
Ausgaben gibt es Block-Symbole mit rein- bzw. raus- Ausgabe |>

zeigenden Dreiecken.
Struktogramme sind schén kompakt und orientieren sich an der gewtinschten Modul-Struktur
im modernen Software-Design. Ein Kastchen / Block kann dann spater durch immer speziel-
lere / kompliziertere Blocke ersetzt werden. Diese Entwicklungs-Technik von Programmen —
vom Allgemeinen zum Speziellen (von oben nach unten) — wird Top-down-Strategie genannt.
Sie entspricht der Deduktion (Denktechnik).

Bei der entgegengesetzten Entwicklungs-Technik geht man von fertigen / funktionierenden
Befehlen / Blécken aus und setzt sie zu immer umfangreicheren / ziel-orientierten Program-
men zusammen (quasi: von unten nach oben). Diese Technik wird Bottom-up genannt und ent-
spricht der Induktion.

In der Programmier-Praxis werden beide Strategien verwendet. Oft passiert das auch gleich-
zeitig. Die Top-down-Technik ergibt schnell Ubersetzbare Programme, auch wenn diese
meist noch nicht viel leisten. An den Details muss dann Schritt fir Schritt gearbeitet werden.

Die Welt der Programmierung war friher eine elitare Sonderwelt fur Freaks, Nerds oder Ge-
eks. Damals entwickelten sich die ersten Zige einer — fir Laien fas unverstandlichen —
Fachsprache. Heute ist die Programm-Entwicklung eine weitverbreitete Kulturtechnik. Trotz-
dem sind viele Begriffe und Zusammenhange fur Nicht-Profis schnell unverstandlich. Einige
der wichtigen Zusammenhange und Begriffserklarungen aus dieser Begriffswelt sind in der
folgenden Abbildung zu entnehmen.

BK_Sekl+II_Python_basic.docx -53- (c,p) 2015 - 2026 Isp: dre

Begriffe zu 'Programmcode’: Zusammenhinge, Synonyme

—_— ereilt Software-

(Computer-) | konzipiert) auftrag an f uber
“ “ Anwender
Programm) l
T [y
¥orm Programmmierer wird
Ubersetzt -
i i ; Ubersetzer 0 .
implementiert als van / mit far Programmier-
Sprache
@ G, Pascal Assemblar, .
o erzeudt Cobol, PLY, Java, BASIC ... verarbeitet /
5 8 g liefert
. < | Quellprogramm lefert
=1
~ B g = E b--1 Quelicode C t E}ﬁeﬁ;ﬂsse
= =
255 5 omputer
= ar 0 = f=7]
=22 &
= 9| & R -mmmeooooee n Interner | Interner
o i =R - -— | ader
E Lol g , (Zwischencode) (abhg von Speicher | |Prozessor
= QEB 21 ° i ---1 Pgr-sprache {
=3 B 5 le— ' | Entwickl-Werkzg) fritwt aus
= L 1
a © o (I Int t / |
T = - nterpreter . . .
3 g =L:E: e T wird zur ,')] / verarbeitet / dndert dabel
] L "
z 2% 2.8, durch: Linker Ausfithrung Befehle /)| A
= - «— | geladen in % » Prozessortyp
023 Maschinen- »__Daten = Y
% = programm . won hier aus I 8066, 205
o ExE ™ Maschinencods ausgeflhrt im
susfihrbare Datel ist strukturell definiert durch f ausgerichtet auf:
. P— * abhangig von der zum Einsatz kommenden Entwicklungstechnologie /
Legemtt: . E:e.f.s‘p.le!' Programmiersprache wird kein Maschinen-Programm geladen und ausgefihrt,
Aspekt ‘Daten’ nicht dargestellt sondern die von einern 'Interpreter’ aus einem anderen Codeforrnat erzeugten Befehle

Q: de.wikipedia.org (VORBY)

BK_SekI+l_Python_basic.docx -54 - (c,p) 2015 - 2026 Isp: dre

4.1. Kommentare

Man kann sich ruhig angewdhnen, Programme gleich von Anfang an, in die drei Abschnitte
zu teilen und mit passenden Uberschriften zu versehen. Natirlich sind diese nicht wirklich
Teil des Programms. Man nennt Hilfstexte in Quelltexten, die zur Beschreibung von Befehls-
zeilen oder Programm-Strukturen dienen — Kommentare. In Python werden Kommentare
durch die Raute begonnen und nehmen dann den Rest der Zeile ein. Bei grofieren und wich-
tigen Programmier-Projekten werden an den Anfang des Quelltextes auch Inhalts-, Urheber-
und Versions-Angaben notiert.

Kommentare werden — zu mindestens in der Stadard-Einstellung von IDLE — rot gedruckt.

kommentierter Quelltext Erlduterungen

Programm zur Berechnung einer Summe

Autor: Drews
Version: 0.1 (01.09.2015)
Freeware

3 3= 3= 3 I3

Eingabe (n)
< hier konnte echter
Quell-Text stehen

Berechnung der Summe (Verarbeitung)

< hier auch wieder

Ausgabe (n)

Fir besondere Zwecke kann man sich auch der mehrzeiligen Kommentare bedienen.

Mehrzeilige Kommentare beginnen und
enden mit drei AnfUhrungszeichen (" " ™).
Alles zwischen diesen wird nicht von Python
ausgewertet. Die Anfuhrungszeichen werden
deshalb auch gerne benutzt, um kleinere
oder groBere Quelltext-Stick von der Py-

Ausgabe (n)
for i in range (4) :
print (" u)

thon-Interpretation auszuschliel3en.
Wenn ich z.B. einen Quelltext verbessern

mochte, dann will ich vielleicht den alten """ alter Quellcode

zuerst einmal noch (sicherheitshalber) be-
halten. Ich setze einfach davor und dahinter
die Dreifach-Anfihrungszeichen und kann
meinen neuen Quelltext davor oder dahinter
eingeben. Ein kleiner Kommentar hilft dann
auch spater zu erkennen, was alter und
neuer Quelltext war und ist. Dieser muss
aber innerhalb der beiden Dreifach-
Anfuhrungszeichen-Gruppen stehen.

Ausgabe (n)

for i in range(4):
print ("")

Ausgabe (n)

for in range(4):
print ("")

Mehrzeilige Kommentare werden in der Standard-Editor-Einstellung griin eingefarbt.

Bis jetzt macht unser obiges Programm noch nichts. Trotzdem konnen wir es schon mal tes-
ten. Dazu speichern wir erst einmal ab (z.B. mit [Strg] + [s]) und starten den Programm-
aufruf Gber "Run" "Run Module" oder mit der [F5]-Taste.

Geht alles glatt bei der Ubersetzung und Ausfiihrung des Programms, meldet sich IDLE oh-
ne einen Fehlerhinweis.

BK_Sekl+II_Python_basic.docx -55- (c,p) 2015 - 2026 Isp: dre

4.2. Planung eines Programms und Umsetzung in Python

Ausgehend vom allgemeinen EVA-Struktogramm uberlegt man sich nun, welche konkreten

Eingaben, Verarbeitsschritte und Ausgaben fur
Bei der Summierung wissen wir, dass wir zwei
Uber den +-Operator zusammengefiigt werden.
Das Struktogramm ist denkbar einfach:

An dieser Stelle soll darauf hingewiesen werden, dass

Struktogramm praktisch an keine spezielle
miersprache gebunden ist.
Ob wir das Struktogramm in JAVA, BASIC,

ein spezielles Problem notwendig sind.
Summanden brauchen und diese zur Summe

Berechnung einer Summe:

Summand1
Summand2
Program-
Summe = Summand1 + Summand2
PASCAL Summe >

oder eben Python umsetzen, ist sachlich egal. Vielfach

werden die Programme ganz &hnlich aussehen. Die
Feinheiten jeder Programmiersprache sind dann schnell

dazugelernt.

Struktogramm fiir die
Summenbildung

Umsetzung des Struktogramm "Summenbildung in die Programmiersprache ..."

... BASIC

... PASCAL

DIM AS INTEGER summandl,
DIM AS INTEGER summe

summand?2

INPUT "1.
INPUT "2.

summandl
summand?2

Summand:",
Summand:",

summe=summandl+summand?2

program summe;

var summandl, summnad?2:
integer;

integer;
var summe:

begin
write("1l. Summand:
readln (summandl) ;

")

PRINT "Summe: " &summe write("2. Summand: ") ;
END readln (summand?2) ;
summe : =summandl+summand?2;
writeln ("Summe: ",summe) ;
end.
... JAVA .C
public class SummeBerechnung
{
public static void main ()
!ll falsches Programm!!!
... PROLOG ... FORTH
/* ProgrammSumme */
summe (1,1) .
summe (N,S):-= N > 1, M is N -1,
summe (M, Z2S), S is ZS + N.
BK_SekI+l_Python_basic.docx -56 - (c,p) 2015 - 2026 Isp: dre

... Python

summandl=int (input ("1. Summand: ")
summand2=int (input ("2. Summand: ")

summe=summandl+summand?2

print ("Summe: ", summe)

Aufgaben:

1. Ubernehmen Sie den BASIC- und den PASCAL-Quelltext Jeweils auf die
linke Seife cines Blaltes! Lassen Sie etwas Plalz zwischen den Zeilen! Kenn-
zeichnen Sie die Abschnilte, die jeweils zu den 4 Blocken des Shukfo-
gramms gehoren! Schreiben Sie zu den einzelnen Anweisungen auf, was
diese aus Ihrer Sicht machen! (Praklisch: Kommenltieren Sie die Program-
mel)

2. Vergleichen Sie die Umselzungen mileinander!

Nun kénnen wir in unseren Programm-Rumpf (mit den Berechnung einer Summe:

Kommentaren) schrittweise Befehle erganzen. Sinniger- Summand1

weise fangt man bei den Eingaben an und endet bei den Summand2

Ausgaben. Aber auch andere Vorgehensweisen sind Surmme = Summand1 + Summand2
denkbar und obliegen dem Gutdinken des Program-

miers. Jeder muss da seinen eigenen Stil finden. Summe |>

Die Eingabe realisieren wir mit der input()-Funktion. Diese fragt eine Eingabe auf der Konso-
le bzw. der IDLE-Oberflache ab.
Zuerst wurde die Zeile:

Eingabe (n)
summandl = input()

(unter dem Eingabe-Kommentar) VOllig ausrei- | >>>
chen. Der Nutzer sieht auf der Konsole al-
lerdings nur einen blinkenden Cursor und
weiss gar nicht, was das Programm von ihm
will. Besser ist es einen kleinen Begleittext
mit anzugeben.

Diesen kann man in das Klammerpaar von input() notieren. Der Text selbst muss in Anfih-
rungszeichen (" ") oder einfachen Hochkommata (' ') gesetzt werden.

Eingabe (n)
summandl = input("Geben Sie den ersten Summanden ein: ")

BK_Sekl+II_Python_basic.docx - 57 - (c,p) 2015 - 2026 Isp: dre

An dieser Stelle bietet sich ein erster echter Test unseres Programms an. Also schnell ab-
speichern (mit [Strg] + [S]) und die Abarbeitung (mit [F5]) aufrufen. Nun sollt auf der Kon-
sole der Eingabe-Hinweistext zu sehen sein und wir wissen, was wir zu tun haben.

>>>

Sie den ersten Summanden ein:

Im Fehlerfall missen wir wieder zum Quelltext wechsel und die Fehler beseitigen. Dann wird
wieder gespeichert und ausprobiert. Dieses muss man solange wiederholen, bis dieser Teil

des Programms funktioniert.

Dann kann man sich an den nachsten Programm-
Abschnitt machen.

Also praktisch das Gleiche noch mal flir den zweiten
Summanden. Am Einfachten geht das Uber das Kopie-
ren der letzten Programmzeile. Wichtig ist bei Kopier-
Aktionen immer, sofort die notwendigen Anderungen
vorzunehmen. Ansonsten hatten wir zwei Programmzei-
len, die sich um die Eingabe des ersten Summanden
kimmern.

Der nachste Programmschritt — die eigentliche Verarbei-
tung der eingegebenen Daten — folgt dann unter dem
Kommentar " Berechnung der Summe (Verarbeitung)".
Die Gleichung ist sofort verstandlich. Wichtig ist hier,
dass das Ergebnis immer links stehen muss. Das
Gleichheitzeichen wird unter Programmierern meist als
Ergibt-Zeichen (in Pascal z.B.: :=) bezeichnet.

Barechnung einer Summe:

Summand1

Summand2

Summe = Summand1 + Summand2

Summe D

Barechnung einer Summe:

Summand1

Summand2

Summe = Summand1 + Summand2

Summe D

Erfahrene Programmierer geben naturlich gleich mehrere Zeilen ein und testen dann.
Ein praktische Strategie ist es auch, vor der internen Verarbeitung der eingegebenen Werte eine kleine Kontroll-
Ausgabe zu programmieren. Diese kann noch ohne Texte und Formatierungen erfolgen — es geht nur darum die

Korrektheit der Eingaben zu prifen.

Eingabe (n)

summandl = input("Geben Sie den ersten Summanden ein: ")
summand?2 = input ("Geben Sie den zweiten Summanden ein: ")

Berechnung der Summe (Verarbeitung)
summe = summandl + summand?2

Da die Berechnung nicht so kompliziert erscheint, gehen
wir gleich auch noch die Ausgabe an. Wer aber unbe-
dingt will kann wieder einen Programmlauf starten. Aller-
dings wird er noch kein Ergebnis zu sehen bekommen.

Als erstes reicht uns mal die Ausgabe des Variablen-
Wertes von summe. Die Ausgabe-Funktion heif3t print().

Ausgabe (n)
print (summe)

Barechnung einer Summe:

Summand1

Summand2

Summe = Summand1 + Summand2

Summe D

Hier ist wieder eine gute Gelegenheit das Programm zu testen, ansonsten gehen wir gleich

ans Verfeinern.

Die einfache Ausgabe einer Zahl ist wenig | >>>
informativ. Zwar kdnnen wir vielleicht aus
den beiden Eingaben so ungefahr ableiten,

-58 -

BK_Sekl+Il_Python_basic.docx

(c,p) 2015 - 2026 Isp: dre

was berechnet wird, aber | |

Wer das Programm getestet hat, wird meist eine bdse Uberraschung erleben. Das Programm berechnet irgend-
was, aber nicht die Summe. Mathematisch scheint aber doch alles richtig zu sein. Warum es zu scheinbar fal-
schen Berechnungen kommt, klaren wir gleich.

Auch bei der sparlichen Ausgabe bietet sich also ein kleiner Begleittext an, damit der Nutzer
auch genau weiss, was die Ausgabe bedeutet.

Ausgabe (n)
print ("Die Summe ist gleich: ", summe)

Fir echte Konsolen-Programme erganzen wir ganz unten immer noch ein input(). Damit die
Konsole nicht gleich nach der Ausgabe geschlossen wird. Dieses input hat keinen anderen
Zweck! Es wird einfach auf ein Enter gewartet und die Konsole schlief3t danach.

Somit sieht unser erstes Programm insgesamt so aus:

#

Programm zur Berechnung einer Summe

Autor: Drews

Version: 0.1 (01.09.2015)

Freeware

#

Eingabe (n)

summandl = input("Geben Sie den ersten Summanden ein: ")
summand?2 = input("Geben Sie den zweiten Summanden ein: ")

Berechnung der Summe (Verarbeitung)
summe = summandl + summand?2

Ausgabe (n)
print ("Die Summe ist gleich: ", summe)

Warten auf Beenden
input ()

In der Gesamtansicht erkennt man auch gut das sogenannte Highlighting der verschiedenen
Programm-Elemente. Dadurch wird der Programm-Text ubersichtlicher und Fehler lassen
sich etwas schneller finden.

Aufoabe:

1. Testen Sie das Summen-Programm auch mit Komma-Zahlen und Texten —
auch in Kombination unfereinander und mit ganzen Zahlen! Was evhalten
Sie fiir Ergebnisse? Was sagt das iiber die Leistungen von Python aus?

2. Speichern Sie das akluelle Programm noch einmal ab und erstellen Sie sich
dann eine weilere Kopie mit "Speichern unfer ..."! Verwenden Sie den Na-
men "Sublvaktion.py"!

3. Verindern Sie das Programm nun so, dass es eine Sublvakltion durchfiihrt!
Verdndern Sie auch alle Variablen-Namen, Ausgaben usw. usf. fiir das neue
Programm!

BK_Sekl+II_Python_basic.docx -59.- (c,p) 2015 - 2026 Isp: dre

Spatestens jetzt fallt uns auf, dass das Programm gar nicht exakt rechnet. Es kann zwar mit
Ganzzahlen, Kommazahlen und Texten umgehen, aber statt die Summe zu berechnen, wer-
den die Eingaben nur einfach aneinander gehangt.

Das Problem liegt nicht an der Berechnung der Summe, wie man vielleicht tippen wiurde.
Das Problem ergibt sich daraus, dass Windows i.A. und Python im Speziellen bei Eingaben
zuerst einmal immer einen Text liefert. Texte werden beim Summieren einfach nur hinterei-
nandergehangt — wir sagen auch verkettet.

Diesem Problem kann man nun auf zwei verschiedenen Wegen Paroli bieten. In der ersten
Variante Uberlassen wir Python die Arbeit der Erkennung, was eingegeben wurde. Die Funk-
tion eval() macht genau dies. Der Name steht flir evaluieren / Uberprifen. Die Funktion
eval() ermittelt mit einer recht guten Treffsicherheit, ob es sich bei den Eingaben und der
spateren Verarbeitung um ein Text-Ding oder um Zahlen-Verknipfung handelt. Den Variab-
len wird dabei ein passender Datentyp (z.B. Text, Ganzzahl, Kommazahl) zugeordnet. Dazu
spater noch mehr und auch, wie man die Datentypen gezielt verandern kann (= 8.2. Daten-
typen und Typumwandlungen).

Eingabe (n)
summandl = eval (input ("Geben Sie den ersten Summanden ein: "))
summand?2 eval (input ("Geben Sie den zweiten Summanden ein: "))

Aufoaben:

1. Erstellen Sie ein Strukltogramm fiir die Produkt-Bildung von drei Fakforen!

2. Schreiben Sie ein Programm, dass aus drei einzugebenen Zahlen das Pro-
dukt berechnel! Orientieren Sie sich an dem Struklogramm von 1.! Korri-
gieren Sie evenluell das Strukfogramm, wenn es Probleme beim Teslen des
Programms gibl!

3. Konzipieren und realisieren Sie ein Programm, das zu einer einzugebenden
Masse in kg die Massen in mg, ¢ und t ausgibl!

4. Erstellen Sie Strukfogramm und Programm zur Berechnung von cnv’, dnv’,
ar, ha und knv’ aus einer Angabe in m’! Die Einheiten diivfen ausgeschrie-
ben werden!

5. Erstellen Sie ein Struktogramm und dann das Programm zur Umrechnung
einer °‘C-Temperatur in diec zugehodrige KELVIN-Temperatur!

6. Erganzen Sie das Programm von 5. noch um die Ausgabe der Temperatur
in ‘Ra (RANKINE) und ‘Ré (REAUMUR; sprich: [veo mii:v]!

fiir die gehobene Anspruchsebene:

7. Gibt es eigentlich noch andere Temperatur-Skalen? Wenn JA welche und,
wenn NEIN, warum nicht. Wenn es weilere Skalen gibl, dann erweilern Sie
das Programm von 6. um diese Skalen!

Testwerte fur die Temperatur-Umrechnungs-Programme:

°C °F K °Ra °Ré °C °F K °Ra °Ré
-273 -459,7 0 0 -218,5 0 10,4 273 491,4 0
-12 10,4 261 469,8 -9,7 -17,8 0 2554 459,7 | -218,5
126 258,8 399 718 100,7 20 67,7 293 527.4 16
37,8 | 100,0 311 560 30,3 0 32 2731 491,7 0
-51 -59,7 222 400 41 -217,6 | -359,6 55,6 100 -174

25 76,7 298 536,4 20 125 257 398,1 716,7 100

BK_SekI+l_Python_basic.docx -60 - (c,p) 2015 - 2026 Isp: dre

Fur die Temperaturen in °Ra und °Ré werden, je nach Quelle auch °R als Einheits-Zeichen verwendet. Da dies
zu Verwechslungen fiihren kann, werden hier die ausfuhrlichen und damit eindeutigen Einheiten-Symbole be-
nutzt.

Der Anwender steht immer im Mittelpunkt —
und dort steht er jedem —

und vor allem dem Programmierer —

im Weg!

erginzende Bemerkungen zu Vaiablen und Daten-Typen

int mit einem Werte-Bereich von -9223'372'036'854'775'808 bis 9'223'372°036’854°775°807
(-9 Trillionen bis 9 Trillionen (also knapp von -10"® bis 108))
Das entspricht dem Maximum, was in einer 64bit-Variablen moglich ist

float fur Gleitkommazahlen ebenfalls als 64bit-Variable
durch spezielle Verteilung der Bit’s flir Matisse und Exponent kommt man auf einen mogli-
chen Bereich von -1,797'693'134'862'315'7*1038 bis +2,225'073'858'507°201’4*103%8

komplexe Zahlen lassen sich als Summe (besser auch in Klammern) aus reelen und imagi-
naren Teil zusammensetzen 4+5j

BK_Sekl+II_Python_basic.docx -61- (c,p) 2015 - 2026 Isp: dre

5. Was passiert mit dem Quelltext?

Python ist eine héhere bzw. Problem-orientierte Programmiersprache

vom Menschen gut lesbar

muss fur die Nutzung auf dem Computer in Maschinencode (Nullen und Einsen) Ubersetzt
werden, dies kann aber ein Computer wieder auch selbst realisieren; Ubersetzung benétigt
Zeit und muss relativ universell erfolgen, deshalb ist der Vorgang recht langsam

meist sind die fertigen Programme dann auf verschiedenen Computer-Typen und Betriebs-
system-Welten nutzbar

Maschinen-orientierte Programmiersprachen (z.B. Assembler od. Bytecode) sind vom Men-
schen nur sehr schwer lesbar und wenig verstandlich

kaum Ubersetzung notwendig, deshalb meist sehr schnell und effektiv

meist auf einzelne Computer-Typen und eine Betriebssystem-Welt zugeschnitten

Ubersetzung einer Programmiersprache in Maschinen-Code kann auf zwei Arten erfolgen:
entweder mit

e Interpreter Ubersetzung erfolgt wahrend der Nutzung; es werden Zeile fir Zeile
(bzw. Blocke) einzeln Ubersetzt und ausgefihrt; bei nochmaliger
Nutzung muss wieder neu interpretiert werden; immer Quell-Text
und Interpreter (bei Python die Shell) zur Ausflihnrung notwendig

oder

e Compiler Ubersetzung erfolgt hier in einem Stiick vor der Nutzung; es wird
zumeist ein echtes ausflhrbares Programm (EXE-Datei) erzeugt;
das ausflhrbare Programm kann beliebig oft und ev. auch parallel
ausgefuhrt werden; Nutzung ohne den Quell-Text und den Compiler
maglich

Der Compiler nimmt den ge-

samten Quell-Text und Uber- bt L Nutzer

setzt ihn in Maschinen- ..

COde. Diesel’ erd dann in uher\er'er: nmf:drwn

eine ausfuhrbare Datei (i.A. [ﬂ

eine EXE) gespeichert und quel-Code —""[E]

kann dann beliebig oft ausge- Maschinen-Code EXE-Datei (gesamtes)

filhrt werden. Meist kann die Programm
EXE-Datei auch weitergege- progran

ben werden und auf einem begin T iibersetzen

anderen Rechner ausgeflhrt — b ausfiihren

werden. Dieser Rechner be- ™ Interpreter | interakis Programm-
notigt kein Ubersetzungs- Quell-Text ragmen

Programm, da der Quell-Text Quel-Gode Speicher

ja vollstandig in Maschinen-

Code Ubertragen wurde.

Compilierte Programme sind sehr schnell, da eine erneute Uberpriifung und Ubersetzung
nicht mehr notwendig ist.

Ein Interpreter geht bei der Ubersetzung anders vor. Er tbersetzt immer nur zusammenge-
hdérende Teile des Quell-Code's und fuhrt diese sofort aus.

Der Vorteil ist hier, dass eine ev. aufwandige Compilierung eines (grof3en) Programm's nicht
erfolgen muss — es wird nur der derezit gebrauchte Teil Gibersetzt. Geht etwas beim Uberset-
zen oder in der Nutzung (z.B. Bedienfehler) schief, dann erfolgt eine Fehler-Meldung. Dies
kann sofort im Quell-Text verbessert werden und eine erneute Interpretation erfolgen.
Interpreter sind auch wesenltliche einfacher zu erstellen und deutlich kleinere Programme,
als Compiler.

BK_SekI+l_Python_basic.docx -62 - (c,p) 2015 - 2026 Isp: dre

Der Nutzer benétigt aber bei der Interpreter-Version auch immer wieder dieses Uberset-
zungs-Programm (also den Interpreter) auf seinem Rechner.

Prinzipiell ist Python eine Interpreter-Sprache. Der Quell-Text wird also wahrend der Benut-
zung / dem Aufruf in Maschinen-Befehle umgesetzt. Aber beim genauen Betrachten wird
allerdings eine Kombination aus Compiler und Interpreter benutzt. Dadurch werden die Vor-
teile beider Ubersetzungs-Techniken zusammengefiihrt.

Datentriger Programmierer Nutzer

Pra- —
Python . i Arﬁbcrsc’f‘zzn

| Pra-
Compiler
Python

Quell-Text AN

libersetzen
Quell-Code ausfithren
Programn
Fragment

Speichar

Der Quell-Text wird vom Compiler-Teil des "Interpreter's" zuerst in einen Zwischen-Code
(Byte-Code) ubersetzt. Dieser Code ist dann vom Interpreter lesbar. DerByte-Code selbst ist
Maschinen-unabhangig, d.h. jeder Compiler erzeugt den gleichen Byte-Code aus einem
Quell-Text. Der Byte-Code wird im Hintergrund verarbeitet. Der "normale" Nutzer Ubersieht
diesen Code wahrscheinlich.

Der Zwischen-Code (Byte-Code) wird dann vom Interpreter, der nun als virtuelle Maschine
fungiert, Maschinen-abhangig abgearbeitet. FUr jeden Rechner mit einem anderen Betriebs-
system muss es also von Python einen speziellen Interpreter geben.

Im Detail werden die Daten / Dateien in etwa so verarbeitet. Wenn der py-Quelltext eines
Moduls oder aus einer anderen py-Datei importiert wird, dann wird eine (sichtbare) Byteco-
de-Datei abgelegt. Diese hat die Endung *.pyc. Zumeist liegen die Dateien im Unterordner
__pycache__ des Python-Systems. Die pyc-Datei kann mit dem Interpreter jedes anderen
Systems abgearbeitet werden.

Ein Interpreter ist ein Programm, das den Quelltext zur Laufzeit einliest, analysiert und aus-
fuhrt.

Der Interpreter wird bei jeder Abarbeitung des Programms (Quelltextes) gebraucht.

Ein Compiler ist ein Programm, das den Quelltext in ein fur sich ausfiihrbares Maschinen-

Programm Ubersetzt.
Der Compiler wird zur Abarbeitung des Programms nicht mehr gebraucht.

BK_Sekl+II_Python_basic.docx -63- (c,p) 2015 - 2026 Isp: dre

eval(ausdruck)
interpretiert den angegebenen Ausdruck

exec(text)

interpretiert den angegebenen Text (der ein vollstandiges Python-Programm sein kann) und
fuhrt den Code aus

text kann also eine Folge von Python-Anweisungen, Importen, Funktion(sdefinietion)en usw.
usf sein

compile()

die Interpreter-Technik bringt auch einige Probleme mit sich

ein solches Problem ist die Fehl-Interpetation von Eingaben; im interaktiven Modus fir den
Nutzer nachvollziehbar, bringt es den Endnutzer (ohne Kenntnis des Quell-Textes und viel-
leicht auch ohne Python-Erfahrung) leicht um den Verstand

genaueres dazu spater bei den Eingaben (= 6.2.1. unschdne Eingabe-Seiten-Effekte in Py-
thon-Programmen)

BK_SekI+l_Python_basic.docx -64- (c,p) 2015 - 2026 Isp: dre

5.1. Und es geht doch! — aus dem Python-Quelltext eine
EXFE erstellen

Pylinstaller

erzeugt eine exe-Datei, die eine Python-Laufzeitumgebung und das eigene Script / Pro-
gramm enthalt

gibt es flr Windows und flr Linux

http://www.pyinstaller.org/

aus dem Pylnstaller weiterentwickelt wurde der
McMillan's Installer

entwickelt; also gleiches Prinzip
Weiterentwicklung ???

py2exe-Modul

sehr haufig benutzt

es gibt aber bestimmte Einschrankungen, die ev. beim Programmieren beachtet werden
mussen

hat manchmal auch Probleme mit bestimmten Modulen / Bibliotheken

BK_Sekl+II_Python_basic.docx -65- (c,p) 2015 - 2026 Isp: dre

5.2. Fehlersuche

¥ fehlertests.py - D:/XK_INFO/BK_S.I_Info/fe
Gleich bei den ‘g gt Fomat Run
ersten Ubungen schreib ("Hallo"®
tauchen erfah- |
rungsgemaf die
ersten Fehler
beim Interpretie-
ren des Quell-
codes auf. >33
Manche Feh|er Traceback [(most recent call last):
sind offensicht- -
. achreib ("Hallo™
IICh' VOI’ a"em NameError: :'._arf'.e 'achreib' iz not defined
dann, wenn noch | s>
Fehler-Informa-
tionen mit aus-
gegeben werden.

Options Window Help

=10l x|
=

zu interpretierender Quelltext

File "D:/XE_INFO/BE_5.I Info/fehlertests.py", line 1, in <module>

angezeigte Fehlermeldung

Hier z.B. wurde in der Zeile 1 (1ine 1) in der interpretierten Datei ein Namensfehler

(NameError: ..) gefunden. Der Name "schreib" ist nicht definiert.

Aber manchmal ist nur ein rotes Viereck am Anfang der Zeile zu
erkennen. Die Fehlermeldung besagt aber, es handle sich um
einen Syntax-Fehler.

Besonders verzwickt wird es, wenn man auch noch sicher ist,
dass in dieser Zeile alles richtig ist. In so einem Fall lohnt immer
ein Blick in die Zeile davor. Meist ist hier der Fehler zu finden. Far
den Interpreter ist die vorherige Zeile syntaktisch noch nicht ab-
geschlossen. Die neue Zeile — in der der Fehler angezeigt wird —
ist aber eben nicht passend zur vorherigen Zeile und somit ergibt
es eine Fehlermeldung.

Die haufigsten Fehler sind fehlende Operatoren (+, -, *, /, ...) oder
Operanden (Zahlen bzw. Variablen).

Als nachste Fehlerquelle kommen fehlende schlieRende Klam-
mern oder zu wenig 6ffnende in Frage.

Das Schone ist, das uns Python die Klammernpaare im Editor
kurzzeitig nach dem Eintippen anzeigt. Sollte da mal in einer
Funktion nicht alles grau werden, dann fehlt zumeist irgendwo
eine Klammer.

x

[Q} invalid syntax

!’.:_-. fehlertests.p

File Edit Format
2 % [3+7
16 + 4

Eine unschéne Sache ist auch fir uns Deutsche die Umsetzung des Dezimaltrenners Kom-
ma in einen Punkt. Ein Komma hat véllig andere Wirkungen — dazu spater mehr. Hier ist erst

einmal wichtig, darauf zu achten.

Ahnlich, wie bei den Klammern missen Texte immer mit den beginnenden Zeichen — am

Besten doppelte Anflihrungszeichen — abgeschlossen werden.
Fehlermeldungen konnen
aber auch sehr kryptisch

g

. . . Traceback (most recent call last):

sein. Sle Slnd aus der File "D:/XK INFO/BE 5.1 Info/fehlertests.py",
: : G+4 (2*E)

SICht des Interpreter ein- TyvpeError: 'int' object is not callable

deutig, aber eben nicht | -
aus der Sicht des Pro-
grammierers, der ausver-
sehen einen Tipp-Fehler
gemacht hat.

line 1, in <module>

es handelt sich bei diesem Fehler nicht um einen "Typ"-Fehler
sondern um eine fehlendes Mal-Zeichen vor der Klammer

BK_Sekl+Il_Python_basic.docx - 66 -

(c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Suchen Sie die Fehler in den folgenden Code-Ausschnitfen! Berichligen Sie
diese und probieren Sie in Python aus, ob der Interpreter den Code akzep-
tiert!

a) 23 * (3 + 2 b)9+43
12 + 83 - 7 * 23+4) + 8
C) 17 \ 4 * 12 d) .5 + 4 * 3
21,5 * 3 =3=45% 333333
e) print ('Hallo Nutzer!") f) PRINT (21 + "E")

2. Erstellen Sie ein kleines Python-Programm mil mindestens 5 Fehlern! Dru-
cken Sie das Programm zweimal aus und Korrigieren Sie auf einem Blalt die
Fehler (2 Losungsblall)!

3. Tauschen Sie das 2. Blatt einem Nachbarn und korriegieren Sie dessen feh-
lervhaftes Programm!

4. Vergleichen Sie die gefundenen Fehler mit dem Ldsungsblatt!

Den Prozess der Fehlerbereinigung nennt man auch Debuggen (dt.; engl.: debugging). Der
Begriff besagt, dass die Lause / Kafer (engl.: bugs) aus dem Quelltext bzw. dem fertigen
Programm entfernt werden.

Man unterscheidet technisch zwischen:

e Syntax-Fehlern praktisch Fehler in der Rechtschreibung des
Quelltextes
e Laufzeit-Fehlern sind Fehler, die erst beim Ausfiihren des Pro-

gramm auftreten

¢ logische und semantische Fehler sind inhaltliche Fehler oder auch grammatikali-
sche Fehler im Quell-Text

Debugging ist echte Detektiv-Arbeit. Manche Fehler sind wahre Kinstler im Verstecken und
Verschleiern der wirklichen Fehlerstellen. Ab und zu muss man sich einfach aus der Arbeits-
ebene I6sen und von oben auf das Programm schauen. Auch das Pause-Machen oder
Schlafen-Gehen hat sich als Wunderwaffe gegen Programmierfehler herausgestellt.
Heute gibt es sogenannte Debugger — Programme, die zu mindestens eine gro3e Menge
klassischer Programmierfehler in Quelltexten finden. Letztendlich wird aber immer der
Mensch die letzte prifende Instanz sein. Somit obliegt es immer ihm, ob ein Programm feh-
lerarm ist. Wirklich richtig fehlerfrei wird man wohl kein komplexes Programm je hinbekom-
men.
Jedes Programm sollte immer erst frei gegeben werden, wenn seine Funktionsweise vom
Programmierer verantwortet werden kann.
Leider planen viele Programmierer fur das Debuggen zu wenig Zeit ein. Ein guter Orientie-
rungswert sind ein Drittel der gesamten Programmierzeit. Das erste Drittel geht fir die Kon-
zeption und den Algorithmen-Entwurf drauf und das nachste fir die Quelltext-Erstellung.
Bleibt die Dokumentation Gbrig. Dafir muss man noch mal ein Drittel einplanen. Und damit
sind wir da, wo fast alle Programmier-Projekte enden — in der deutliche Uberschreitung der
Zeit-Vorgaben.
Ein Programm ist dann korrekt,
wenn es zu jeder zulassigen Eingabe
eine korrekte Ausgabe produziert.

BK_Sekl+II_Python_basic.docx - 67 - (c,p) 2015 - 2026 Isp: dre

Das impliziert, dass man beim Testen alle zulassigen Eingaben durchlaufen misste und die
vom Programm produzierten Ausgaben mit anderen Referenzwerten vergleichen musste.

So etwas ist aber maximal bei kleinen Programmen mit wenigen Eingaben / Ausgaben
machbar. In der Praxis wird man sich mit einer gut gewahlten Menge von Eingaben und
Ausgaben zufrieden geben missen. Besonders effektiv ist die Test-Menge an Eingabe- und
Ausgabe-Paaren, wenn diese zufallig ausgewahlt werden. Dann besteht zu mindestens eine
gewissen Wahrscheinlichkeit, dass das Programm ordnungsgemaf funktioniert.

Aufoaben:

1. Priifen Sie zuerst auf dem Papier die folgenden Programme! Finden Sie die
Fehler und berichligen Sie diese sinnvoll!

a) print "Sternenreihe" b) input (Dein Name:
for i in range 1, 11 print " " #Eingabe lautete:
print(i = , 1i) print (name)
print (i#* print "fertig"
Programmende input ()

print (ende)

2. Diskutieren Sie die Fehler und Berichtungen mit einem Pariner aus dem
Kurs!

3. Tippen Sie nun den korrigierten Quelllext ein und probieren Sie ihn aus!
Finden Sie noch weilere Fehler des Originallextes, IThrer Korvekluren oder
durch die (durch Sie gelitigte) Eingabe?

BK_SekI+l_Python_basic.docx -68 - (c,p) 2015 - 2026 Isp: dre

Bei fehlerhaften Python-Programmen werden haufig die folgenden Fehler angezeigt:

e SyntaxError

¢ NameError

e |dentationError

e ValueError

e TypeError

e ImportError

besagt, das Elemente von Phyton nicht richtig geschrieben oder
angeordnet (z.B. fehlende schlieRende Klammern) worden sind
(praktisch Rechtschreib- bzw. Grammatik-Fehler)

der (fehlerhafte) Quellcode lasst sich nicht in ein ausfihrbares Pro-
gramm (Maschinencode) Ubersetzen

haufig fehlt ein Doppelpunkt oder es fehlen schlielende Klammern
oder die Ende-Kennzeichen von Texten

zeigt an, dass eine Variable benutzt wird, der vorher noch kein Wert
zugewiesen wurde

haufig wurde der Variablen-Name nur falsch geschrieben und die
Grol3- und Kleinschreibung nicht beachtet

weiterhin tritt der Fehlertyp auf, wenn eine Funktion aufgerufen /
benutzt wird, die nicht definiert oder importiert wurde

ist ein Einrlickungsfehler; entweder wurden keine notwendigen Ein-
rickungen vorgenommen oder die Einrickungen sind unterschied-
lich grof3

durch einheitliches Benutzen von Tab-Stop's bzw. Leerzeichen
(empfohlen werden 4) leicht zu korrigieren und zu vermeiden

tritt immer dann auf, wenn zwar der richtige Daten-Typ verwendet
wurde, aber der Inhalt (Wert = engl.: value) nicht fir die Funktion
usw. geeignet ist

wird angezeigt, wenn fir eine Operation / Funktion Daten eines
nicht geeigneten bzw. zugelassenen Typ's verwendet oder Uberge-
ben wurden

tritt auch auf, wenn eine Eingabe (standardmafig ein Text) an eine
Rechen-Operation oder —Funktion Gibergeben wird

z.B. kann eine Funktion, die ein ganze Zahl erwartet nicht mit einer
Kommazahl oder einem Text aufgerufen werden

weist darauf hin, dass die Bibliothek / das Modul oder die spezifi-
zierten Funktionen nicht verfigbar sind oder falsch geschrieben
wurden

BK_Sekl+ll_Python_basic.docx

-69 - (c,p) 2015 - 2026 Isp: dre

5.3. Stil-Regeln fiir Python-Programmierer

Warum denn nun schon Vorschriften zum richtigen Schreiben von Python-Prgrammen — wir
haben doch noch gar nicht richtig programmiert?! Naturlich ist der Einwand richtig. Viele der
nachfolgenden Regeln und Vorschriften héren sich fir einen Anfanger véllig abgehoben an.
Aber — wer nicht von Anfang an die wichtigen Regeln einhalt, der wird sich spater nur schwer
umgewdhnen.

Im Normalfall wird die Einhaltung der Vorschriftung und Stil-Regeln von den Kursleitern bei
der Bewertung von Programmen mit beachtet. Also wundern Saie sich nicht, wenn ein super
funktiuonierendes Programm nicht die volle Punktzahl bekommt, weil es einfach nicht lesbar
und verstandlich ist.

Ein anderer Programmierer oder z.B. der Kursleiter sind Personen, die ein Programm ein-
fach nur lesen. Sie mussen und kdnnen nicht zwangslaufig die Gedankengange des Pro-
grammierer's verstehen. Programmieren ist heute zudem immer Team-Arbeit. Das Lesen
von Programmen passiert deutlich haufiger als das Schreiben und Korrigieren. Deshalb
mussen Programme immer auch fiur fremde Leser verstandlich angelegt und geschrieben
werden.

Versetzen Sie sich in die Lage lhres spateren Arbeitgebers oder eines Arbeitgebers. Da pro-
grammiert ein Programmierer einfach drauf los und erzeugt auch funktionierende Program-
me. Nun muss irgendetwas umgestellt werden oder ein Fehler ist aufgetaucht und muss kor-
rigiert werden. Und nun liegt da ein Quelltext vor lhnen, mit dem niemand etwas anfangen
kann, weil er untbersichtlich oder kryptisch unverstandlich geschrieben ist. Die Ubliche Re-
aktion ist: Das Programm wird neu geschrieben, das dauert genausolange, wie den alten
Code aufzubrdseln. Was ist das fur eine Resourcen-Verschwendung. Kosten Gber Kosten,
nur weil so ein Neunmalklug den Angeber spielen will. So geht es also nicht.

In der PEP 8 ("Python Enhancement Proposal #8) sind viele Stil-Regeln empfohlen (=
https://www.python.org/dev/peps/pep-0008/). Fur uns Anfanger gelten Sie als Gesetze.

Hier die wichtigen Regeln:

Leer-Rdume (Leer-Zeichen):

fur Einrickungen Leer-Zeichen verwenden (statt Tabulator)

Einrickungen immer um 4 Zeichen

Zeilen-Lange unter 80 Zeichen

definierte Klassen und Funktionen werden mit 2 Leerzeilen von einander getrennt

innerhalb einer Gruppe (z.B. Funktionen einer Klasse, zusammengehdrende Funktionen)

wird nur eine Leerzeile benutzt

¢ Funktions-Aufrufe und Feld-Indizies ohne Leerzeichen innerhalb der Klammern (maximal
ein Leerzeichen zwischen den Einzel-Objekten)

¢ ein Leerzeichen vor und hinter dem Zuweisungszeichen (=)

e ein Leerzeichen vor und hinter dem Vergleichszeichen (z.B.: ==

keine Leer-Rdume:

e zwischen Funktionsnamen und der 6ffnenenden Klammer

¢ hinter einer 6ffnenden Klammer, vor einer schlieRenden Klammer
e vor einem Doppelpunkt (von Verzweigungen und Schleifen)

Bezeichner:

Variablennamen, Funktionen, Attribute in Kleinbuchstaben (ev. mit Unterstrichen)
geschitzte Attribute mit fUhrendem Unterstrich

private Attribute mit flhrendem doppelten Unterstrich

Klassen und Exceptions mit GroRbuchstaben beginnend (und ev. auch intern fir Worter-
beginn)

¢ Modul-weite Konstanten vollstandig in GroRbuchstaben

BK_SekI+l_Python_basic.docx -70 - (c,p) 2015 - 2026 Isp: dre

https://www.python.org/dev/peps/pep-0008/

Ausdriick und Anweisungen:

keine einzeiligen if-Anweisungen, for- und while-Schleifen

keine einzeiligen Exceptions

Vorrang fur from xxx import yyy (statt import yyy)

Reihenfolge der Importe (zuerst Standard-Module, dann Fremdanbieter-Module, zuletzt
eigene Module); moéglichst alphabetisch sortiert

Test auf eine leere Liste, leere Felder, leere Werte mit somelist (nicht mit len(..) == 0
usw.)

weitere Empfehlungen / Regeln:

gleichartige Programm-Abschnitt (besonders, wenn sie haufiger verwendet werden) als
Funktionen auslagern

komplizierte Ausdriicke in Funktionen auslagern

Teil-Listen und Elementzugriff auf Listen tber :-Notierung (Slicing)

mdglichst keine else-Blocke nach for- oder while-Schleifen

alle Blocke in Exceptions nutzen

Bemerkungen zur verwendeten Schreibung in diesem Skript:

Ich bin bemiiht die Regeln so gut wie mdglich einzuhalten. Viele Programme sind schon
alter und werden nach und nach umgestellt. Das kostet viel Zeit, Zeit, die ich derzeit erst
einmal lieber fir inhaltliche Erweiterung aufwenden mochte. Das andersartige Schreiben
von Bezeichnern etc. ist zuerst einmal ein Schdnheitsfehler.

Die Exaktheit eines Programms geht bei mir vor Schdnheit.
Fir Hinweise auf dringend notwendige Umstellungen und echte Fehler bin ich immer dankbar.

N 2\ Z

Aufoaben:

... folgen spafer, hier Verweise fiir Voreilige:

Grob-Gliederung eines Programm’'s

e ev. Kommentare zum Programm / zur Datei Leistung des Programm's

Autor
Datum
Version
Lizenz
Leerzeile mindestens
o Importe
Leerzeile mindestens
e Funktions-Definitionen ev. mit Kommentaren
2 Leerzeilen mindestens
e (Haupt-)Programm / Initialisierung mdglichst mit Kommentar z.B.: #MAIN

BK_Sekl+II_Python_basic.docx -71 - (c,p) 2015 - 2026 Isp: dre

Linter

Ein Linter ist ein Programm, das Programm-Code analysiert und geeignete Kommentare
zurlckgibt.
Es werden dabei:

e Code-Formatierungen
¢ sinnlose Code-Zeilen
o mdgliche, unbeabsichtige Fehler-Quellen

betrachtet.

Linter ergeben immer nur Empfehlungen. Besser als Linter sind menschliche Korrektoren. In
der Praxis arbeiten Programmierer in Zweier-Team. Einer programmiert und der andere
schaut dem ersten Gber die Schulter.

3.4. agile Software-Entwicklung

mehr eine Arbeits-Einstellung fur Pro-

| @ Manifest far Agile Softwareentwicklung - Mozilla Firefox = e [e

grammierer, als Programmier-Regeln | oot Beabeien Arsicht Ghvrik Leezéichen Extrs. il
@ | Manifest fur Agile Softwareentwick| X+ v
< C @ O B8 nhitpsy/agilemanifesto.org/iso/de/manifest B ¥ Q Suchen » =

|
| Manifest fiir Agile Softwareentwicklung

Wir erschliefien bessere Wege, Software zu entwickeln,
indem wir es selbst tun und anderen dabei helfen.
Durch diese Tatigkeit haben wir diese Werte zu schitzen gelernt:

Individuen und Interaktionen mehr als Prozesse und Werkzeuge
Funktionierende Software mehr als umfassende Dokumentation
. Zusammenarbeit mit dem Kunden mehr als Vertragsverhandlung

Reagieren auf Verdnderung mehr als das Befolgen eines Plans

’ Das heifit, obwohl wir die Werte auf der rechten Seite wichtig finden,

schitzen wir die Werte auf der linken Seite hoher ein.

I Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
PD CA-Zy klus Ward Cunningham Jon Kern Dave Thomas

Martin Fowler Brian Marick

v

Q: agilemanifesto.org

BK_Sekl+l_Python_basic.docx -72 - (c,p) 2015 - 2026 Isp: dre

| @ Prinzipien hinter dem Agilen Manifest - Mozilla Firefox -] X

!Qatei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

& Prinzipien hinter dem Agilen Manif: X e v

< C O 8\ https://agilemanifesto.org/iso/d

i Prinzipien hinter dem Agilen Manifest
|

Wir folgen diesen Prinzipien:

Unsere hochste Prioritt ist es,
den Kunden durch frithe und kontinuierliche Auslieferung
wertvoller Software zufrieden zu stellen.

Heisse Anforderungsanderungen selbst spat
in der Entwicklung willkommen. Agile Prozesse nutzen Veranderungen
zum Wettbewerbsvorteil des Kunden.

Liefere funktionierende Software
regelmaBig innerhalb weniger Wochen oder Monate und
bevorzuge dabei die kiirzere Zeitspanne.

| Fachexperten und Entwickler
miissen wihrend des Projektes
| taglich zusammenarbeiten.

Errichte Projekte rund um motivierte Individuen.
Gib ihnen das Umfeld und die Unterstitzung, die sie benotigen
und vertraue darauf, dass sie die Aufgabe erledigen.

Die effizienteste und effektivste Methode, Informationen
an und innerhalb eines Entwicklungsteams zu iibermitteln,
ist im Gesprach von Angesicht zu Angesicht.
Funktionierende Software ist das
wichtigste FortschrittsmaB.

Agile Prozesse fordern nachhaltige Entwicklung.

Die Auftraggeber, Entwickler und Benutzer sollten ein
gleichmaBiges Tempo auf unbegrenzte Zeit halten konnen.

Standiges Augenmerk auf technische Exzellenz und
gutes Design fordert Agilitat.

Einfachheit -- die Kunst, die Menge nicht
getaner Arbeit zu maximieren -- ist essenziell.

Die besten Architekturen, Anforderungen und Entwiirfe
entstehen durch selbstorganisierte Teams.

In regelmaBigen Abstanden reflektiert das Team,
wie es effektiver werden kann und passt sein
{ Verhalten entsprechend an.
| v

Q: agilemanifesto.org

BK_Sekl+II_Python_basic.docx -73- (c,p) 2015 - 2026 Isp: dre

6. grundlegende Sprach-Elemente von Python

Nicht dass Sie beim Betrachten des ersten Unterabschnittes denken, ich habe das EVA-
Prinzip schon wieder vergessen oder nicht richtig verstanden. Nein, die Umsortierung fur die
einzelnen Kapitel (Eingabe — Verarbeitung — Ausgabe) erfolgt hier aus praktischen Grinden.
Damit man mit dem Nutzer kommunizieren kann, missen z.B. Informationen auf dem Bild-
schirm erscheinen. Die Ausgaben sind dafur passende Programm-Elemente. Eigentlich im-
mer soll irgendetwas (zum Testen) ausgegeben werden. Und das sind zuerst auch nur Zwi-
schenwerte und Rohergebnisse. Spater werden die Daten dann Nutzer-freundlich prasen-
tiert.

Deshalb verwende ich hier also die unorthodoxe Reihenfolge: Ausgaben (= 6.1. Ausgaben)
— Eingaben (= 6.2. Eingaben) — Verarbeitung (= 6.3. Verarbeitung).

6.1. Ausgaben

Einige Mdglichkeiten der Ausgabe mit dem Befehl bzw. der Funktion print haben wir uns bei
den ersten einfachen Programmen (= 4. erste einfache Programme mit Python) schon an-
gesehen.

Nun wollen wir uns weitere Feinheiten ansehen und auch einige zusatzliche Ausgabe-
Maglichkeiten kennenlernen.

Trotzdem werden hier nur die wichtigsten / praktischsten Moglichkeiten aufzeigen. Fur mehr
empfehle ich die Hilfe, die viele andere Variationen und Mdoglichkeiten beschreibt. Der
print()-Befehl bietet viele Gelegenheiten, sich eine gut verstandliche, ordnungsgeman ge-
staltete Ausgabe zu produzieren.

So lassen sich viele ein-

. . >>> print("Hallo ", "Nutzer!")
zelne Teilbereiche (qua- Hallo Nutzer!
si die Argumente) durch >>>

Kommata abgrenzen.
Jeder ist fur sich wieder
weiter differenzierbar.
Letztendlich lauft es da-
rauf hinaus, entweder
eben nur eine (print mit
nur einem Argument) oder
mehrere Texte zu erstel-
len.

Zahlen und Berechnun-
gen lassen sich Komma-
getrennt ebenfalls in
einer Ausgabe unter-
bringen. Es kann dabei
frei gemischt werden.

Jetzt kdnnte man natirlich auf die Idee kommen, die etwas gewdhnungsbedurftigen Ausga-

>>> name="Klaus"

>>> print("Hallo ", name, ", wie geht's?")
Hallo Klaus, wie geht's?

>>>

>>> a=5

>>> print("Hallo ", name, ", 2*" ,a," ist " ,62%*a)
Hallo Klaus, wie geht's?

>>>

>>> print("Hallo ", name, ", 2*",a," ist " ,62%*a)
Hallo Klaus, 2* 5 ist 10
>>>

ben aus Texten und Zahlen in einzelne print()-Anweisungen zu stecken.

BK_Sekl+Il_Python_basic.docx

_74-

(c,p) 2015 - 2026 Isp: dre

>>> print("Hallo "); print(name); print(", 2*"); ..

Uberdichtlicher ist das

in jedem Fall: Hallo
Aber — und da steckt Klaus
der Teufel im Detail — ;2%
) ; . 5
jede print-Anweisung ist
erzeugt am Ende den 10
schon erwdhnten Zei- 22
lenumbruch.

Die print()-Anweisungen erzeugen immer eigenstandige Zeilen. Dagegen gibt es zwar einen
Trick, den schauen wir uns genauer an, wenn wir die Standard-Moglichkeiten besprochen

haben.

Durch die Komma-Trennung werden die einzelnen Ausgaben separiert und einzeln abgear-
beitet. Texte eben sofort angezeigt, Zahlen ausgegeben und Berechnungen erst ausgefiihrt

und dann ausgedruckt.

Haufig mdchte man sich die Ausgabe-
Zeile in Ruhe zusammenbasteln und
dann als Ganzes Uber den Variblen-
Aufruf oder von der print()-Anweisung
anzeigen lassen.

Dazu mussen alle Teile in Text-Form
vorliegen — auch Zahlen oder Berech-
nungen (gemeint sind natirlich die Er-
gebnisse).

>>> nutzer="Klaus"

>>> zeile="Hallo " + nutzer + "!"
>>> zeile

'Hallo Klaus!'

>>> print(zeile)

Hallo Klaus!

>>>

Die Zahlen oder eben Berechnungs-Ergebnisse lassen sich mittels str()-Anweisung in eine

Zeichenkette umwandeln.

Das ist spater in graphischen Benut-
zungsoberflachen ebenfalls so gefordert.
Die verschiedenen Zeichenketten wer-
den dann mittels +-Operator verketten,
aneinanderreihen oder konkatenieren.
Der *-Operator sorgt fir eine Wiederho-
lung der Zeichenkette.

Aufoaben:

>>> aufgabe="5 x 2= "
>>> zeile=aufgabe + str(5*2)
>>> print(zeile)

5 * 2 =10
>>>
>>> strichzeile="- "*10

>>> print(strichzeile)

1. Lassen Sie in der Konsole die folgenden Anzeigen erscheinen!

a) Der eigene Name als nutzer gespeichert und in der folgenden Form ausgegeben:

nutzer, hallo nutzer!

b) Die folgende Zeile aus einzelnen Woértern zusammengesetzt und mit der print()-

Anweisung angezeigt!

Hallo lieber Nutzer, jetzt geht es los!

c) Die Zeile aus Einzelnworten (jeweils eine Variable!) zusammengesetzt gespei-
chert als zeile! Die Wiederholungen der Pluszeichen vorher mit dem *-Operator
bilden! Die Variable zeile dann 2x mit sich selbst konkateniert!

+ + + aktuelle Nachricht + + +

d) Aufgabe und Ergebnis: 10 +7 * 3

e) Aufgabe und Ergebnis: 22 (34-18)— (4 +6)/ 2

2. Legen Sie sich cinen "Python-Spiker" an! Auf diesem konnen Sie den Syn-
lax nolieren! (Es sind aber keine langeren Programm-Beispicle erlaubl!)

BK_Sekl+ll_Python_basic.docx

-75- (c,p) 2015 - 2026 Isp: dre

Jede Ausgabe mit print() bewirkt ja mit der schlieRenden Klammer einen Zeilen-Umbruch.
Das ist bei vielen Programmen aber gar nicht erwlnscht. Vielfach will man mehrere Teil-
Ausgaben in einer Zeile hintereinander machen.

Im nachfolgenden — etwas vorgreifenden (!) — Programm-Beispiel (mit einer Schleife / Wie-
derholung) wird mehrfach ein print() gemacht.

FABONACCHI-Funktion bis 10 mit Tupeln
f1, £f2 = 0, 1
while f2 < 10:

print (£2)
fl1, f2 = f2, f1 + £2
input ()

Uns interessiert hier nur die Zeile mit der print-Anweisung. Die Berechnungen wurden hier
mit Absicht extra kryptisch gewahlt, um nicht anderen Besprechnungen vorzugreifen.

Jedes Mal nach der Ausgabe von f2 wird eine neue Zeile | >>>

begonnen. Bei sehr vielen Ausgaben ist schnell der untere
Rand des Ausgabe-Bildschirms erreicht und die oberen
Zahlen verschwinden am oberen Rand.

Um diese platzaufwandige Ausgabeform zu verhindern,
dass nach jeder print-Ausgabe ein Zeilenumbruch ge-
macht wird, kann im print()-Befehl die end-Anweisung
eingebaut werden.

ouUWwWNREFERLRYV

Sie verhindert den Zeilenumbruch und stellt eine Méglichkeit bereit, zwischen den verschie-
den Print-Ausgaben einen Zwischentext auszugeben

FABONACCHI-Funktion bis 1000 mit Tupeln
f1, £f2 =0, 1
while f2 < 1000:
print(£f2, end=' .. ')
f1, f2 = £2, f1 + f2
input ()

>>>
1..1..2..3..5..8..13 ..21 .. 34 .. 55 .. 89 .. 144 .. 233
. 377 .. 610 .. 987 ..

Man muss nun aber auch beachten, dass im obigen Programm bisher niemals ein Zeilenum-
bruch gemacht wird. Den braucht man aber auch das eine oder andere Mal — z.B. eben nach
Schleifen, die selbst keine Ausgaben mit Zeilen-Umbrichen enthalten.

Mit der end-Angabe nehmen wir praktische eine Steuerung der Ausgabe vor.
Auf Wusch kann aber auch ein Zeilchen-Umbruch eingesteuert werden. Dazu benutzt man
als Steuersequenz \n.

\" bzw. \", um die Zeichen selbst innerhalb von Texten

' : print ("""\
| Zeichenketten ausgeben zu kdnnen Hauptmenii:
\n flr die Erzeugung mehrzeiliger Texte, quasi als Zei- - [Olptionen
lenumbruch (#D) - [S]ltart
Zeichenketten konnen auch in Paare von drei Hoch- - [E]lnde

kommata bzw. Anfihrungszeichen gesetzt werden, my

dann ist eine extra Notierung von Zeilenumbrtichen (\n)

nicht notwendig.

So kdnnen also Texte Uber mehrere Zeilen notiert und ausgegegeben werrden.

BK_Sekl+l_Python_basic.docx -76 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Verindern Sie das FIBONACCHI-Programm so, dass stalt der zwei Punkfe

zwischen den Reihen-Gliedern nun die Zeichen- summe = 0
Sequenz " =-= " ausgegeben wird! D 0
2. Im nebenstehenden Programm fehlen (an den Fra- while n < 100:
gezeichen-Positionen) die print-Befehle. Frweilern summe += n
e . ?
Sie das Programm so, dass ecin Ausdruck: ‘
. . n +=1
Summen-Reihe: 0, 1, 3, .. fertig! 5
enlisteht! input ()

6.1.1. Ausgaben mit Platzhaltern

In Programmen kommt es sehr haufig vor, dass man immer die gleichen Ausgaben oder
Ausgaben nach einem bestimmten Muster machen muss. Hierfir kann man Texte / Strings
mit Platzhaltern verwenden. Diese kann man sich wie die Freistellen in einem Licken-Text
vorstellen. In Python muss die Licke aber einen Namen bekommen, damit das System
weiss, an welche Stelle die Lucke ist was in diese geschrieben werden soll.

Den eigentlichen Lickentext kennzeichnen wir durch ein f vor dem Text / String. Die Licke
selbst wird durch geschweifte Klammern

name = "Hans"
lueckentext = f"Hiermit begrilRen wir Dich, {name}, zu Phyton"}

print (lueckentext)

Aufoaben:

1. Uberlegen Sie sich, was bei den Programmen passierl, wenn man das [vor
dem Liickentext vergisst?

2. Probieren Sie es einfach mal aus!

3. Erstellen Sie eine Befehls-Sequenz / ein Programm, das einen beliebigen
Namen in den Text nach dem Musler "Hallo Jule!” einfiigt!

In einem Lickentext kdnnen mehrere Licken vorkommen und auch mehrfach der gleiche
Wert in unterschiedliche Licken eingesetzt werden.

Lucken, in die der gleiche Inhalt geschrieben werden soll, bekommen den gleichen Bezeich-
ner. Hier im Beispiel ist dies name.

name = "Hans"
lueckentext = f"Hallo {name}! Wer kennt {name} schon?"}

print (lueckentext)

BK_Sekl+II_Python_basic.docx -77 - (c,p) 2015 - 2026 Isp: dre

Fir unterschiedliche Inhalte missen unterschiedliche Bezeichner benutzt werden. Im néchs-
ten Beispiel sind das die bezeichner name und vorname.

vorname = "Hans"
name = "Miller"
1 text = f"Hallo {vorname}! Wer kennt {vorname} {name} schon?"}

print (1 _text)

Aufoaben:

1. Erstellen Sie ecine Befehls-Sequenz / ein Programm, das einen beliebigen
Namen in den Text nach dem Musler "Jeder kennt Jule. Hallo Jule!” emﬁwﬂ

2. Eine Ausgabe soll nach dem Musler "Ein Apfel, zwei /\pfel drei /\pfel
viele /\pfel " fiir beliebige Objekte / Substantive dienen! (Hier in der mann-
lich bzw. sachlichen Form. Es kann aber auch gerne der Text fiir weibliche
Substantive geschrieben werden.)

3. Erstellen Sie zusatzlich eine englisch-sprachige Ausgabe! Die Objekinamen
bleiben gleich

In Ausgaben kénnen zusatzliche Angaben gemacht werden. Besonders haufig bendtigt man
einen gewollten oder eben nicht gewollten Zeilen-Umbruch. Auch andere Behandlungen des
Endes eines print()-Befehl's sind moglich.

end="\n" normaler Zeilen-Umbruch nach der Ausgabe
(muss nicht angegeben werden)

end="\n\n\n" | mehrere Zeilen-Umbriliche hintereinander (hier
3)

end="" kein Zeilen-Umbruch, der nachste print()-
Befehl erzeugt Ausgabe direkt dahinter

sep=" " beschreibt die Trennzeichen-Sequenz zwi-

schen Komma-getrennten Ausgaben eines
print()-Befehl's

(ein Leer-Zeichen ist Standard, der nicht extra
angegeben werden muss)

sep="__" setzt zwischen die Ausgaben-Teile zwei Unter-
striche (z.B.)

BK_SekI+l_Python_basic.docx -78 - (c,p) 2015 - 2026 Isp: dre

6.1.1. Anpassen von Zahlen fur Ausgaben

hierzu gehort z.B. das Runden von Zahlen
auf die genaue Beschreibung der Zahlen-Typen kommen noch (= 8.2.1. Zahlen)

round()
Runden einer Gleitkommazahl (Zahl mit Nachkomma-Stellen) = Ergebnis bleibt eine Gleit-
kommazahl

int()
Erzeugen einer Ganzzahl (Zahl ohne Komma-Stellen) aus einer FlieBkomma-Zahl (Gleit-
komm-Zahl) oder einer Zeichenkette (Achtung!: Zeichenkette muss die exakte Notierung

einer Zahl (also z.B. einen Punkt als Dezimal-Trenner) enthalten, sonst gibt es einen Laufzeitfehler)
Strategie zu Abfangen solcher Laufzeitfehler spater (= 8.14. Behandlung von Laufzeitfehlern — Exception's)

float()
Erzeugen einer Gleitkomma-Zahl aus einer Zeichenkette (oder aus einer Ganzzahl)
Achtung! Laufzeitfehler bei Zeichenketten madglich!

str()
Umwandlung einer Zahl in eine Zeichenkette (z.B. zum Verketten von Texten mit berechne-
ten Zahlen)

Aufoaben:

1. Erstellen Sie ein Programm, in dem jede Ziffer als Text-Variable gespei-
chert ist! Weiler soll dann eine Verkeltung derv Variablen erfolgen! Dazu
werden zuerst die geraden Ziffern-Text-Variablen verkelfet und dann als
Text sowie als umgewandelle Ganzzahl ausgegeben!

2. In einer erwilerten Version des Programms soll nun eine Zeichenkelte aus
den ungeraden Ziffern-Variablen gebildet werden! Die Zeichen-Kelte der
geraden Ziffern soll dann hinler die ungeraden Ziffern konkaleniert werden!
Zwischen beiden Kelten soll ein Punkl geselzl werden! Die gebildete Zei-
chenkeflte sowie die Umwandlung in eine Fliefkommazahl soll ausgegeben
werden!

3. Zuguler Lelzl soll noch die Fliefkommazahl wieder zuriick in einen Text
gewandelt werden! Gibt es da Veranderungen in der Ausgabe?

BK_Sekl+II_Python_basic.docx -79 - (c,p) 2015 - 2026 Isp: dre

6.1.2. formatierte Ausgaben

In Python gibt es — wie in vielen Maschinen-naheren Programmiersprachen — mindestens
zwei prizipiell unterschiedliche Ausgabe-Formatierungs-Systeme. Bei der einen werden in
den Ausgabetext einfach an der passenden Stelle sogenannte Platzhalter eingesetzt. Weiter
hinten in der Ausgabe-Anweisung folgen dann in einer Liste die auszugebenen Variablen
oder Berechnungen. Diese Variante stellen wir gleich (= 6.1.1.2. Verwendung von Platzhal-
tern in Ausgabetexten) vor. Problematisch ist diese Variante bei Erweiterungen oder Ande-
rungen der Ausgaben. Da geht schnell was durcheinander. Da sie aber sehr kompakt ist,
wird sie von vielen Programmierern gerne benutzt.

Bei der zweiten Variante der Ausgabe-Formatierung werden die auszugebenen Teile — wenn
gewinscht — einzeln Uber eine spezielle Funktion (= 6.1.1.1. formatierte Ausgaben mit der
format-Funktion) formatiert. Diese format()-Funktion ist sehr Leistungs-fahig und kann
schnell rein und raus genommen werden. Auch spezielle Anpassungen sind leicht gemacht
und ausprobiert und das ohne die anderen Ausgaben-Teile zu beeinflussen. So kann man
z.B. erst einmal mit "normalen” Ausgaben arbeiten und diese dann spater schrittweise ver-
bessern.

Quasi eine Kombination aus beiden obigen Varianten ist Variante 3 in Python. Hier definiert
man sich zuerst einen Text mit speziellen Platzhaltern. Dies sind jetzt geschweifte Klammern
{ } . Irgendwann spéater kann man dann den "Licken"-Text mit Inhalten (Llcken-Fllung)
ausgeben (= 6.1.2.3. Kombination von Platzhaltern und format-Funktion).

BK_SekI+l_Python_basic.docx - 80 - (c,p) 2015 - 2026 Isp: dre

6.1.2.1. formatierte Ausgaben mit der format-Funktion

Mir personlich erscheint die format()-Funktion die Ubersichtlichste Form der Formatierung.
Man weiss, wo was steht und wie es genau formatiert werden soll. Zudem ist der Quelltext

noch gut lesbar.

Bei der format()-Funktion wird der auszugebene Ausdruck als erstes Argument Gbergeben
und als zweites ein Format-Text. Der Format-Text beschreibt die Formatierung der Ausgabe.
Die fertig zusammengestellt format()-Funktion steht dann anstelle der einfachen Ausgabe im
print()-Befehl. Dadurch kann man auch zuerst einmal ohne format() auskommen und diese
Funktion dann spater flr eine schdonere Ausgabe erganzen.

Ausgabedaten | Format-Text | Erklarung Bemerkungen
Format-
Spezifizierer
Text der Text wird linksblndig | wenn es mehr Zeichen werden,
String geschrieben und es sind 15 | dann werden diese ausgeschrie-
. . . ben, die Formatierung ist dann
str Zeichen dafur reserviert

aber quasi hinfallig

ganze Zahlen
int

die Zahl wird rechtsbindig
geschrieben, dafir sind 8
Ziffern-Positionen reserviert

Komma-Zahlen

die Zahl wird rechtsbindig

voreingestelte Genauigkeit liegt

Gleitkomma- notiert, insgesamt sind 12 | bei 6 Nachkommastellen

Zahlen Zeichen reserviert, wobei 3

float Positionen Nachkomma-
Stellen sind

Binarzahl

Oktalzahl

Hexadezimal-

Zahl

hex

Hexadezimal- wie oben, nur dass Grof3buch-

Zahl staben verwendet werden

hex

Zeichen

Charakter

char
meint ganze Zahl, sonst wie
oben

Exponenten-

Zahl

wiss. Zahl

from math import sqrt
fkt name="Wurzel"

argument=2

fkt wert=sqgrt (argument)
print ("Die", format (fkt name, "12s"),

"von", format (argument, "6d") ,

"ist gleich", format (fkt wert,"12.3£f"),".")

BK_Sekl+ll_Python_basic.docx

-81-

(c,p) 2015 - 2026 Isp: dre

>>>
Die Wurzel von 2 ist gleich 1.414 .

Weiterhin lassen sich mit der format()-Funktion die Reihenfolgen von Elementen manipulie-
ren. Exakterweise missten wir hier eigentlich gleich die Objekt-orientierte Schreibung
format() benutzen. Ein Objekt-orientierter Zugriff wird hier aber noch nicht so offensichtlich,
so dass wir hier erst einmal dartiber hinwegsehen. Spater — nach dem Einstieg in die Objekt-
orientierte Programmierung (- 8.11. objektorientierte Programmierung) — wird dann das
Spezifische dieser Notierung auch eher klar.

print ("Ein {1} steht in der {2} des {0}.".format ("Hauses" ,"Baum", "Na-
he"))

Die in den geschweiften Klammern angegebenen Nummern verweisen auf die in der Argu-
mentliste von .format() angegebenen Texte.

Somit ergibt sich der gesamte Aus- | >>>
gabetext aus den verschiedenen Ein Baum steht in der Ndhe des Hauses.

Textteilen.

Sind die Argumente so angeordnet, wie sie eingesetzt werden sollen, dann kann sogar auf
die Nummerierung verzichtet werden.

In den geschweiften Klammern dirfen nach der Positionsangabe auch mit Doppelpunkt ge-
trennt weitere Formatierungs-Texte folgen. So bedeutet {4:8d} , dass die Ausgabe des vier-
ten format()-Argumentes gemeint ist und fir diesen 8 Zifferstellen reserviert werden.

Eine weitere Variation ist die Benutzung von Funktions-internen Variablen / Referenzen.

print ("Die {subjekt} {praedikat} die {objekt}.".format (subjekt="Katze",
praedikat= "frisst", objekt="Maus'"))

>>>
Die Katze frisst die Maus.

Praktisch ist diese Anwendung der format()-Funktion schon ein Mischding zwischen der
funktionallen Formatierung und der im nachsten Abschnitt besprochen Ausgabe mit Platzhal-
tern.

Aufoaben:

1. Gegeben ist eine Aufoabe, dic in Textform vorliegt '3 + 5 * 4", Millels einer
print()-Anweisung soll der folgenden Text formatiert (mit Plalzhaltern) aus-
geben werden. An die passenden Stellen sind die Aufoabe und das Frgebnis
zu inlegrieren!

Das Ergebnis zur Aufgabe ??7? lautet ?7?7?.

2. Erstellen Sie ein Programm, dass cin fixes Bank-Guthaben von 100 Euro
fiiv die nachsten drei Jahre mit 0,5425% p.a. verzinst! Der Zins soll jeweils
ausgezahlt werden. Die Ausgabe wird im Geld-Wpischer Formal erwarlel!
Fiir jedes Jahr soll die Ausgabe separal mit allen relevalen Angaben in einer
Zeile erfolgen!

3. Verandern Sie das Programm so, dass der Zins auf das Konlo gulgeschrie-
ben wird!

BK_Sekl+l_Python_basic.docx -82- (c,p) 2015 - 2026 Isp: dre

6.1.2.2. Verwendung von Platzhaltern in Ausgabetexten

Eine altere Ausgabe-Technik arbeitet mit dem sogenannten %-Operator. Er wird auch
String-Modulo-Operator genannt.

Fur diese Ausgabe-Formatierung werden innerhalb des Ausgabetextes Platzhalter unterge-
bracht, die dann im hinteren Teil der print()-Anweisung durch konkrete Variablen oder Aus-
dricke ersetzt werden.

from math import sqgrt
fkt name="Wurzel"

arg=2
fkt wert=sqrt (argument)
print ("Die %12s von %6d ist gleich %12.3f." % (fkt name,arg, fkt wert))

>>>
Die Wurzel von 2 ist gleich 1.414.
>>>

Diese Art der Text-Ausgabe — also die Nutzung des %-Operators — sollte aber nicht mehr
eingesetzt werden. Irgendwann soll der %-Operator aus dem Funktions-Umfang von Python
entfernt werden.

Aufoaben:

1. Gegeben ist eine Aufoabe, die in Textform vorliegt '3 + 5 * 4. Stalt der
Zahlen sollen nakliivlich Variablen eingeselzt werden. Millels einer print()-
Anweisung soll der folgenden Text formaliert (mit %-Operalor) ausgeben
werden. An die passenden Stellen sind die Aufgabe und das Ergebnis zu in-
tegrieren!

Das Ergebnis zur Aufgabe ??7? lautet ?7?7.

BK_Sekl+II_Python_basic.docx -83- (c,p) 2015 - 2026 Isp: dre

6.1.2.3. Kombination von Platzhaltern und format-Funktion

Fiur die mehrfache Verwendung ein und desselben Textes fiur Ausgaben, bei der nur be-
stimmte Werte aktualisiert werden mussen, bietet sich die dritte Variante fir formatierte Aus-
gaben an.

Dazu definiert man sich einen Text, wie dass im nachfolgenden Quelletext mit der Variable
text gemacht wurde.

text = "Das Ergebnis lautet: {}."

An die Stelle mit den beiden geschweiften Klammern ({ }) soll spater dann ein konkreter
Wert ausgegeben werden.
Ein kleines Test-Programm kdnnte also z.B. so aussehen:

text = "Das Ergebnis lautet: {}."
erg = 4 + 31

print (text.format (erqg))
neuesErgebnis = erg * erg

print (text.format (neuesErgebnis))

Wir verwenden den vordefinierten Text fur zwei >>>
Ausgaben von zwei unterschiedlichen Berech- Das Ergebnis lautet: 35.
nungen (sehr informativ ist das im Beispiel natar- | 228 SRS LeniidEiet LR

lich nicht!).

Diese Variante ist auch sehr praktisch, wenn man
ein Programm fur unterschiedliche Nutzer-Sprachen erstellen will.

Auch Korrekturen / Verbesserungen am Ausgabe-Text lassen sich schnell an einer einzigen
Stelle erledigen.

Mittels mehrerer geschweifter Klammern und entsprechen vilen Argumenten in der format()-
Funktion kénnen beliebig viele Sachverhalte aussgegeben werden. Der Text lasst sich uni-
versell fur verschiedene Ausgaben benutzen.

text = "Die herausgesuchten Daten sind {}, {} und {}."
erg = "aaa"
print (text.format (erg,ergt"a",erg+"b"))

wert = 1
print (text.format (wert-1,wert,wert+1))

In die geschweiften Klammern kann man auch noch die (minimale) Anzahl von Zeichen fir
die Ausgabe festlegen. Diese Anzahl wird in die geschweifte Klammer hinter einem Doppel-
punkt notiert.

{:4} ist somit ein Platzhalter fUr exakt vier Zeichen.

BK_Sekl+l_Python_basic.docx -84 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erweitern Sie Ihren "Python-Spicker” um die
™Moglichkeiten von formaltierten Ausgaben!

2. Lassen Sie Python auf der Console die neben- / \
stehende Pseudografik erstellen! Dabei diivfen AV AR R A
diec anzuzeigenden Text-Teile immer nur dic ! !
gleichen Symbole enthallen sein (siche obersle : :
Zeile: 3 Texte (verschieden unlerlegl)). T ¥

3. In einem Programm sollen 3 Zahlen

X | X * X | x * X + x

als x1, 82 und x3 vorgegeben (oder — _______ e P
eingegeben werden) — z.B.: 7, 24, 7 49 | 56
285! Fiir diese Zahlen soll dann die 24 | 576 | 600
“ “ 285 | 81225 | 81510

nachfolgende Tabelle erstelll wer-
den!

4. Passen Sie Ihr Programm von 3. so an, dass eine saubere Trennung zwi-
schen Eingaben (Vorgaben), Verarbeitung (Berechnungen) und Ausgaben
eingehallen wird! (also keine Berechnungen in den Ausgaben oder im Aus-
gabebereich))

fiir die gehobene Anspruchsebene:

5. In einem Programm sollen 3 Zahlen

X | x * 2.5 | x * x * PI
als x1, X2 und x3 vorgegeben (oder — _______ oo o
eingegeben werden) — zB.: 7, 24, 7 17.5 | 153.938
285! Fiir diese Zahlen soll dann di 24 | 60.0 1809.556
857 F ese L£ahlen soil da ¢ 285 | 712.5 | 255175.648

nachfolgende Tabelle erstellt wer-
den! (PI definieren wir uns mil
3,14159)

6. Erstellen Sie ein Programm nach dem Musler von Aufgabe 2, bei dem ne-
ben der Tiir links und rvechls noch ein Fensler zu sehen ist! (Das Dach kann
auf der gebenen Hohe flach ausgefiihrt werden > Salteldach.)

BK_Sekl+II_Python_basic.docx -85- (c,p) 2015 - 2026 Isp: dre

6.2. Eingaben

Eingaben dienen zur Entgegennahme von Nutzer-Interaktionen. Im Normalfall wird ein Pro-
gramm zuerst einmal anzeigen (ausdrucken), was der Nutzer nun als nachstes eingeben soll
bzw. welche Interaktion von ihm erwartet wird.

Obwonhl Eingaben ohne jedwede Anzeige auf dem Bildschirm funktionieren, gehdrt es zum
guten Programmierstil die Eingabe mindestens mit einer kurzen Ausgabe zu kombinieren.
Bei der Vielzahl von Programmen ist es einfach eine Notwendigkeit mit dem Nutzer sinnvoll
zu kommunizieren. Nur ein blinkender Cursor (Prompt) kann alles bedeuten und lasst zu
viele Moéglichkeiten fiir eine "Fehlbedienung" des Programms.

In unserem EinfUhrungs-Beispiel (=) tauchte schon der allgegenwartige input()-Befehl auf.
Fir die Konsole ist er quasi die einzige Mdglichkeit direkt mit dem Nutzer zu interagieren.

In graphischen Programmen kommen dann die Maus-Aktionen und die verschiedenen Be-
dien-Elemente der Benutzer-Oberflachen (Options-Kastchen, Auswabhllisten, Schaltflachen,
...) dazu.

Praktisch jede Eingabe muss einer Variable zugewiesen werden. Damit ergibt sich folgen-
des Schema:

variable = input()

Naheres zu Variablen (/Objekt-Bezeichnern) haben wir schon weiter vorn besprochen (2>
3.1.3. Eingaben und Daten merken - Variablen).

Auf der linken Seite vom Zuweisungs-Operator steht eine Variable, deren urspringlicher
Wert nun durch den Wert aus einer Eingabe Uberschrieben wird. Python unterscheidet nicht
nach den Daten-Typen. Eingaben werden werden praktisch in Roh-Form gespeichert.
Ausnahmen sind Input's, bei denen einfach nur auf eine (beliebige) Eingabe gewartet wird.
So etwas haben wir schon am Schluss des Beispiel-Programms verwendet.

Im folgenden Programm-Schnipsel wird zwar fur den Programmierer klar, woflr die Einga-
ben dienen sollen, aber der Nutzer sieht nichts anderes als den Prompt.

wert x
wert y

input ()
input ()

w

Als Argument kann und muss man — zumindestens aus kommunikativen Grinden — einen
Aufforderungstext mit angeben.

wert x
wert y

input ("Geben Sie den x-Wert ein: ")
input ("Geben Sie den y-Wert ein: ")

Jetzt wird jedem Nutzer klar(er), was er zu | Geben Sie den x-Wert ein: 3
tun hat. Geben Sie den y-Wert ein: 4

Eine indirekte Eingabe von Daten ist z.B. Gber Dateien mdglich. Diese werden z.B. zu geeig-
neten Zeitpunkten eingelesen und ausgewertet.

BK_Sekl+l_Python_basic.docx - 86 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Lassen Sie in einem Programm den Umfang eines beliebigen Vierecks aus
den 4 einzugebenen Seifen-Langen berechnen! Verwenden Sie die Bezeich-
nungen a, b, ¢ und d fiir die Seilten!

2. Fiir die Berechnung der Flache eines rechlwinckligen Dreieck's sollen die
Seiten mittels sinnvoller Eingabe erfasst werden und das Ergebnis in einem
ordentlichen Salz angezeigt werden!

3. Berechnen Sie fiir eine Kreis mil einem einzugebenen Radius den Umfang
und die Fliche! Verwenden Sie eine passende Nulzer-Fiihrung!

4. Realisieren Sie ein Programm, dass fiiv einen unbedarflen Nulzer das Vo-
lumen cine zylindrischen Tank's mit Halbkugel-Enden aus den Abmessun-
gen des Tank's berechnel! Versuchen Sie mit mdoglichst wenigen Eingaben
auszukommen!

fiir die gehobene Anspruchsebene:

5. Von einem zylindrischen Tank mit Halbkugel-Enden sind die Héhe bzw.
Lange und der Durchmesser bekannt. Der Besitzer (- vielleicht ein einfacher
Bauer —) mochlte wissen, wieviele Liler derv Tank enthall, wenn er:

a) flach liegt und halb gefiillt ist

b) flach voll befiillt ist

¢) senkrecht steht und nur die untere Halbkugel voll ist

d) auBer der oberen Halbkugel voll befiilll ist

e) der zylindrische Teil zu einem Driltel befiillt ist

(Die Eingabe und Aussagen sollen fiiv den Besilzer verslandlich formuliert
sein.)

Eingaben von Texten ist immer sehr aufwandig. Vor allem beim Testen von Programmen
kann das schnell nervig werden. Langere Text kdnnen aus einer Text-Datei (Typ-Endung
.txt) eingelesen werden.

dateiName = "Beispiel.txt"
with open (dateiName) as datei: # with sorgt auch fir das SchlieBen der Datei am
Ende
inhalt = datei.read()
dateiName = "Beispiel.txt"
with open (dateiName) as datei:
inhalt = datei.read().splitelines|{() # zerlegt inhalt in Zeilen (gespeichert

als Liste von Strings

falsche Eingaben kdnnen Uber Schleifen (= 6.4.2. Schleifen) solange immer wieder abgear-
beitet werden, bis die Eingabe den Anforderungen entspricht

eine weitere Mdglichkeit der Kontrolle sind excetion's (= Python - professionell)

BK_Sekl+II_Python_basic.docx - 87 - (c,p) 2015 - 2026 Isp: dre

6.2.1. unschone Eingabe-Effekte in Python-Programmen

Betrachten wir ein kleines Beispiel-Programm. Es soll eine Eingabe entgegennehmen und
mit einem Korrekturfaktor k multiplizieren und dann ausgeben. Mit unseren Programmier-
Kenntnissen bekommen wir das schon hin:

k=5

x=input ("Geben Sie einen Wert fir x ein: ")

y=x*k

print ("Ihr korrigiertes x ist : ",y)

Ein erster Programm-Test zeigt gleich ein Geben Sie einen Wert fir x ein: 9
Problem: die Multiplikation von 9 und 5 Ihr korrigiertes x ist: 99999
ergibt eigentlich 45 und nicht — wie ange- >>>

zeigt — 99999.

Benutzt man z.B. 7 als Faktor k, dann bekommen wir als Ergebnis z.B.: 9999999. Statt die
Eingabe als Zahl zu verwenden, ist die Eingabe scheinbar ein Text, der mit k eben k-mal
wiederholt / konkateniert wird (s.a.).

Aufoaben:

1. Testen Sie das Programm mil verschiedenen Ganz- und Fliefkomma-
Zahlen fiir k und bei den Eingaben! Dokumenltieren Sie K, die Eingaben und
die Ergebnisse / Fehlermeldungen (nur Fehler-TYp) in ciner Tabelle!

Nun gibt es grundsatzlich zwei Methoden, um wirklich Zahlen "einzugeben". Bei der ersten
Methode nehmen wir den Text und wandeln ihn gezielt in eine Zahl von dem Typ um, den wir
brauchen. Dazu benutzen wir z.B. die Funktion int(). Diese erwartet als Klammerwert einen
Text — also z.B. unsere Eingabe — und liefert eine ganze Zahl zurtick.

k=5
x=input ("Geben Sie einen Wert fir x ein: ")
y=int (x) *k

print ("IThr korrigiertes x ist : ",vy)
Nun stimmt das Ergebnis — zumindestens Geben Sie einen Wert fir x ein: 9
entsprechend unseren Erwartungen. Ihr korrigiertes x ist: 45

Fir die Umwandlung in eine FlieRkomma- >>>

zahl benutzt man float().
Bei dieser Methode gibt es zwei Probleme: Zum Ersten missen wir schon vorher wissen,
welchen Zahlentyp wir bendtigen. Zum Anderen kénnen bei fehlerhaften Eingaben Laufzeit-
fehler eintreten, die das Programm zum Absturz bringen. Als Ldsung gibt es das try...except-
Konstrukt, welches wir spater behandeln (- 8.14. Behandlung von Laufzeitfehlern — Excep-
tion's).

fur einen Ubersichtlichen Code kénnen die Typ-Wandlungs- und die Eingabe-Funktion auch
ineinander geschachtelt notiert werden. Jedem Programmierer wird dann sofort klar, dass
hier z.B. eine FlieRkommazahl eingegeben wird.

k=5

x=float (input ("Geben Sie einen Wert fir x ein: "))
y=x*k

print ("Ihr korrigiertes x ist : ",y)

BK_Sekl+l_Python_basic.docx - 88 - (c,p) 2015 - 2026 Isp: dre

Bei der zweiten Umwandlungs-Variante Gberlassen wir Python die Arbeit. Die Funktion eval()
Uubernimmt — zumindesten fur Zahlen — die ordnungsgemalRe Interpretation von Eingaben.

k=1.25

x=eval (input ("Geben Sie einen Wert fir x ein: "))

y=x*k

print ("Ihr korrigiertes x ist : ",y)

Der erste Programm-Test mit einem Geben Sie einen Wert fir x ein: 12
neuen Gleitkomma-k lauft ordnungsge- Ihr korrigiertes x ist: 15.0

maR. Die Zahlen werden so verrechnet, e

wie wir uns das gedacht haben.

Nun testen wir unser Programm mit einer bewul3ten Fehl-Eingabe. Ein Buchstabe ist so eine
Fehl-Eingabe.

Geben Sie einen Wert fir x ein: m
Traceback (most recent call last):
File "D:/XK _INFO/BK S.I Info/EingabeSeitenEffekte.py", line 2, in <module>
x=eval (input ("Geben Sie einen Wert fir x ein: "))
File "<string>", line 1, in <module>
NameError: name 'm' is not defined
>>>

Die Eingabe z.B. des Buchstaben m bringt eine Fehlermeldung. Angezeigt wird die etwas
unverstandliche Meldung, dass m nicht definiert sei,

Was passiert aber, wenn man nun eine Eingabe tatig, die schon eine interne Variable dar-
stellt?

Jetzt akzeptiert Python das k scheinbar Geben Sie einen Wert fir x ein: k

und rechnet auch irgendwas aus. Beim Ihr korrigiertes x ist : 1.5625
genauen Hinsehen bemerken wir, dass ot

Python jetzt die vorweg definierte Kon-
stante k (als zu verwendender Faktor)
auch in der Eingabe akzeptiert.

Der Nutzer weiss gar nichts von seinem Glick. Auf seinem Bildschirm ist niemals ein Hin-
weis auf die Konstante k und deren Wert aufgetaucht.

Was sagt uns das nun fur unserer weiters Arbeiten? Man sollte niemals nur einzelne Buch-
staben als Variablen-Namen verwenden. Langere — sprechende — Namen sind weniger stor-
anfallig. Sie werden wohl kaum unbewuf3t oder als einfacher Eingabe-Fehler vom Nutzer
verwendet.

faktor k=1.25

eingabe x=eval (input ("Geben Sie einen Wert fiir x ein: "))
ausgabe y = eingabe x * faktor k

print ("Thr korrigiertes x ist : ", ausgabe y)

Jetzt musste ein Nutzer schon den Ausdruck faktor_x eingeben, damit der Seiten-Effekt
auftritt. Wenn er das tut, dann wohl mit voller Absicht und dann kénnen wir auch davon aus-
gehen, das der Nutzer genau diese Eingabe im Programm haben will.

Auch missen wir uns immer sehr genau um die Interpretation der Eingaben kiimmern. Ein-
gaben sollten immer gleich auf ihre Glltigkeit Gberprift werden. In den Tiefen eines verarbei-
tenden Programms spater noch Daten-Typ-Fehler zu finden, ist dann sehr aufwendig.

BK_Sekl+II_Python_basic.docx -89 - (c,p) 2015 - 2026 Isp: dre

Bei der Abfrage / Eingabe und der folgenden Typ-Umwandlung kann aber eine weiteres
Problem auftauchen. Der Nutzer gibt eine Zahl als Wort (also String) ein oder verwendet
nicht-zugelassenene Zeichen (z.B. ausversehen einen Doppelpunkt).

Nun I3sst sich der Eingabe-String nicht in eine Zahl konvertieren. Python quittiert dies mit
einer Value-Fehlermeldung. Die Reaktion auf solche Fehler, die erst wahrend des Pro-
gramm-Laufes auftreten (="Laufzeit-Fehler") kann man durch eine gezielte Fehler-
Behandlung kompensieren. Dazu muss man die mogliche Fehler-Quelle vorher abstecken
und einigen zusatzlichen Quell-Code einbauen. Dazu spater mehr. Fir unsere ersten Pro-
grammier-Versuche sind solche Strukturen zu sperrig. Wir gehen in den nachsten Kapiteln
davon aus, dass die Eingaben Typ-grecht erfolgen.

Wie man die Laufzeit-Fehler in Python abfangt zeigen wir dann im Abschnitt > 8.15. Be-
handlung von Laufzeitfehlern — Exception's.

Naturlich kann man von anfangan solche Strukturen einbauen. Das empfehle ich aber nur fur
fortgeschrittene Programmierer, die von einer anderen Programmiersprache zu Python um-
steigen.

Aufoaben:

1. Erstellen Sie ein Programm, dass zuersl zwei (anze) Zahlen abfragen soll
und dann ein einfaches Opperalionszeichen (Rechenopperation: + - * /)!
Das Programm soll dann (nur!) die vollstandige Rechenaufoabe ~ einschlief3-
lich dem Gleichheilszeichen -~ ausgeben! Speichern Sie sich das Programm
gut ab, wir wollen es spater noch um die Berechnung des Ergebnisses er-
ganzen!

2. Durch ein Programm sollen drei Paare von Werten - immer jeweils eine
Lanze und eine reele Zahl - eingegeben werden. Die Zahlen sollen in einer
geeignelen Pseudografik-Tabelle angezeigt werden. Unler der Tabelle - mil
in die Tabelle eingebunden - sollen die Spalten-Summen und -Durchschnille
berechnet und in jeweils ecinzelnen Tabellen-Zeilen angezeigt werden! Ach-
ten Sie darauf, dass cin unbedarfter Nulzer die Tabelle verstehen kann! Ma-
chen Sie sich vorher eine Skizze, wie die Ausgabe aussehen soll!

2
2.

BK_SekI+l_Python_basic.docx -90 - (c,p) 2015 - 2026 Isp: dre

6.3. Verarbeitung

Der Verarbeitungs-Teil eines Programmes enthalt alle Operationen, wel- Eingabe
che die eingegebenen Daten in die Ergebnisse umwandelt. Saclich liegt Verarbeitung
der Verarbeitungs-Teil nach dem EVA-Prinzip zwischen Eingaben und S

Ausgaben.

Haufig sind Verarbeitung und Ausgabe stark miteinander verwoben, so dass keine exakte
Trennung vorgenommen wird. Im Vorgriff auf spatere Programme und eine Funktions-
orientierte Programmierung sollte man sich zwingen, Verarbeitung und Ausgabe bestmoglich
voneinander zu trennen.

Die einfachste Form von Daten-Verarbeitungen sind Funktionen. In IDLE erkennen wir sie an
der violetten Text-Hervorhebung.

Sachlich lassen sich Funktionen in mehrere Gruppen einteilen. Fir die Programmierung ist
vor allem wichtig, ob eine Funktion Argumente bendtigt oder hat. Nur wenn die Anzahl und
Art (Datentyp) der Argumente stimmt, kann das Programm funktionieren. Entweder findet die
Syntax-Priifung des Ubersetzers schon Fehler, ansonsten gibt es u.U. einen Laufzeitfehler.
Die zweite wichtige — ebenfalls Syntax-relevante Unterscheidung ergibt sich aus moéglichen
Ruckgabewerten einer Funktion. Manche liefern keine Ergebnisse zurtick — sie kdnnen sepa-
rat in einer Befehlszeile stehen. Funktionen mit Riickgabewerten bendtigen einen Abnahmer
fur ihre zurliickgelieferten Daten. Das kann entweder eine Variable sein, oder der Riickgabe-
wert wird direkt (als Argument oder Verknipfungswert) weitergenutzt.

an Funktion iibergebene Daten
ohne Argument mit Argument(en)

Funktion fuhrt einfache | Funktion fuhrt einfache Aufgabe in
Aufgabe aus Abhangigkeit von einem oder meh-
reren Argumenten aus

Beispiel(e):

R) koh |1be rt o -KJ.[-:I:[:' :f- -------------------------------------- K[-J-ﬁ:a-f --
uckgabewe funktion() funktion(argument { , argument })
E Belsp|el(e)Be|sp|eI(e) ...
-
.g % Funktion fuhrt einfache | Funktion fuhrt einfache Aufgabe in
= % Aufgabe aus und liefert | Abhangigkeit von einem oder meh-
e einen Ruckgabewert reren Argumenten aus und liefert
c o Ruckgabewert muss direkt | einen Ruckgabewert
2 = benutzt oder einer Variab- | Rickgabewert muss direkt benutzt
3 le Gbergeben werden oder einer Variable Ubergeben wer-
R o O
Riickgabewert Aufruf Aufruf

Beispiel(e):

{iinhalt} ... ev. beliebige Wiederholung von inhalt méglich (0 bis x-mal)

BK_Sekl+ll_Python_basic.docx

-91-

(c,p) 2015 - 2026 Isp: dre

Funktionen lassen sich vielfaltig kombinieren. Zur Ver-

anschaulichung benutzen wir gerne Rechtecke oder BI6-

cke. Eine Funktion fir sich ist ein Block.

Mehrere Funktionen lassen sich durch Verknipfungen —

das sind eben Addition, Subtraktion, Multiplikation und ~ [funktion(222)| O [funktion(2?7)]

Division — geflhlt zu einer Funktion vereinen. -

In einigen Programmiersprachen kommen weitere Ver- T I
g g p

knupfungs-Funktionen hinzu. Statt des Verknupfungs-

Symbol (Kreis) kommen +, -, * und / zum Einsatz.

Eine weitere Kombinations-Mdglichkeit ist die Schachte-

lung. Dabei wird eine Funktion anstelle eines Argumen- |fynktion(???,Ifunktion[W”I L 777)

tes eingesetzt. Natlrlich muss dies eine Funktion sein,

die einen passenden Rickgabewert besitzt.

Dagegen ist eine Uberschneidung von Funktionen nicht

zulassig. Praktisch ist diese auch kaum eingebbar. Sie funktion(27 -r.

existiert nur gefuhlt fir den Programmierer. Der Pro- N

gramm-Ubersetzer wird die "Gesamt-"Funktion falsch

zusammensetzen und warscheinlich wird der Konstrukt

auch fehlerhaft reagieren.

Einfache Berechnungen — also die Verknupfungen — erfordern immer saubere Anweisungen.

Die meisten Programmiersprachen orientieren sich an ublichen mathematischen Ausdru-

cken. Nur die Zuweisung zu einer Variable zum Speichern des Ergenisses oder die Erset-

zung der Berechnung in einer print()-Anweisung sind aus mathematischer Sicht nicht ganz

logisch.

In der/den nachfolgenden Tabelle(n) sind die wichtigsten Operatoren zusammengestellt.

BK_SekI+l_Python_basic.docx -92- (c,p) 2015 - 2026 Isp: dre

Operatoren

Ope-
rator

Name

Beschreibung

Beispiel

Ergebnis

ergibt sich
aus

Zuweisung

+

Plus

Addition

Minus

Subtraktion

*

Mal

Multiplikation

*%

Exponent
IlhOChll

Potenz-Rechnung
Potenzierung

@

Matrizen-Multiplikation

/

Durch

(echte) Division
Division ohne Rest

i

Durch

ganzzahlige Division
Division mit Rest

%

Modulo
Modulus

Rest der ganzzahligen Division

+/-

Vorzeichenwechsel / Vorzei-
chen

Inkrement

Addition von 1 zu einer Zahl

Addition des rechten Aus-
drucks zum linken und spei-
chern im linken Ausdruck

Dekrement

Subtraktion von 1 von einer
Zahl

Subtraktion des rechten Aus-
drucks vom linken und spei-
chern im linken Ausdruck

Multiplikation des linken Aus-
drucks mit dem rechten und
speichern im linken Ausdruck

Division / Teilen des linken
Ausdrucks durch den rechten
und speichern im linken Aus-
druck

Bit-weise NOT / NICHT

%

String-Formatierung

BK_Sekl+ll_Python_basic.docx

-93.-

(c,p) 2015 - 2026 Isp: dre

Ope- Name Beschreibung Beispiel Ergebnis
rator
if .. WENN-DANN-SONST
else.. Verzweigung
if .. elif .. Mehrfach-Auswahl
else ..
or OR / ODER (BooLEsche Lo-
gik)
and AND / UND (BOooOLEsche Logik)
not x NOT / NICHT (BOOLEsche Lo-
gik)
in Inklusion bzw.
not in Nicht-Inklusion
is Identitat (Ubereinstimmung)
is not bzw. Nicht-Identitat
< kleiner als
<= kleiner oder gleich
> grofer als
>= groler oder gleich
1= ungleich
== Gleichheit / gleich
| Bit-weise OR / ODER
A Bit-weise XOR / XODER
& Bit-weise AND / UND
<< Bit-weise Links-Verschiebung
>> Bit-weise Rechts-Verschie-
bung

Sie lassen sich entsprechend der klassischen Rangordnung kombinieren. Dadurch ergibt
sich folgende aufsteigende Rangfolge (Operator-Prezedenz):

lambda > if.else > or,and 2> not -2 in, notin, is, is not, <=, <, >, >=, <=, ==,
1= > A& > <<,>> D 4. > “@LIL% > Hx~x > %, > awaitx
2> Xx(..), x[..], x.attribute > (..),[..],{.}

Der Syntax beschreibt die zulassigen Anweisungs-Konstrukte. In der Programmierung haben
sich verschiedene Syntax-Darstellungen (Syntax-Diagramme) durchgesetzt. Eine — die
EBNF (erweiterte BACKUS-NAUR-Form) lasst sich relativ gut verstehen.

Dabei sind die Zeilen immer Definitionen, die mit einem Begriff und dem Ergibt-Symbol ::=
beginnen. Dann folgt die syntaktische Definition. Diese kann weitere zu definierende Begrif-
fe, Anweisungen der Programmiersprache und Steuerzeichen (Metasprachsymbole) enthal-
ten. Anweisungen der Programmiersprache sind sogenannte Terminale. Sie miUssen genau
so geschrieben werden. in den folgenden EBNF-Zeilen sind die Terminale immer klein ge-
schrieben, so wie die Sprachelemente von Python genutzt werden muissen. Zusatzlich be-
nutze ich noch eine blaue Schriftfarbe.

Die zu definierenden Begriffe nennt man Nicht-Terminale. Fur sie muss es in der EBNF-
Darstellung mindestens eine Definitions-Zeile geben. In den folgenden EBNF-Zeilen schreibe
ich die Nicht-Terminale immer mit einem GroRbuchstaben beginnend.

In der EBNF sind noch bestimmte zusatzliche Symbole zugelassen, die Alternativen, Optio-
nen und Wiederholungen kennzeichnen.

Eine erste EBNF-Zeile kdnnte lauten:

Anweisung ::= break | Term

BK_SekI+l_Python_basic.docx -94 - (c,p) 2015 - 2026 Isp: dre

Diese Zeile wird folgendermalien gelesen:

(Das Nicht-Terminal / Der Platzhalter) Anweisung ergibt sich aus (dem Terminal / Schliis-
selwort) break oder dem / einem (Nicht-Terminal / Platzhalter) Term. (Term ist dabei noch zu
definieren!)

Der senkrechte Strich (|) steht also flr eine Alternative. Eines der aufgezahlten Elemente
muss es aber sein.

Anweisung ::= Variable = Variable
Anweisung = Variable = Variable Operator Variable | Term
Operator : :: ll+ll | nw_mn | makn | H/H | H%H

Aufoaben:

1.

2. Jelzt ist es eine gulte Gelegenheit den "Python-Spiker” in eine EBNF-Form
zu bringen!

2
2.

BK_Sekl+II_Python_basic.docx -95- (c,p) 2015 - 2026 Isp: dre

6.4. Kontrolle(n)

In den seltensten Fallen ist ein Pro-
gramm ein glatter Durchlauf — also
eine Sequenz. Haufig missen Ent-
scheidungen geféllt oder bestimmte
Programmteile haufiger wiederholt
werden. So etwas wird in Programmen
durch sogenannte Kontroll-Strukturen
erledigt. Praktisch kennt man in der
Programmierung zwei grundsatzliche
Arten:

e Verzweigungen der Programm-Ablauf spaltet sich — ev. nur zeitweise — in
oder Alternativen mindestens zwei verschiedene Verarbeitungswege auf

e Wiederholungen bestimmte Abschnitte des Programm-Ablaufs kénnen / mus-
oder Schleifen sen mehrfach abgearbeitet werden

Zu den Kontroll-Strukturen gehéren wohl auch die Exceptions. Diese spezielle Art von Ver-
zweigungen fir das Abfangen von Laufzeitfehlern besprechen wir weiter hinten (- 8.15.
Behandlung von Laufzeitfehlern — Exception's). Fur Anfanger reichen zuerst einmal die ande-

ren Kontroll-Strukturen.

Die Grund-Strukturen sind in den verschiedenen Programmier-Sprachen — ganz unterschied-
lich — meist durch sehr spezielle Varianten untersetzt. Wie wir sehen werden, kann man die
Strukturen anderer — vielleicht lieb-gewordener Programmier-Sprachen — durch die wenigen
Python-eigenen alle ersetzen. Vielleicht bietet die aktuelle Programmier-Sprache ja auch

mehr, als man bisher gewohnt war?

BK_Sekl+ll_Python_basic.docx

-96 -

(c,p) 2015 - 2026 Isp: dre

6.4.1. Verzweigungen

Wenn zwei alternative Wege in einem Programm zur Verfugung stehen, dann muss eine
Entscheidung gefallt werden, welcher der Wege nun genommen werden soll / muss.

Genau nach diesem Prinzip werden Verzweigungen in Programm realisiert. Zur Verdeutli-
chung schreibe ich den einleitenden Satz dieses Abschnittes noch mal etwas Entschei-
dungs-betont:

WENN zwei alternative Wege in einem Programm zur Verfligung stehen,
DANN muss eine Entscheidung gefallt werden, welcher der Wege nun
genommen werden soll / muss.

Und fur die erfahreneren Computer-Nutzer auch ganz ausflihrlich:

WENN zwei alternative Wege in einem Programm zur Verfligung stehen,
DANN muss eine Entscheidung gefallt werden, welcher der Wege nun
genommen werden soll / muss,
SONST wird der andere genommen.

In fast jeder Programmier-Sprache lautet die Programm-Struktur flr Alternativen deshalb
auch:

IF Bedingung
THEN Alternative1
ELSE Alternative2

wobei der ELSE-Zweig i.A. optional ist
— also bei Bedarf einfach weggelassen
werden kann. In dem Fall geht es dann
gleich hinter der Alternative1 weiter.
Eine vollstandige Verzweigung wird auch zweiseitig genannt, eine ohne ELSE-Zweig heil3t
einseitige Verzweigung.

6.4.1.1. einfache Verzeigungen

einseitige Auswahl / bedingte Ausfiihrung

Weil die weitere Ausfihrung des Pro-
gramms bzw. seiner Teile von der Be-
dingung abhangt, spricht man bei Ver-
zweigungen auch von bedingter Aus-

fuhrung.
Wieder andere sprechen von einseiti- O /’
ger Auswahl. q

Python vereinfacht fiir uns die Struktur
ein wenig. Da hinter der Bedingung
immer der THEN-Zweig kommt, wird
auf die gesonderte Schreibung von
THEN verzichtet.

BK_Sekl+II_Python_basic.docx -97 - (c,p) 2015 - 2026 Isp: dre

Wollen wir z.B. eine Division programmieren, dann ist das sicher kein allgemeines Problem:

Division

zaehler = 4
teiler = 0
print ("Division von",zaehler," und",teiler,": ", zaehler/teiler)

Bei diesem Beispiel kommt es aber zu einem Laufzeit-Fehler - ev. sind jetzt alle unseren
anderen Daten verloren.

Da die Division durch Null nicht definiert ist, missen wir diese abfangen. Wir fihren die Divi-
sion dazu nur durch, wenn der Teiler ungleich Null ist. In Python ist das zugehdérige Symbol
fur ungleich !=.

Division
zaehler = 4
teiler = 0

bedingte Ausfithrung
if teiler != 0:
print ("Division von", zaehler," und",teiler,": ",6zaehler/teiler)

Ein Struktogramm wirde eine solche bedingte Ausfuhrung
so darstellen. Dabei steckt in der Symbolik auch schon
der Teil, der im alternativen Fall ausgefuhrt werden soll. JA
Dieser existiert aber bei bedingten / einseitigen Ausfih- Division
rungen / Alternativen nicht.
Der Block besteht also aus mindestens zwei Zeilen. Der Kopf-Teil (obere Zeile) enthalt die
Frage (Bedingung sowie die Antwort-Mdglichkeiten. Die schragen Linien grenzen die Ant-
wort-Méglichkeiten ab. In der zweiten Zeile folgt der Block mit den Anweisungen fir den be-
schriebenen Fall. Dieser Block kann intern wieder beliebig weiter struktoriert werden. Ein
nicht benutzter Teil bzw. Block (, der auch nicht erreichbar ist), wird durchgestrichen / ge-
kreuzt.

Der Nutzer weiss nun allerdings nichts davon, dass die Division gar nicht durchgefuhrt wur-
de. Eventuell muss er dartber informiert werden. Dies machen wir natlrlich nur, wenn der
Teiler gleich Null ist. Das Python-Symbol firr die Gleichheit ist ==.

7: ist Teiler ungleich Null

Division
zaehler = 4
teiler = 0

bedingte Ausfithrung
if teiler != 0:

print ("Division von", zaehler," und",teiler,": ",6zaehler/teiler)
if teiler ==

print ("Division (durch Null) nicht méglich!")

BK_SekI+l_Python_basic.docx -98 - (c,p) 2015 - 2026 Isp: dre

Ganz ahnlich lassen sich alle diskreten Fragestellungen programmieren. Als Beispiel hier
mal die Unterscheidung in positive und negative Zahlen:

Alternative
if eingabe>=0:

print ("Die Zahl ist positiv.")
if eingabe<0:

print ("Die Zahl ist negativ.")

Aufoaben:

1. Zeichnen Sie das Strukltogramm fiiv die vollstindige Bearbeitung derv Divisi-
on mil zwei if-Anweisungen!

2. Erstellen Sie ein Programm, das fiiv eine einzugebene (ganze) Zahl priifl, ob
es sich um eine gerade oder ungerade Zahl handell!

3. Erstellen Sie ein Programm, das die Teilbarkeil einer einzugebenen Zahl
durch die Teiler 2 bis 5 testet! (Es wird Wert auf eine klare Nulzerfiihrung
und -Informalion gelegt!)

4.

Python lasst auch kombinierte Vergleiche zu:

5<9<=13 ergibt True (Prufung erfolgt bezuglich der 9)

BK_Sekl+II_Python_basic.docx -99.- (c,p) 2015 - 2026 Isp: dre

zweiseitige Auswahl / vollstandige Verzweigung

Schauen wir uns einige Beispiele an, um das Prinzip und die Notation in Python zu verste-
hen.

Im ersten Fall wollen wir einfach testen, ob eine eingegebene Zahl positiv oder negativ ist.
Die Bedingung ist also klar, wir mussen nur tes-

ten, ob die Eingabe =0 ist. In Python werden bei Zuordnung zu den positiven bzw. negativen Zahlen:
Kombinationen von Vergleichs-Operatoren, wie eingabe

"<" bzw. ">" und "=" die Zeichen so hintereinan- 2. ist eingabe grf’W
der weg geschrieben, wie man es spricht. An- A NEIN

sonsten reichen die einfachen Kleiner- oder singabe Ist positiy |] eingabe st negativ | >
GroRer-Operatoren. Fir Gleichheit muss ein

doppelte Gleichheitszeichen verwendet werden Struktogramm-Ausschnitt fiir den Test
damit keine Verwechslung mit dem einfachen auf eine positive Zahl
Gleichheitszeichen als Zuweisung entstehen

kann.

Fur Ungleichheit verwendet Python die Zeichen-Kombination "!=".

Naturlich testen wir nachfolgend nicht auch noch ab, ob die Eingabe negativ ist. Dieses
ergibt sich automatisch. Lediglich wenn die 0 noch extra herausgefiltert werden soll, dann ist
ein weiterer Test notwendig. Alternativ kann man auch eine Mehrfachverzweigung (2>
6.4.1.2. Mehrfach-Verzeigungen)benutzen.

Aus dem oberen Struktogramm-Ausschnitt und dem

nebenstehend abgebildeten Block kdnnen wir die Bedingung; Alternativfrage
allgemeine Symbolik erkennen.
Im unteren Bereich sind die Blécke bzw. Blockfol- NEIN oder

L JA oder WAHR FALSCH
gen fir die Alternativen angeordnet. Darlber — Uber |5z, surerena e e ey e

beide hinweg - thront der Entscheidungs-Block. [, 7 eig Sonst-Zweig
Dieser Block ist durch schrage Linien in drei Berei- |Alternativel Alternative2
che geteilt.

Der obere Bereich, der sich nach unten verengt, enthalt die Entscheidungs-Frage oder auch
die Bedingung bzw. die Alternativfrage. Diese muss fir den Computer immer so gestellt wer-
den, dass eine eindeutige "JA / NEIN"- oder "WAHR / FALSCH"-Entscheidung getroffen
werden kann. In vielen Blchern oder Skripten finden sich auch die englisch-sprachigen Ent-
sprechungen "YES / NO" bzw. "TRUE / FALSE".

Die meisten Programmiersprachen testen nur auf das Zutreffen der WAHR-Bedingung, alle
anderen Falle sind dann automatisch FALSCH.

Die Verzweigungs-Struktur beginnt in Python mit if gefolgt von der Bedingung. Der Bedin-
gungsteil wird dann durch einen Doppelpunkt abgeschlossen.

Alternative
if eingabe>=0:

print("Die Zahl ist positiv.")
else:

print ("Die Zahl ist negativ.")

Nach der Eingabe des Doppelpunktes am Ende der Bedingungs-Zeile wird in der nachsten
Zeile automatisch eingerickt. Weitere THEN-Anweisungen mussen ev. mit [Tab] eingeruckt
werden. So kénnen weitere Befehle folgen, die ebenfalls erledigt werden sollen, wenn die
Zahl positiv ist.

Gibt es einen ELSE-Zweig, dann wird dieser durch das Schlisselwort else eingeleitet. Auch
hier muss ein Doppelpunkt folgen.

Die Befehle des ELSE-Zweiges mussen ebenfalls eingerlickt werden.

Kommen dann wieder Befehle, die ungeteilt bearbeitet werden soll, dann wird wieder einmal
zuruckgeruckt. Dieses muss mindestens bis auf die Ebene des IF bzw. des ELSE erfolgen.

BK_SekI+l_Python_basic.docx -100 - (c,p) 2015 - 2026 Isp: dre

Im nachfolgenden Code-Schnipsel ist die Bedingung anders gestellt. Dadurch tauschen
THEN- und ELSE-Zweig.

Alternative
if eingabe<0:

print ("Die Zahl ist negativ.")
else:

print ("Die Zahl ist positiv.")

Welche Variante man nutzt ist mehr Geschmackssache. Ublicherweise beginnt man mit dem
Teil (als THEN-Zweig), den man sicher codieren kann.
Betrachten wir noch einen ahnlichen klassischen

Fall mit zwei Alternativen. Eine bereitgestellte Zahl -
(hier: eingabe) soll daraufhin bewertet werden, ob gt

. . 7. ist eingabe durch 2 teilbar?
sie gerade oder ungerade ist.
Eine erste Inspiration bringt uns vielleicht auf die A NEIN

Idee mit dem Test der letzten Ziffer. Handelt es |eingabeistgerade | eingabe ist ungerade
sich um 0, 2, 4, 6 oder 8, dann handelt es sich ja
bekanntermalfien um eine gerade Zahl.

So ein Test lasst sich programmieren, aber er ist einfach zu aufwendig. Dazu muisste man
die Zahl in eine Zeichenkette wandeln, das letzte Zeichen extrahieren und dann den Ziffern-
test durchfihren.

Nun kénnte man auch verleitet sein, es mal mit der normalen Division zu probieren. Dabei
wird man feststellen, dass es x-mal gut geht, aber ab und zu eine fehlerhafte Bewertung auf-
tritt.

Das liegt daran, dass bei einer normalen Division (von Python aus) immer eine Kommazahl
(auch Gleitkommazahl genannt) herauskommt. Diese werden vom System i.A. meist in der
7. od. 8. Nachkommastelle gerundet. Und auch, wenn es eigentlich ein endliche rationale
Zahl (2,0 bzw. ?,5) werden musste, entstehen durch die interne Zahlen-Darstellung immer
Rundungsfehler.

Diese sind aber kaum vorauszusehen. Weitere Probleme, >>>
die praktisch die gleiche Ursache haben, kénnen bei sehr
groRen Zahle auftauchen, da diese dann in die Exponen-
ten-Schreibung Uberfuhrt werden. Dieses ist praktisch
immer mit Rundungen verbunden.

Aus der Zahlen-Theorie wissen wir, dass wir nur die Teilbarkeit mit 2 priifen miissen. Beson-
ders einfach geht das mit der ganzzahligen Division. Bleibt ein Rest, dann ist die Zahl unge-
rade. Geht die Division glatt auf, dann ist die Zahl gerade.

Zuordnung zu den geraden bzw. ungeraden Zahlen:

>>>

Deshalb bleibt nur die Modulo-Division (ganzzahlige Division). >>> 4 % 3
Der Operator ist das Prozent-Zeichen. Als Ergebnis erhalt 1
man den Rest der Division. Das testen wir zuerst mal Z» > % 3
schnell an der Konsole fir die Teilbarkeit durch 3 fir die >>> 6 % 3
Zahlen 4, 5, 6 und 7: FUr eine echte Teilbarkeit — wie z.B. 0
bei der 6 — ist der Rest gleich 0. Damit kbnnen wir unser >>> 7 ¢ 3
Programm prima testen: 1
>>>

Alternative
if eingabe % 2 == 0:

print ("Die Zahl ist gerade.")
else:

print ("Die Zahl ist ungerade.")

BK_Sekl+II_Python_basic.docx -101 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Korrigieren Sie das Temperatur-Umrechnungs-Programm um ein Abfangen
von Temperaturen, die nicht moglich sind!

2. Erstellen Sie ein "super geheimes"” Programm, das die Summe und die Dif-
ferenz zweier cinzugebener Zahlen mullipliziert! Erweilern Sie das Pro-
gramm dann um cinen Passworilschulz! Nur wer das Passwortl rvichlig ein-
Qibl, darf die "super geheime"” Berechnung durchfiihren lassen.

3. Erstellen Sie ein Programm, das die Teilbarkeil ciner cinzugebenen Zahl
durch die Teiler 11 bis 20 festet! (Es wird Wert auf eine klare Nulzerfiih-
rung und —Information gelegt!)

4. Erstellen Sie ein Strukltogramm und ein Programm, dass fiiv eine einzuge-
bende Zimmer-Temperatur in Grad Celcius ausgibl, in welchem Tempera-
tlur-Bereich der Eingabewert liegt!

Eine Ausgabe soll anzeigen, ob die Temperalur iiber 20 °C bzw.
gleich/darunter ist! Als zweiles soll eine Fein-Differenzierung erfolgen:
Temperaturen unler 19 °C werden als “zu kall, iiber 22 °C als “zu warm*“
eingestuft. Von 19 bis 20 °C soll “kiihl* ausgegeben werden. Fiir iiber 20
bis 21 °C gilt die Temperatur als “ok*“. Im Restbereich ist sie “angenehm”.
Verarbeitung (Bewerfung der Eingabe) und Ausgaben sollen abgeselzt hin-
tereinander erfolgen (klassisches EVA-Schema)!

Nutzer- und Wartungs-Freundlichkeil wivd ebenfalls erwartel.

5. Schreibe eine kleine "Tank-App', die aus dem Tank-Fassungsvermogen,
dem akluellen Tanksland (Eingabe in 10%-Schriffen), der Enlfernung bis
zur nachsten Tankstelle (in km) und dem Durchschnifisverbrauch (in |l /
100 kmy) eine Empfehlung gibl, ob jelzt getankt werden sollte oder ob noch
bis zur nachsten Tankslelle genug Benzin im Tank ist!

Verbessern Sie die App dahingehend, dass noch 10% Reserve eingeplant
sind!

6. Erstellen Sie ein Programm, dass zu einer erveichlen Punklzahl bei einer
Arbeit die Bewertung als Nolke ermillell! Die mindestens nolwendigen Pro-
zenlwerte sind: fiir ein 5" 9%; fiir eine "4" 36%; fiir eine "3" 55%; fiir ¢ine
2" 70% und fiir eine "1" 85%. Erstellen Sie das Programm mil moglichst
wenigen Entscheidungen / Verzweigungen!

7. Entwickeln Sie ein Programm, dass fiir eine einzugebene Zahl evmifttell, ob
diese gerade oder ungerade ist!

fiir die gehobene Anspruchsebene:

8. Erskellen Sie ein Programm mit mehreren aufeinanderfolgenden Abschnil-
ten, das fiir cine einzugebene Zahl die nachfolgenden Bedingungen priift!

a) Zahl ist grofer als 20 b) Zahl ist maximal 23
¢) Zahl ist kleiner oder grofer als 0 d) Zahl ist kleiner als -273,15

e) ist die Wurzel aus der Zahl gréfer als 10
(Fiir jeden Test ist eine vollstandige, informative Ausgabe zu realisieren!
Beginnen Sie mit der Bedingunyg, die Thnen am Leichlesten erscheint!)

9. Bekommen Sie ein Programm fiir die Teslung auf gerade/ungerade Zahl
hin, in dem doch nur ein THEN-Zweig (einer Verzweigung) benulzt wird?
(Es gibt zwei grundsalzlich unlerschiedliche Losungen, die praklisch auf
dem gleichen Prinzip beruhen. Finden Sie beide?)

BK_SekI+l_Python_basic.docx -102 - (c,p) 2015 - 2026 Isp: dre

Die Bedingungs-Testung in Python ist sehr einfach gestrickt und lasst dadurch viele Verein-
fachungen zu, die aber einen Quelltext u.U. schwieriger lesbar machen. Entweder man nutzt
Kommentare oder zwingt sich doch, den vollstandigen Code zu notieren.

Als FALSCH (False) gilt in Python:

nummerische NULL-Werte (0; OL; 0.0; 0.0+0.0j)

der BoOLEsche Wert: False (Achtung! Schreibung beachten!)
leere Zeichenketten

leere Listen oder Tupel

leere Dictionary's

der spezielle (Nichts-)Wert: None (Achtung! Schreibung beachten!)

Alle anderen Werte werden automatisch als WAHR (True) interpretiert.
Zu Anfang ist das etwas gewdhnungsbedurftig. Aber nach zwei, drei Programmen erscheint
das irgendwie urlogisch.

Ausdriicke oder | Beschreibung (weitere) Wabhrheits-
Konstrukte Beispiel Wert
0 per Definition FALSCH (False) False
0.0 per Definition FALSCH (False) False
alle anderen somit immer WAHR (True) 2 True
Zahlen ist ja schlieRlich etwas 5.2 True
-3 True
10+5-15 die Berechnung ergibt Null - und False
die ist per Definition FALSCH
21*17 ergibt Wert ungleich Null > WAHR True
3.0/05 ergibt Wert ungleich Null > WAHR True
"Text" enthalt Text / etwas > WAHR True
enthalt nichts > FALSCH False
[1, 2, 3, 4] nicht-leere Liste True
[] leere Liste False
[[1] Liste mit einer leeren Liste - also ist True
es eine nicht-leere Liste

BK_Sekl+II_Python_basic.docx -103 - (c,p) 2015 - 2026 Isp: dre

In der nachfolgenden Tabelle sind viele logische Operatoren und Ausdriicke zusammenge-
stellt, die allesamt — so oder so ahnlich — als Bedingungen in Verzeigungen dienen kénnen.
Gleiches gilt fur die spater behandelten Schleifen (= 6.4.2. Schleifen).

Ope- | Name Beschreibung Beispiel Wabhrheits-
rator Wert
< kleiner (als) 4<6 True
2<1 False
<= kleinergleich 5<=5 True
6<=5 False
>= grélergleich 3>=2 True
1>=2 False
> groler (als) 5>4 True
10> 50 False
== gleich 2+3 == True
4 == False
'abc' == "abc' True
I= ungleich 121=13 True
21=1+1 False
'abc' I="abc' False
is ist / (ist) iden- True
tisch False
not nicht / (Nega- | logisches Nicht; Negation 3is not4 True
tion) / NICHT False
not O True
or ODER logisches Oder; Disjunktion a>10orb>=3 True
False
and UND logisches Und; Konjugation True
False
A XOR exklusives ODER (1==2)*(2==1) | False
(1==2)"(2==2) | True
& bitweise UND
| bitweise ODER

Mit logischen Operatoren lassen sich viele mehrstufigen Verzweigungen verkleinern, wenn
es wirklich nur wenige Alternativen gibt.

Ein haufig vorkommendes Problem sind Nutzer-Eingaben von Einzel-Buchstaben oder klei-
nen Texten, die sowohl mit kleinen oder grol’en Buchstaben geschrieben werden kdnnten.

Nehmen wir als Beispiel die Abfrage eines JA durch die Eingabe entweder von "J" oder "j".

Eingabe
eingabe = input ("Wollen Sie weiter machen <j,J,n,N>: "))

Alternative mit mehreren Bedingungen
if eingabe == "J" or eingabe == "j":
print("ok! Sie haben es so gewollt.")
else:
print ("Na dann eben nicht!")

BK_SekI+l_Python_basic.docx -104 - (c,p) 2015 - 2026 Isp: dre

Solche logischen Verknupfungen lassen sich auch immer umdrehen. Deshalb gilt auch der
folgende Programm-Text, der exakt das Gleiche leistet:

Eingabe
eingabe = input ("Wollen Sie weiter machen <j,J,n,N>: "))

Alternative mit mehreren Bedingungen

if not (eingabe == "J" or eingabe == "j"):
print ("Na dann eben nicht!")

else:
print ("ok! Sie haben es so gewollt.")

Das NOT wandelt das Ergebnis des in Klammern stehenden Ausdrucks in das Gegenteil.
Durch das Tauschen von THEN- und ELSE-Zweig kommt wieder das Selbe als Ergebnis
heraus.

Es gibt keine wirklich gultigen Regeln, wie ein Programmierer die Bedingungen und die
Zweige der Alternative verwendet. Empfohlen wird immer eine typisch intuitive (menschlich
logische) Anordnung. Da leere Zweige nicht zugelassen sind, muss also der THEN-Zweig
auch mit mindestens einer Anweisung gefillt werden. Deshalb ist es am Sinnigsten, die Be-
dingungen auch so zu formulieren, dass zu mindestens der THEN-Zweig benutzt wird.

In ganz seltenen Fallen ist es so — zu mindestens scheint es so — dass der THEN-Zweig
nicht gebraucht wird und man unbedingt den ELSE-Zweig programmieren muss. Bei solchen
Problemchen kann man sich dadurch helfen, dass man in den nicht benutzten Zweig eine
sinnfreie Anweisung schreibt. Python ist zufrieden und wir haben unsere Logik beibehalten
kénnen. Diesen Trick kann man auch anwenden, wenn man einen Zweig einer Alternative
erst einmal nicht weiter programmieren mdchte, aber die Stelle fir spater schon mal vorse-

hen mochte. Man sollte solche Stellen dann durch Kommentaren kennzeichnen.
Leider reichen auch nur Kommentare in den Zweigen nicht aus, der Interpreter meckert diese an und erwartet
unbedingt eine Anweisung!

Eingabe
a=eval (input ("Eingabe= "))

Alternative mit nicht benutztem THEN-Zweig
if a >= 2:

nicht benutzter THEN-Zweig

sinnfrei=1
else:

print ("Zahl erfillt die Bedingung nicht")

Die Python-Ldsung flr leere Anweisungen ist das Schlusselwdrtchen pass. Damit wird eine
Anweisung ausgeflhrt, die absolut nichts bewirkt, auRer vielleicht ein paar Millisekindchen
vergehen zu lassen.

Wohl als einzige Programmiersprache lasst Python Ausdriicke, wie die folgenden zu:

0 >= anzahl <=100 # zulassige Anzahl von 0 bis 100
not (10 < alter < 67) # z.B. ermaligter Eintritt ins Sportstadion (als Kind und Rentner)
a<b== # a muss kleiner als b sein und b gleichgrof3 wie ¢

BK_Sekl+II_Python_basic.docx -105 - (c,p) 2015 - 2026 Isp: dre

Mehrere Verzweigungen kdénnen sauber ineinander verschachtelt werden. Dabei durfen die
ELSE-Zweige sich nicht Gberschneiden und die Einriickungen missen eingehalten werden.

Alternative
if eingabe ==
print ("Die Zahl ist Null.")
else:
if eingabe > 0:
print ("Die Zahl ist positiv.")
else:
print ("Die Zahl ist negativ.")

Probieren Sie z.B. mal den folgenden fehlerhaften (!) Code aus:

Alternative

if eingabe == 1nt:

print ("Die Zahl ist Null.") Fehler-

if eingabe > 0: hafter
print ("Die Zahl ist positiv.") Quell-

else: Code!!!

print ("Die Zahl ist negativ.")

Aufoaben:

1. Was liuft hier falsch? Analysieren Sie den Quelltext!

2. Schreiben Sie die Alfernative so um, dass zuerst die negaliven Zahlen aus-
sortiert werden!

Listen / Collection's lassen sich auch gemeinschaftlich analysieren:

boolListe = [True, False, False, True, True]

all (boolListe) ergibt False, da zwei Elemente nicht wahr sind

any (boolListe) ergibt True, da mindestens ein Element wahr ist

sum (boolListe) ergibt 3, weil drei wahre Werte in der Liste enthalten sind

(True wird als 1 gespeichert, False als 0)

Schaltjahr-Prifung nit kombinierten logischen Operatoren

jahr = int (input ("Welches Jahr soll geprift werden: "))
if jahr $ 4 == 0 and jahr % 100 != 0 or jahr % 400 ==
print (jahr,"ist ein Schaltjahr")
else:
print (jahr,"ist KEIN Schaltjahr")

BK_Sekl+l_Python_basic.docx -106 - (c,p) 2015 - 2026 Isp: dre

6.4.1.2. seschachtelte Alternativen

Eine klassische Einsatz-Variante fur Alternativen ist die Unterscheidung von vier Gruppen
anhand von zwei Eigenschaften. Im nachfolgenden Beispiel sind das die "Erwachsenen" ab
der Altersgrenze 14 Jahre und die Unterscheidung nach dem Geschlecht flr eine zu konstru-
ierende Anrede:

Eingabe der Personendaten

vorname=input ("Geben Sie den Vornamen der Person ein: ")
name=input ("Geben Sie den Nachnamen der Person ein: ")
alter=eval (input ("Geben Sie das Alter der Person ein: "))
maennlich=input ("Ist die Person mannlich <j,J,n,N>: ")

Definition einer Altersgrenze fiir die Anrede-Form
altersgrenze=14

Anrede entscheiden und zusammenstellen

if maennlich == "3j" or maennlich == "J":
if alter >= altersgrenze:
anrede="Sehr geehrter Herr "+vorname+" "+name
else:
anrede="Lieber "+vorname
else:
if alter >= altersgrenze:
anrede="Sehr geehrte Frau "+vorname+" "+name
else:
anrede="Liebe "+vorname
Ausgabe
print ()

print ("Anrede:")
print (anrede)

Fir die Anrede-Konstruktion sind nur das Alter und das Geschlecht zu unterscheiden. Der
Name selbst wird dann nur fir die Ausgabe gebraucht.

Im Programm-Text wurden die zweiten — inneren / geschachtelten — (Neben-)Verzweigungen
dunkler unterlegt. Fur ein Testen der ersten (Haupt-)Verzweigung kann man anstelle der
Neben-Verzweigung erst einmal eine kleine print()-Anweisung setzen.

>>>

Geben Sie den Vornamen der Person ein: Monika
Geben Sie den Nachnamen der Person ein: Mustermann
Geben Sie das Alter der Person ein: 29

Ist die Person mannlich <j,J,n,N>: n

Anrede:
Sehr geehrte Frau Monika Mustermann

>>>

BK_Sekl+II_Python_basic.docx -107 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Bei einem Ausverkauf gibt es 20% auf die ausgezeichnefen Preise. Weiler-

hin wird bei einem Umsalz von 100 Euro nochmal 5% Rabalt und bei 200
FEuro extra 15 % Rabalt gewahrl.
Erstellen Sie ecin Programm, dass aus der normalen Preissumme den zu
zahlenden Belvag evmiftelt! Weilerhin soll angezeigt werden, wieviel der
Kunde gespart hal und wieviel Mehrwerlsteuer im Endpreis enthallen isl.
Fiir alle Waren gilt der normale Steuersalz von 19%.

2. Die Anakonda-Bank hat die folgenden Zins-Kondilionen:

a) bei einem Guthaben werden 1,5% Zinsen p.a. (pro Jahr) dem Guthaben
zugeschlagen

b) Guthaben iiber 5000 Euro erhalfen 2,5 % Zinsen p.a.

¢) bis 1000 Euro Schulden gibt es den Dispokredit mit 5 % Zins p.a.

d) bei groferen Schulden gilt der iibliche Kredilzins von 7,5 % p.a.

Ein Python-Programm soll fiir einen einzugebenen lelzljahrigen Kontostand
den aktuellen zuviickliefern! (Im Verlaufe des Jahrves erfolgten keine Ein-
oder Auszahlungen!)

3. Dem Programmierer des folgenden Programm's sind diverse Fehler unfer-
laufen. Finden und korvigieren Sie diese

1 # Programm zur Interpretation von
2 Farbkodierungen an Signalleinen
3 Rettungsdienste / Einsatztauchen
4 alle 10 m ein Leder-Lappchen

5 nach je 2m Markierung in:

6 schwarz, weiss, rot, gelb #

-

8

Eingabe
9 leder=eval (input ("durchgelaufene Leder-Lappchen: ")
10 letzteFarbe=input ("letzte durchgelaufene Farbe: ")

11

12 # Verarbeitung

13 fehler==

14 if letzteFarbe=="schwarz";
15 laenge=2

16 elif Farbe=="weiss":

17 laenge=4

18 elif letzteFarbe=="rot":
19 laenge=4

20 elif letzteFarbe="grin":
21 leange=8

22 else

23 Fehler=1

24

25 Auswertung
26 1f Fehler==1:

27 write ("Es ist ein Fehler aufgetreten!

28 if leder > 0:

29 print ("mind.", leder*10, "m durchgelaufen")
30 else:

31 gesamt=leder+10*laenge

32 print "es sind", "gesamt","m durchgelaufen"
33

BK_SekI+l_Python_basic.docx -108 - (c,p) 2015 - 2026 Isp: dre

komplexe und / oder weitere Ubungs-Aufgaben zu Alfernaliven:

1. Erstellen Sie sich eine dreispallige Tabelle in Threm Hefler! In die ersle
Spalte kommen die nachfolgenden Ausdriicke! Die zweite Spalte wird mit
"Kopf~-Computer” und die dritte mit "Python" iiberschrieben! ljberlegen Sie
sich dann, welches logisches Ergebnis (True oder False oder kein Wert
(weil (synlaklisch) falsch)) bei den einzelnen Ausdriicken her{{uskommt und
Iragen Sie das Ergebnis in die Spalte "Kopf-Computer” ein! Uberpriifen Sie
dann alle Ausdriicke an der Konsole von Python! Die Frgebnisse kommen
in die Spalte "Python" der Tabelle. Wie vichtig lagen Sie?

a) 3 == b) 456 <= 289 c) == '4"

d) 5 == 342 e) "Eingabe" == 0 f) "Name" <= "Vorname"
g) 8.0 == h) "Hallo!"™ == "Hallo! "

i) "Ei" is "Ei") a = 23 k) 24 // 8 ==

) 5 in [2, 3, 5, 7] m) 4 not in [9, 3, 2, 4 ,6, 8, 13, 1, 99]

n) "Bio" not in ["Astro", Bio, "Chem", "Deu", "Bio, Ma", "Info", SK]

2. Der pH-Wert zeigt den Charakler einer 1.osung an. Dabei sind pH-Werfe
kleiner als 7 ein Zeichen fiir saure LOsungen, bei Werlen iiber 7 sprechen
wir von basischen Losungen. Ist der pH genau 7, dann gilt die 1.0sung als
neulral.

Erstellen Sie ein Programm, dass aus dem pH-Wert den Charakler der 1.6-
sung evmitlelt!

3. Fliir die Koordinalen eines Punkles (x- und y-Wert) soll ermiltelt werden, in
welchem Quadranten des karlesischen Koordinalensystems der Punkt ein-
zuzeichnen ist!

4. Ein Programm soll fiir die einzugebende Zimmer-Temperatur in °C ausge-
ben, ob es zu warm oder zu kalt ist! Als optimaler Wert wurde 21 °C feslge-
legl.

5. Verindern Sie das Programm von 4. so, dass die optimale Temperatur als
Variable (Konstante) vorne im Quellfext definiert und auch im weiteren Pro-
gramm genulzl wird! Speichern Sie das Programm unler einem geanderlen
Namen ab!

6. Verandern Sie das Programm von 4. so, dass der Richtwert durch das Pro-
gramm abgefragt wird! Der Richlwert darvf nicht grofer als 25 und nicht
kleiner als 15 °C sein!

7. Im nachfolgenden Programm sind dem Programmierer diverse Skil-Fehler
unferlaufen. Korrvigieren Sie diese!

1 a=input ()
a=int (a)
if a>273:
if a<373: print ("flissig")
else: print ("gasformig")
else: print ("fest")

oUW

BK_Sekl+II_Python_basic.docx -109 - (c,p) 2015 - 2026 Isp: dre

6.4.1.3. Mehrfach-Verzeigungen

Neben den einfachen Verzweigungen kennen viele Programmiersprachen Mehrfach-
Verzweigungen. Meist lautet das Schlisselwort dann SWITCH, CASE oder so ahnlich. Py-
thon geht bei den Mehrfach-Verzweigungen einen ganz einfachen Weg — es erweitert ein-
fach die "normale" Verzeigung.

Im nachsten Beispiel sollen eine Schulnote, die als Ziffer eingegeben wird, in die Textform
umgesetzt werden.

Das Struktogramm fiir diese Mehrfach-Verzweigung sieht so aus:

Textausgabe von Schulnoten (Ziffern):

eingabe
— 7: ist eingabe ...
=9 =2 =3 =4 =5 =6
sehr gut D gut D befriedigend]> ausreichend I:'> mangelhaft |> ungeniigend D:

Der Quellcode in Python ist eine erweiterte if-Struktur. Vor dem optionalen beendenden else
konnen beliebig viele elif's eingefugt werden. Sie stehen fur immer jeweils einen Ausgang
aus der Mehrfach-Verzweigung.

Mehrfach-Alternative
if eingabe ==

print ("sehr gut")
elif eingabe ==

print ("gut")
elif eingabe ==

print ("befriedigend")
elif eingabe ==

print ("ausreichend")
elif eingabe ==

print ("mangelhaft")
elif eingabe ==

print ("ungenigend")

Im Allgemeinen ist ein Abschluss mit einem else besser.
Dann kommt immer etwas bei der Mehrfach-Verzweigung heraus und man kann effektiver
nach Fehlern forschen. Das zugehdrige Struktogramm wiirde dann so aussehen:

Textausgabe von Schulnoten (Ziffern):

eingabe
?: ist eingabe ...
=1 =2 =3 =4 =5 SONST
sehr gut gut b befriedigend ausreichend D mangelhaft ungeniigend

BK_Sekl+l_Python_basic.docx -110 - (c,p) 2015 - 2026 Isp: dre

Und das zugehorige Python-Programm séhe dann so aus:

Mehrfach-Alternative
if eingabe ==

print ("sehr gut")
elif eingabe ==

print ("gut")
elif eingabe == 3:

print ("befriedigend")
elif eingabe ==

print ("ausreichend")
elif eingabe == 5:

print ("mangelhaft")
else:

print ("ungeniigend")

>>>

Note (als Ziffer): 4
Note in Textform:
ausreichend

>>>

Diese Form der Mehrfach-Verzweigung birgt ein grol3es Risiko. Vergil3t man bei komplizier-
teren Bedingungen z.B. bestimmte Grenzen oder Randbedingungen, dann kann man seinen
Programm-Ablauf immer im ELSE-Bereich wiederfinden. Nehmen wir als einfaches Beispiel
die Bewertung von Temperaturen (mit Nachkommastellen. Auf den ersten Blick sieht der
nochfolgende Quelltext unproblematisch aus, aber der Teufel steckt hier im Detail:

Mehrfach-Alternative

if temp < 19.0:
print("zu kalt")

elif temp > 19 and temp < 20:
print ("kidhl")

elif temp > 20 and temp < 22:
print ("angenehm")

else:
print ("zu warm")

Wahrend die erste Eingabe (hier

>>>

19,4) noch ein exaktes Ergebnis aktuelle Zimmer-Temperatur [°C]: 19.4
liefert, versagt unser Programm bei 1:1:1;1
9.0 aktuelle Zimmer-Temperatur [°C]: 19.0

Das Problem wird deutlich, wenn wir

ZUu warm

einmal mit 19,0 die Mehrfach- >>>
Verzweigung durchgehen:
Die Bedingung (<19) in der startenden IF-Anweisung wird mit FALSE beantwortet und somit
in der ersten ELIF-Anweisung weiter gemacht. Die Bedingungen treffen einzeln und in der
UND-Verknupfung nicht zu, also wird auch die Auswahl-Mdélichkeit Ubersprungen. Genau
geht es der 19,0 in der zweiten ELIF-Anweisung. Was bleibt, ist der ELSE-Zweig. Hier wird
die Wertung "zu warm" kreiert. Ahnliches passiert z.B. auch bei der Eingabe von 20,0.

Das Problem sind hier die nicht direkt aneinander anschliefienden Bereiche. Wir haben im-
me kleine Licken — hier 19 und 20 — die nicht erfasst werden und dann im ELSE-Zweig lan-
den.

-111 -

BK_Sekl+II_Python_basic.docx (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Berichtigen Sie die Mehvfach-Verzweigung zur Temperatur-Bewerfung so,

dass keine Liicken mehr auffreten!

2. Im einem "anderen” vorgelagerten Programm-Teil wird definierf, wo genau
diese Grenzen sein sollen. Der Nulzer kann seine Praferenzen also vorher
festlegen. Die Auswerlung soll dann die aktuelle Temperalur, diec Bereichs-

Grenzen und die Bewerlung anzeigen! (z.B.:
die aktuelle Tempertur 20,8 °C liegt im Bereich von 20,5 bis 22,3 °C und ist somit: angenehm

3. Trennen Sie sauber Eingabe, Verarbeifung (Bewertung) und Ausgabe! (In-
nerhalb der Ausgabe (am Ende des Programms) darf keine Verarbeifung

mehr erfolgen, sondern wirklich nur noch die Ausgabe der Texte / Dalen!

Ganz mutige und sehr von sich eingenommene Programmierer verzichten auch noch auf

den ELSE-Zweig — da kann man ja immer schén mit "Kopieren"-"Einfligen" arbeiten.

Mehrfach-Alternative

if temp < 19.0:
print("zu kalt")

elif temp > 19 and temp < 20:
print ("kdhl")

elif temp > 20 and temp < 22:
print ("angenehm")

elif temp > 22:
print ("zu warm")

Nun versagt unser Programm dann
vollends. Im Fall der 19 oder 20 °C
wird gar keine Bewertung angezeigt.
Solche Fehler mit nur wenigen Test-
Daten zu finden, gelingt nur selten.
Besser ist der folgende Weg:

Alle Bereiche werden mit IF- bzw. ELIF-Zweigen bearbeitet. Der ELSE-Zweig wird fur ein

>>>
aktuelle Zimmer-Temperatur [°C]: 19.4
kihl
>>>
aktuelle Zimmer-Temperatur [°C]: 19.0
>>>

Sammeln der nicht ausgewerteten Daten genutzt — quasi als Fehler-Topf:

Mehrfach-Alternative

if temp < 19.0:
print ("zu kalt")

elif temp > 19 and temp < 20:
print ("kdhl")

elif temp > 20 and temp < 22:
print ("angenehm")

elif temp > 22:
print ("angenehm")

else: # nicht ausgewertete Falle

print("es ist ein Fehler aufgetreten!")
print ("Melden Sie diesen bitte dem Programmierer!")

BK_Sekl+Il_Python_basic.docx

-112 -

(c,p) 2015 - 2026 Isp: dre

Nun wird bei einem durch- >>>

zu kalt

einen Fehler hingewiesen.
>>>

Wenn der Fehler vielleicht auch
erst beim Anwender auffallt, die

wenigstens keinen Unsinn. >>>

aktuelle Zimmer-Temperatur [°C]: 20.0
. . es ist ein Fehler aufgetreten!
Verarbeitung an sich erzeugt Melden Sie diesen bitte dem Programmierer!

Exkurs: Mehrfach-Verzeigung — anders dargestelit

Nebenstehend ist ein Algorithmus zur Umsetzung von
Noten (in Ziffern) in die zugehdrigen Wort-Urteile als
Programm-Ablauf-Plan dargestellt. Sachlich ent-
spricht dieses PAP dem letzten Struktogramm.
Insgesamt sieht man bei beiden Darstellungen, dass
man bei groReren Algorithmen schnell an die graphi-
schen Grenzen stoRt.

Viele (altere / gestandene) Programmierer schwaéren
auf die guten alten PAP's. In der modernen Pro-
grammierung und Algorithmik wird eher auf Strukto-
gramme oder Pseudo-Programm-Text gesetzt.

Ein entscheidender Vorteil der Darstellungen als PAP
oder Struktogramm ist auf alle Falle, dass man quasi
mit dem Finger den Ablauf nachvollziehen kann. Das
geht bei den PAP's noch besser, als bei den Strukto-
grammen.

Die Darstellung in Pseudocode spart richtig Platz —
ist aber immer schon stark an einer (bestimmten)
Programmiersprache angelehnt. Als Pseudosprachen
werden dann meist stark vereinfachte Programmier-
sprachen gewahlt, die besonders im akademischen
Bereich weit verbreitet sind, wie z.B. Pascal.

Da schon so etwas wie Programmtext vorliegt, ist
eine Fehlersuche oder Priifung des Algorithmus stark
von den Programmier-Erfahrungen abhangig und
somit nicht unbedingt zielfuhrend.

Pseudotext einer Mehrfachauswabhl:
eingabe = INPUT (Notenziffer)
case eingabe of

1: PRINT (sehr gut)

2: PRINT (gut)

3: PRINT (befriedigend)

4: PRINT (ausreichend)

5: PRINT (mangelhaft)

ELSE PRINT (ungentigend)

/[eingabe (Note) /

"sehr gut” /—)
nein
-
nein
"befriedigend” /—

"ausreichend" /—)

"mangelhaft" /—)

/ "ungenigend” /

- /

Y

PAP zur Mehrfachauswahl

Leider gehort eine CASE-Anweisung nicht zu Python. Wir miissen uns also mit Behelfs-Strukturen

begntigen.

BK_Sekl+ll_Python_basic.docx - 1 13 -

(c,p) 2015 - 2026 Isp: dre

6.4.1.4. Optimierung des Quellcode's — DRY- und EVA-Prinzip

Das DRY-Prinzip (don't repeat yourself) besagt, dass man maoglichst alle Dinge nur einmal in
einem Programm codiert. Auch spateres erneutes Programmieren sollte vermieden werden.
Fir einen Anfanger ist dies zuerst etwas schwierig. Er muss sich noch zu viel auf seinen
Code konzentrieren. Aber spatestens, wenn ein funktionierender Code vorliegt, sollte man
sich um eine Anpassung an die informatischen Prinzipien kimmern. Nerdigen Code wird
man spater nicht wirklich in ein Team einbringen und fir einen selbst wird es auch sehr unef-
fektiv, immer das Gleiche mehrfach zu codieren.

1 // Schaltjahr-Programm
Z
3 eingabe = input ("Schaltjahr-Priifung fir Jahr?: ")
4 jahr = int (eingabe)
6 1f jahr < O:
7 print ("es muss ein positives Jahr sein!")
8 else:
9 if jahr $ 4 == 0: // ?durch 4 teilbar
10 if jahr % 100 == 0: //? durch 100 teilbar
11 if jahr % 400 == 0: // ?durch 400 teilbar
12 println ("kein Schaltjahr")
13 else:
14 println("ist Schaltjahr")
15 else: // 2 %100
16 println ("ist Schaltjahr")
17 else: // ? %4
18 println("kein Schaltjahr")

Auf den ersten Blick ist es ein ordentliches Programm. Was den Informatiker stért, sind die
mehrfachen Ausgaben. Wurde man das Programm flir eine andere Sprache umschreiben
wollen, dann misste man auch wieder doppelt arbeiten. Weiterhin ist die Mischung aus Ver-
arbeitung und Ausgabe ungunstig. Beide Bereiche sollten moglichst vollstdndig voneinander
getrennt werden. Dann kann man die Ausgabe auch in unterschiedlicher Form erledigen,
z.B. wie bisher Ublich auf der Konsole, oder in einer graphischen Oberflache.

Sollte unser Schaltjahr-Problem noch einige weitere Male im Programm auftauchen, dann
mussen wir auch wieder mehrfach den Code notieren oder reinkopieren. Derzeit haben wir
noch keine echte Lésung dafir, aber mit Funktionen (= 6.5. Unterprogramme, Funktionen
usw. usf.) wird das spater bestens gehen. Derzeit Uberlegen wir uns nur, wie man die Infor-
mation von der Verarbeitung zur Ausgabe transportiert. Wir wollten ja wissen, ob es sich um
ein Schaltjahr handelt oder nicht. Also handelt es sich eigentlich um einen Wahrheitswert.
Genau so eine Variable nutzen wir nun. Auch das Auftreten eines Fehlers erfassen wir nur,
merken uns diesen und geben ihne dann u.U. spater aus.

BK_SekI+l_Python_basic.docx -114 - (c,p) 2015 - 2026 Isp: dre

1 // Schaltjahr-Programm

2
3 //Eingabe
4 eingabe = input ("Schaltjahr-Prifung fir Jahr?: ")
5 Jjahr = int (eingabe)
7 //Verarbeitung
8 ist schaltjahr = False
9 fehler = 0
11 if jahr < O:
12 fehler = 1
13 else:
14 if jahr % 4 == 0: // ?durch 4 teilbar
15 if jahr % 100 == 0: //? durch 100 teilbar
16 if jahr % 400 == 0: // 2durch 400 teilbar
17 ist schaltjahr = False
18 else:
19 ist schaltjahr = True
20 else: // 2 %100
21 ist schaltjahr = True
22 else: // ? %4
23 ist schaltjahr = False
24
25 //Ausgabe
26 1f fehler > 0:
27 println ("Es ist ein Fehler aufgetreten.")
28 else:
29 if ist schaltjahr:

0 println (jahr," ist ein Schaltjahr")
31 else:
3 println (jahr," ist kein Schaltjahr")

2

[0}
N

Natirlich missen wir unser Programm grundlich testen. Dabei werden wir merken, dass es
nicht ganz exakt arbeitet.

Aufoaben:

1. Recherchieren Sie, welche Regeln zu den Schalljahren in den verschiedenen
Kalendern feslgelegt wurden!

2. Korrigieren Sie Thr Programm, so dass es ordnungsgemapf funklioniert!

3. Priifen Sie Ihr Programm mil mindestens 10 weileren Jahves-Zahlen, die Sie
im Kurs gemeinsam auswahlen, um moglichst viele Sonder-Falle zu lesten!

BK_Sekl+II_Python_basic.docx -115- (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen Sie ein Programm zur eindeuligen Interprelation eines pH-Wertes!

(s gilk unter 2: sehr sauer; von 2 bis unter 4: sauer; von 4 bis unter 7: schwach sauer;
7 ist neutral; ... entsprechend fir die basische Seite (es brauchen nur Werte von 0 bis 14
betrachtet werden, bei Werten auf3erhalb soll ein Hinweis auf "ungewdhnliche Werte" ge-

gegeben werden))

2. Wihlen Sie eine eigene — mindestens 5-stufige Skala und selzen Sie diese in
ein Bewerlungs-Programm um!

3. Offnen Sie sich Ihr gespeichertes Programm von 6.2.1. (Eingabe von zwei
Zahlen und eines Operalionszeichens) und erginzen Sie nun die Berech-
nung und Ausgabe des Ergebnisses der Gleichung!

4. Erstellen Sie ein Programm, dass den BMI fiir Jungen und Madchen be-
rechnet und gelvennt bewerltel! B

5. Gesucht ist ein Hilfs-Programm fiir die Beslandsaufnahme (Biologie, Oko-
logie), um den Deckungsgrad zu bewerten (z.B. nach Tafelwerk Cornelsen
S. 160)!

6. Planen (Strukfogramm) und entwickeln Sie ein Programm, dass aus zwei
Winkeln und der dazwischen liegenden Seife die rvestlichen Seiten und den
dritfen Winkel berechnel. Weilerhin soll das Programm den Umfang und die
Fliache ermilfeln! Bei der Ausgabe der Dalen nach dem EVA-Prinzip (also
erst geschlossen am Ende des Programmes) sollen auch Hinweise auf beson-
dere Eijgenschaffen des Dreiecks angezeigt werden (z.B.: rechihwinkliges
oder / und gleichseilig usw. usf.)!

7. Erstellen Sie ein Programm zur feineren Interprelation des p OH-Wertes!
(Hinweis: Der pOH-Wert ist quasi der Gegenwert zum pH-Wert aus der Sicht der Basen.
Er berechnet sich u.a. auch 14 = pH + pOH.)

Uber 13: extrem sauer, 13 .. 11 stark sauer; von 11 bis Uber 9: maRig sauer; von 9 bis
Uber 7: schwach sauer; 7 ist neutral; von 7 bis Uber 5 schwach basisch; 5 .. 3 maRig ba-

sisch; von 3 bis Uber1 stark basisch; unter 1 extrem basisch)

BK_SekI+l_Python_basic.docx -116 - (c,p) 2015 - 2026 Isp: dre

komplexere Aufgaben (zu Verzweigungen):

1. Erweitern Sie das lelzle Zensuren-Programm so, dass fehlerhaffe Eingaben
— also negative Zahlen oder Zahlen grofer 6 — mil einem Fehler-Hinweis
quittiert werden. Uberlegen Sie sich zwei grundsalzlich verschiedene Mog-
lichkeiften!

2. Programmieren Sie eine Varvianlte der No- _

. ! .) . . Ver # Mehrfach-Alternative
len-Textausgabe, in der nur einfache Ver- . (i .pe —
zZweigungen (also keine Mehrfach- print ("ausreichend")
Verzweigungen) vorkommen! Wieviele ifs ©'+f eingabe = 1:

i print ("sehr gut")
brauchen Sie? else eingabe ==

3. Finden Sie die Fehler im nebenstehenden print ("mangelhaft")

17 e) ealo . [if eingabe <> 3:
Quelltext! (Die Reihenfolge der Noten (4, 1, print ("ungeniigend ")

0, ...) soll beibehalfen werden!) elif eingabe ==
4. Priifen Sie Ihre Korvekluren in ecinem einfa- print ("ausreichend ")
. else:
chen - selbst geschriebenen - Python-

print ("ungenigend")
Programm! :

5. In einem Progvamm soll durch Eingabe der Farbe und des Werles (als Text)
einer Spielkarte (des franzosischen Blalles) die passende Spiclkarte aus dem
deulschen Skatblatt ermitfell werden!

6. Bestimmen Sie fiir ein einzugebenes Jahr, ob es sich um ein Schaltjahr han-
dell, oder nicht! Es gellen die folgende Regel:

FEin Jahr ist ein Schalljahr, wenn es ohne Rest durch 400 Feilbar ist oder
wenn es durch 4, aber nicht durch 100 Feilbar ist.

7. Einer Person soll ein oder mehrere Altvibul(e) zugeordnel werden! Dazu
gellen die folgenden Rahmen:

o bis 1 Jahr alt: Saugling; Kleinkind bis 4 Jahre; Vorschulkind bis 6;
Schulkind bis 12; Jugendlicher bis 18; dann Erwachsener

o volljahrig / nicht volljahrig

e Renlnerab 67

8. Durch ein Programm soll eine Spiclkarte aus dem franzosischen Blalt (Ka-
ro, Herz, Pik und Kreuz mil jeweils ¢ bis 10, Bube, Dame, Konig, Ass)
tiber Ja/Nein-Fragen erfragt werden! Planen Sie ein Progrvamm, dass mil
maglichst wenig Fragen (fiir den Nulzer) auskommt! Wieviele ifs brauchen
Sie?

9. Erstellen Sie ein Programm, dass zu ciner erveichten Punklzahl bei einer
Arbeit die Bewerlung als Nole ermiltelt! Die mindesltens nolwendigen Pro-
zentlwerte sind: fiiv ein 5" 9%; fiir eine 1" 36%; fiiv eine 3" 55%; fiir eine
2" 70% und fiir eine "1" 85%. FErskellen Sie das Programm mil einer
IF. ELIF. . ELSE-Shuktur!

BK_Sekl+II_Python_basic.docx -117 - (c,p) 2015 - 2026 Isp: dre

fiir die gehobene Anspruchsebene:

10. Wie kann man das Programm zu Aufgabe 9 so anlegen, dass es gul warl-
bar / anderbar fiir andere Prozentwerte wird?

11. Das Programm von Aufgabe 9 bzw. 10 soll so umgebaut / erweilert wer-
den, dass auch die Punkhwertunyg fiiv die Sekundarstufe II angezeigl wird!
Die Fein-Einteilung muss nicht in einer IF..ELIF.. E1L.SE-Shruklur erfolgen!

Angaben in % und als Minimum: 1: (96; 90; 85); 2: (80; 75; 70); 3: (65; 60; 55);
4: (50; 45; 36); 5 (27; 18; 9)

BK_SekI+l_Python_basic.docx -118 - (c,p) 2015 - 2026 Isp: dre

6.4.2. Schleifen

In vielen Fallen missen bestimmte Pro-
gramm-Abschnitte mehrfach erledigt wer- %

den. Die Quelltexte mehrfach hintereinander ﬁ /f
zu kopieren, ware eine erste Moglichkeit. Sie i
empfiehlt sich aber schon deshalb nicht, weil L
Fehler-Korrekturen extrem aufwandig wir-

den. Haufig weiss der Programmierer auch

gar nicht genau, wie oft die Anweisungen

wiederholt werden missen.

Eine Struktur, um Wiederholungen zu realisieren sind die sogenannten Schleifen — oder wie der
Schweizer sagt: Schlaufen. Aufgrund bestimmter Bedingungen werden die — in der Schleife lie-
genden — Anweisungen (Schleifen-Kdrper) so oft durchlaufen, bis die Arbeit erledigt ist. In
der Programmierung unterscheiden wir Schleifen mit vorbestimmten Durchlaufzahlen — die
sogenannten Zahl-Schleifen — von den bedingten Schleifen.

Die bedingten Schleifen (Bedingungs-kontrollierten Schleifen) werden nochmals dahingehend un-
terschieden, wo die Bedingung geprift wird. Das kann vor dem Durchlauf des Schleifen-
Korpers erfolgen. Dann sprechen wir von Kopf-gesteuerten Schleifen. In anderer Literatur
werden sie auch vorprufende Schleifen genannt.

Wird dagegen erst am Ende der Schleife gepruft, dann nennt man die Schleife Ful-gesteuert
oder nachprifend. Hierbei ist zu beachten, dass der Schleifen-Kérper mindestens einmal
durchlaufen wird, bevor die Bedingungs-Priifung am Fuf’ der Schleife erreicht wird.

DRY-Prinzip
don't repeat yourself

BK_Sekl+II_Python_basic.docx -119 - (c,p) 2015 - 2026 Isp: dre

6.4.2.1. bedingte Schleifen

Das Konzept der bedingten Ausfiihrung von bestimmten Programm-Teilen (= 6.4.1. Ver-
zweigungen) kann nun auch auf Schleifen bzw. Wiederholungen angewendet werden. Statt
den if bei den Verzweigungen verwenden wir nun das Schllisselwdrtchen while. Nach dem
Durchlauf des eingerickten Programm-Abschnittes kehrt das Programm zur while-Stelle
zurtick und testet erneut, ob ein weiterer Durchlauf notwendig / moglich ist.

Ist die Bedingung nicht erfillt, dann wird die Schleife

nicht durchlaufen. Das Programm setzt dann mit der SOLANGE Bedingung
Bearbeitung der — nach der Schleife — folgenden An- |S(,ME¥E"_SC&,ME)
weisungen fort. Das kann naturlich auch schon beim

ersten Mal der while-Bedingung passieren. Das Struktogramm: Kop-

Struktogramm einer kopfgesteuerten Schleife — so gesteuerte Scheife

nennt man die while-Schleifen auch — sieht aus, wie
ineinander geschachtelte Rechtecke. SOLANGE Bedingung

Der Schleifen-Korper also der Teil, der innerhalb der Schleifen-Schritt(e
Schleife immer wieder abgearbeitet werden soll, kann chleifen-Schritt(e)
ein sehr komplexer Blockteil sein. SOLANGE Bedingung
Da sind Sequenzen, genauso wie Verzweigungen, |Sckt‘e;fen-schrm(e)
aber auch neue Schleifen erlaubt. Sie mussen nur Schleifen-Schritt(e)

sauber ineinander verschachtelt werden. Ein Uber-
lappen ist nicht zulassig!
Fiur die Entwicklung von Programmen mit mehrfach
geschachtelten Schleifen empfiehlt sich zuerst einmal
die Top-down-Entwicklungstechnik. Es wird also zu-
erst die aulRertes Schleife programmiert.
In diese kénnen / sollten kleine Ausgaben hinein ge-
baut werden. Funktioniert die Schleife kdnnen die SOLANGE Bedingung
Kontrollausgaben auskommentiert werden und dann Schleifen=Schritt(e)
die innere Schleife hinzugefligt werden. —
Lauft alles, dann kdnnen alle Hilfs-Ausgaben geldscht SO‘AFMGI: Bedingung
werden. Schieifen-Schritt(e)
Schieifen-Schritt(e)
unzulassige Schachtelung

zulassige Schachtelung von Schleifen

Wie sieht eine Schleifen-Struktur in Python aus? Als Beispiel wahlen wir hier eine klassische
Programmierer-Aufgabe — das Abtesten, ob eine bestimmte Eingabe zulassig ist. Solange
das nicht so ist, soll der Nutzer wiederholt zur Eingabe aufgefordert werden.

Eingabe mit Giltigkeitstest
eingabe=-1 # Vorgelegung mit falschem Wert,
damit man in die Schleife kommt
while eingabe <0 or eingabe > 100:
eingabe=eval (input ("Geben Sie eine Zahl zwischen 0 und 100 ein: "))

>>>

Geben Sie eine Zahl zwischen 0 und 100 ein: 123
Geben Sie eine Zahl zwischen 0 und 100 ein: -5

Geben Sie eine Zahl zwischen 0 und 100 ein: 67

>>>

Eine etwas schonere Variante mit einem Fehler-Hinweis kdnnte z.B. so aussehen:

BK_Sekl+l_Python_basic.docx -120 - (c,p) 2015 - 2026 Isp: dre

Eingabe mit Giltigkeitstest
eingabe ok=False # Vorgelegung mit falschem Wert
while not eingabe ok: # ausfithrlich: eingabe ok == True
eingabe=eval (input ("Geben Sie eine Zahl zwischen 0 und 100 ein: "))
if eingabe < 0 or eingabe > 100:
print("... Bitte den Wertebereich beachten!")
else:
eingabe ok=True

>>>

Geben Sie eine Zahl zwischen 0 und 100 ein: 123
Bitte den Wertebereich beachten!

Geben Sie eine Zahl zwischen 0 und 100 ein: -5
Bitte den Wertebereich beachten!

Geben Sie eine Zahl zwischen 0 und 100 ein: 67

>>>

Die beiden obigen Programmteile sollte man sich merken und damit alle typischen einge-
grenzten Eingaben kontrollieren. Ansosnten droht ev. die Gefahr eines Programm-Absturzes
mitten in der Arbeit. Hier sind dann die Ursachen u.U. schwer aus der Fehlermeldung her-
auszufiltern.

BK_Sekl+II_Python_basic.docx -121 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen Sie ein Programm, das solange die Fingabe wiederholl, bis cine

2

.

.

°

.

Zahl eingegeben wird, die kleiner als 0 oder grofer als 100 ist!

Erweilern Sie das Programm von 1 so, dass die Summe, die Anzahl und der
Millelwerl der cingegebenen (vichtigen) Zahlen berechnel und angezeigl
wird!

Erstellen Sie ein Programm, dass solange cingegebene Zahlen festel, bis
eine 0 eingegeben wird! Dabei sollen die folgenden Tesls durchgefiihvt wer-
den und sachlich korrekte Ausgaben gemacht werden!

(Denken Sie sich im Kurs cin Sel aus Testzahlen aus, die jeder fiir seine
Programmlests nulzen muss!)

a) Zahl ist grofer als 333

b) Zahl ist ungerade und durch 3 teilbar

¢) Zahl ist gerade, grofier als 28 und durch 7 und 4 teilbar

In ciner Schiiler-Verwaltungs-Software bekommt jeder Schiiler eine flinf-
stellige ID-Nummer. Diese beginnl niemals mit einer 0. Erskellen Sie ein
Programm, dass eine eingegebene Zahl darauf leskel, ob sie eine giillige ID
ist!

Mit der Funktion len(zeichenkelte) kann man die Lange der Zeichenkelte
ermilleln. Die Funktion liefert die Anzahl der Zeichen in der Zeichenkelfe
zuriick. Ersltellen Sie ein einfaches Programm, dass fiir eine cinzugebene
Zeichenkelle deren Lange ermittelt und ausgibl und anzeigl, ob es sich um
eine giillige Fingabe handell (Zeichenkelte besitzl mindestens 3, aber nicht
mehr als 25 Zeichen.)

Aber auch Berechnungen z.B. fur Tabellen werden zumeist mit Schleifen aufgebaut. So
konnte es z.B. gefordert sein, in einer Tabelle x, x?> und x3 fir 10 aufeinander folgende Werte
zu berechnen und als Tabelle zusammenzustellen.

3 3 N

Programm zur Tabellierung von x-Quadrat
und x-Kubik

Autor: Drews

Version: 0.1 (01.10.2015)

Freeware

print ("Tabellierung von x-Quadrat und x-Kubik")

print (" ")

print ("")

Eingabe (n)

x _wert=eval (input ("Geben Sie den Startwert fiir x ein: "))
Ausgabe (n)

print (" x x?2 x3")

Berechnung / Verarbeitung / Ausgabe

schleifenzaehler=0

while schleifenzaehler < 10:

print (x wert, x wert*x wert, x wert*x wert*x wert)
x wert+=1
schleifenzaehler+=1

Warten auf Beenden
input ()

BK_SekI+l_Python_basic.docx -122 - (c,p) 2015 - 2026 Isp: dre

>>>
Tabellierung von x-Quadrat und x-Kubik

Geben Sie den Startwert fir x ein: 5
X b & x3
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
11 121 1331
12 144 1728
13 169 2197
14 196 2744

Die Werte in der "Tabelle" stehen zwar getrennt da, aber so eine Ausgabe entspricht noch
nicht wirklich unserem Tabellen-Verstandnis. Durch wenige Anderungen und einer Version
der format-Funktion bekommen wir das aber recht einfach hin:

Ausgabe (n)
print (" X | x?2 | x3")
print("--------- Fo———————— Fo———————— ")
Berechnung / Verarbeitung / Ausgabe
schleifenzaehler=0
while schleifenzaehler < 10:
print (format (x wert,"8d"),"|", format (x wert*x wert,"8d"),
"|", format (x_wert*x wert*x wert,"8d"))

>>>
Tabellierung von x-Quadrat und x-Kubik
Geben Sie den Startwert fir x ein: 5
X | x2 | x3
_________ +__________+__________
5 | 25 | 125
6 | 36 | 216
7 | 49 | 343
8 | 64 | 512
9 | 81 | 729
10 | 100 | 1000
11 | 121 | 1331
12 | 144 | 1728
13 | 169 | 2197
14 | 196 | 2744
>>>

Was die format()-Funktion alles leistet und welche Méglichkeiten zur Formatierung von Aus-
gaben sie liefert, haben wir uns schon angesehen (- 6.1. Ausgaben). Hier nur noch mal
kurz zur Erinnerung: Die Text-Angabe als 2. Argument in der format()-Funktion bewirkt eine
Ausgabe eines ganzzahligen Wertes mit insgesamt 8 Ziffernstellen.

Typische Anwendungen flr bedingte Schleifen sind Interationen. Da man bei den eigentlich
unendlichen Berechnungen irgendwann mal Schluss machen muss und will, braucht man ein
passendes Schleifen-Abbruch-Kriterium. Haufig nutzt man die Differenz zum vorlaufenden
berechneten Wert. Wenn dieser eine bestimmte Grenze — meist e (Epsilon) genannt — unter-
schreitet, dann ist man mit der Genauigkeit zu frieden. Genau so verfahrt man, wenn sich der

BK_Sekl+II_Python_basic.docx -123 - (c,p) 2015 - 2026 Isp: dre

berechnete Wert nicht mehr von seinem Vorganger unterscheidet. Bei Computersystemen
muss man aber beachten, dass eine Gleichheit bei den Werten nicht heiRen muss, dass der
Wert auch stimmt. Vielfach ist es nur die Genauigkeit des Systems, die uns in Ausfiihrung
der weiteren Interationen begrenzt.

Als Beispiel fur die Nutzung von Epsoilon als Abbruch-Kriterium nehmen wir die Methode
von ARCHIMEDES zur Berechnung von Pi.

Berechnung der Kreiszahl Pi mit der Methode von ACHIMEDES

zugrundeliegende Formel: x,,,; =

import math
epsilon = le-20 # Genauigkeit

Initialisierungen
x = 4
y = 2*math.sqrt(2)
zaehler = 0
Interationsschleife
while x-y > epsilon:
x1 = 2*x*y /(x+y)
y = math.sqgrt(xl*y)
x = x1
zaehler += 1

", format ((x+y)/2,"2.30£"))
",format (epsilon,"2.30£f"))

print("interierte Kreiszahl Pi
print ("geforderte Genauigkeit e

print (" ---> nach: " ,zaehler," Interationen")
print (" zum Vergleich System-Pi = ",6 format(math.pi,"2.30£f"))
>>>

interierte Kreiszahl Pi = 3.141592653589792671908753618482
geforderte Genauigkeit e = 0.000000000000000000010000000000
---> nach: 26 Interationen
zum Vergleich System-Pi = 3.141592653589793115997963468544
>>>

Bei Schleifen, deren Durchlauf von einer Bedingung abhangig ist, kann es passieren, dass
genau die Bedingung immer zutrifft. So etwas passiert z.B. schnell mal bei einer unbedacht
angegebenen Bedingung. Man erhalt eine Endlosschleife. Diese kann nur durch einen dulle-
ren Eingriff beendet werden.

Trotz alledem gibt es naturlich Aufgaben, die immerzu wiederholt werden sollen. In so einem
Fall kann man mit

while True:
SchleifenAnweisungen

genauso eine Endlosschleife programmieren. Diese Schleife wirde niemals enden, da die
Bedingung fur die nachste Wiederholung ja immer wahr (=True) ist.

Endlosschleifen kann man durch ein wohlgesetztes break in der Schleife beenden. Das
break wiurde sich vielleicht aus einer priifenden Verzeigung ergeben.

Das wirde naturlich auch mit eben einer solchen Bedingung im Schleifen-Kopf den gleichen
Effekt haben.

Richtig effektiv und auch sinnvoll — wenn auch nicht schén — sind Schleifen, die von mehre-
ren verteilten Bedingungen im Schleifen-Kérper abhangig sind. Diese alle in den Schleifen-

BK_SekI+l_Python_basic.docx -124 - (c,p) 2015 - 2026 Isp: dre

Kopf zu platzieren kann unmaoglich sein. Dann bieten sich break's an irgendwelchen geeig-
neten Stellen an.

while True:
SchleifenAnweisungen

if Bedingungl: break
if Bedingung2: break

if Bedingungn: break
SchleifenAnweisungen

BK_Sekl+II_Python_basic.docx -125 - (c,p) 2015 - 2026 Isp: dre

Berechnung der Quadratwurzel von x nach der Formel von HERON

zugrundeliegende Formel: x,,; = % ((n — Dxp + %)

Wurzel-Berechnung nach HERON (interativ)
x = eval (input("Aus welcher Zahl soll die Quadratwurzel berechnet werden?: "))

xi = eval (input("Interations-Startwert x0: "))
print()
print("Iteration | Naherungswert")
print("----——----- o ")
i=0
xj = xi
while i == 0 or xi != xj: # mind. 1x in Schleife ; Abbruch wenn keine Diff.
i+=1
xi = xj
xj = (xi + x / xi) / 2
print (format(i,"5d"),' | ',format(xi,"3.15f"))
print (format (i+1,"5d"),' | ',format(xj,"3.15£f"))

print("fertig")

>>>
Aus welcher Zahl soll die Quadratwurzel berechnet werden?: 23
Interations-Startwert x0: 5

Iteration | Naherungswert

1 | 5.000000000000000

2 | 4.800000000000000

3 | 4.795833333333333

4 | 4.795831523313061

5 | 4.795831523312719

6 | 4.795831523312719
fertig

Die WHILE-Schleife wird also mindestens 1x betreten, weil ja der Zahler i zu Anfang O ist.
Spater ist dann nur noch die zweite Bedingung entscheidend. Hier wird gepulft, ob der gera-
de berechnete Nachfolgewert (noch) ungleich dem Vorgangerwert ist. Solange wird weiter
interiert.

Aus weiser Voraussicht sollte man aber eine weitere Grenze einziehen. Das kdnnte die
Auswertung der Differenz der beiden Interartionswerte sein. Bei sehr geringem Abstand ist
die Berechnung vielleicht schon genau genug fur unsere Zwecke. Eine andere Molichkeit ist
es, die Anzahl der Interations-Runden zu beschranken. Wenn z.B. nach 1'000 Interationen
noch kein eindeutiges Ergebnis vorliegt, dann wird pro forma abgebrochen, damit der Rech-
ner u.U. nicht ewig rechnet. Die Abbruchzahl ist ein Erfahrungswert und sollte nicht zu nied-
rig angesetzt werden. Somit ander sich nur die Zeile mit dem WHILE:

while i == 0 or (i<1000 and xi !'= xj):

BK_Sekl+l_Python_basic.docx -126 - (c,p) 2015 - 2026 Isp: dre

Berechnung der n-ten Wurzel

Das obige Programm-Muster benutzen wir nun, um die n. Wurzel einer Zahl zu berechnen.

zugrundeliegende Formel: x,,,; = % ((n — Dxp + an_l>

n

n. Wurzel-Berechnung nach HERON (interativ)
x = eval (input ("Aus welcher Zahl soll die n. Wurzel berechnet werden?: "))
n = eval (input ("Potenz n der Wurzel: "))
xi = eval (input("Interations-Startwert bzw. Schatzwert x0: "))
print()
print("Iteration | Naherungswert")
print("---—-—----—- e L L e s ")
i=0
xj = xi
while i == 0 or (i<1000 and xi !'= xj):
i+=1
xi = xj
xj = ((n-1) * xi + x / (xi**(n-1))) / n
print (format (i, "5d") ,' | ',format(xi,"3.15f"))
print (format (i+1,"5d") ,' | ',format(xj,"3.15£f"))

print ("fertig")

Bei anderen Interationen bricht man immer nach einer bestimmten Anzahl von Durchlaufen
ab. Das ware dann aber ein klassischer Fall fir eine Zahlschleife (= 6.4.2.3. Zahl-Schleifen).
Die Berechnung vieler Fraktale basiert auf diesem Prinzip.

Eingabe-Kontrolle mittels Schleife

derzeit wohl noch nicht verstandlich, aber ein gutes Mittel um z.B. Ganzzahl-Eingaben zu
erzwingen

wert = None # wert bekommt einen internen Wert, der fir NICHTS steht
while not isinstance (wert, int): # wiederholt solange bis der eingegebene wert
vom Typ int ist
wert = input ("Gib eine Zahl ein: ") # eigentliche Eingabe
try # versuchsweise Durchfiilhrung der n&chsten Zeilen
wert = int (wert) # Umwandeln des Eingabe-Strings in eine Zahl

except ValueError:
print ("Es sind nur Ziffern zugelassen!")

BK_Sekl+II_Python_basic.docx -127 - (c,p) 2015 - 2026 Isp: dre

Fehler-Analyse in Schleifen

Schleifen stellen haufig groRe Fehler-Quellen dar. Eine einfache Variante ist die Anzeige von
Werten vor und nach der Schleife.

Die zusatzlichen Anzeigen sollten unbedingt mit Kommentaren versehen werden, damit man
sie nachher wieder gezielt entfernen oder auskommentieren kann.

anz=0

sum=0

print ("anz=",anz) #fir Tests spéter auskommentieren # print("anz="
print ("sum=",sum) #fir Tests # print("sum=" ..

while anz<3:

sum=sum+anz

anz=anz+1l

print("anz=",anz) #fir Tests

print ("sum=",sum) #fir Tests

anz=0

Vor allem die Vorgange innerhalb der Schleifenkérper werden schnell zum MysteriWm. wel-
cher Wert wird da wirklich bei einem Durchlauf verrechnet?

Will man allerdings auch die Schleifen-Variablen verfolgen, dann bleibt einem nur die Anzei-
ge von Werten innerhalb der Schleife. Fur Test-Zwecke kann man dann vielleicht die Anzahl
der Durchlaufe klnstlich herabsetzen. Wenn's mit den kleinen Zahlen lauft, dann kann man
sich auch an die gréfleren wagen und ev. nur noch spezielle Werte anzeigen (z.B. mit Be-
dingung).

anz=0

sum=0

while anz<3:

sum=sum+anz

anz=anz+1

print("anz=", anz) #fir Tests | gpiter auskommentieren

print ("sum=",sum) #fir Tests

anz=0

Nicht jeder Algorithmus kann so ohne weiteres implementiert werden. Auch der Eingriff in
laufende Systeme ist nicht so ohnen weiteres mdglich. Oft steht auch nur ein Struktogramm
od.a. zur Verfugung. An diesem soll dann die Funktionsfahigkeit gepruft werden.

In vielen Fallen helfen Verfolgungs- bzw. Variablen-Protokolle beim Finden von Fehlern.

Wir gehen hier mal davon aus, dass uns der Algorithmus nur als Quell-Text vorliegt und wir
diesen offline prifen missen.

anz=0

sum=0

while anz<3:

sum=sum+anz

anz=anz+1

anz=0

BK_Sekl+l_Python_basic.docx -128 - (c,p) 2015 - 2026 Isp: dre

In einer ersten Version extrahieren wir die kritischen Befehle der Schleife und ordnen sie
horizonzal an.

Befehle | while anz<3: | sum=sum+tanz | anz=anz+l |

Das bietet den Vorteil, dass eine Schleifen-Situation immer in einer Zeile dargestellt wird. Bei
vielen Befehlen innerhalb des Schleifenkérpers wird diese Darstellungs-Variante aber auch
schnell sehr breit und unibersicht.

Als nachstes analysieren wir die Eintritts-Bedingungen — also welche Werte vor der Schleife
vorliegen.

Befehle while anz<3: sum=sum+anz anz=anz+1l

Eintritt sum=0 anz=0

Nun gehen wir Durchlauf fur Durchlauf durch die Schleifen-Befehle. Beim ersten Durchlauf
erhalten wir:

Befehle while anz<3: sum=sum+anz anz=anz+1

Eintritt sum=0 anz=0

1. Durchlauf |0:=3 sum=0+0__ anz=0 + 1 Hilfe / Berechn.
true 0 1

Der obere Teil (also die Berechnung Uber der Strichel-Linie) ist vor allem fir die ersten ver-
suche / Durchlaufe als Hilfe zu empfehlen. Zuoft glaubt man etwas programmiert zu haben,
was aber gar nicht in den Befehlen ausgedriickt wird. Man kann die Ausdriicke ja auch nur
mit Bleistift schreiben, um so die wesentlichen Inhalte — also die Variablen-Werte — deutlicher
erkennen zu kdnnen.

Nach und nach erganzt man nun die Zeilen fur die nachsten Durchlaufe:

Befehle while anz<3: sum=sum+anz anz=anz+1l
Eintritt sum=0 anz=0
1. Durchlauf [0=3 sum=0+0___________ anz=0 + 1
true 0 1
2. 1<3 sum=0+1__ anz=1+1
true 1 2
3. 2<3 sum=1+2 anz=2 + 1
true 3 3
4. 3<3
false

Beim 4. Durchlauf erhalten wir beim WHILE-Ausdruck ein false zurick. Damit wird die
Schleife nicht mehr ausgefuhrt und wir kdnnen die restliche Zeile streichen

4, 3<3
false

BK_Sekl+II_Python_basic.docx -129 - (c,p) 2015 - 2026 Isp: dre

Das gesamte Protokoll sieht dann fiir unser Beispiel so aus:

Befehle while anz<3: sum=sum+anz anz=anz+1

Eintritt sum=0 anz=0

1. Durchlauf [0=3 sum=0+0_ anz=0 + 1
true 0 1

2. 1<3 sum=0+1_ anz=1+ 1
true 1 2

3. 2<3 sum=1+2 anz=2 + 1
true 3 3

4. 3=<3
false

Austritt sum=3 anz=3

Bei Schleifen mit vielen Befehlen kann man sich ev. auf die Befehle mit den interessierenden
Variablen beschranken. Aber Achtung, es missen alle Befehle enthalten sein, die in irgend-
einer Form mit den zu beobachtenden Variablen zusammenhangen!
Als erste Vereinfachung kann man dann auf die Hilfen mit den Vergleichen und Berechnun-
gen verzichten.
Ist man dann etwas gelbter in der Ana-

lyse von Schleifen-Variablen, dann bietet Durchlauf | Bedingung | sum anz
sich ein weiter vereinfachtes Protokoll vorher - 0 0
an. Hierbei wird auf die einzelnen Be- 1 true 1
rechnungen usw. verzichtet und nur 2 true 1 2
noch die Variable und ihr Wert notiert. 3 true 3 3
Allerdings ist hier immer sehr griindlich 4 false -—- -—
zu arbeiten. danach 3 3

Aufoaben:

1. Analysieren Sie zuerst die nachfolgende Schieife ohne Hilfsmittel! Welche
Werte erwarten Sie beim Schleifen-Austvilt? Begriinden Sie!
1 | prod=0

sum=0

anz=0
offset=2

while anz<=5:

anz=anz+1

sum=sum+anz

| Jd| oo Ul Bl W DN

prod=prod*anz+offset

2. Erstellen Sie sich ein Verfolgungs-Protokoll fiiv alle Variablen!

3. Vergleichen Sie Ihve Erwartungs-Werfe mit den Daten aus dem Profokoll!
Wenn Sie sich vertan haben, versuchen Sie zu ergviinden, an welcher Stelle
Sie einen Denkfehler gemacht haben!

BK_SekI+l_Python_basic.docx -130 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Verindern Sie das Programm zur Tabellen-Erzeugung fiiv Quadrale und
Kubike so, dass stall 10 Zeilen nun 20 Zeilen ausgegeben werden!

2. Andern Sie das Programm zur Tabellen-FErzeuguny fiir Quadrale und Ku-
bike so, dass x nicht in 1er Schrilfen steigt, sondern immer in 4ev Schritfen!

3. Erstellen Sie ein Programm, dass neben den Doppelten und dem Vierfachen
auch die Halfte in eciner Tabelle mit 15 Zeilen zusammenstellt! Der formal-
Text fiir Zahlen mit Kommastellen lautel zB.: "10.3f" fiir 10 Ziffern-
Positionen (insgesaml) mil 3 Nachkommastellen

4. In einer 20-zeiligen Tabelle soll ein Programm zu a und seinen Nachfolgern
die Wurzel, die Sinus und Tangens-Werte ausgeben! Die Funklion fiiv die
Wurzel-Berechnung heifft sqrk(), die fiir den Sinus sin() und die fiir den
Tangens lan(). Die Funklionen sqrk(), sin() und tan() werden durch die Zei-
le: from math import * als eine der ersten Zeilen im Programm bereilge-
stellt (Nutzung eines Moduls).

5. Erstellen Sie ein Programim, dass die grofe Mal-Folge fiir eine einzugebene
Zahl zwischen 1 und 20 - also z.B. fiivdie 2: 11 x2, 12x 2, 13 x 2, ..., 20
x 2 berechnel und zeilenweise als Gleichungen ausgibl!

6. Entwickeln Sie das Nimm-Spiel in Python fiiv zwei menschliche Spieler:
Gegeben ist ein Menge Streichholzer (z.B. 23). Beide Spieler nehmen ab-
wechseind 1 bis 3 Holzer weg. Derjenige, der den lelzfen Streichholz neh-
men muss, hal verloren.

7. Programmieren Sie das Nimm-Spiel fiir einen Spieler gegen den Compuler!
Der Nulzer darf auswahlen, wer beginnl. Uberlegen Sie sich eine Stralegic
(fiir den Compuler-Spicler), wie man praktisch ab einer bestimmlen Sifuali-
on nicht mehr verlieren kann!

8. Wandeln Sie das letzte Nimm-Spiel so ab, dass sowohl die Maximalzahl
enlnehmbarer Holzer als auch die Anfangszahl (mindesltens 5 mal grofer als
die Maximaleninahme) vom menschlichen Spieler gewahlt werden kann!

fiir die gehobene Anspruchsebene:

9. Programmieren Sie das Spiel "Groker" fiir einen Spicler gegen den Compu-
ter (der Compuler verfolgt die nachfolgende Taklik: (den Quellcode iiber-
nehmen Sie so oder mit geinderten Variablennamen in Ihr Programmy))

BK_Sekl+II_Python_basic.docx -131- (c,p) 2015 - 2026 Isp: dre

6.4.2.2. Sammlungs-bedingte Schleifen

ebenfalls Kopf-gesteuert

besondere Form in Python

Sammlungs-bedingte Schleifen beginnen mit dem Schlusselwortchen for, welches in ande-
ren Sprachen typischerweise flir Zahlschleifen verwendet wird. In Python ist hier einfach
mehr moglich!

wenige andere Programmiersprachen bieten ein ahnliches Konzept

Sammlungen konnen Aufzahlungen und Listen sein. Den Bezug zwischen der Zahl-
Schleifen-Anweisung und der Aufzahlung wird Uber das Schlisselwdrtchen in hergestellt.
Die Schleifen-Anweisung arbeitet dann eben alle Werte in der Sammlung ab.

Eine Aufzahlung beinhaltet Werte in einem runden Klammer-Paar (), bei einer Liste sind die
Werte in eckige Klammer [] notiert. Die Werte selbst sind Komma-getrennt.

Die Unterschiede zwischen Aufzahlungen (exakt: Tupel genannt) und Listen sind flir uns hier
nicht relevant. Diese besprechen wir dann spater.

Countdown

for wert in (10, 9, 8, 7, 6, 5, 4, 3, 2, 1):
print (wert)

print("Start")

Warten auf Beenden

input ()

>>>
10

RFNWAOUU O 0O

Start
>>>

Auch hier brauchen wir eine Schleifen-Variable. Bei uns ist das dieses Mal wert. In dieser
Variable steckt die Kennung fur den konkreten Schleifen-Durchlauf. Die Kennungen werden
nach und nach der Aufzéhlung entnommen und abgearbeitet.

Die Aufzahlung kann auch in einer Variable gespeichert werden. Das mach Sinn, wenn man
diese ofter bendtigt.

werte = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
Countdown
for wert in werte:
print (wert)
print("Start")
Warten auf Beenden
input ()

Man kann sogar bei der Variablen-Zuweisung auf die Klammern verzichten. Aber gerade bei
unudbersichtlichen Sammlungen sollte man die Grenzen sauber abstecken.

BK_Sekl+l_Python_basic.docx -132 - (c,p) 2015 - 2026 Isp: dre

im Schleifen-Kopf kann auch auf eine Liste (Sammlung) zurlickgegriffen werden, die Ele-
mente-weise abgearbeitet wird

Far unsere Zwecke hier reicht es zu wissen, dass Listen aus Komma-getrennten Elementen
in eckige Klammer bestehen. Eine Liste kann einer Variable zugeordnet werden. Weitere
Listen-Operationen erklaren wir spater (= 8.2.3. Listen, die |. — einfache Listen, 9.7. Listen,
die ll. — objektorientierte Listen).

Definition der Listen

faecherliste=["Biologie", "Deutsch", "Informatik", "Mathematik", "Sport"]

namensliste=["Arendt", "Bauer", "Meiser", "Lehmann", "Meyer", "Schulz",
"Wagner", "Zander"]

zeilenweise Ausgabe der Namensliste
for name in namensliste:
print (name)
Warten auf Beenden
input ()

>>>
Arendt
Bauer
Meiser
Lehmann
Meyer
Schulz
Wagner
Zander
>>>

Aufoaben:

1. Andern Sie das Programm so ab, dass die Ficher zeilenweise ausgegeben
werden!

2. Lassen Sie das Programm nun Facher und Namen fiir sich jeweils zeilen-
weise ausgeben!

3. Uberlegen Sie sich, wie Sie die Ficher in einer Zeile hintereinander ausge-
ben konnften!

Wahrend Listen veranderlich sind, also z.B. geleert, erweitert oder Elemente daraus geloscht
werden konnen, sind Tupel (Aufzéhlungen) unveranderlich. Man kann also ein Tupel als
konstante Liste verstehen.

Intern ist die Verarbeitung von Tupel etwas schneller, als die der Listen. Wenn man also fes-
te Aufzahlungen hat, dann sollte man zu Tupel greifen. Fur alle anderen Félle sind Listen
immer die richtige Wahl. Mit Hilfe von Tupeln lassen sich auch gut Gruppen von Variablen
bzw. Werten programmieren. Ein schdnes Beispiel ist die Berechnung neuer Punkt-
Koordinaten als x-y-Paar (= (x,y) =).

BK_Sekl+II_Python_basic.docx -133 - (c,p) 2015 - 2026 Isp: dre

Programm zur Erstellung einer Schiiler-
Facher-Tabelle

Autor: Drews

Version: 0.1 (01.10.2015)

Freeware

3= H W

Definition der Listen

faecherliste=["Biologie", "Deutsch", "Informatik", "Mathematik", "Sport"]

namensliste=["Arendt", "Bauer", "Meiser", "Lehmann", "Meyer", "Schulz",

"Wagner", "Zander"]

Schleife zur Erzeugung eines Tabellen-Kopfes mit mehreren Fachern

und weiterer Hilfs-Texte

tabellenkopf zeile="Name "

z@illen limle=s"--s-sosoomos "

leerspalten=""

for fach in faecherliste:
tabellenkopf zeile=tabellenkopf zeile+" | "+format (fach,"12s")
z@ilen limie=zeillen limiles ' —ro-mssososmmos "
leerspalten=leerspalten+" | "

Ausgabe des Tabellenkopfes

print (tabellenkopf zeile)

print(zeilen linie)

Erzeugung und Ausgabe des Zeilen-Teils

for name in namensliste:
print (format (name, "12s") +leerspalten)

Warten auf Beenden

input ()

>>>

Name |

_____________ +

Arendt |

Bauer |
|
|
|
|
|
|

Meiser
Lehmann
Meyer
Schulz
Wagner
Zander

Aufoaben:

1. Ubernehmen Sie den oberen Quelltext in Ihr Python-System!

2. Drucken Sie sich den Text einmal aus und nummerieren Sie die Zeilen be-
ginnend bei 1 durch!

3. Kommentlieren Sie Quellfext zeilenweise aus!

fur die gehobene Anspruchsebene:

4. Eine Klasse soll in die richtige Zelle der Tabelle cingelragen werden! Dazu
liegen die Dalen in der Form: einlvag=["Deulsch’, "L.ehmann”,"10c"] vor.

fiir FREAK'S:

5. Es liegt eine Liste von Einlvagen fiiv die Lehrer-Fach-Tabelle vor. Alle Ein-
Irage sollen richlig eingeordnel werden!
einfracge=[["Deulsch’,"L.ehmann’,"10c"] , ["Biologie", ™eyer',"7a"], ...]

BK_Sekl+l_Python_basic.docx -134 - (c,p) 2015 - 2026 Isp: dre

Hat man zwei Listen, dann kann man diese auch gemeinsam durchlaufen. Dazu gibt man als
Lauf-Variablen fir jede Liste eine spezielle Variable Komma-getrennt an und die Listen wer-
den mit der zip()-Funktion miteinander verbunden.

Die Durchlaufe orientieren sich an der kiirzeren Liste.

Definition der Listen
faecherliste=["Biologie", "Deutsch", "Informatik", "Mathematik", "Sport"]
lehrerliste=["Arendt", "Bauer", "Meiser", "Lehmann", "Meyer"]
Schleife zur Erzeugung der Lehrer-Facher-Paare
for fach,lehrer in zip(faecherliste,lehrerliste):

print (format (lehrer,"12s"), format (fach,"12s"))

>>>

Arendt Biologie
Bauer Deutsch
Meiser Informatik
Lehmann Mathematik
Meyer Sport

Aufeaben fiir die gehobene Anspruchsebene:

1. In die obige Facher-Lehrer-Tabelle soll eine passende Klasse an die richlige
Stelle cingelragen werden! Die cinzulvagende Information liegt als Kleine
Liste ["Deultsch’, "L.ehmann’, "9a"] vor.

2. Erweilern Sie das Programm so, dass es mehrere Finfrdage auswerlten und
an die richlige Posiltion cinfragen kann! Die Informalionen liegen als Lisle

von Listen vor! Z.B.:
[["Deutsch", "Bauer", "10c"], ["Deutsch", " Wagner", "11b"], ["Biologie", "Meyer", "7b"]]

3. Erstellen Sie sich drei Liskten fiir Hauplstadle, Lander und Einwohner (Rei-
henfolge beachten) fiir 10 Slaaten!
a) Geben Sie eine Komma-gelvennte Liske der Lander aus!
b) Zeigen Sie die Liste der Hauplsladle an!
¢) Erstellen Sie ecine Tabelle aus Hauplstadlen, Landern und Einwohnern!
d) Geben Sie fiir jedes zweile Land die Dalen in Form eines Salzes aus!

4. Uberlegen Sie sich, was das folgende Programm leistel! Geben Sie den
Code dann in Python ein und priifen Sie, ob Sie mit Ihrer Voriiberlegung
recht halten!

Definition der Aufzdhlung
zahlenliste= (4,6,7,9,13,102)

Verarbeitung der Aufzdhlung
for zahl in zahlenliste:

print(zahl," --> ",zahl*zahl)
Warten auf Beenden
input ()

BK_Sekl+II_Python_basic.docx -135- (c,p) 2015 - 2026 Isp: dre

um sich z.B. alle Objekt-Namen aus einem Modul (einer Bibliothek) anzeigen zu lassen,
kann man die Funktion dir() benutzen

import math
for obj in dir (math):
print (obj)

auch Zeichenketten sind iterierbar:

for buchstabe in zeichenkette:
print (buchstabe)

mit Tupeln in einer abzuarbeitenden / Sammel-Liste kann man in der Schleife auch mit meh-
reren lteratoren (Lauf-Variablen) arbeiten:

for a, b, ¢ in [(2,5,9), (2,3,2), (1,5,9), (2,5,1), (3,7,9)1:
print(a * b + c)

die Kombination von Schleifen und darin genutzten Funktionen lassen sich mit der map()-
Funktion zusammenfassen

das ergibt kompakten, aber schwer lesbaren Code

in der Praxis sind map-basierte Programme effektiver als die originalen / expandierten

orginal:
liste = ["abcdef","ghij", "klmnopgrt", "rstuvwxyz"]
elementLaenge = []

for element in liste:
elementLaenge.append (len(element))

ergibt die Liste (elementLaenge): [6, 4, 9, 9]

komprimiert mit map():
elemenlLaenge = list (map(len, liste))

map() erwartet die zu nutzende Funktion (nur den Namen!) und das zu nutzende Objekt
(Liste od.a.)

das Gegenstlick zu map() ist die filter()-Funktion

auch sie erwartet eine zu verwendende Funktion und eine Liste von zu nutzenden Objekten
hier muss die Funktion aber unbedingt einen Boolean-Wert zurlckliefern, bzw. das Funkti-
ons-Ergebnis wird als bool betrachtet!

sollen vor map und filter keine Funktionen definierte werden (worden sein), dann kann man
kurze Berechnungen etc. Uber die anonyme Funktion lambda direkt in die map()- bzw.

filter()-Funktion notieren:
. list (map(lambda x: x = x+1, zahlenListe)
. list(filter (lambda x: x < 100, zahlenListe)

BK_SekI+l_Python_basic.docx -136 - (c,p) 2015 - 2026 Isp: dre

andert man (Sammlungs-)Listen od.a. innerhalb der Schleife, dann ist zu beachten, dass
Python sich Uber einen internen Index durch die Liste hangelt, wenn ein Element der Liste
entfernt wird, merkt Python das nicht, es arbeitet mit dem nachsten Index-Element weiter

besser ist es, eine neue Ergebnis-Liste anzulegen und dort die Ergebnisse Element-weise
sammeln

BK_Sekl+II_Python_basic.docx -137 - (c,p) 2015 - 2026 Isp: dre

6.4.2.3. Zihl-Schleifen

Zahler-kontrollierte Schleife

von Programmier-Anfangern besonders gerne benutzte Struktur, da alles sehr gut unter Kon-
trolle erscheint

spater werden dann die WHILE-Schleifen haufiger genutzt, da sie viel mehr Kontrolle und
Flexibilitat bieten

for Zdhlvariable in range(...):

range(Grenze)
erzeugt eine Liste von Elementen von 0 bis Grenze; Grenze selbst ist nicht erhalten

zeilenweise Ausgabe des Schleifenzidhlers
for i in range(10):
print (i)
Warten auf Beenden
input ()

v
v

Die Verwendung solcher Schleifen-Variablen, wie i, j, k usw. usf.
haben sich unter Programmierern eingeblrgert. Solange die Va-
riablen auch nur in der Schleife verwendet werden, ist das auch
ok. Braucht man die Werte fiir andere Zwecke — ev. auch weiter
hinter einer Schleife, dann sollte man sprechende Namen benut-
zen.

Die ungewdhnliche Zahlung — beginnend bei 0 — ist in vielen Pro-
grammiersprachen Ublich. Man gewdhnt sich schnell daran.

Um den echten Schleifen-Durchlauf zu erhalten reicht ein einfa-
ches i+1.

VooJdooubdwWNMNROV

>>

range(Untergrenze,Obergrenze)

erzeugt eine Liste von Untergrenze bis Obergrenze; Obergrenze ist ebenfalls nicht mit im
Bereich!

die Liste wird dann quasi wie in einer Sammlungs-orientierte Schleife abgearbeitet, die zwi-
sche den Grenzen liegenden Werte, werden online erzeugt

Ruft man range() mit drei Argumenten auf, dann stehen diese fur Untergrenze, Obergrenze
und Schrittweite.

range(Untergrenze,Obergrenze,Schrittweite)

mit den drei Parametern lassen sich auch absteigende Folgen erstellen:

range(Obergrenze, Untergrenze, neg_Schrittweite)

um FlieBkommazahlen in eine Liste zu bekommen, bendétigt man eine eigene Funktion; die

range()-Funktion liefert hier keine Lésung. Dazu mehr bei der Besprechung von Funktionen
(= 6.5.2. echte Funktionen — Funktionen mit Rickgabewerten).

BK_Sekl+l_Python_basic.docx -138 - (c,p) 2015 - 2026 Isp: dre

wird die Laufvariable nicht innerhalb der Schleife gebraucht, dann kann man in Python auch
einen Unterstrich (_) quasi als imaginare Laufvariable benutzen
ist Python-like aber nicht immer schon zu lesen

Aufoaben

1. Erzeugen Sie eine formalierte Tabelle mit x, dem Quadralt und dem Kubik
von x fiir 20 Zeilen — ausgehend von einem einzugebenen Slartwert fiir x —
milttels Zahlschleife!

2. Erstellen Sie cinzelne (kleine) Programme, welche die nachfolgenden Mus-
ter in der Anzeige nur miltels Zahlschleifen erzeugen!

a) * b) * C) *
* % *#
* * % * *#*
* Kk K Kk * * *#*#
bis 30 Sterne in der bis 10 Sterne in der bis 20 Zeichen in der
letzten Reihe letzten Reihe letzten Zeile

BK_Sekl+II_Python_basic.docx -139 - (c,p) 2015 - 2026 Isp: dre

6.4.2.4. besondere Kontrollstrukturen in Schleifen

Mit einer else-Anweisung nach dem Schleifen-Korper
zur Gruppierung einer Anweisungs-Folge, die direkt nach der Schleife abgearbeitet werden
soll, wird / kann mit break Gbersprungen werden
oft gar nicht notwendig, da hinter der Schleife die normalen folgenden Anweisungen folgen

quasi handelt es sich um eine Alternative, die unter bestimmten Bedingungen nach den
Schleifendurchlauf abgearbeitet werden sollen

Das Schlisselwortchen
continue zum Abbruch
der Anweisungs-Folge im

Sprung, wenn
Bedingung
nicht erfiilli

WHILE Bedingung

Schleifen-Korper und Schleifen-Schritt(e)
(Ruck-)Sprung zum Bedingung
Schlelfen_-_KﬁpI, um __elﬂetn R R e
neuen (hachsten, n a(.: st Schleifen-Schritt(e) | CONTINUE Fortsetzung
fOIgenden) Schleifen- Schlei 5 beim Schleifen-
chleifen-Schritt Kopf

durchlauf zu starten Schieifen-Schried

normaler 5

Bedingung

Schleifen-
Riicksprung

break zum vollstand ig en Schleifen-Schritt Schleifen-Schritt(e)
Abbruch der Schleife Schleifen-Schritt(e) |BREAK
einschliellich des ELSE- Schieifen-Schritt
Zwe |g es Schleifen-Schritt(e)
Bedingung
Schleifen-Schritt Schleifen-Schritife)
Schleifen-Schritt(e) |CONTINUE
==\ Schleifen-Schritt
ELSE

Schleifen-Alternativ-Schritt
Schleifen-Alternativ-Schritt
Nachschleifen-Schritt -

(vollstindiges)
Verlassen
der Schieife

Die besprochenen Kontrollstrukturen fur Schleifen sollten sparsam und nur mit Bedacht be-
nutzt werden. Sie machen den Quellcode unlbersichtlich und schwer verstandlich.

Bewahrte Schleifen-Konstrukte sollten nur angetastet werden, wenn sie ihre Funktion nicht
mehr erflllen.

Quellcodes werden aber durch sie kompakter und u.U. effektiver

bei Verwendung der besonderen Schleifen-Abbriche und Verbiegungen sollte man immer
gut kommentieren. Viele Programmierer sind saubere Kontrollstrukturen gewohnt und
schnell mit auBergewdhnlichen Strukturen Gberfordert (weil ungewohnt).

AuRerdem sollte man genau prifen, mit welchen Werten die in den Schleifen benutzten Va-
riablen nach einer Schleifen-Veranderung herauskommen. Da gibt es schnell bése Uberra-
schungen!

Will man z.B. eine Schleife unendlich oft durchlaufen lassen (z.B. Eingabe-Kontrollen, Tasta-
tur-Abfragen bei laufenden Programmen), dann braucht man meist doch irgendwo einen
Notausgang

mit break Iasst sich das relativ einfach und verstandlich realisieren

Nehmen wir eine bedingte Schleifee, die immer wahr ist. Von sich aus wird sie niemals en-
den.

-140 -

BK_Sekl+II_Python_basic.docx (c,p) 2015 - 2026 Isp: dre

while True:
auszufithrender Code

Ende des auszufilhrenden Codes in der Schleife

hier kommt die Programm-Abarbeitung niemals!

D.h. hinter der Schleife kann beliebiger Code oder Unsinn folgen, dieser kann nicht erreicht
werden und wird also nie ausgeflihrt oder interpretiert.

Einen Austieg aus dieser Schleife kann man durch ein break erreichen. Dazu wird im Nor-
malfall irgendwo in der Schleife eine Bedingung (z.B. Tasten-Druck oder das Uberschreiten
einer Grenze) abgetestet und im Falle des Eintretens mit einem break die Abarbeitung hinter
der Schleife fortgesetzt (dann datf da natirlich kein Unsinn mehr stehen!).

while True:
auszufithrender Code

if bedingung:
break

Ende des auszufilhrenden Codes in der Schleife

restliches Programm (nach break)

Man kann natlrlich mehrere breaks in die Schleife integrieren. Die Abarbeitung der restli-
chen Schleife wird immer sofort unterbrochen und hinter der Schleife forgesetzt.

Will man die Schleife ordnungsgemaf’ am Ende des Schleifen-Kérpers verlassen dann kann
man den folgenden Code-Rahmen verwenden.

abbruch=False
while not abbruch:
auszufithrender Code

if bedingung:
abbruch=True

Ende des auszufilhrenden Codes in der Schleife

restliches Programm
(nach vollstidndigem Durchlauf der Schleifenanweisungen)

BK_Sekl+II_Python_basic.docx -141 - (c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen Sie ein Shruklogramm fiiv ein Programm, dass solange einzugebe-
ne Zahlen addiert bis ein 0 eingebenen wird!

2. Priifen Sie das Strukltogramm auf Korvektheil, indem Sie die folgenden Zah-
len "eingeben"! Legen Sie sich dazu eine Varviablen-Tabelle an, die am Ende
Jedes Schleifendurchlauf die Variablen-Belegung dokumentiert!

12, 56, 2, 21, 76, 0, 41

3. Realisieren Sie das Programm enlsprechend dem Shruktogramm!

4. Prifen Sie mil der obigen Test-Liste und Ihrer Variablen-Tabelle! (Sie
konnen zur Konltrolle am Ende der Schleife auch eine print-Anweisung ein-
bauen! Diese kann dann spater auskommenliert werden!)

5. Erstellen Sie ein Programm, dass immer das Quadral und die Wurzel zu
einer eingegeben Zahl ausgibt (Ausgabe in Salzform!)! Die Eingabe soll so-
lange wiederholt werden, bis eine Zahl cingegeben wird, die kleiner als 0
oder grofer als 1000 ist!

6. Erskellen Sie ein Programm. dass die Summe der forllaufenden Zahlen ab
einer einzugebenen Zahl berechnel und damit abbricht, wenn das 100fache
der eingegebenen Zahl erveicht wird., Wie laulet die lelzte aufaddierte Zahl,
ohne dass die Grenze iiberschrilten wurde?

BK_SekI+l_Python_basic.docx -142 - (c,p) 2015 - 2026 Isp: dre

6.4.2.5. Und was ist mit nachpriifenden / Fuf-gesteuerten Schleifen?

Fur Eingabe-Kontrollen méchte man als Programmierer
gerne Ful-gesteuerte Schleifen nutzen. Sie muissen
mindestens einmal durchlaufen werden und durfen nur
verlassen werden, wenn am Ende die Prifung der Ein-
gabe Uberstanden wurde.

In Python gibt es keine expliziten Ful}-gesteuerten
Schleifen-Konstrukte.

| Schleifen-Schritt(e)

Bedingung

Struktogramm: Ful3-
gesteuerte Schleife

Das wird von vielen Programmiern als Nachteil empfunden. Andern kdnnen wir es aber nicht,

also passen wir uns durch kleine Tricksereien einfach an.

Der nachfolgende Quell-Text zeigt eine Moglichkeit, eine nachlaufende Prifung zu realisie-

ren.

pseudo-nachpriifende Schleife
while 1: # oder: True
Schleifeninhalt
quasi nachlaufende Priifung
if Bedingung: break

Dieses Prinzip kann man beliebig abwandeln. Es bleiben natlrlich Kopf-gesteuerte Schlei-

fen, aber geflihlt sind es annehmbare Kompromisse.

Aufoaben:

1. Erstellen Sie ein Programm, dass mil einer nachgebildelen Fuf-gesteueriten
Schleife die Eingabe lestet! Die Eingabe darf nur verlassen werden, wenn
ein Grofbuchslabe zwischen K und (einschlieflich) R eingegeben wurde!
Zur Kontrolle soll die Fingabe am Schluss des Programm noch einmal aus-

gegeben werden.

BK_Sekl+ll_Python_basic.docx - 143 -

(c,p) 2015 - 2026 Isp: dre

diverse Aufoaben zum Thema "Schleifen’:

N
N

Erstellen Sie ein Programm, dass die Anzahl der echfen Teiler einer naliivli-
chen Zahl ausgibl!

FEine e¢ingegeben Ziffernfolge (liegt im iiblichen Format der INPUT-
Funktion als Text vor) soll auf die Stellenzahl gepriift werden! Fiihrende
Nullen sind vorher zu enlfernen!

Geben Sie fiir alle naliivlichen Zahlen zwischen 1 und 50 die Anzahl der
echten Teiler aus! (OELS > A000005)

Gesucht ist die Zahl - beginnend mit 1 und endend mit 200 - mit den meis-
ten Teilern! Wieviele Teiler sind es?

Erstellen Sie auf einem karviertem Blalt Papier aus den vorgegebenen Code-
Schnipseln ein Programm, welches die forflaufende Summe aus einzugebe-
nen Werten (Ganzzahlen) berechnet und anzeigt! Die Eingabe und Sum-
men-Bildung soll mil der Eingabe einer Null beendel werden!
(Vereinbarung: Auf dem karierfem Papier erfolgt eine notwendige Einrvii-
ckung mit mindeslens zwei Kastchen!)

eingabe = -1 |print("Berechnung der fortlaufenden Summe von Ganzzahlen")
print ("aktuelle Summe:", summe) eingabe = int (eingabe) |print()
print () | summe = 0 print ("Abbruch mit Eingabe von 0")

summe = summe + eingabe eingabe = input ("neuer Wert: ")

while not eingabe == input ("Programm-Ende bestatigen")

Erstellen Sie ein Programm, dass die monalliche Abzahlung eines Krediles
darstellt! Einzugeben sind Darlehens-Belvag (Kredit-Belrag), (monatlichen)
Kredilzins und die monalliche Rake. Stellen Sie quasi labellarisch die Num-
mer der monallichen Zahlung, den gezahllen Belrag (Tiloung) und den Rest-
Kredit dar!

Ein sehr grofen Kullurgefap mit Nahvmedium wird am Anfang des Arbeils-
fages (08:00 Uhr) mit einem Bakterium beimpft. Bakfterien Feilen sich durch-
schnittlich alle 20 min. Wieviele Baklerien konnle die Laborvantin nach 8
Stunden (16:00 Uhr) im Kullurgefafp vorfinden? Schalzen Sie vorher die
Zahl und schreiben Sie diese an die Tafel!

Auf dem Bildschirm sollen fiirv cine cinzugebene Zahl zwischen 3 und 12
nacheinander die folgenden Muster erzeugt werden! (hier z.B. fiir 3:)

#
##
#H##

4
##
#

#
##
&

Auf dem Bildschirm sollen fiiv eine einzugebene Zahl zwischen 3 und 12

nacheinander die folgenden Muster erzeugt werden! (hier z.B. fiir 3:)

A I\ 1
- - 21
A A RWA 321

A A A INTNTA

Die DNA besteht aus 4 Nukleotiden Adenosin (A), Cylosin (C), Guanin (G)
und Thymin (T). Fiir eine Aminosaure eines zu bildenden Eiweifes werden
immer 3 Nukleotid (Triplel) benulzl. Lassen Sie ein Programm alle mogli-
chen Triplett-Kombinalionen anzeigen und durchzahlen!

BK_Sekl+ll_Python_basic.docx

- 144 -

(c,p) 2015 - 2026 Isp: dre

(Frage nebenbei: Wie viele Aminosauren kénnfen damit codiert werden?)
Zusalz:

Zu welchem Ergebnis wiirde man kommen, wenn stalt dem Triplelt eine 4er
Kombinaltion (Quavitelt) benulzt wiivde?

N

fiir die gehobene Anspruchsebene:

N. Erstellen Sie auf einem kavievtern Blalt Papier aus den gecigneten Code-
Schnipseln ein Programm, welches das fortlaufende Produkl aus einzugebe-
nen Werfen (Ganzzahlen) berechnet und anzeigt! Die Eingabe und Produkt-
Bildung soll mit der Eingabe ciner Null beendel werden!

(Vereinbarung: Auf dem kavierfem Papier erfolgt eine notwendige Einrii-
ckung mit mindestens zwei Kastchen!)

eingabe = -1 |print("Berechnung des fortlaufenden Produktes von Ganzzahlen")

print ("aktuelles Produkt:", summe) | print ("Abbruch mit Eingabe wvon 0") | print ()

if produkt != O0: |while produkt > O: |eingabe = input ("neuer Wert: ")

produkt = produkt + eingabe |if eingabe != 0: |eingabe = int (eingabe)

produkt = eingabe * produkt eingabe = int (input ("neuer Wert: "))

print ("aktuelle Summe:",produkt) input ("Programm-Ende bestatigen") | print ()
0

while not eingabe == 0: print ("aktuelles Produkt:",produkt) summe =
produkt = eingabe + 2 eingabe = ganzzahl (Eingabe) Produkt

1

~. Erstellen Sie ein Programm, dass fiir einen einzugebenen Zahlen-Bereich
(hier z.B.: 8 bis 14) den folgenden Histogramm-ahnlichen Ausdruck er-
zeugt!
(hinter der Zahl in senkrechlen Stvichen
ein Stern, wenn es sich um e¢ine Prim- 9 :
zahl handell; jede Raule skeht fiir einen 10 | e
Teiler, ein Punkt fiir Nicht-Teiler; der 11 : ol #(*)
I
I

[#4#.#...#

v . I3 I3 12
Stern in Klammern hinter dem Histo- 13

gramm zeigt an, ob die Teileranzahl 14

selbst eine Primzahl ist) .
fertig

N. Aus der cinzugebenen Hohe der Pyra-
miden (hier z.B.: 5) und einer Buchsta~ |
bennummer innerhalb des Alphabel's | TTT
(hier: 20 ; nicht héher als 26 zugelas- Eﬁ-r
sen!) sollen die folgenden 3 Zeichen-
Pyramiden erstelll werden!

(in der lelzten Pyramide gill: fiir Buch-
slaben mil ungerader Nummer werden
immer die gezahll ungeraden Zeichen
ausgegeben (also fiir C (Buchstabe 3)
die 1. und 3. Posilion), fiir die geraden
Buchstabennummern immer die gezahlt| ¢ C
geraden Positionen (also fiiv D die 2. EDEDE
und 4.))

MmOQWwWp
HMHOQwW
MOQ

M O

A
B

fertig
~. Erstellen Sie ein Programm, dass fiir einen Salz / eine Text-Zeile priift, ob
es sich um ein echles oder ecin cinfaches Pangrvamm handell! (Echfe
Pangramme miissen alle Zeichen des Alphabets genau einmal enthallen.

BK_Sekl+II_Python_basic.docx -145 - (c,p) 2015 - 2026 Isp: dre

Gemeint sind hier die Buchslaben. Salz-Zeichen werden ignoviert! Einfache

Pangramme miissen nur jeden Buchstaben mindestens einmal enthalfen.)
Test: "Fix, Schwyz!", quackt Jurgen bléd vom Pall. - ist echtes u. einf. Pangramm
Prall vom Whisky flog Quax den Jet zu Bruch. - ist einfaches Pangramm

N. Stellen Sie ein Shrukfogramm oder Linien-Diagramm fiiv einen Algorithmus
auf, der priift, ob eine Zeichenkeftfe ein Isogramm ist! Dabei miissen die

verwendelen Zeichen immer gleichoft vorkommen!
Test: Otto - Isogramm; ernst - Isogramm; HeizdlrickstoRabdampfung - Isogr.
Anne - kein Isogramm; Stamm - kein Isogramm
fiir absolute Freaks:
~. Informieren Sie sich, was cin "selbstdokumentierendes Pangramm” ist! Rea-
lisieren Sie ein Programm, dass den Sachverhall an einem String lfesltet!

BK_SekI+l_Python_basic.docx -146 - (c,p) 2015 - 2026 Isp: dre

6.4.2.6. Anwendungs-Beispiel: lineare Regression

In der experimentielle Forschung werden wir

immer wieder mit Datensatzen konfrontiert,

fur die auf den ersten Blick nicht klar ist, ob

zwischen zwei gréRen ein Zusammenhang

existiert. Gerade bei wenigen Daten struen

die Messwerte doch sehr haufig.

Mit der sogenannten Regression kann gepriift werden, ob es einen Zusammenhang gibt
oder eben nicht.

Der einfachste Fall ist die lineare Regression. Hierbei wird getestet ob zwischen zwei gréfien
ein linearer Zusammenhang existiert. Dabei nutzt man die Methode der kleinsten fehler-
Quadrate. In dieser wird die Gerade so berechnet, dass die Abweichungen — exakt deren
Quadrate — madglichst klein sind.

Fir eine lineare Funktion vom allgemeine Typ y = m x + n ergibt sich flr:

J Xxy)-¥x - Yy

M= " 3x- o2
und far:
n= Xy —m- XX

J

wobei j die Anzahl der Daten-Paare ist.

Beim Analysieren der beiden Formeln fallt auf, dass mehrere Summen gebraucht werden.
Diese kdénnen entweder beim Durchlaufen der Daten-Liste oder eines Array's gebildet wer-
den. Aber auch wenn man die Daten quasi online eingeben will / muss, lassen sich die
Summen gut bilden. Am Ende werden diese dann zu m und n verrechnet.

Beispiel fiir Daten in zwei Listen

X werte = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
#Ziel: 4x+3

y werte =[2.9, 7.2, 10.9, 15.3, 18.6, 23.0, 27.4]
#7Ziel: x”2 (Quadrate)

#y werte = [0.0, 1.1, 1.9, 8.9, 16.2, 25.0, 36.3]

j = len(x werte) # WertePaar-Zahler
if len(y werte) !=j:

print ("Fehler: ungleiche Anzahl x- und y-Werte")
else:

sum x = 0

sum y = 0

sum xy = 0

sum x2 = 0

for i in range(j):
sum_x += x werte[i]
sum_y += y werte[i]
sum_xy += x werte[i]*y werte[i]
sum_x2 += x werte[i]*x werte[i]

print ("Summe X:",sum x," Summe Y:",sum y," Summe X*Y:",sum Xy,
" Summe X*X:",sum x2)

m = (j*sum_xy-sum x*sum_y)/ (j*sum x2-sum x*sum X)

n = (sum y - m*sum x)/j

print ("Anstieg m:",m," Schnitt der Abszisse n:",n)

BK_Sekl+II_Python_basic.docx -147 - (c,p) 2015 - 2026 Isp: dre

Wir bekommen so eine Gerade. Ob diese aber einen echten Zusammenhang darstellt oder
einfach nur blind berechnet ist, kann mittels Korrelations-Koeffizienten r berechnet werden.

Sx-x)- Y0 -9

r =
VI - %)?2 - X -5)?

Somit erweitern wir den Else-Zweig:

mx = sum_x/j

my sum_y/j

sum dx = 0

sum dy = 0

sum _dxy = 0

for i in range(j):
sum _dx += x werte[i]-mx
sum dy += y werte[i]-my

sum_dxy += (x_werte[i]-mx)* (y wertel[i]-my)
print ("Summe Abweichungen X:",sum dx," Summe Abw. Y:",sum dy,
" Summe Produkt Abw. XY:",sum dxy)
r = (sum_dx*sum dy)/math.sqgrt (sum dx*sum dx*sum dy*sum_dy)

BK_SekI+l_Python_basic.docx -148 - (c,p) 2015 - 2026 Isp: dre

6.5. Unterprogramme, Funktionen usw. usf.

normaler Programm-Aufbau

Anweisungen bzw. Blocke praktisch immer in einer
mehr oder weniger langen Sequenz

die elementaren Blocke durfen dabei ohne weiteres
Schleifen oder Verzweigungen sein

letztendlich kommt man immer wieder auf die Grund-
Sequenz zurick

manche Sequenz-Abschnitte wiederholen sich. Das
ist schon mit einem erhéhten Aufwand verbunden.
Entweder die Abschnitte werden noch mal geschrie-

Programm

main -- Hauptprogramm
Anweisung

Anwelisung

Anweisung

Anweisung

Anweisung

Anweisung

ben oder einfach kopiert.

Beim wiederholten Schreiben kdnnen — neue / weitere

Gunstiger ware / ist es, jeden Programm-Teil nur
einmal zu schreiben. Braucht man dann den speziel-
len Sequenz-Teil, ruft man ihn auf und kehrt danach
wieder zur Haupt-Sequenz zurick.

Solche Teil-Sequenzen werden Unter-Programme,
Prozeduren und / oder Funktionen genannt. Einige
Programmiersprachen unterschieden noch etwas
genauer zwischen den verschiedenen Arten. Das ist
fur uns in Python nicht relevant. Hier gibt es nur Funk-
tionen.

Funktionen (Neben-Sequenzen) werden vor dem ei-
gentlichen Haupt-Programm (meist Main genannt)
festgelegt.

Programm — Fehler auftreten. Beim Kopieren kann man ev. ver-
main -- J‘auptprcgram gessen, das Variablen wieder neu gestartet werden
B mussen oder — weil sie noch woanders benutzt wer-
Anweisung den — sie einer Umbenennung bediirfen.
Problematisch ist es auch, wenn sie die Abschnitte

: als Fehler-behaftet herausstellen. Dann muss man
fnweisung ev. sehr komplexe Anderungen an mehreren Stellen
Anmaleung im Programm vornehmen. Das geht meist schief. Ir-
Anweisung gendwas wird vergessen oder Fehler-behaftet veran-
dert.

: Das Finden eines Fehlers gestaltet sich aber relativ
’,".“."”’““gv einfach, da man die betreffende Stelle gut identifizie-

ren kann.

Programm

Unterprogramme -- Funktionen
definition Unterprogramm
Anweisung

ev. Rickgabe-Anweisung

main -- Hauptprogramm
Anweisung

Unterprogramm-Aufruf
Anweisung

Anweisung

ﬁﬁéerprogramm—hufruf
Anweisung

BK_Sekl+ll_Python_basic.docx - 149 -

(c,p) 2015 - 2026 Isp: dre

Programm

f% Unterprogramme -- Funktionen
definition Unterprogramm
Anweisung

ev. Riickgabe-Anweisung

main -- Hauptprogramm
Anweisung

Unterprogramm-Aufruf
Anweisung

Anweisung

ﬁﬁéerprogramm—hufruf
Anweisung

Beim Abarbeiten des Programms wird dieser Teil
zuerst einmal Ubersprungen.

Das Interpretieren beginnt bei der Haupt-
Sequenz.Trifft der Interpreter auf einen Unterpro-
gramm-Aufruf, so sucht er dessen Definition und
fuhrt die enthaltenen Anweisungen aus.

Danach wird mit der nachsten Anweisung im Haupt-
Programm fortgesetzt..

Praktisch hat der Interpreter nur einen Umweg ge-
macht. Spriinge in einem Programm brauchen sehr
wenig Rechenzeit.

Auf dem Ricksprung (in Abb. purpur) kénnen aus
dem Unter-Programm noch sogenannte Rickgabe-
Werte mitgegeben werden. Das kann man sich als
Ergebnis der Funktion (des Unter-Programm's) vorstellen.
Beim nachsten Unterprogramm-Aufruf passiert das
Gleiche wieder. Das Unter-Programm wird ange-
sprungen und abgearbeitet. Dannach wird wieder
hinter dem Unter-Programm-Aufruf fortgesetzt.

Programm

Unterprogramme -- Funktionen
definition Unterprogramm
Anweisung

;; Rﬁﬁkgahe-kn“isungq:%

—

main -- Hauptprogramm
Anweisung

Unterprogramm-Aufru
[Anweisung

Anweisung

ﬁﬁéerprogramm—aufruf
Anweisung

Programm

Unterprogramme -- Funktionen

definition Unterprogramm
Anweisung

;; Riickgabe-Anweisung =~

Denkt man sich alle Teile so, wie sie abgearbeitet
wurden direkt hintereinander, dann ergibt sich die
gleiche Sequenz, wie bei einer Unter-Programm-
freien Sequenz (Abb. rechts).

Vergleichbare Programme mit oder ohne Unter-
Programme (mit gleicher Leistung) sind also dquivalent.

main -- Hauptprogramm
Anweisung

PARNAR |

Programm

main -- Hauptﬂkogramm

- Anweisung
Unterprogramm-Aufruf . i
Anweisung
00 G Anwelisung
Anweisung ao0
ﬁﬁéerprogramm—aufru ﬂw
Anweisung Anweisung V
iﬁﬁtisung
ooc why
Anweisung V
Anweisung v
BK_Sekl+l_Python_basic.docx -150 - (c,p) 2015 - 2026 Isp: dre

6.5.1. Allgemeines zu Funktionen in Python

Funktionen in Python bestehen immer aus einem Namen und einem direkt folgendem run-
dem Klammer-Paar (()). Der Name muss eindeutig sein und folgt den Regeln der Benun-
nung von Variablen (=). Namen von eingebauten Funktionen dirfen nicht verwendet wer-
den. Eingebaute Funktionen konnen nicht ersetzt oder wie Programmierer gerne sagen
uberschrieben werden.

Jede Funktion muss vor dem ersten Benutzen definiert werden. Dazu benutzt man das
Schlusselwort def. Die Definition kann im selben Quell-Text erfolgen oder als Import durch
eine Bibliothek (=).

Der Anweisungs-Teil wird hinter einem Doppelpunkt (:) eingerlckt notiert. Die Funktion ist
beendet, wenn die Einrtiickung wieder aufgehoben wird.

I.LA. wird empfohlen Funktionen relativ klein zu gestalten. Eine Seite Quell-Text sollte nicht
uberschritten werden. Komplexe Funktionen durfen natlrlich auch langer sein. Meist kann
man aber wieder kleinere Funktionen auslagern.

Vorteile von Funktionen

o verbesserte Struktur des Programm's
o Vermeidung von Code-Dopplungen

o Erleichterung der Code-Pflege und
Fehler-Bereinigung

¢ einfache Wiederverwendbarkeit

e erleichtertes Verstiandnis des Quell-
Textes

Funktionen gehdren zur Klasse function

Der Giltigkeits-Bereich (Scoping) von Variablen ist abhangig von ihrer Erst-Deklaration (ers-
te Wert-Belegung).

In einer Funktion angelegte Variablen gelten nur innerhalb der Funktion. Die lokales Anlage
hat Vorrang vor einer globalen Anlage. Ihre Instanz wird nach dem Verlassen der Funktion
automatisch geldscht. Man kann auch spater nicht mehr auf deren Wert zugreifen.

Globale — also auRerhalb der Funktion definierter — Variablen gelten auch innerhalb. Es duir-
fen aber keine Funktions-interne Neudefinitionen vorhanden sein.

Werden einer Funktion bei den Parametern eine Variable Ubergeben, dann wird deren Wert
der Parameter-Variablen zugeordnet. Die Parameter-Variable kann bedenkenlos benutzt
werden.

Die Argument-Variable (dulRere bzw. globale Variable) sollte innerhalb der Funktion nicht
verandert werden!

BK_Sekl+II_Python_basic.docx -151 - (c,p) 2015 - 2026 Isp: dre

Im Zweifelsfall sollte man sich die Werte vor, innerhalb und nach dem Funktions-Aufruf auch
mal anzeigen lassen. Die Anzeigen kdnnen dann spater auskommentiert werden.

BK_SekI+l_Python_basic.docx -152 - (c,p) 2015 - 2026 Isp: dre

6.5.2. Funktionen ohne Ruckgabewerte

in anderen Programmiersprachen Prozeduren oder Unterprogramme genannt.

Im Wesentlichen geht es um das Einsparen des Eintippens von Quelltexten. Will man 10x an
verschiedenen Stellen in einem Programm genau das Gleiche machen, dann muisste man
den Quelltext dafiir eben 10x an die passende Stelle schreiben oder bestenfalls kopieren. Ist
im Code ein Fehler, muss man alle 10 Stellen wiederfinden und den Quelltext einzeln korri-
gieren. Da sind Fehler vorprogrammiert.

In den meisten Programmiersprachen werden haufig gebrauchte Programm-Abschnitte an
einer bestimmte Stelle ausgelagert. Meist ist dies sehr weit vorne im Quell-Text oder in sepa-
raten Dateien (Units, Module, Bibliotheken ...). Die Funktionen oder Verweise auf andere
mussen vor ihrem Aufruf notiert sein. Der Interpreter muss ja schlielich wissen, was er ma-
chen soll. Die Funktionen brauchen unbedingt Namen, unter denen man dann spater die
ausgelagerten Programm-Abschnitte aufrufen kann.

Im Allgemeinen wird man in den Rickgabe-freien Funktionen irgendwo eine Ausgabe pro-
grammieren mussen. Damit werden Funktionen aber nur noch eingeschrankt nutzbar. Nicht
immer ist auch eine sofortige Ausgabe gewinscht. Viel besser ist es, den berechneten Wert
an das aufrufende Programm zurlckzugeben (= 6.5.3. echte Funktionen — Funktionen mit
Ruckgabewerten). Soll sich das doch um die Ausgabe kiimmern.

entsprechen den Prozeduren oder Unter-Programmen anderer Programmiersprachen
Programmteile, die an mehreren Stellen im Programm gebraucht werden, sind in einem extra
Abschnitt definiert

Hier steht die Ersetzungs-Funktion im Vordergrund. Der Funktions-Aufruf ist ein Bezeichner
fur einen Programm-Abschnitt (Unter-Sequenz), die mehrfach in einem Programm gebraucht
wird oder eine komplexere Aufgabe erfiillt. Solche komplexeren Aufgaben hat man vielleicht
schon mal in einem anderen Programm zusammengestellt und getestet. Nun kopiert man sie
einfach in das neue Programm — entweder direkt (wenn nur 1x gebraucht) oder als Unter-
Programm fir den mehrfachen Gebrauch.

bei Fehlern, Anderungen, Anpassungen usw. ist nur die Korrektur an einer Stelle notwendig

Es gibt auch Argument-freie Funktionen. >>> def trennzeile():
Fir ihre Ausfiihrung sind keine weiteren e Eesesssssesssssaes ")
Informationen aus dem aufrufenden

Programm notwendig. In Python kenn-
zeichnet man solche Funktionen durch
ein leeres Klammer-Paar.

>>> for i in range(5):
print (i)
trennzeile ()

BK_Sekl+ll_Python_basic.docx

-153 -

(c,p) 2015 - 2026 Isp: dre

die Einhaltung der Anzahl Argumente ist fiir die Programmierung wichtig, da hier der Uber-
setzer (Compiler bzw. Interpreter) sofort auf Ubereinstimmung priift

Nichtibereinstimmung — auch bei der Art der Ubergebenen Daten (Datentypen) wird sofort
als Syntax-Fehler gekennzeichnet.

Aufoaben:

1. Erstellen Sie ein Tabellen-Programm fiir die Berechnung des grofen En-
Mal-Eins! Der Nulzer soll eine Anfangszahl (1. Faktor) und cinen Mullipli-
kalor (2. Faktor zwischen 11 und 20) angeben. Die Tabelle soll nach jedem
Wert einen Zwischen-Linie enthalten, die iiber eine passende Funkfion er-
zeugt wird!

2. Ein Programm soll 5 Zahlen mulliplizieren! Die Zahlen sollen immer nach-
einander cingegeben werden und grundsalzlich zwischen 0 und 100 liegen.
FEine nachfolgende Eingabe soll immer mindesktens so grof sein, wie die
letzte Eingabe! Die Ausgabe eines oder mehrerver Fehler-Texte soll iiber ci-
ne oder mehrere Funktionen erfolgen!

3. Erstellen Sie ein Programm, dass nur aus drei Funklionen bestehtl! Diese
sollen Kopf(), Koerper() und Fuss() heifen! Kopf() und Fuss() enthalten nur
allgmeine Text-Ausgaben, wie den Programm-Tilel und cine kurze Pro-
gramm-Beschreibung bzw. ecine Ende-Hinweis. Das eigentliche Programm
soll in Koerper() stecken und dort den Durchnilt aus einzugebenen Nolen
berechnen! Eingabe-Ende ist eine Null. Bei Nolen-Eingaben grofer 6 bzw.
§ (fiir die Gesamischule) soll ein Fehler-Text erscheinen!

4. Erstellen Sie ein Programm, dass die Punkl-Werfungen der Oberstufe ver-
arbeifen kann! Legen Sie den Abbruch-Wert fiiv die Eingabe selbsistindig
fest!

BK_SekI+l_Python_basic.docx -154 - (c,p) 2015 - 2026 Isp: dre

6.5.3. echte Funktionen — Funktionen mit Ruckgabewerten

klassische Interpretation des Begriff >>>
nehmen wir sin x 3.0
3.5
>>>

die Sinus-Funktion benutzt das Argu-
ment x (Funktionsargument, x-Wert) zur
Berechnung des resultierenden Funkti-
onswertes (y-Wert, abhangige GrofRe).
Dieser kann dann anstelle des Funkti-
ons-Ausdrucks eingesetzt werden.

In Python — und den meisten Programmiersprachen ist es notwendig, den oder die Parame-
ter in Klammern hinter dem Funktionsnamen aufzuzahlen.

die Variablen, die in der Funktions-Definition angegeben werden, heil’en Parameter

die Werte, die beim Aufruf der Funktion mitgegeben werden, heillen Argumente

in den normalen Fallen muss die Anzahl der Argumente beim Aufruf, genausogrof} sein, wie
die Anzahl der Parameter bei der Definition der Funktion

klassische Form der Funktion — sie liefert (mindestens) einen Funktionswert zuriick

Quadrat-Funktion
def quadrat (parameter) :
return argument**2

Quadrat-Funktion
def quadrat (arameter):

quadratzahl = argument * argument
return quadratzahl

Im Abschnitt zu den Zahischleifen (= 6.4.2.3. Zahl-Schleifen) habe ich darauf hingewiesen,
dass es leider nicht mdglich ist, sich mit der Funktion range() eine Liste mit Gleitkommazah-
len zu erstellen. Hier definieren wir uns nun eine Hilfsfunktion floatrange(), die genau das
kann:

range-Funktion fir Gleitkommazahlen
def floatrange (start, ende, schrittweite=1.0):
floatliste=[]
neuer wert=float (start)
while neuer wert < ende:
floatliste.append (neuer wert) # anhdngen des letzten Wertes,
der durch die Bedingung kommt
ndchsten (ev. méglichen) neuen Wert erstellen
neuer wert=neuer wert+schrittweite
return floatliste

BK_Sekl+II_Python_basic.docx -155- (c,p) 2015 - 2026 Isp: dre

Typ-unabhidngige Additions-Funktion
def summe (parameterl, parameter?2) :
return parameterl + parameter2

die mystery-Funktion:

def mystery (x) :
f = 100,4,0,3,2]
while x > 0:
x = f[x]
print (x,end=" ")
print ()
return "fertig"

>>>

Mit welchem Argument(-Wert) endet diese Funktion nie?
Es ist die 3 — probieren Sie es aus!

Aufoaben:

1. Wie kénnte man die mystery-Funklion so absichern, dass sie auch bei Ar-
gumentfen idiber 4 noch ordnungsgemaf starfet? Welche Werte fiilwven dann
zu unendliche Schleifen-Arbeit?

2. Erskellen Sie ein Rahmen-Programm, dass die mystery-Funktion fiir einen
einzugebenen Werte-Bereich priift!

def funktions_name(Parameter(-Liste)):
Funktions-Inhalt
return Riickgabe-Wert

ergebnis_variable = funktions_name(Argument(-Liste))

6.5.4. Funktionen mit Standard-Werten als Parameter

def ausgabe(x = 'ok'):
hinter dem Parameter in der Funktions- print ("Ergebnis ist ", x)
Deklaration wird mit einem Zuweisungs-
Zeichen der Standard-Wert angegeben
Main
dieser wird verwendet, wenn keine An- ausgabe ()

gabe fiir den Parameter getatigt wird
wird dagegen ein Wert angegeben, dann
Uberschreibt er den Standard-Wert

ausgabe ("fehlerhaft")

BK_SekI+l_Python_basic.docx -156 - (c,p) 2015 - 2026 Isp: dre

6.5.5. Funktionen mit einer variablen Anzahl von Parametern

z.B. print()
funktioniert ohne, mit einem und auch vielen Argumenten

def funktionsname(ArgumentZaehler=anzahl, *variableArgumente): ...

Funktionen kénnen auch Listen oder Tupel usw. zuriickgeben

import math

def loeseQuadratGleichungPQ (p,q) :
hilf = math.sqgrt(p**2/4 - q)
nullstellen = (-p/2 + hilf, -p/2 - hilf)
return nullstellen

6.5.6. Funktionen mit Funktionen als Parameter

def ausgabe (x) :
print ("x = ", x)

def tue (fkt):
fkt (17)

Main
tue (ausgabe)

>>>
x =17
>>>

z.B. bei Maus-Eingaben gebraucht (- 8.8.10.2. Maus-Eingaben)

Aufoaben:
1.

2. Erstellen Sie ein Programm, dass eine Begriifung fiiv den Nulzer ausgibl!
Der Name der Nulzers soll vorher eingeben werden und derv Funktion, die
willkommen() heiffen soll, iibergeben werden.

2
.

BK_Sekl+II_Python_basic.docx -157 - (c,p) 2015 - 2026 Isp: dre

6.5.7. Generator-Funktionen — Funktionswerte schrittweise

Manchmal braucht man keine Liste von Werten eines Bereiches (= range()-Funktion), son-
dern die Werte sollen immer Schritt-weise zurlickgeliefert werden — quasi immer bei jedem
Aufruf der nachste glltige Wert. Dazu gibt es Python die Mdglichkeit sogenannte Generator-
Funktionen zu definieren. Die dazu bendtigten Schlisselwoérter von Python hieRen yield und
next.

range-Generator-Funktion fiir Gleitkommazahlen
def generatorfloatrange (start, ende, schrittweite=1.0):
neuer wert=float (start)
while neuer wert < ende:
yield neuer wert # zuriickliefern des Wertes (quasi: return)
nadchsten (ev. méglichen) neuen Wert erstellen
neuer wert=neuer wert+schrittweite
hier kein return!'!!

Das Benutzen der Generatorfunktion erfolgt in zwei Abschnitten. Zuerst muss er Generator
zugeordnet werden. Dazu wird eine Laufvariable mit der Funktion gleichgesetzt. Das ent-
spricht im Prinzip einer Bekanntmachung. Erst wenn jetzt mit next() ein Wert abgerufen wird,
erzeugt die Generator-Funktion den ersten Funktionswert. Bei jedem weiteren next()-Aufruf
bekommt man den nachstfolgenden Wert zurlickgegeben.

aktwert=generatorfloatrange(3.0,4.5,0.5)
print (next (aktwert))
print (next (aktwert))

Ein Problem tritt auf, wenn man einen Wert "zuviel" abruft. Hier kommt es zu einem Laufzeit-
fehler, der aber abfragbar ist (Stoplnteration -> 8.13. Behandlung von Laufzeitfehlern —

Exception's).

aktwert=generatorfloatrange(3.0,4.5,0.5)
print (next (aktwert))
print (next (aktwert))
print (next (aktwert))
print (next (aktwert))

>>>

3.0

3.5

4.0

Traceback (most recent call last):

File "floatrange-funktion.py", line 29, in <module>
print (next (aktwert))
StopIteration

BK_Sekl+l_Python_basic.docx -158 - (c,p) 2015 - 2026 Isp: dre

Das muss das aufrufende Programm realisieren. Wird die Generator-Funktion in einer for-
Schleife verwendet, dann kommt es zu einem regularen Schleifenabbruch (ohne Laufzeitfeh-
ler). Fur for-Schleifen braucht man aber ganzzahlige Werte.
Um Gleitkommazahlen in einer Schleife zu verwenden, muss man auf while zurtickgreifen
und dann aber auch das Abbruchkriterium selbst definieren.

start=3.0
ende=5.5
schritt=0.5
bereichswert=generatorfloatrange (start, ende, schritt)
wert=next (bereichswert)
while wert < ende-schritt*2:
print (wert)
wert=next (bereichswert)

Aufoaben:

1. Programmieren und lesten Sie eine Generalor-Funklion zaehlen (bis) fiir
das Hochzahlen von 0 bis zum Bis-Wert!

2. Schreiben und lesten Sie eine Generalor-Funklion countdown (start) fiir
das Runterzahlen bis 0!

2
2.

BK_Sekl+II_Python_basic.docx -159 - (c,p) 2015 - 2026 Isp: dre

6.5.8. Interator-Funktionen — Funktionswerte noch wieder anders

Die Riuckgabewerte einer Funktion mussen aber nicht immer berechnet werden. Vielfach soll
der Wert aus einer Liste (Menge) kommen, deren Werte immer der Reihe nach genutzt wer-

den sollen.

Das folgende Beispiel einer Wochentags-Funktion liefert mit jedem Aufruf den nachsten Wo-

chentags-Namen in abgekurzter Form.

Dazu definieren wir zuerst eine passende Liste und weisen diese dann mit der Standard-

Funktion iter() einer Laufvariablen (einem Interator) zu.

>>> WO_tage=["MO", "Di", "Mi", "Do", "Fr", "sa", "So"]
>>> akt tag=iter (wo tage)
>>>

Die eigentliche Werte-Erzeugung erfolgt mit next(). Dabei wird bei jedem Aufruf immer der

nachst-folgende Wert zurtickgeliefert.

>>> next (akt tag)
lMol -
>>> next (akt tag)
lDil -
>>> next (akt tag)
lMil -
>>> next (akt tag)
lDol -
>>> next (akt tag)
'Frl -
>>> next (akt tag)
lsal -
>>> next (akt tag)
'Sol -
>>>

Das geht solange gut, wie Werte in der Liste vorhanden sind. Beim Versuch nach dem letz-

ten Element noch ein abzurufen, erhalten wir einen Stoplnteration-Fehler.

Nun mussen bzw. konnen wir den Interator neu initialisieren und schon kann es wieder von

vorne losgehen.

>>> next (akt tag)
Traceback (most recent call last):
File "<pyshell#l11>", line 1, in <module>

next (akt_tag)

StopIteration

>>> akt tag=iter (wo_ tage)

>>> next (akt tag)

lMol

Eine Liste kann von mehreren Interatoren benutzt werden. Jeder Interator zahlt eigenstandig

fur sich weiter.

BK_Sekl+Il_Python_basic.docx - 160 -

(c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Gegeben ist eine Liste von Farben fiiv ein Elikell. Schreiben Sie ein Pro-
gramm, dass immer nach FEingabe einer ungeraden Zahl die Farbe wechsell.
(Die Eingaben sollen unendlich oft moglich sein. Der Laufzeil-Abbruch am
Ende der Liste soll zuerst einmal der Programm-Ausslieg darstellen.)

(¢elb, rol, blau, weif, griin)

2. Erstellen Sie nun ein Programm, dass Eliketten erstelll, deren Farben sich
immer wieder wiederholen! (Als Abbruch soll die FEingabe ciner Null die-
nen.)

3. Nun brauchen wir ein Programm, dass Elikelten mit wechselnder Farbe
(siehe Aufgabe 1.) und einer immer wieder neuen Beschriffung erzeugt.
(ABC, DEF, GHI, JKL, MNO, PQR, STU, VWX, YZ_)

4. Uberleoe/z Sze sich, wieviele verschiedene Elikelten moglich sind! Schreiben
Sie ein Test-Programm, dass mindestens 20 mehr Aufrufe der Funklion er-
zeugt und anzeigt!

fiir die gehobene Anspruchebene:

5. Gesucht sind sogenannle befreundle Zahlen (auch: amicable numbers,)!
Dabei ergibt die Summe der echlen Teiler der einen Zahl jeweils die andere.

Wie geht die Reihe weifer?
(erste Glieder der Reihe: (220,284), (1184,1210), (2620,2924), ...)

BK_Sekl+II_Python_basic.docx -161 - (c,p) 2015 - 2026 Isp: dre

6.6. Vektoren, Felder und Tabellen

Tabellen sind super Strukturen, um Daten geordnet zu speichern. In Programmiersprachen
nennt man die Tabelle Ublicherweise Felder (Array's). Es gibt eindimensionale Felder, die
Vektoren heilen und mehrdimensionale Felder ohne spezielle Namen.

In Felder werden Daten des gleich Datentyps gespeichert. Der Zugriff erfolgt i.A. Gber die
Zeilen- oder Spalten-Nummern. Man nennt diese Indices. Bei Feldern ist im Vergleich zu
Listen keine spatere Erweiterung moglich. Die GroRe bleibt so, wie sie einmal definiert wur-
de.

vektor =[1,2,3,4,5,6]

vektor - | 1 2 3 4 5 6 |

Eintrag-Nr.
Index

range flr automatische Flllung / Erzeugung einer Liste / eines Vektors
Elementanzahl Gber Funktion len() abrufbar
Zugriff auf Einzel-Elemente Uber vektor[Elementnummer]

Zugriff auf Bereiche uber :
: alleine steht fur alle Elemente

where um Indizes anhand einer Bedingung auszuwahlen

vektor1 > | 1 2 3 4 5 6 |

Eintrag-Nr.
Index

vektor2 > | 1 4 9 16 25 36 |

Eintrag-Nr.
Index

feld = array([1,2,3,4,5,6],[1,4,9,16,25,36])

Belegung Zeilen-weise mit gleicher Elementanzahl
wenn ungleichviele Elemente in der Dimension, dann bieten sich mehrdimensionale Listen
an (also kein array-Schluselwort!)

feld > 0 1 2 3 4 5 6
1 1 4 9 16 25 36
Eintrag-Nr.
Index 0 1 2 3 4 5

Zugriff auf Einzel-Elemente Uber feld[ElementnummerX,ElementnummerY] oder
feld[ElementnummerX] [ElementnummerY]

BK_SekI+l_Python_basic.docx -162 - (c,p) 2015 - 2026 Isp: dre

aus dem numpy-Modul kommen:

arange(start, ende, schrittweite)
automatisches Flllen eines Feldes mit Integer- oder Float-Werten

frange(start, ende, schrittweite)
automatisches Fillen eines Feldes mit Float-Werten

linspace(start, ende, schritte)
automatisches Fillen eines Feldes mit Float-Werten

Besonderheit bei numpy: der Teilbereichs-Operator (Slicing-Operator) erzeugt nur eine Sicht
(ein view) auf das Original-Array

(anders bei Listen, wo ein neues Listen-Objekt erzeugt wird!)

andert man die Sicht-Elemente, so andert man auch die Original-Daten und umgekehrt

feld[start : ende : schrittweite]

fur groRe Array's braucht man dann aber unbedingt die Bibliothek numpy, um effektiv zu ar-
beiten

import numpy as npy
feld2dmO= npy.zeros((zeilen,spalten))

feld2dm1 = npy.ones((zeilen, spalten,ebene))

feld ={}
zeilen =4
spalten = 6
for spa in range(zeilen):
for zei in range(spalten):
feld[zei,spa] = 0

oder als (zweidimensionale) Listen-Konstruktion:

feld =1
zeilen =4
spalten = 6
for spa in range(spalten):
feld.append(range(zeilen))
for zei in range(zeilen):
feld[zei][spa] = 0

Kontroll-Ausdruck:
print(len(feld), feld)

Listen-Konstruktionen von Feldern haben den Vorteil, dass sie variabel sind, also auch er-
weitert werden kdnnen; klassische Felder (Array's) eben nicht
Nachteil ist der relativ hohe Ressourcen-Bedarf

BK_Sekl+II_Python_basic.docx -163 - (c,p) 2015 - 2026 Isp: dre

Veranschaulichung einiger Array-Operationen

import

feld

wert =

oder

wert =

sicht

sicht

sicht

sicht

sicht

sicht

numpy as npy

npy.zeros ((7,9))

feld[4][3]

feld[4, 3]

feld[3:4, :]

feld|[

:, 7:8]

feld[:2, 4:]

feld[4:, :]

feld[::, ::2]

feld[::3, ::4]

OGO AWN 2O

w

o|lo|o|o|o|o|o|o

[=][=] (=] (=] (=] (=] (=] B

o|lo|o|o|o|o|o|m

o|lo|o|o|o|o|o|w
o|lo|o|o|o|o|o|~
o|lo|o|o|o|o|o|u
o|lo|o|o|o|o|o|o
o|lo|o|o|o|o|o|~
o|lo|o|o|o|o|o|mx

w

BK_Sekl+Il_Python_basic.docx

- 164 -

(c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Erstellen Sie ein Programm, dass nach Abfrage des Stichproben-Umfanges
die Finzelwerte der Stichprobe erfasst und stalistisch auswertet! (Das Pro-
gramm wird auf maximal 100 Werfe beschrinkt.) Es sollen die folgenden
slatistischen Mafe berechnel werden!:

a) avithmelvisches Miltel (avithmelvischer Millelwert)
b) Standardabweichung

) Minimum

d) Maximum

¢) maximale Abweichung vom Millelwert

) prozentuale Abweichung vom Millelwert

Q) Streuung

2. Erweilern Sie das Programm von Aufgabe 1 um eine Umsorlierung in cine
aufsteigend geordnete Reihe! Evmiffeln Sie nun auch den Median und die
Quantillen!

3. Das Programm von 1. oder 2. soll noch um eine Haufigkeils-Analyse erwei-
tert werden! Der Nulzer soll dazu die Anzahl dev Gruppen vorgeben kon-
nen (maximal 10) und die unfere Grenze soll nach dem Vorschlag vom Pro-
gramm (Minimum) enhﬂedet:cliesen Wert benulzen oder einen anderen ein-
zugebenen Wert benulzen. Ahnlich ist mit dev Spannweile der Gruppen zu
verfahren! Die Ausgabe soll aus einer Tabelle (Gruppen-Nr., unlere grenze,
obere Grenze, Anzahl Werle, prozentualer Anteil) erfolgen!

4. Realisieren Sie die Ver- und Enlschliisselung nach dem Four-Square-
Verfahren (nach DELASTELLE)! (- 8.19.1.x. Four-Square-Verschliisselung)

BK_Sekl+II_Python_basic.docx -165 - (c,p) 2015 - 2026 Isp: dre

6.6.1. Felder mit unterschiedlichen Datentypen

—-*- coding: utf-8 -*-

mehrdimensionale Arrays mit Python 2.2, die fir
ihre Elemente wechselnde Variablentypen zulassen

class varioarray(dict):
def init (self, maxtupel, dummy = ' '):
dict. init (self)
self.max = maxtupel
self.dimension = len(self.max)
self.dummy = dummy

def test(self, index):
if len(index) <> self.dimension:
print 'dimension error'
return 1 ==
for i in range (0, self.dimension):

if (index[1] > self.max[i1]) or (index[i] <

print 'overflow error'
return 1 ==
return 1 ==

def getitem (self, index):
if self.has key(index):
return dict. getitem (self, index)

else:
if self.test(index): return self.dummy
def setitem (self, index, wert):
if self.test (index) :
dict. setitem (self, index, wert)
Beispiel:
m = varioarray([5, 6, 2], 'None')

das Setzen des Dummys ist nicht zwingend
im constructor ist ' ' voreingestellt
wie bei tblichen Feldinitialisierungen
kéonnte er auch den Wert Null bekommen

wnn

m[l, 2, 1] = '$$$$$' # hier als Zeichenkette
m[l, 6, 1] = -12345 # hier als Integer
print 'Definierte Groesse: ', m.max

print "Dimensionen:", m.dimension

print "Die wirklichen Eintrage: ", m

print

s = "

print 'Beispielzeile [1, x, 1], x von 0 bis 6:'
for i in range (0, 7):

print m[1, i, 17,
print s

wait = raw_ input('enter')
kleine Bremse fiir das Kommandozeilenfenster

Q: http://www.way2python.de/

BK_Sekl+Il_Python_basic.docx - 166 -

(c,p) 2015 - 2026 Isp: dre

6.7. ein bisschen Statistik

6.7.1. Zufallszahlen

Kommen die Sechsen bei einem Wirfel eigentlich immer genauso haufig, wie die anderen
Zahlen. Also wenn ich Mensch-argere-nicht spiele, dann immer nicht. Glaube ich zu mindes-
tens.

Es ist mal eine schéne Aufgabe die Glltigkeit des Gesetzes von den grofden Zahlen (in der
Statistik) mit einem echten Wiurfel-Experiment zu Uberprifen. Mit Schiler-Gruppen habe ich
das mal machen lassen — und so "Uberraschend" es fir alle war, das Gesetz stimmt. Je hau-
figer man wiurfelt, umso genauer tritt die erwartete Haufigkeit von einem Sechstel fir die
Sechs und natirlich auch fir jede andere Zahl auf.

Zum Testen, ob die Schuler auch wirklich warfeln, hatte ich einigen

Teams einen besonderen Wirfel untergejubelt. Der hatte eine kleine

Veranderung. Der Punkt von der Eins war angebohrt und dort eine

kleine Madenschraube platziert.

Schnell waren die Gruppen erkannt, die geschummelt hatten!

Aufoabe:

1. Stellen Sie eine Hypothese auf, was sich durch die Manipulation verandert!

2. Welches Ergebnis erwarten Sie fiir ein unmanipulierfes Wiirfeln von 200
Wiirfen? Begriinden Sie Ihre Vermutung!

3. Wiirfeln Sie mit einem echlen (nicht manipulierfen) Wiirfel 200 mal und er-
fassen Sie die Wiirfe in einer Zahltabelle!
Sie konnen die Wiirfe auch in das Programm "Stalistik-Shing.py” eintvagen!

4. Fassen Sie die Ergebnisse aller Kursteilnehmer zusammen! Sind die Ergeb-
nisse des Experimentes nun dichler am Erwarlungswerl? Berechnen Sie da-
zu die prozenluale Abweichung jedes 200er Experimentes und der Zusam-
menfassung!

Nun wollen wir mit Python wiurfeln. Damit wir eine Zufalls-Funktion zur Verfigung gestellt
bekommen missen wir eine zusatzliche Zeile an den Anfang des Programms schreiben.
Dadurch wird ein Modul geladen. Genaueres dazu finden Sie bei - 8.4. Module.

Zum ersten Testen reicht auch die Konsole:

Wenn Sie das nebenstehende Auspro- >>> import random
bieren, werden Sie ev. ein anderes Er- s rRneen, Fenehlnt (L ©)
gebnis bekommen. -

Die Zufalls-Funktion randint() liefert hier eine Zufallszahl zwischen 1 und 6. Beachten Sie,
dass hier die obere Grenze mit eingeschlossen ist!
Mittels einer Schleife lassen wir uns mal 20 "Wurfe" anzeigen:

import random
for zaehler in range(l,20+1): # +1, weil range oberer Grenze ausschlieBt
print (random.randint (1,6), end=' ")

>>>
6 6 3625142562142151412
>>>

BK_Sekl+II_Python_basic.docx -167 - (c,p) 2015 - 2026 Isp: dre

Nun interessiert uns natirlich, ob von allen mdglichen Zahlen auch gleichviel gewdrfelt wer-
den. Ich verwende zum Merken ein Feld — hie konkret einen eindimensionales — also einen
Vektor. Wir brauchen fur jede mogliche Augenzahl ein Merkplatz.

Eigentlich wirde man jetzt ein Vektor mit der Lange 6 definieren. Der Nachteil ist, dass bei
jedem Speichern die Merkposition ausgerechnet werden muss, weil die Felder immer mit
dem Index 0 beginnen und wir missten dann die Wrfe mit einer Eins unter dem Index 0 und
die Wirfe mit einer Zwei unter Index 1 usw. usf. speichern. Das verwirrt schnell und ist eine
Fehlerquelle.

Gustiger ist die Speicherung der Wurfe mit einer Vier z.B. auch unter Index 4. Der Null-Index
kann ja fur andere Zwecke benutzt werden, z.B. zum Zahlen der Wurfe insgesamt. Dann hat
man alles schén zusammen gespeichert.

Also definieren wir das Feld mit sieben Positionen so:

haeufigkeit=([0,0,0,0,0,0,0])

Dabei werden die Werte der einzelnen (sieben) Zellen auf 0 als Startwert gesetzt. Das Feld
mit dem Index 0 — also haeufigkeit[0] wird zum Zahlen der Wirfe genutzt.

import random
haeufigkeit=([0,0,0,0,0,0,0])
anzahlwuerfe=1000
while haeufigkeit[0]<anzahlwuerfe:
haeufigkeit[random.randint (1,6)]+=1
haeufigkeit [0] +=1
for zaehler in range (0,6+1):
print (haeufigkeit[zaehler],end="' ")

Wird ein bestimmter Wert gewdrfelt, so wird der zugehérende Feld-Eintrag tber genau die-
sen Wert als Index gefunden und um eins erhéht (Operator: +=).

>>>
Zum Schluss wird das Feld noch schnell 1000 174 180 160 155 153 178
ausgedruckt. >>>

Wer es bei der Ausgabe auch Feld-orientiert haben mochte kann die letzte Schleife entfer-
nen und die print()-Anweisung so notieren:

print (haeufigket)

>>>

. und wir erhalten tatsachlich ein Vek- [1000, 162, 169, 164, 177, 163, 165]
tor. >>>

Unter Zuhilfenahme eines zweiten Feldes erfassen wir den Erwartungswert fir die Haufigkeit
jedes Wurfes und die Abweichung bei jedem einzelnen Wert:

BK_Sekl+l_Python_basic.docx -168 - (c,p) 2015 - 2026 Isp: dre

import random

haeufigkeit=([0,0,0,0,0,0,07])

anzahlwuerfe=1000

while haeufigkeit[0O]<anzahlwuerfe:
haeufigkeit[random.randint (1,6)]+=1
haeufigkeit[0]+=1

for zaehler in range (0,6+1) :
print (format (haeufigkeit [wert],"6d"),end=" ")

print ()

erwartung=([anzahlwuerfe/6,0,0,0,0,0,0])

print (format (erwartung[0],"5.2f") ,end=" ")

for wert in range(l,6+1):
erwartung[wert]=haeufigkeit [wert]-erwartung[0]
print (format (erwartung|[wert],"6.2£f"),end=" ")

Die Anzeige wurde >>>

format-technisch ein 1000 156 175 158 186 152 173
bisschen angepasst, 166.67 -10.67 8.33 -8.67 19.33 -14.67 6.33
damit die Werte or- >>>

dentlich zueinander

stehen.

In weiteren Feldern lassen sich nun auch andere Haufigkeits-bezogene statistische Kenn-

werte abspeichern. Da bietet sich z.B. die relative Haufigkeit an:

print ()
rel haeufigkeit=([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, O.
for wert in range(0,6+1):
rel haeufigkeit[wert]=haeufigkeit[wert]/anzahlwuerfe
print (format (rel haeufigkeit[wert],"7.3f"),end="' ")
print ()

0])

>>>
1000 175 188 172 171 144
166.67 8.33 21.33 5.3 4.33 -22.67
1.000 0.175 0.188 0.172 0.171 0.144

150
-16.67
0.150

Spatestens ab hier missen wir uns um die Beschriftung kimmern, da nun nicht mehr deut-

lich wird, was da im Einzelnen berechnet und angezeigt wurde.

-169 -

BK_Sekl+ll_Python_basic.docx

(c,p) 2015 - 2026 Isp: dre

Aufoaben:

1. Verbessern Sie das kleine Wiirfel-Statistik-Programm so, dass die Anzeigen
verstandlich werden!

2. Erweilern Sie nun das Programm um die prozenluale Abweichung vom Er-
wartungswert und der prozenlualen Abweichung von der erwarlelfen relali-
ven Haufigkeit! Warum sind die zusammengehdrenden Werfe immer gleich?
(Tipp: Das Prozenlzeichen lasst sich gut in der print-Oplion end unterbrin-
gen (end="'%), aber man konnke es auch am Ende der Zeile als Einheil aus-
geben!)

3. Verandern Sie das Programm nun so, dass man beliebige Wriirfel (der, Ser,
... bis 10er) einselzen kann!

4. Passen Sie nun das Programm auch noch so an, dass beliebige Wurfzahlen
(max. 1'000'000) moglich sind! (Das Uberschreiten der Zeilen bei der Wahl
vielflichiger Wiirfel ignorieren wir hier mal!

fiir Interessierte:

5. Wie heiflen eigentlich die Korper der ungewdhnlichen "Wriirfel"?

fiir die gehobene Anspruchsebene:

6. Informieren Sie sich, wie man z.B. bei etwas umfangreicheren Reihen her-
ausbekommen kann, ob die Werte echt erwiirfelt wurden oder sich der Nul-
zer die Werte nur mal so "zufallig" hat einfallen lassen!

Oft braucht man in der Statistik aber Zufalls-Werte zwischen 0 und 1. Hierfur nutzen wir die
Funktion random() aus der Bibliothek random.

from random import random

for i in range (10):
print (random ())

Wenn Sie das obige Programm ausprobieren sollten, >>>

dann erhalten Sie ganz sicher andere Werte. Das ist s

schlief3lich Sinn und Zweck eines Zufalls-Generators e

.o 0.3853434899800302

(Warfel's).

Neben den Haufiakei . v in der Statistik 0.792967393485768
eben den Haufigkeiten missen wir in der Statisti 0.5036802632097241

auch vielfach die Kennwerte fur bestimmte Gruppen 0.34405052476700704

von Werten berechnen. Zu den bekanntesten Kennwer- 0.9737482138245568

ten gehoren sicher der Mittelwert und die — vielen Nut- 0.1504658029464917

zern sehr imaginar anmutende - Standardabweichung. 0.32370271239696813

Was auch immer ihr Wert aussagen soll? 0.8812756510874483

Ein typisches Beispiel ist die Messung der Masse eines

Korpers.

Wenn wir ins in der Praxis oft mit einer einzigen Messung zufrieden geben, ist das aus wis-
senschaftlicher Sicht zu unsicher. Man macht immer viele Messungen und betrachtet dann
den Durchschnitt.

Im folgenden Programm werden die Messwerte per Eingabe erfasst und dann sollen nach
und nach die statistischen Kennwerte dieser Reihe berechnet werden. Alternativ kdnnte man
natirlich die Werte auch wieder direkt im Programm in ein Feld oder eine Liste schreiben.
Vor allem beim Testen ist das wesentlich praktischer.

BK_SekI+l_Python_basic.docx -170 - (c,p) 2015 - 2026 Isp: dre

Fir die Auswertung von Experimental-Daten kommen neben den gerade betrachteten ein-
gruppigen Werten auch solche aus zwei zusammenhangenden Reihen in Betracht.

Analyse des Wirfel's mittels eines Dictonary (2 Teil 2)
from random import randint
Haeufigkeit = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0}
Wirfelschleife
for i in range (60):
wurf = randint (1, 6)

haeufigkeit [wurf] +

Ausgabe
print (haeufigkeit)

Testen mit 6, 60, 600, 6000, 60000, 600000
berechnen der prozentualen Abweichung von Zielwert (eines gerechten Wirfel's)

BK_Sekl+II_Python_basic.docx -171 - (c,p) 2015 - 2026 Isp: dre

6.8. die Python-Schliisselworter im Uberblick

False def if raise
None del import return
True elif in try
and else is while
as except lambda with
assert finally nonlocal yield
break for not

class from or

continue global pass

Scheinbar ist das Wortchen access mit einer Bedeutungen belegt oder friher belegt gewe-
sen. Es sollte deshalb nur mit Bedacht verwendet werden. Vor allem sollte man es nie als
Bezeichner etc. nutzen.

Syntax Beschreibung

Beispiel(e) Kommentar(e)

Syntax Beschreibung

Beispiel(e) Kommentar(e)

Syntax Beschreibung
Beispiel(e) Kommentar(e)

Syntax Beschreibung

Beispiel(e) Kommentar(e)

BK_Sekl+l_Python_basic.docx -172 - (c,p) 2015 - 2026 Isp: dre

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

assert

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

BK_Sekl+II_Python_basic.docx -173 - (c,p) 2015 - 2026 Isp: dre

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

elif

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

finally

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

BK_Sekl+Il_Python_basic.docx

-174.-

(c,p) 2015 - 2026 Isp: dre

Beispiel(e)

Kommentar(e)

global
Syntax Beschreibung
Beispiel(e) Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

import

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

lambda
Syntax Beschreibung

| Beispiel(e) | Kommentar(e) |
BK_Sekl+II_Python_basic.docx -175 - (c,p) 2015 - 2026 Isp: dre

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax

Beschreibung

Beispiel(e)

Kommentar(e)

Syntax Beschreibung
Beispiel(e) Kommentar(e)
BK_Sekl+l_Python_basic.docx -176 - (c,p) 2015 - 2026 Isp: dre

Syntax Beschreibung

Beispiel(e) Kommentar(e)

Syntax Beschreibung

Beispiel(e) Kommentar(e)

Syntax Beschreibung

Beispiel(e) Kommentar(e)

yield
Syntax Beschreibung
Beispiel(e) Kommentar(e)
Links:

https://docs.python.org/3.5/library/ (engl. Beschreibung / Dokumentation der Python-Library's)

BK_Sekl+II_Python_basic.docx -177 - (c,p) 2015 - 2026 Isp: dre

https://docs.python.org/3.5/library/

Python-Spicker

beliebig oft wiederholbar: {, wiederholung} optional / mogliche Ergénzung: [, option]
alternativ: variante | variante Python-Schliisselwérter und —-symbole
hilfsausdruck := reguléare Ausdriicke, Befehle, Strukturen

Eingabe:
variable = input (“Aufforderungstext®') # allgemeine / Text-Eingabe
variable = eval (input (“Aufforderungstext®)) # Zahlen-Eingabe

(formatierte) Ausgabe:

ausgabe:=wert | berechnung | “Text“| "Text’

print ()

print (ausgabe)

print ({ausgabe, } format (variable,formattext) {, ausgabe})

Bsp.: formattext .. ’12s’ ’12d’ ’12.3f" s..String; d..dezimal (Ganzzahl); f..float (Kommazahl);
... hier mit Platz fiir 12 Zeichen (und 3 Dezimalstellen)

print (ausgabe, {ausgabe, } end=drucksteuerung)

Bsp.: drucksteuerung ..°\n’.. Zeilenumbruch;

.. 'zwischentext’ .. druckt Zwischentext ohne Umbruch

print ("Text mit Platzhalter [Y%formattext] ..." % (variable [, variable]))

.. formattext s.a. oben
I Ausgabe des %-Zeichens in solchen Konstrukten mit %%
print ("Text mit Platzhalter {[%platz]} [{[$12]}] ...". format (variable [,variable]))

.. platz ist die Anzahl der reservierten Zeichen

if bedingung: # Einleitung und Test/Bedingung
befehle # Then-/Dann-/Wahr-Zweig (eingeriickt!!! mehrzeilig mégl.)
{elif bedingung: # zusdtzliche(r) untergeordnete (r) Test/Bedingung
befehle} # untergeord. Then-/Dann-/Wahr-Zweig
[else: # optionaler Else-/Sonst-/Falsch/Rest-Zweig
Befehle]
Schleifen:
while bedingung: # while True: # Endlosschleife
(meist break notwendig)
befehle
{continue} # Sprung zum nidchsten Schleifendurchlauf /-anfang
{ befehle
break} # Sprung hinter Schleife (noch hinter ELSE)
{else:
befehle}
for laufvariable in liste | tupel: # _ als laufvariable, wenn kein Gebrauch in
befehle Schleife geplant
[verzweigung : break] # vorzeitiger Abbruch der Schleife

for laufvariable in range ([untere_grenze, 1obere_grenze[, schrittweite]) :
befehle

BK_Sekl+l_Python_basic.docx -178 - (c,p) 2015 - 2026 Isp: dre

Funktion:

def funktionsname(argumente):
befehle
[return riickgabewert]

Bibliotheken:

Installation (iber pip (in der Console)

python -m pip install --upgrade pip (Aktualisierung von pip)
pip3 install pygame-....whl (Installation des Moduls)
(pip3 install --upgrade pygame-....whl (Aktualisieren / Uberinstal

lieren))

Verwendung im Quelltext:
import bibliothek

Bibliothek. funktion(argumente)

from bibliothek import funktion {, funktion}
from bibliothek import *
import bibliothek as lokaler_name

z.B.: Wiirfeln, klassisch import random from random import randint

dir (random) #Anzeige Fkt.n

x=randint (1, 6)

import random import random as rdm from random import *
;=random.randint(1, 6) ;=rdm.randint(1, 6) ;=randint(1, 6)
wichtige Bibliotheken:

math .. diverse mathematische Funktionen sys .

re .. Arbeiten mit regularen Ausdriicken turtle .. Turtle-Graphik
datetime .. Zeit- und Datums-Funktionen pickle

os .. Kommunikation mit Betriebssystem

shutil .. Arbeiten mit Dateien und Ordner auf Shell-Ebene

sqglite3 .. Kommunikation mit einem SQLite3-Server

Objekt / Klasse:

class klassenname:
klassenttributname=vorbelegung # ibergreifend fiir alle Objekte/Instanzen

def methodenname (oberklasse | self, argumente) :

pass # gestattet Klassendefinition ohne Implementierung
def __init__(oberklasse | self, argumente) : # Konstruktor
def _methodenname_(...) : # anschein-geschiitzte Methode (protected)
def _ methodenname__(...) : # geschiitzte Methode (private) unsichtbar
self. attributname=vorbelegung # Obj.-Attribut, fiir jede Instanz extra
self. attributname=vorb. # anschein-geschiitztes Attribut
self. attributname=... # geschiitztes Attribut, unsicht (> get/set !)

BK_Sekl+II_Python_basic.docx -179 - (c,p) 2015 - 2026 Isp: dre

Literatur und Quellen:

siehe letzter Teil!

Abbildungen und Skizzen entstammen den folgende ClipArt-Sammlungen:
IA/

andere Quellen sind direkt angegeben.

Alle anderen Abbildungen sind geistiges Eigentum:

lern-soft-projekt: drews (c,p) 1997 — 2026 Isp: dre
fur die Verwendung aulderhalb dieses Skriptes gilt fur sie die Lizenz:

@dsatve. OO CC-BY-NC-SA @80

Lizenz-Erklarungen und —Bedingungen: http://de.creativecommons.org/was-ist-cc/
andere Verwendungen nur mit schriftlicher Vereinbarung!!!

verwendete freie Software:

¢ Inkscape von:inkscape.org (www.inkscape.org)
e CmapTools von: Institute for Human and Maschine Cognition (www.ihmc.us)

H- (c,p) 2015 - 2026 lern-soft-projekt: drews -H
H- drews@lern-soft-projekt.de =)
H- http://www.lern-soft-projekt.de =)
B- 18069 Rostock; Luise-Otto-Peters-Ring 25 -H
HB- Tel/AB (0381) 760 12 18 FAX 760 12 11 -3

BK_SekI+l_Python_basic.docx -180 - (c,p) 2015 - 2026 Isp: dre

http://de.creativecommons.org/was-ist-cc/
http://www.inkscape.org/
http://www.ihmc.us/
mailto:drews@lern-soft-projekt.de
http://www.lern-soft-projekt.de/

